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Simulations Summary

Simulating radiation feedback from massive stars

adaptive-mesh numerical hydrodynamics code FLASH

raytracing algorithm for ionizing and non-ionizing radiation

rate equation for ionization fraction

relevant heating and cooling processes

sink particles as sources of radiation

simple prestellar model

We try to understand

the formation of massive stars,

the role of radiative feedback in stellar cluster formation,

morphologies and kinematics of ultracompact H II regions.

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Initial Conditions

massive core with M = 1000M⊙
flat core within r = 0.5 pc and ρ(r) ∼ r−3/2 density fall-off

core is initially rotating with β = 0.05

no magnetic fields or turbulence

sink particle radius is 590 AU

cut-off density is 7 · 10−16 g cm−3

cell size is 98 AU

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Classification of UC H II Regions

Wood & Churchwell 1989 classification of UC H II regions

Question: What is the origin of these morphologies?

UC H II lifetime problem: Too many UC H II regions observed!

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



H II Region Morphologies
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emission at 2 cm in mJy/beam

synthetic VLA observations at 2 cm of simulation data

interaction of ionizing radiation with accretion flow creates
high variability in time and shape

a single simulation reproduces all H II region morphologies

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



H II Region Morphologies
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morphologies depend a lot on viewing angle

example: shell morphology face-on turns into cometary
morphology edge-on

different behavior in each particular case

TP, Mac Low, Banerjee, Klessen and Dullemond ApJ 719, 831–843 (2010)



H II Region Morphologies

45.0033.7522.5011.250.00

shell-like core-halo cometary

spherical irregular

box size 0.122 pc

0.716 Myr 0.686 Myr 0.691 Myr

0.671 Myr 0.704 Myr

23.391M⊙ 22.464M⊙ 22.956M⊙

20.733M⊙ 23.391M⊙

emission at 2 cm in mJy/beam

infalling gas shields ionizing radiation, ionized gas recombines

as long as the massive star is embedded in an accretion flow,
the H II region cannot expand freely

H II region flickers, this resolves the lifetime problem!

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Time Variability
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correlation between accretion events and H II region changes

time variations in size and flux have been observed

changes of size and flux of 5–7%yr−1 match observations
Franco-Hernández et al. 2004, Rodŕıguez et al. 2007, Galván-Madrid et al. 2008

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Comparison with W51e2

Zhang et al. 98, Keto & Klaassen 08

synthetic NH3(3,3) and H53α maps

H II region offset from central protostar

ionized gradient indicative of spiralling flow

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Conclusions and Outlook

Conclusions

high variability in time and shape of H II regions

all classified morpholgies can be found in a single simulation

flickering resolves the UC H II lifetime problem

observed size and flux changes are caused by accretion process

simulations reproduce characteristic H II region features such
as spiralling flows

Outlook

more realistic initial conditions

study effects of turbulence and magnetic fields

detailed recombination line (H and Ne II) studies

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Disk Fragmentation

−13.0−15.2−17.5−19.8−22.0

box size 0.324 pc

0.660 Myr 0.679 Myr 0.698 Myr

0.718 Myr 0.737 Myr

log10(dens) in g cm−3

disk is gravitationally unstable and fragments

we suppress secondary sink formation by “Jeans heating”

H II region is shielded effectively by dense filaments

ionization feedback does not cut off accretion!

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Disk Fragmentation

−13.0−15.2−17.5−19.8−22.0

box size 0.324 pc

0.660 Myr 0.691 Myr 0.709 Myr

0.726 Myr 0.746 Myr

log10(dens) in g cm−3

all protostars accrete from common gas reservoir

accretion flow suppresses expansion of ionized bubble

cluster shows “fragmentation-induced starvation”

halting of accretion flow allows bubble to expand

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Accretion History
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single protostar accretes 72M⊙ in 120 kyr (Run A)

ionization feedback alone is unable to stop accretion

accretion is limited when multiple protostars can form (Run B)

no star in multi sink simulation reaches more than 30M⊙
Thomas Peters H II Regions: Witnesses to Massive Star Formation



Accretion History
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compare with control run without radiation feedback

total accretion rate does not change with accretion heating

expansion of ionized bubble causes turn-off

no triggered star formation by expanding bubble

TP, Klessen, Mac Low and Banerjee arXiv:1005.3271



Dynamics of the H II Region and Outflow
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log10(dens) in g cm−3

thermal pressure drives bipolar outflow

filaments can effectively shield ionizing radiation

when thermal support gets lost, outflow gets quenched again

no direct relation between mass of star and size of outflow

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Dynamics of the H II Region and Outflow
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log10(dens) in g cm−3

bipolar outflow during accretion phase

when accretion flow stops, ionized bubble can expand

expansion is highly anisotropic

bubbles around most massive stars merge

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Dynamics of the H II Region and Outflow
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ionization drives bipolar outflow
pressure-driven expansion of shell
thin-shell instability leads to fingers

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Dynamics of the H II Region and Outflow
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photoionization hindered by infalling material
hot gas recombines and cools
result is a cometary H II region

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Dynamics of the H II Region and Outflow
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size and morphology of H II region is highly variable
cometary H II region totally reverses within less than 10 kyr
changes like this have been observed!

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Simulated Radio Continuum Maps

numerical data can be used to generate continuum maps

calculate free-free absorption coefficient for every cell

integrate radiative transfer equation (neglecting scattering)

convolve resulting image with beam width

VLA parameters:

distance 2.65 kpc
wavelength 2 cm
FWHM 0.′′14
noise 10−3 Jy

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



H II Region Morphologies
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morphologies depend a lot on viewing angle

example: shell morphology face-on turns into cometary
morphology edge-on

different behavior in each particular case

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



H II Region Morphologies

Type WC89 K94 Run A Run B

Spherical/Unresolved 43 55 19 60 ± 5
Cometary 20 16 7 10 ± 5
Core-halo 16 9 15 4 ± 2
Shell-like 4 1 3 5 ± 1
Irregular 17 19 57 21 ± 5

WC89: Wood & Churchwell 1989, K94: Kurtz et al. 1994

statistics over 25 simulation snapshots and 20 viewing angles

statistics can be used to distinguish between different models

single sink simulation does not reproduce lifetime problem

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Emission and Optical Depth
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same H II region for different VLA wavelengths

beam size and optical depth become smaller with decreasing
wavelength

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Emission and Optical Depth
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beam size and optical depth become smaller with decreasing
wavelength
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Spectral Energy Distribution
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simulated dust emission with RADMC-3D
typical H II region SEDs of WC89 reproduced
expect spectral slope of α = 2 (optically thick) and α = −0.1
(optically thin)
anomalous SEDs with α ≈ 1 caused by density
inhomogeneities
no dust emission in cm to sub-mm regime

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Time Variability
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H II regions can change dramatically in only a few 100 yr.

shells and filaments can appear and disappear

cometary H II regions can reverse

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Time Variability
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H II regions can change dramatically in only a few 100 yr.

shells and filaments can appear and disappear

cometary H II regions can reverse

TP, Banerjee, Klessen, Mac Low, Galván-Madrid and Keto ApJ 711, 1017–1028 (2010)



Effect of Feedback on Stellar Cluster
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accretion heating by first stars raises local Jeans mass

stars become more massive, but less stars form in total

stars more massive with (Run B) than without (Run D)
feedback

accretion histories of individual stars can vary a lot

TP, Klessen, Mac Low and Banerjee arXiv:1005.3271



Effect of Feedback on Stellar Cluster
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star formation keeps the disk mass roughly constant

ionization-driven outflows reduce the disk mass slightly

ionizing radiation does not change the star formation rate
initially

TP, Klessen, Mac Low and Banerjee arXiv:1005.3271



Effect of Feedback on Stellar Cluster
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star formation proceeds radially outwards in disk plane

accretion heating by first stars suppresses sink formation at
small disk radii

TP, Klessen, Mac Low and Banerjee arXiv:1005.3271



Effect of Feedback on Stellar Cluster
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competitive accretion simulations and observations show a

relation Mmax ∝ M
2/3

sinks

fragmentation-induced starvation can equally well reproduce
this scaling relation

accretion heating shifts the turn-off towards higher masses

TP, Klessen, Mac Low and Banerjee arXiv:1005.3271



Jeans Heating

to study effect of single ionizing source, artificial
fragmentation must be suppressed

if gas density gets too high, the Jeans length is no longer
resolved

instead of forming secondary sink particles, we heat up the
gas such that we resolve the Jeans length

Tmin =
Gµmp

πkB

ρ(n∆x)2

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Raytracing Module

Long Characteristics

pro:
very accurate,
fully parallelizable

con:
redundant calculations

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Raytracing Module

Long Characteristics

pro:
very accurate,
fully parallelizable

con:
redundant calculations

Short Characteristics

pro:
very efficient

con:
need for interpolation,
intrinsically serial

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Raytracing Module

Hybrid Characteristics (Rijkhorst et al. 2006)

computational domain is distributed over several processors

use long characteristics on every single patch

use long characteristics again to add up contributions of
different patches

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Radiation Physics

raytracing yields optical depths for ionizing and non-ionizing
radiation

local mean intensity is given by

Jν(r) =
(rstar

r

)2 1

2c2

hν3

exp(hν/kBTstar) − 1
exp(−τν(r))

input for photoionization rate and photoionization heating rate

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Radiation Physics

Change of Ionization Fraction

rate equation for hydrogen

dx(HII)

dt
= x(HI)(Ap + Ac) − x(HII)neαR

photoionization rate

Ap =

∫

∞

ν0

4πJν

hν
aν dν

collisional ionization rate

Ac = Ac(HI)ne

√
T exp(−I(HI)/kBT )

radiative recombination rate

αR = αR(104 K)

(

T

104 K

)

−0.7

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Radiation Physics

Change of Ionization Fraction

rate equation for hydrogen

dx(HII)

dt
= x(HI)(Ap + Ac) − x(HII)neαR

photoionization rate

Ap =
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Radiation Physics

Change of Temperature

photoionization heating rate:

Γp = n(HI)

∫

∞

ν0

4πJν

hν
aνh(ν − ν0) dν

high temperature (metal line) cooling curve

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Radiation Physics

Change of Temperature

photoionization heating rate:

Γp = n(HI)

∫

∞

ν0

4πJν

hν
aνh(ν − ν0) dν

high temperature (metal line) cooling curve

Conclusion

sensitive interdepedence of x and T

use sub-cycling with thermal time scale

iterate until x and T converge

implementation from DORIC routines (Rijkhorst et al. 2006)

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Verification

code was tested in cosmological setting by Iliev et al. 2006

for our interests, D-type ionization fronts need to be modeled

Spitzer 1978 gives solution for expansion into homogeneous
medium

R(t) = RS

(

1 +
7

4

cst

RS

)4/7

analytical and numerical results agree very well
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Prestellar Model

Ionizing Radiation

sink particles as model for protostars

luminosity and temperature from ZAMS (Paxton 2004)
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defines ionizing radiation completely
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Prestellar Model

Non-ionizing Radiation

following Krumholz et al. 2007, the dust heating term to
lowest order in v/c is Γd = κPρcu

total energy density is given by

u(r) =
(rstar

r

)2 σ

c
exp(−τ(r))T 4

star

stellar heating term is

Γst(r) = σ
(rstar

r

)2

κP(T (r))ρ(r) exp(−τ(r))T 4
star

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Prestellar Model

Accretion Luminosity

assume that potential energy is
fully converted into radiation at
accretion radius

Lacc = G
MṀ

racc

prestellar evolution model from
Hosokawa & Omukai 2008

interpolate to find racc as
function of M and Ṁ

additional heating term

Γacc(r) = σ
(racc

r

)2

κP(T (r))ρ(r) exp(−τ(r))T 4
acc

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

 

 1e+06

 1e+07

 1e+08

 0.1  1  10  100

  1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

 1

 10

 100

 

10 -4

10 -5

10 -6

lo
g
 T

m
a

x
 (
K

)

10   M    /yr-3

*
log M  ( M   )

*
lo

g
 R

  
( 

R
  

 )

Thomas Peters H II Regions: Witnesses to Massive Star Formation



Summary

Full Euler Equations

∂tρ + ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρv ⊗ v) + ∇P = ρg

∂t(ρetot) + ∇ · [(ρetot + P )v] = ρv · g + Γ − Λ

with
Γ = Γp + Γst + Γacc

and
Λ = Λml + Λmol + Λgd

References

Rijkhorst et al. 2006, Banerjee et al. 2006, Federrath et al. 2010,
Peters et al. 2010
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