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H—Impurity States and Nuclear Magnetic Relaxation*

GREGoRY BENPQRD

Laurence Radiation Laboratory, University of California, Lieermore, California 94550

AND

NQRMAN RosTQKERt'

Un& ersity of California, San Diego, La Jolla, California 9Z037

(Received 31 January 1969)

It is shown that a hydrogenic impurity will bind a second electron in high magnetic fields, because of
contraction of the electron wave functions about the lattice sites. The binding energy of the second electron
exceeds kT for semiconductors at helium temperatures when p=kco, /2 Ry»1. This H ion may then
provide a new density of states g+(E) for electrons with spin "up" (o.= 1). Nuclei which relax by mutual
spin-flip processes with conduction electrons have a relaxation rate 1/T1 proportional to g+(E). In the
last Landau state n =0, 0-= —1, the conduction electron g+(E) vanishes so the additional g+(E) from the H
state can produce a large change in T1. The magnitude of this effect is estimated for InSb and comparison
is made with the experiments of Bridges and Clark, with some success. Alternative explanations involving
plasma modes are investigated and found wanting. The presence of H impurities in concentrations on the
order of one-tenth of the conduction electron concentration may also affect the negative magnetoresistance
and the theory of scattering from localized spins.

ments of Bridges and Clark' (thereafter referred to as
BC), which determined the nuclear relaxatjon times of
InSb nuclei in high magnetic fields. Before describing
our work, we therefore brieQy summarize the BC results.
This is done in Sec. III. Feher' has suggested that the
BC experiments in very high fields may be explicable in
terms of plasma effects in the conduction electron gas.
In Sec. IV, we discuss various plasma modes which have
been proposed, and the schemes necessary for them to
relax nuclear spins in a semiconductor. We conclude
that all the mechanisms thus far advanced fail to agree
qualitatively with experiment.

In Secs. V and VI, the possibility of additional
densities of states in semiconductors is examined, and
the binding energy of the high 6eld H ion is calculated.
The formation of this ion makes a new density of states
available for conduction electrons with spin index g = i.
It is then possible for this new state to participate in
relaxation of neighboring nuclear spins by making
energetically possible a spin-Qip process between con-
duction electrons and nuclei. The relaxation rate due to
this impurity is estimated in Sec. VII.

A He-like ion could also contribute a 0 = 1 density of
states. We consider the binding energy of this impurity
in Sec. VIII. We compare our model with the BC ex-
penments in Sec. IX.

Although the BC work is the only data currently
available for comparison, it should be noted that our
theory applies to any semiconductor in which the H—
binding energy may exceed kT. (This will usually mean
the dielectric constant X&)1.)

The important point of this work is that formation of
the H state for high fields (y) 1) does occur, and it
may have important consequences in many areas of
current interest, such as the theory of scattering from

I. INTRODUCTION

'HE contact interaction with conduction electrons
is a well-known nuclear-spin-relaxation mecha-

nism in metals, semimetals, and semiconductors. At low
temperatures in InSb it is dominant until the tempera-
ture exceeds =10'K, at which point phonon relaxation
coupling through the nuclear quadrupolar moment be-
comes more favored.

In order for nuclear relaxation to proceed via the
contact interaction, there must exist a density of states
for the final electron eigenstate. During the relaxation
process, the electron and nucleus "flip" their spin (con-
serving the total spin of the system), so the final density
of states for electrons must be of opposite spin from the
initial state. This paper deals with the possibility that
additional densities of states may arise in semicon-

ductors, due to the formation of hydrogenic states which

bind tzvo electrons in a high magnetic field.
We shall limit ourselves to consideration of a strongly

degenerate conduction electron gas in a solid having a
simple nondegenerate energy band with an isotropic,
quadratic dispersion law, within the effective-mass ap-
proximation. The conduction electron Quid is in equi-
librium. The applied magnetic field is taken to be so
strong that quantization of the electron motion (Landau
quantization) is important. Generally, the phenomena
we treat will only be important when the electrons all

occupy the lowest Landau level and the lowest spin
state within that level. In Sec. II, we give a short review
of electron dynamics in high fields.

This work was originally prompted by the experi-

* Work performed under the auspices of the U. S. Atomic
Energy Commission. A portion of this work is based upon material
submitted by Gregory Benford in partial fulfillment of the require-
ments for the Ph.D. degree, University of California, San Diego.

t Present address: Applied Physics Department, Clark
Cornell University, Ithaca, N. Y.

Hall, 'F. Bridges and W. G. Clark, Phys. Rev. 182, 463 (1969).' G. Feher (private communication).
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localized spins and the appearance of negative magneto-
resistance. We have dealt here with implications in
nuclear relaxation in InSb, primarily because there
appears to be some hope of explaining a specific experi-
ment in terms of our model. However, this should not
obscure the fact that wider applications may be
possible.

II. FREE-ELECTRON STATES

The eigenvalue problem for an electron in a magnetic
field may be solved in the free-electron approximation so
that at the end we simply replace m by the e6ective
mass m* and g by an effective g*.This leads to the usual
Landau levels, with energy eigenvalues for the electrons

E„,r „. (P.'/2m)——+-,'ogpsH+ (e+ ,')Asr„-
where e is the number of the Landau level and 0. is the
electron-spin index.

The density of states in a magnetic field is changed
drastically from the field-free case. If the number of
electrons occupying states up to energy E is E, then the
density of states is'

g (E) =de/dE

4(v +(o )
4u

2 C

2

k(~ -z ) EF
c 5

g (E) g (E)

V 2m '~'~--.
E—(e+-', )Aoo,

2(2m)o Ao nm ~=&

gIJ, gHa.

FIG. 1. Electron density of states g+(L') versus L&'. The quantum
limit is shown in which all electrons are in the n =0, 0.= —1 state.
The two-step process of Gunther et al. (Ref. 6) is indicated,
whereby an electron absorbs a plasmon, gaining energy ken„, and
then undergoes a mutual spin Qip with a nucleus.

Equation (5) means that Ep decreases monotonically as
II is increased, with some oscillations in the rate of de-
crease. For the extreme case (the "extreme quantum
limit" ) of m=0, o= —1,

=Z g'(E), (2)

where e, is the largest integer for which the square
root is real. Since 0=~1, there are two square-root
singularities for each Landau level m. The total number
of electrons is

E,= -,'mo, '= ao'~o'[(2~'A)'/m],

1

e o g (E)f(E)d»
co =A/moog.

where now energy is measured from the bottom of the

(3) band [i.e., 2'A(co, —co,) is not included], and where

where j(E) is the Fermi distribution

f(E) =(1+exp[(E—Ep)/kT])

"=",:.(',.)'"
nmax 1

[Ep (e+~~)A(o, —~~ogpu—H]'~'. (5)
n~ 0—=1

This is the equation relating EI: and ep the electron
concentration. For II=0, we have simply

EI (A'/2m) (3x'~o)'I'——

'L. M. Roth and P. N. Argyres, in Semiconductors and Semi-
metals, edited by R. K. Willardson and A. C. Beer (Academic
Press Inc. , New York, 1966), Vol. 1, p. 159.

The Fermi velocity

vg ——(2~A/m) ao'go

falls rapidly as H is increased in the extreme quantum
limit. This is because the density of states increases
with H, as may be seen by using Eq. (2). A plot of
g'(E) versus E is given in Fig. 1.

All equations in this section are valid in the free-
electron approximation for a crystal lattice if m* and g*
are substituted for m and g. We also write for convenience

gpgII= AQ)g .

III. RELAXATION AT LOW FIELDS

The problem of nuclear relaxation through the con-
tact interaction has been studied theoretically and
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LfABCABNO , (1+dA, , BT) y (13)

' J. Korringa, Physics 16, 601 (1950).
G. E. Gurgenishvili and G. R. Khutsishvili, Fiz. Tverd. Tela

7, 1335 (1965) )English transl. : Soviet Phys. —Solid State 7, 1078
(1965)).

experimentally for some time. 4' The coupling of the
nuclear moment to the electron-spin moment for s states,
the so-called contact interaction, is governed by the
Hamiltonian

~= (8 /3)y, y A'(I )6(r). (10)

Here, y. and y~ are the electron and nuclear gyromag-
netic ratios, y, = gpo/A, y~ ——p~/A. The Hamiltonian is
only effective when the electron and nuclear wave
functions have an appreciable overlap. One assumes a
point nucleus for convenience.

Only s electrons contribute because of cubic lattice
symmetry. We can write the dot product of the nuclear
spin I and the electron spin e as

I a=I,o,+~(I+o +I o+), (11)
where I~=I,&iI„and o.+=o.,&io-„are spin raising and
lowering operators. Thus the Hamiltonian yields a
process in which a mutual spin Qip takes place between
nuclei and electrons. Since the nuclear-spin energy is
negligible compared with A~„ the electron kinetic energy
must absorb or supply the energy for the transition. The
transition rate for this process is proportional to the
product of the number of electrons in the initial energy
state and the number of available states in the Anal

energy state. Korringa4 has investigated this process and
finds an expression for 1/2i when the electrons are
degenerate:

1/&i= (64!9)~'v'v~@'I 0(0) I'g+(E~)g (E~)» (»)
Here, g+ (Er) is the density of states for spin up or down,
and f(0) is the value of the electron wave function at the
nucleus.

The product
I g+(E~)g (Ei) I

is oscillatory in II. The
other terms in Eq. (12) are at best very weak functions
of II, so 1/Ti should oscillate in magnetic field. 4 This
behavior has been verified in InSb by Bridges and
Clark.

However, as we enter the lowest spin level of the
lowest Landau level (v =0, o = —1),g+(Ei ) must vanish
so (1/Ti) should fall rapidly. Bridges and Clark do not
observe any such sudden decrease. Instead, at high
fields two peaks in (1/T&) appear. This is shown quali-
tatively in Fig. 2.

The first peak which cannot be ascribed to the
oscillatory factor

I g+(E&)g (E&) I
is called by Bridges

and Clark the A peak. This peak has been observed in
samples in the concentration range 10" to 10" elec-
trons/cm'. The second or 8 peak was found for samples
in the range 1 to 7X10i4 electrons/cm'. (Limitation of
the external field to 20 kG prevented investigation at
higher concentrations. ) Both peaks occur at magnetic
fields which obey a relation

B

PEAK

Ho
—kG

FIG. 2. Nuclear relaxation rates (1/T&) versus magnetic 6eld, as
found by Bridges and Clark (Ref. 1).The low-held oscillations are
caused by the Landau levels. A and 8 peaks have T& of order
104-10' sec.

where the d~, ~ are constants of order 0.1, Cg and C~ are
constants, and C~)C~.

Most of the A peaks occur at fields such that the
conduction electron distribution is degenerate. For the
I3 peaks, though, kT/Ei )1, so the conduction electron
statistics are not described by a zero-temperature
Fermi distribution or a Boltzmann distribution. We
shall assume in our work that the electrons are de-
generate, and comment on corrections later.

The heights of the A and 8 peaks were found to be
almost completely independent of temperature.

The relation II=eo"', Eq. (13), is true only for
T=1.3'K.. As T increases, the exponent of eo declines
until at T=4.2', H=mo". We shall treat the T=1.3'
case extensively in this paper because it more nearly
approaches a degenerate electron distribution.

The A peaks in particular occur at the point at which
the conduction electron spin frequency equals the
plasma frequency co,=~„at 1"= 1.3'. It was this fact, as
well as the mo"' dependence of Kq. (13),which prompted
the suggestion by Feher' that plasma effects might
provide an explanation.

There are two clear approaches to the explanation of
the A and 8 peaks. One is to find a source of additional
density of states g+(Ei), which could be employed in
Eq. (12). The other is to introduce an entirely new
relaxation mechanism, perhaps due to plasma effects.
We have followed both paths, and, in Sec.IV, we describe
our conclusions regarding plasma mechanisms. In the
remainder of the paper we consider an additional
density of states arising from impurities in the solid.

IV. PLASMA-MODE MECHANISMS

It is well known that the degenerate electron gas in a
solid may support collective oscillations. In general,
there will exist oscillating electric and magnetic fields
due to these plasma waves. The nuclear magnetic dipole
moment will couple to the oscillating magnetic fields,
and the nuclear quadrupole moment will interact with
any electric field gradients.



G. BENFORD AND N. ROSTOKER

A fundamental frequency which characterizes plasma
motion is the familiar plasma frequency

&o~= (4xee'/Em*)'",

where E is the dielectric constant. This longitudinal
electrostatic oscillation exists in the absence of a mag-
netic field, and indeed defines the lower limit for
electrostatic oscillations if 8=0.

Gunther et a/. ' have considered the presence of the
elementary quanta of frequency co~ (plasmons) and
their effect on the nuclear relaxation. Their theory dis-
cusses the A peak as being due to plasmon absorption
and emission by electrons, as an intermediate step in the
mutual electron-nucleus spin-Rip process governed by
the Korringa relation, Eq. (12). They obtain a loga-
rithmic singularity in (1/Ti) at co,= co~. Figure 1 gives a
schematic illustration of the process. As one would

expect, the final expression for (1/Ti) obtained is
proportional to the number of plasmons present at the
beginning of the process, since an electron must absorb
a plasmon and rise above the Fermi sphere until its
energy is at least Ace„as measured from the bottom of
the band. The number of plasmons is given by the Bose-
Einstein distribution,

ii (~) (eii cup/ kT 1)—1 (15)

For the samples considered by Bridges and Clark, the
ratio hid~/kT is at least 10. Therefore, e(co) will be an
exponentially decreasing number as teInperature is
lowered, and (1/Ti) should reflect this property. This
means a change from 1 to 2'K would reduce the peak by
a factor e '=150 '. Bridges and Clark found that the
peak height scarcely changed at all as a function of T.

The approach of Gunther et a/. ' neglected the presence
of the magnetic field. When H is applied, plasma
oscillations have frequency co„only along H. In.

general, their frequency is

where k is the wave vector and I., is the screening

length. The effect of plasmons with this dispersion rela-

tion will be to considerably broaden the peak found by
Gunther et a/.

There are many other modes of a quantum plasma in

a magnetic field, leading to a wide range of phenomena,
but they are generally of higher frequency than co~ and

therefore, not excited in the experiments of Bridges and

Clark, since kT«A~~. Direct relaxation of nuclei by
helicons stimulated by an applied rf field has been ob-

served when the frequency of the circularly polarized
magnetic field of the helicon equals the nuclear Larmor
frequency. ~ It has also been proposed that helicons may
be important in electron spin relaxation at low

temperatures. '

'L. Gunther, M. Revzen, and A. Ron, Physics 3, 115 (1967).
"B.Sapoval, Phys. Rev. Letters 17, 241 (1966).
8 G. Senford, Phys. Letters 26A, 199 (1968).

For ~,r))1, where r is the electron momentum re-
laxation time, the helicon damping is small. The helicon
has circularly polarized electric and magnetic fields,
propagating along H with frequency

CO =C M~gg~/(CO& +C g ) (17)

and wave vector q. The direction of rotation of the fields
is determined by the sign of the charge carrier —in this
case, the electrons. (The condition a&.r))1 is unusual,
since for most waves supported by an electron plasma
the condition is cur))1. The requirement ~r))1 means
the wave must persist for at least one oscillation in the
face of electron momentum collisions. Such collisions
usually disturb the Inomentum of the electrons suffi-
ciently to destroy the "phase memory" of the wave. The
reason helicons do not follow this rule is that the wave
"information" is carried through the E)&B drift of the
electrons, i.e., not superimposed on the ordinary mo-
menta as they would exist without H. The condition
that the KXS drift of the carriers be meaningful is
precisely that co,r))1.)

Consider Eq. (17) for q,))qj. If qc((co„, co=n 'o

Setting co=co&, where cu& is the Larmor frequency of a
nuclear spin, we obtain H = 1/No, which is quite different
from the BC result H=eo'~ . If we do the same with
qc))co~, there is no resonant condition on eo. If g,&&q„
the helicons are heavily damped unless co,7- is very large.
Even then the same dependences as above are found.
Thus, it appears that the helicon cannot yield even the
qualitative form of the BC resonant condition for
nuclear relaxation.

Finally, we have considered in detail relaxation by
coupling of the nuclear quadrupole moment to plasma
waves obeying the dispersion relation of Eq. (16).
Simple emission or absorption of one such plasmon
affords too small a portion of the plasma wave spec-
trum. A two-plasrnon (Raman) process yields relaxation
times of the correct order of magnitude to explain the
BC results. However, electron momentum relaxation
times are too short to allow such plasma waves to have
sharp frequencies, so that a resonant condition cannot
result from a nuclear relaxation which employs two
plasmons. (A more detailed outline of this work will be
given at a later date. )

It appears, then, that relaxation through plasma
modes does not allow an explanation of the BC experi-
ments, though some other processes may give observable
relaxation times. Ke next turn to mechanisms based on
the possibility of an additional density of states in
semiconductors in high magnetic fields.

V. HYDROGEMC MODEL

The success of the Korringa relation, Eq. (12), in
describing the magnetic field dependence of the nuclear
T~ for fields such that Eg)Ilats„ leads one to consider
using it for even higher fields. The Korringa process
describes a mutual spin Hip of electrons and nuclei, so
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states intersects the Fermi surface of the conduction
electrons and allows spin-Rip encounters to take place
with nuclei of the lattice. To be located at such a spot in
the energy diagram, Fig. 5, we would expect the isolated
electrons to have spin up (o =1). A moment's con-
sideration shows that the theory of Yafet et al. as it
stands cannot yield such a state.

Suppose when E~(A~, there are Ei donor ions which
are isolated so their electrons do not enter the conduc-
tion band. In equilibrium, these electrons should occupy
the 0.= —1 state, since this is energetically preferred.
Thus, all the isolated donor impurities are occupied and
no 0.= j. states are availabIe, for a hydrogenic atom holds
only one electron. A density of states does exist for
0.= —1, and at suSciently high fields the Fermi level
will lie at the very bottom of the conduction band, since
a large number of electrons would be "frozen out" onto
the isolated impurities.

VI. H ION

The crucial point in the above argument is that a
hydrogenic atom will hold only one electron. But we
know that even in the absence of a magnetic field,
hydrogen will bind a second electron to produce the
H ion.

This ion appears only in diffuse gases —notably, in the
upper atmosphere and in the sun. " In solids, the per-
turbations due to neighboring lattice sites are sufhcient
to make the model of an independent atom break down
for the very small binding energies of the H ion.

The lowest energy state for the isolated H ion finds
the electron charge clouds centered on points which lie

on opposite ends of a line through the nucleus. This
reduces their mutual repulsion to a minimum and allows
a slight binding energy of 0.0555 Ry.

In a semiconductor, the influence of nearby lattice
sites will easily overcome the small H binding energy at
zero magnetic Geld. Now consider the effect of raising
the field.

As H is increased from zero, the electrons move in
tighter and tighter cyclotron orbits. Those circling about
singly charged impurities wiII draw closer to the im-
purity sites and fall further down into its Coulomb
potential. This enhancement of the wave function near
the impurity can make up for the deficiency in nuclear
charge and permit a two-electron bound state. Whether
such a state is permitted depends on the balancing out of
the mutual electron-electron repulsion versus the energy
gained by drawing the electrons closer about the region
where the impurity potential is large.

For a hydrogenic impurity in InSb, the thermal
energy kT will exceed the H—

binding energy at V=0.
Our problem is to find when the binding energy rises
above kT as II is increased, and thus, allow a second
electron to occupy a hydrogenic site.

A two-parameter variational calculation for this be-
gins with the Hamiltonian

K/1 Ry = VP —
q22+q (L—,'+L 2)

+ay'L(*|'+yP)+(a2'+y2') j
—v(~./~. ) (~.'+~.')

2/r2 2/r2+2/—ri2. —(20)

Here, the m and g which appear in co, and co, are under-
stood to be those of any system describable by a
hydrogenic model. We take as a wave function

exp —(x22+y22+x22+y22)/4b|2 exp —(sr'+s2')/4b & P
|t (ri, r2) =

|"(22r)2/2b 2b 12/2
(21)

since the free-electron wave functions in high fields take
the form P= e ", and employ b„bi/ as our parameters.
(This is identical, of course, to assuming a different
screening charge Z in the perpendicular and parallel
directions. ) A trial value for the energy is

where e=b&/b&& Minimizing .Err with respect to 2 and
bJ we obtain two equations relating e, bJ, and

(2%2 —1) 2 1 1+(1—22) i/2

ln — =0 (23)
7r'/2b 1 —22 (1—22) 2/2 1+(1—22) &/2

"S. Chandrasekhar, Rev. Mod. Phys. 16, 301 (1944).

1
g„=—(lyly/2)+q2b 2

bJ2

(2~2 —1)2 1+(1—22)'/'1n, (22)
~1/2b (1 g2) 1/2 ] (1 22) 1/2

and

2(1+22/2—)/b/, '+272b2

(242 —1)2 P1+ (1—22)'/'-
ln — =0. (24)

2r' 2bg(1 —22)'/2
i 1—(1 2')'/2—

Numerical solution of these equations is straight-
forward, though tedious. Figure 6 shows Eg as a func-
tion of y for the best values of bJ, bli obtained through
Eqs. (23) and (24). EI/ passes through zero at 7=0.15.
Beyond y =4 its magnetic Geld dependence is somewhat
weaker than that of the one-electron impurity (Fig. 3).

Figure 4 shows the variational results for bJ and bll
as well as uJ and a&1 from the Yafet et aL theory. For
y&6, aJ and bJ are virtually identical fractions of a~.
The charge clouds are contracted equally in the plane
perpendicular to JI. Along II, however, where we would
expect the results to be more in accord with the zero-
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Suppose we wish to place Ã~ impurities in S lattice
sites. If we isolate an impurity so that the nearest-
neighbor impurity is s& lattice spacings away perpen-
dicular to H and sil spacings away along H, we must
exclude 2xs&'s~ 1 sites. It is easy to show that the number
of impurities so isolated is

O. l
»=Sr exp( 2~—c,'c~ ~/az'), (25)

0 2 4 6 8 10 12 14 16

FIG. 6. Binding energy of one electron in the H ion as a function
of magnetic Geld.

field case, b&&=1.25ull, so the electrons are not as
tightly grouped about the impurity. Also shown is
ao ——(ck/eH)"', the spatial extent of the wave function
of a free carrier in the magnetic Geld. Note that cp

approaches a& and b& at large y.
For T=1'K, E~)kT when y) 2. Thus, the H im-

purity will begin to bind electrons from the conduction
band at this field strength.

In the semiconductor InSb, this corresponds to H) 6
kG when no= 10" electrons/cm'. Above this field
strength, the H impurities may begin to play an
important role in transport and relaxation properties of
the solid.

(It should be noted that optical detection of the H
state would be dificult, because the transition from the
H level, which lies below the Fermi level, to a higher
cyclotron state would be masked by the much larger
number of conduction electrons which could make the
same transition. )

"W. G. Clark and R. A. Isaacson, J. Appl. Phys. 38, 2284
(j.967)..

VII. RELAXATION OF NUCLEI

The H ion provides the additional g+(Ez) needed for
relaxation of the nuclear spins through the contact
interaction. The H lattice sites must be present in
appreciable numbers, however, in order to produce a
measurable effect.

The samples of 8C were produced by nuclear irradia-
tion, " so that the positively charged impurities which
donate conduction electrons are randomly distributed.
One would expect that there will be a small fraction of
the impurities which are separated from their neighbors
by a distance larger than the average separation Ey '~',

where Ez is the density of impurities. If an impurity is
suKciently removed from its neighbors, there will be no
overlap of wave functions between them, and the im-
purity will be isolated and unable to participate in the
conduction process. How large this separation must be
depends upon the exact nature of the impurity wave
functions.

where zzP=1/Ez, ci ——s,a, t, ~~
——s~~u, and a is the lattice

constant.
We do not know precisely what separation of im-

purities is necessary to ensure that they will not par-
ticipate in some form of impurity band conduction. In
what follows we shall take the extent of the electron
wave functions to be given by b&, bl I as shown in Fig. 4.
We then assign an overlap parameter 8, defined by

»=&z exp( 2~bbim—b„/az3) . (26)

Therefore, b measures (in Bohr radii) the separation
necessary to achieve isolation.

Just as was the case for the Korringa relation when
Eg)&co„our picture of the A peak phenomenon as-
sumes that conduction electrons will be able to undergo
spin-Rip processes when a density of states with spin up
(0 = 1) intersects the Fermi level. As illustrated in Fig. 5,
this occurs when

2ND exp( —2mbb, 'b)r/aF) .

Accordingly we modify the Fermi energy,

Ez (zzz*,n) = (b'/2m*)-,' (2mup)'zzp'

&&L1—2 exp( —2vrbb 'b((/az') j
=h(o, (g*) Es(zzz', g'—) . {2g)

Note that if Eg, g', and Ej were independent of H,
Eq. (28) would give H =zzos' at the peak in (1/2'i). It is
the modification of these three quantities by H which
leads to the relation H=ep'".

The relaxation time TI of the InSb nuclei may be
calculated in the same manner as the Korringa process.
At a Landau peak (subscript L), the Korringa expression

, fol Ty is

(1/2'i)~ "g+(E~)g (E~) lk(0) I', (29)

where f(0) is the wave function of the conduction
electron at the relaxing nucleus, For the peak due to

her, (g*)—Es(zzz', g') =Ez (m*,no) . (27)

The binding energy E~ is a function of m' and g', the m
and g values for the isolated impurity (as we shall see,
g'Wg*, m'Wm*). The expression for the Fermi energy,
Eq. (7), must be modified to include the fact that as
electrons freeze out on the isolated impurities, they
leave the conduction band. Equation (26) gives (in
terms of b) the number of isolated impurities holding
two electrons each, so the number of electrons taken
from the conduction band is (since we take no ——IVY)
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relaxation with H sites, we will have

(1/T,), g,+( r)g-(E, ) l|k(O) I l4, (r~) l
. (3O)

Here, g~+(Er) is the (unknown) density of states for the
isolated H impurity electrons, defined by

g„+(E)f(E)dE =IV r exp —(2xbbi'bi i/&r')
~ (31)

where pg(r~) is the value of the bound H electron
wave function at the nucleus at which the nuclear
relaxation occurs. This will have a different value for
each lattice site, since the H wave function is spread
over many thousands of lattice spacings In .1/Ti, we

take an average of this quantity over the nuclei

I(tt ~(r~))l'= — P lP(x —x,) l
dx, =Ni. (32)

V

g = dk, g*(k,)e-'&"~
~i' dk, e '&"*'~~i' (34)

The full expression for the Korringa (1/Ti) is pro-
portional to the square of the g value of the electrons.
However, as Bridges and Clark' note, for both a Landau
peak and relaxation by bound states the proper value to
use in a Korringa-type process is g= 2. Thus neither the
conduction electron lg*l =50 or the H impurity g'

enters into the relaxation time.
Equations (28)—(32) may be used to find the location

and height of the peak in (1/Ti) due to relaxation of
conduction electrons with local H sites. These equa-
tions are functions of m', g', gg+(EF), and b.

Thus far, we have considered m' and g', the mass and

g value of the H electrons, to be independent quanti-
ties. For the conduction electrons in InSb, a relation ex-

ists between m* and g*, the so-called Roth equation" "
g*=2L1—(m/m* —1)A/(3E, +26)j, (33)

where E, is the energy difference between the upper
edge of the valence band and the lower edge of the
conduction band in InSb, and 6 is a measure of the
spin-orbit coupling which exists between conduction and
valence bands and which produces the unusual m* and
g*. The Roth relation is based on the assumption that
the electrons move over many lattice sites. Since the
electrons bound to the H impurities still have orbits
extending over many hundreds of lattice spacings, they
should obey Eq. (33). We will use this equation to
eliminate m' from Eq. (28), taking the experimentally
determined values for E, and D."

We may estimate the g value of the second H
electron by Fourier analyzing the impurity wave func-
tion, Eq. (21). We find

where g*(k,) is the conduction electron g factor as a
function of the electron wave number k„ for high fields
(y))1). In the quantum limit,

kg ——(27r'eh/e) (eo/H) . (35)

The experiments on InSb of McCombe et al. ,
' and,

earlier, Pidgeon et al. ,
'5 yield a curve of g*(m,H) versus H

up to H = 100 kG, where n is the Landau level number.
Their work is least accurate for the e=01evel of concern
to us, since they have assumed that exciton and im-
purity effects do not figure in the difference between the
energies of transitions, and this approximation is least
valid for the m=0 level. Their experiments show that
g*(O,H) falls as H increases. Taking g*(k,)=g*(kr)
when the Fermi level intersects the H density of states,
we can see that the average shown above for g' will
acquire contributions of low g*(k,) from regions of low
k, . A numerical integration using the data of Refs. 14
and 15 yields lg'l =36. The value of lg*l at H=O, by
comparison, is 50. For a free electron, g= 2.

For convenience, we may take the H density of
states, gz+(Er), to be a very narrow function of energy.
By using Eqs. (29)—(32) we can compare the experi-
mentally determined ratio of (1/Ti) r, and (1/Ti) ~, and
find b. Because of the inaccuracies of experiment this
ratio is not very well known, but it can be used for a
rough estimation.

Thus, it appears that all the parameters which appear
in our model can be fixed and a comparison with experi-
ment made.

VIII. HELIUMLIKE ION

It is natural, having considered H impurities as a
source of a density of states for 0-= 1 electrons, to study
a He-like ion. Such a doubly charged impurity will bind
a second electron much more strongly and thus, will be
auto-ionized at higher magnetic fields than a Z= I
impurity.

A Z=2 (He) impurity may be simulated by two
singly charged impurities which are only a few lattice
spacings apart. To an electron moving in a Bohr orbit
of hundreds of lattice spacings, the two ions will appear
to a good approximation as a He-like atom with its
charge shielded by the dielectric constant of the
medium E. If faults or slippages exist in the sample,
there may be an appreciable number of these closely
grouped configurations.

Since the second electron will be strongly bound to a
Z= 2 impurity, the intersection of the Fermi level with
the Z=2 density of states LEq. (28)j will occur at
magnetic fields higher than is the case for the H ion.
The quantity g (Er) is proportional to EP, and .(1/Ti)

'~ L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90
(&96&)."0. Madelung, Physics of III—V Conzpolnds (Wiley-Inter-

gcience, Inc. , Neve York, j.964), p. 74.

"B.D. McCombe, S. G. Bishop, and R. Kaplan, Phys. Rev.
Letters, 18, 748 (1967)."C. R. Pidgeon, D. L. Mitchell, and R. X. Brown, Phys. Rev.
154, 737 (1967).
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=g (E/). This means the number of Z=2 impurities A calculation of the He-like impurity binding energy
can be smaller than the number of H impurities, and in h&gh fields follows much the same program as the
still produce a large peak in (1/Ti). Z= 1 case. We take a trial wave function

exp —(xi'+yi'+x&'+y&')/4d&' exp —(si'+s&')/4d ~ P
W(ri, ro) =

t
(2~)o/2d od ]o/o

(36)

which gives a trial value for the energy

Z
Err =—(1+-'o')+-

Z

(2Zv2 —1)Zo 1+(1—o')'"ln, (37)
g~d, (1—oo)»o 1—(1—oo)»o

where Z= 2. The equations minimizing Eii with respect
to o=d, /d~~ and di

BEii/Bo =0; BEii/Bd, =01 (38)

may be solved numerically with a resulting binding
energy E& as shown in Fig. 7. Using the trial function,
Eq. (36), the zero-field binding energy of the second
electron to a Z=2 impurity is E&——1.20 Ry. The ex-
perimental value is 1.808 Ry. However, as before, we
expect our values of Ep to become much more accurate
above y=1.

If the He-like configuration is due predominantly to
the close grouping of Z=1 sites, it may be that a
molecular H-like model is more appropriate to describe
it. Such a model may be worked out in the above
manner.

IX. COMPARISON WITH EXPERIMENT

The experiments of Bridges and Clark' give the only
data for comparison at present. In Sec. VII, the three
unknown quantities g', gg+(E/), and B figure promi-
nently in calculating (1/Ti) and in the relation which
fixes the magnetic field at which a peak in relaxation

12,

time will occur, Eq. (28). If we take gz+(E/) to be a
narrow function of energy, the resultant estimation of
8 is not sufhciently accurate for our purposes. Therefore,
we have followed a somewhat simpler scheme; we re-

gard g' and 6 to be independent parameters, and plot the
right- and left-hand sides of Eq. (28) over the range of
interest in g' and B. We know from Eq. (24) that g' lies
near 36.0 and the data of Bridges and Clark fix 6 to be
of order 1.

Figure 8 shows such a plot for a BC sample with
no= 3.34&& 10"electrons/cm'. Intersections of the curves
exist at many field strengths scattered about the point
at which the A peak is observed by BC. A similar plot
results when another BC sample of ep= 7.65)& 10'
electrons/cm' is considered. These curves show that the
estimated

~

g'~ =36 and B on the order of one are values
consistent with the BC experiment.

We find, in fitting the BC results for samples with
concentrations between 7.65&(10" and 1&10" elec-
trons/cm', that we can obtain H = C~iio'/o for the A peak
locations, to within the accuracy of the experiment,
with g'= 34.0&4.0 m'/m, = 0.021&0.002.

We must also consider the temperature dependence of
the A peaks found by BC. Temperature does not enter
into the hydrogenic Hamiltonian, so the ionization
energy of the H impurity will be temperature-inde-
pendent. The electron plasma is not strongly de-
generate, so the temperature shift in the Fermi energy
around the A peak is

Es(eo, T)=E/ (No, 0)+kT. (39)

The shift in location of the A peak found by BC is about
2.5 kG between 1 and O'K. The above change in the

8

6
I

18—

C

A
16

0
0

14
10 14 18

ENERGY x 10 eY

FIG. 7. Binding energy of the second electron to a Z =2 impurity
versus magnetic field. The dot at y=0 indicates the observed
binding energy at zero magnetic field.

FIG. 8. Solution of Eq. (28) for co=3.34)&10"electrons/cm'. A
family of curves for the Fermi level Ez(II) is shown for a range of
b. The right-hand side of Eq. (28) is labeled with a range of values
of g', the H impurity g value.
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Fermi energy, when substituted in Eq. (28) yields 1 kG.
This seexns to be satisfactory agreement, considering
that Eq. (39) is approximate.

The population of the H level should vary slowly
with T if E~)kT, so we would expect the height of the
peak in (1/Ti) to be quite insensitive to temperature, in
agreement with the data of BC.

A difficulty arises, however, when we consider the
concentration of H impurities required to produce
(1/Ti) peaks of the height required by experiment. We
find that X~=0.08mo. Since two conduction electrons
"freeze out" on each H impurity, the conduction band
must have lost 16% of its electrons before the Fermi
level intersected the H density of states. Isaacson" has
performed Hall-effect measurements on the BC samples,
and he does not Qnd a density oscillation of this size at
the fields where the A peaks occur. (His work measures
changes in concentration of 8% or greater. )

It should be noted, though, that Isaacson's interpre-
tation of his data is based on the low-field expression for
the Hall coefficient. A theory for the Hall effect in the
extreme quantum limit, and in the presence of im-
purities like the H ion, has not yet been given.

We now turn to the comparison between our theory
of the He-like impurity and the BC data for the 8 peak.
We can carry out a curve-plotting procedure as in Fig. 8,
using the binding energy of the Z= 2 impurity. Because
the 8 peaks have been observed only in samples of low
concentrations, the Fermi energy is small. The right-
hand side of Eq. (28) is therefore relatively insensitive
to 8, the overlap parameter.

For the BC sample with No= 1.78X 10"electrons/cm',
we Qnd that a peak will appear at the observed position,
11 kG, if g'=33.5. This agrees with a numerical calcula-
tion based on Eq. (34). Similarly, we find that a fit to
the 8 peaks gives H= C~eo'" for the 8 peak locations,
within the accuracy of the experiment with g'= 33.5&1.0.

Fitting the height of the peak found by BC to the
number 'of Z= 2 impurities, we find that on the order of
10"/cm' are necessary. Bridges and Clark estimate that
their samples contain as many as 10"/cm' unknown
impurities.

Because the degeneracy ratio kT/Er is of order 50 in
the region of H, where the 8 peaks occur, the simple
analysis given here does not describe well the behavior
of the (Boltzmann) electrons as they intercept the
density of states due to doubly charged impurities. The
peak will be extensively broadened because the Boltz-
"R. A. Isaacson {private communication).

mann distribution does not have a sharp discontinuity
in momentum. Bridges and Clark do in fact find widths
of approximately 8—12 kG for their 8 peaks.

The above considerations give us reason to believe
that our He-like impurity model qualitatively describes
the 8 peaks of Bridges and Clark.

X. CONCLUSIONS

We have shown that H impurities with binding
energy )kT may be expected to form in a semicon-
ductor when y=kv. /2 Ry))1. Such an H state con-
tributes a new density of states to the semiconductor,
which then makes possible a relaxation mechanism of
the Korringa type, in which electrons undergo mutual
spin-Aips with nuclei.

Comparison of our theory with the BC experiments
on InSb has shown general agreement. A difficulty
arises, however, from the fact that more H impurities
are required for agreement than it presently seems likely
from Hall-effect measurements. Hopefully, a treatment
of the Hall effect in the extreme quantum limit will

clarify this point.
Similarly, we have hypothesized that Z= 2 impurities

in semiconductors may provide another source of the
needed density of states. Here, our calculations compare
qualitatively with the InSb BC experiments.

Further experiments at higher fields would prove
quite useful in testing the validity of our model. Par-
ticularly, our work predicts that the relation H = Cap ~'

mill continue to hold to much higher fields than those
presently used by Bridges and Clark (II~ 20 kG).

There are other consequences of the formation of an
H state in high fields. The magnetoresistance of semi-
conductors may begin to show the effects of scattering
from the H state, which is spread out over a large
volume around the impurity when p) 1.There may also
be changes necessary in the theory of scattering from
localized spins, and of the negative magnetoresistance
in InSb.
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