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Abstract—The purpose of this paper is to formulate and solve
a controller synthesis problem for a class of noncommuta-
tive linear stochastic systems which includes many examples of in-
terest in quantum technology. The paper includes results on the
class of such systems for which the quantum commutation rela-
tions are preserved (such a requirement must be satisfied in a phys-
ical quantum system). A quantum version of standard (classical)
dissipativity results are presented and from this a quantum ver-
sion of the Strict Bounded Real Lemma is derived. This enables
a quantum version of the two Riccati solution to the control
problem to be presented. This result leads to controllers which may
be realized using purely quantum, purely classical or a mixture of
quantum and classical elements. This issue of physical realizability
of the controller is examined in detail, and necessary and sufficient
conditions are given. Our results are constructive in the sense that
we provide explicit formulas for the Hamiltonian function and cou-
pling operator corresponding to the controller.

Index Terms— robust control, dissipativity, quantum con-
troller realization, quantum feedback control, quantum optics,
strict bounded real lemma.

I. INTRODUCTION

R ECENT developments in quantum and nano technology
have provided a great impetus for research in the area

of quantum feedback control systems; e.g., see [1], [4], [11],
[16], [27], [29], and [30]. In particular, it is now being realized
that robustness is a critical issue in quantum feedback control
systems, as it is in classical (i.e., nonquantum) feedback con-
trol systems; e.g., see [9], [10], and [31]. However, the majority
of feedback control results for quantum systems do not address
the issue of robustness directly. The aim of this paper is to ad-
dress the problem of systematic robust control system design for
quantum systems via a approach.

We present a controller synthesis result for a class
of noncommutative linear stochastic systems which includes
many examples of interest in quantum technology. The syn-
thesis objective is to find a disturbance attenuating controller
which bounds the influence of certain signals, called the dis-
turbance input signals, on another set of signals, called the
performance output signals. In this way, the undesirable effects
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of disturbances on performance is reduced in a systematic and
quantifiable way. This follows from a quantum version of the
small gain theorem [10]; indeed, the controller will be robustly
stabilizing against certain kinds of uncertainties, which in prin-
ciple could include parameter uncertainties, modelling errors,
etc. To illustrate the results, we consider some design examples
in quantum optics.

A feature of our approach is that the control designer can
choose to synthesize a controller which may be quantum, clas-
sical or a mixed quantum-classical controller for the plant. The
majority of the available results in quantum feedback control
consider the controller to be a classical (i.e., nonquantum)
system, which may be implemented using analog or digital
electronics. Classical controllers process measurement data
obtained by monitoring the quantum system to determine control
actions which influence the dynamics of the quantum system in a
feedback loop. In contrast, quantum controllers are themselves
quantum systems, and the closed loop is fully quantum; e.g.,
see [5], [10], [18], and [28]–[31]. In [29] and [30], a transfer
function approach to quantum control based on the chain scat-
tering approach to control has been proposed. However, the
plants and controllers considered therein are single input single
output (SISO) systems having only quantum degrees of free-
doms. Moreover, no systematic treatment is given of the physical
realizability of the resulting controllers. On the other hand, our
approach is developed for a fairly general class of multiple input
multiple output (MIMO) quantum linear stochastic systems with
possibly mixed quantum and classical degrees of freedom and
addresses the physical realizability issue.

Our approach involves deriving a quantum version of the Strict
Bounded Real Lemma (e.g., see [21]). We begin by considering
a general problem of dissipativity for quantum systems in a
manner that generalizes Willems’ theory of dissipative systems
(see [26]), originally developed for nonlinear deterministic clas-
sical systems. The paper characterizes this dissipation property
in algebraic terms. This then leads to a quantum version of the
Strict Bounded Real Lemma. This lemma is then applied to the
closed-loop system formed from the interconnection between
the quantum plant and the controller. By following an algebraic
approach to the control problem such as in [21], this enables
us to derive a quantum version of the celebrated two Riccati
solution to the control problem; e.g., see [15] and [32].

The two Riccati quantum result which is derived leads
to formulas for some, but not all, of the controller state space
matrices. Controller noise sources (needed for physical realiz-
ability, as discussed shortly) are not determined by these Ric-
cati equations. If the designer chooses to synthesize a classical
controller, then the standard classical controller suffices,
and no further matrices nor noise sources need be determined.
However, if the designer chooses to synthesize a controller that
is itself a quantum system, or contains a component that is a
quantum system, then the controller design must be completed
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by selecting the undetermined matrices and noise sources to en-
sure that the controller is physically meaningful. For example, in
a quantum controller, quantum mechanics dictates that the time
evolution of a closed system preserve certain commutation re-
lations. This requirement constrains the possible controller ma-
trices and noise sources for a physically realizable controller.
To address this issue, the paper considers the question of phys-
ical realizability. Starting with a standard parameterization of
purely quantum linear systems in terms of a quadratic Hamil-
tonian and a linear coupling operator (e.g., see [12]), we then
derive necessary and sufficient conditions for given controller
state space matrices to be physically realizable. These condi-
tions are constructive in that if a set of controller state space
matrices are physically realizable, then we can construct the re-
quired Hamiltonian function and coupling operator.

We begin in Section II by presenting the class of models under
consideration and we present a result describing the condition
such systems must satisfy in order to correspond to a physical
quantum system in that the quantum commutation relations are
preserved. In Section IV, we consider the question of dissipation
for quantum systems and derive a quantum version of the Strict
Bounded Real Lemma. In Section V, we set up the problem
to be solved and present our main result which is a two-Riccati
solution to this quantum control problem. This section also
considers the question of physical realizability. In Section VI,
we consider the application of our quantum control results
to the question of stability robustness and we establish a ver-
sion of the small gain theorem for quantum systems subject to
parameter uncertainty. In Section VII, we present some exam-
ples from quantum optics to illustrate the theory which has been
developed. In particular, we consider the control of quantum
optical plants using quantum, classical, and quantum-classical
controllers. We also consider the design of a purely quantum
controller which leads to robustness against uncertainty in one
of the physical parameters of the cavity system. The paper is or-
ganized so that the Appendix contains all of the proofs of the
results which are presented.

II. LINEAR QUANTUM STOCHASTIC MODELS

In this paper, we are interested in physical systems that
contain one or more components that are quantum in nature. It
is helpful to have in mind an interconnection of components,
some of which are “classical”, meaning that nonquantum de-
scriptions suffice, and some for which “quantum” descriptions
are required. Such systems are common in quantum optics
laboratories, and may occur, for instance, in schemes for im-
plementing quantum computing and information processing
algorithms. We use noncommutative or quantum probability
theory (e.g., see [7] and the references therein) to describe the
systems of interest. This framework is quite general and encom-
passes quantum and classical mechanical systems. Quantum
noise, which may arise from measurements or interactions
between subsystems and the environment, is central.

We consider linear noncommutative stochastic systems of the
form

(1)

where , and are, respectively, real
and matrices (

are positive integers), and is
a vector of self-adjoint possibly noncommutative system
variables.

The initial system variables consist of operators
(on an appropriate Hilbert space) satisfying the commutation
relations1

(2)

where is a real antisymmetric matrix with components ,
and . Here, the commutator is defined by

. To simplify matters without loss of generality, we
take the matrix to be of one of the following forms:

• Canonical if or
• Degenerate canonical if ,

where .
Here, denotes the real skew-symmetric 2 2 matrix

and the “diag” notation indicates a block diagonal matrix assem-
bled from the given entries. To illustrate, the case of a system
with one classical variable and two conjugate quantum variables
is characterized by , which is degenerate canon-
ical. It is assumed that is Gaussian, with density operator .

The vector quantity describes the input signals and is as-
sumed to admit the decomposition

(3)

where is the noise part of and is a self ad-
joint, adapted process (see, e.g., [7], [19], [20] for a discussion
of adapted processes). The noise is a vector of self-adjoint
quantum noises with Ito table

(4)

where is a nonnegative Hermitian matrix; e.g., see [6], [20].
This determines the following commutation relations for the
noise components:

(5)

where we use the notation
so that . For instance,

describes a noise vector with one classical com-
ponent and a pair of conjugate quantum noises (here is the
2 2 identity matrix). The noise processes can be represented
as operators on an appropriate Fock space (a particular, yet im-
portant, type of Hilbert space); e.g., see [6] and [20].

The process serves to represent variables of other sys-
tems which may be passed to the system (1) via an interaction.
Therefore, we require that is an operator on a Hilbert

1In the case of a single degree of freedom quantum particle, � � �� � � �
where � � � is the position operator, and � � � is the momentum operator.
The annihilation operator is � � �� � �����. The commutation relations are
��� � � � �, or ��� �� � ��.
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space distinct from that of and the noise processes. We also
assume commutes with for all (two vectors
of operators are said to commute if ); this
will simplify matters for the present work. Moreover, since we
had earlier specified that should be an adapted process, we
make note that also commutes with for all .

To simplify the exposition, we now set up some conventions
to put the system (1) into a standard form. First, note that there
will be no change to the dynamics of and if we enlarge

, by adding additional dummy noise components, and at the
same time enlarging by inserting suitable columns of zeros.
Secondly, we may add dummy components to by enlarging

and by inserting additional dummy rows to each of these
matrices. Our original output can be recovered by discarding
or “disconnecting” the dummy components/entries. Therefore,
we make the following assumptions on the system (1): (i) is
even, and (ii) . We also make an assumption that
is of the canonical form . Hence
has to be even. Note that if is not canonical but of the form

with , we may
enlarge (and hence also ) and as before such that
the enlarged noise vector, say , can be taken to have an Ito
matrix which is canonical.

Equation (1) is a linear quantum stochastic differential equa-
tion. General quantum stochastic differential equations of this
type are described in [19], [20], [6]. In (1) the integral with
respect to is taken to be a quantum stochastic integral.
The solution depends only on the past noise , for

; i.e., it is adapted, and a property of the Ito incre-
ments is that commutes with .

Equation (1) describes a noncommutative linear stochastic
system, which need not necessarily correspond to a physical
system. This issue does not normally arise in physical mod-
eling, but as we shall see it is of considerable importance
when we come to synthesizing physically realizable controllers
below in Section III and Subsection V-D. The following the-
orem provides an algebraic characterization of precisely when
the linear system (1) preserves the commutation relations as
time evolves, a property enjoyed by open physical systems
undergoing an overall unitary evolution, [14]. The proof is
given in the Appendix.

Theorem 2.1: Under the assumptions discussed above
for the system (1), we have implies

for all if and only if

(6)

III. PHYSICAL REALIZABILITY OF LINEAR QSDES

Unlike classical systems, which we may regard here as al-
ways being physically realizable (for the purpose of controller
synthesis), at least approximately via classical analog or digital
electronics, a quantum system represented by the linear QSDE
(1) need not necessarily represent the dynamics of a meaningful
physical system. An example of a meaningful physical system
here could be a system made up of interconnection of various
quantum optical devices such as optical cavities, beam splitters,
optical amplifiers. In particular, we have already seen from the

previous section that in physical devices, the canonical com-
mutation relations need to be preserved for all positive times
leading to the requirement that the constraint (6) be satisfied by
the matrices and of (1). However, as we shall shortly see,
there is another constraint related to the output signal which
is required for (1) to be physically realizable.

A. Open Quantum Harmonic Oscillator

In order to formally present a definition of an open quantum
harmonic oscillator, we will require the following notation. For
a square matrix denotes the block diagonal matrix

, where appears times as a diagonal block.
The symbol denotes a permutation matrix defined
so that if we consider a column vector ,
then . An
permutation matrix is a full-rank real matrix whose columns (or,
equivalently, rows) consist of standard basis vectors for ; i.e.,
vectors in whose elements are all 0 except for one element
which has the value 1. A permutation matrix has the unitary
property . Note that

.
Let us also further introduce the notation and

and . Moreover, let denote the adjoint
of a Hilbert space operator (by this we mean that the operator
is a map from one Hilbert space to another), and let # denote
the operation of taking the adjoint of each element of , where

is a matrix/array of Hilbert space operators. Also, let
# .

Then we have the following definition of an open quantum
harmonic oscillator by generalizing slightly the linear model
given in [12, Sect. 4].

Definition 3.1: The system (1) (with ) is said to be an
open quantum harmonic oscillator if is canonical and there
exist a quadratic Hamiltonian , with a real
and symmetric Hamiltonian matrix of dimension , and
a coupling operator , with complex-valued coupling
matrix of dimension , such that

where is an adapted process of unitary operators
satisfying the following QSDE ([12, Sect. 2.5]):

In this case, the matrices are given by

(7)

(8)
#

# (9)
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(10)

where .

B. Augmentation of a Linear QSDE

If is degenerate canonical, then we may perform an aug-
mentation in which is embedded into a larger skew sym-
metric matrix , which is canonical up to permutation (this
means becomes canonical after permutation of appropriate
rows and columns). To do this, let

if . Here denotes a
block diagonal matrix with matrices on the diagonal. De-
fine

where the middle block of rows is dropped whenever
. Then by definition is canonical up to permu-

tation and contains as a sub-matrix by removing ap-
propriate rows and columns of . Let , the
dimension of the rows and columns of . Define the vector

of
variables. We now define the following linear QSDE:

(11)

where , and are, respectively, some real
, and matrices, and the initial

variables satisfy the commutation relations
. We shall refer to the system (11) as an

augmentation of (1).
Remark 3.2: In the Proof of Theorem 3.4 it is shown that the

augmentation can be chosen to preserve commutation relations
whenever the original system does.

C. Formal Definition of Physical Realizability

With open quantum harmonic oscillators and augmentations
having been defined, we are now ready to introduce a formal
definition of physical realizability of the QSDE (1). A discus-
sion regarding the definition follows after Theorem 3.4 in which
necessary and sufficient conditions for physical realizability are
given.

Definition 3.3: The system (1) is said to be physically realiz-
able if one of the following holds.

1) is canonical and (1) represents the dynamics of an open
quantum harmonic oscillator.

2) is degenerate canonical and there exists an augmenta-
tion (11) which, after a suitable relabelling of the compo-
nents of , represents the dynamics of
an open quantum harmonic oscillator.

The following theorem, whose proof is given in the
Appendix, provides necessary and sufficient conditions for
physical realizability.

Theorem 3.4: The system (1) is physically realizable if and
only if:

(12)

(13)

and satisfies (10). Moreover, for canonical , the Hamil-
tonian and coupling matrices have explicit expressions as
follows. The Hamiltonian matrix is uniquely given by

, and the coupling matrix is given
uniquely by

(14)

In the case that is degenerate canonical, a physically realiz-
able augmentation of the system can be constructed to deter-
mine the associated Hamiltonian and coupling operators using
the above explicit formulas.

Remark 3.5: Note that the Hamiltonian and coupling opera-
tors are determined by (12), while conditions (10) and (13) re-
late to the required form of the output equation.

Remark 3.6: It is possible to consider the problem of realiza-
tion more broadly than discussed above by including additional
components, such as beam splitters and phase shifts that com-
monly occur in quantum optics. While Theorem 3.4 character-
izes the existence of physically realizable controllers, detailed
development of an efficient realization methodology is beyond
the scope of the present paper.

IV. DISSIPATION PROPERTIES

In this section, we describe various dissipation properties
frequently used in control engineering, suitably adapted to the
quantum context. These properties concern the influence of dis-
turbance inputs on energy transfers and stability. In particular,
we give a quantum version of the Strict Bounded Real Lemma
(Corollary 4.5) which will be employed in Section V for
quantum controller synthesis. In this section, we consider
the following quantum system of the form (1):

(15)

In this quantum system, the input channel has two components,
which represents disturbance signals, and ,

which represents additional noise sources.
Definition 4.1: Given an operator valued quadratic form

where

is a given real symmetric matrix, we say the system (15) is dis-
sipative with supply rate if there exists a positive op-
erator valued quadratic form (where is a real
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positive definite symmetric matrix) and a constant such
that

(16)

for all Gaussian states for the initial variables . Here we
use the shorthand notation for expectation over all initial
variables and noises.

We say that the system (15) is strictly dissipative if there ex-
ists a constant such that inequality (16) holds with the
matrix replaced by the matrix .

The term serves as a generalization to quantum
stochastic systems (15) of the notion of an abstract internal
energy for the system at time . On the other hand, the term

is a quantum generalization of the notion of
abstract power flow into and out of the system at time . Both
of these are notions which are widely used in the stability
analysis of linear and nonlinear deterministic systems [26],
[24]. The dissipation inequality (16) is a generalization of
the corresponding inequality that was introduced for classical
stochastic systems in [23], see [10].

The following theorem, whose proof is given in the
Appendix, relates the property of dissipativeness to certain
linear matrix inequalities.

Theorem 4.2: Given a quadratic form defined as
above, then the quantum stochastic system (15) is dissipative
with supply rate if and only if there exists a real posi-
tive definite symmetric matrix such that the following matrix
inequality is satisfied:

(17)

Furthermore, the system is strictly dissipative if and only if there
exists a real positive definite symmetric matrix such that the
following matrix inequality is satisfied:

(18)

Moreover, if either of (17) or (18) holds, then the required
constant can be chosen as , where

(19)

Here, the matrix is defined by the following relation:

(20)

We now present some corollaries to the above theorem cor-
responding to special cases of the matrix defined in terms of
the error output operator .

Definition 4.3: The quantum stochastic system (15) is said to
be Bounded Real with disturbance attenuation if the system
(15) is dissipative with supply rate

Also, the quantum stochastic system (15) is said to be Strictly
Bounded Real with disturbance attenuation if the system (15)
is strictly dissipative with this supply rate.

Using the above definition of a bounded real system, we ob-
tain the following corollary from Theorem 4.2. (e.g., see also
[8] for the corresponding classical result.)

Corollary 4.4: The quantum stochastic system (15) is
bounded real with disturbance attenuation if and only if there
exists a positive definite symmetric matrix such
that the following matrix inequality is satisfied:

Furthermore, the quantum stochastic system is strictly bounded
real with disturbance attenuation if and only if there exists
a positive definite symmetric matrix such that the
following matrix inequality is satisfied:

Moreover, in both cases the required constant can be
chosen as , where is defined by (19).

Now combining this corollary with the standard Strict
Bounded Real Lemma (e.g., see [21], [33]) we obtain the
following Corollary.

Corollary 4.5: The following statements are equivalent.
i) The quantum stochastic system (15) is strictly bounded

real with disturbance attenuation .
ii) is a stable matrix and .2

iii) and there exists a positive definite matrix
such that

iv) and the algebraic Riccati equation

has a stabilizing solution .
Furthermore, if these statements hold then .

V. CONTROLLER SYNTHESIS

In this section, we consider the problem of controller
design for quantum systems. As we shall see, we do not
restrict ourselves to classical controllers. The closed-loop
plant-controller system is defined in Subsection V-A, and
then in Subsection V-C we apply the Strict Bounded Real
Lemma to the closed-loop system to obtain our main results.
In Subsection V-D, we provide conditions under which a
controller is physically realizable.

2The � norm notation used here is standard [32], and applies to the clas-
sical transfer function ���� � �� � ��, not the quantum system (15). In
this paper we do not define nor use transfer functions for quantum systems.
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A. The Closed-Loop Plant-Controller System

The general linear model (1) described above is the prototype
for the interconnection of components which will make up the
quantum control system. In control system design, we prescribe
a system called the plant, and seek to find another system, called
a controller, in such a way that desired closed-loop behavior is
achieved. We now introduce our plant and controller models,
and the resulting closed loop.

We consider plants described by noncommutative stochastic
models of the following form defined in an analogous way to
the quantum system (1):

(21)

Here is a vector of plant variables. The input repre-
sents a disturbance signal of the form (3). The signal is a
control input of the form

(22)

where is the noise part of and is the adapted,
self-adjoint part of . Also, represents any additional
quantum noise in the plant. The vectors , and are
quantum noises with Ito matrices , and which are all
nonnegative Hermitian.

Controllers are assumed to be noncommutative stochastic
systems of the form

(23)

where is a vector of
self-adjoint controller variables. The noise

is a vector of noncommutative Wiener
processes (in vacuum states) with nonzero Ito products as in
(4) and with canonical Hermitian Ito matrix .

At time , we also assume that commutes with .
The closed-loop system is obtained by making the identification

and interconnecting (21) and (23) to give

(24)

where . That is, we can write

(25)

where

Note that the closed-loop system (25) is a system of the form
(1).

B. Control Objective

The goal of the controller synthesis problem is to find
a controller (23) for a given disturbance attenuation parameter

such that the closed-loop system (25) satisfies

(26)

for some real constants . Here, is error
output operator corresponding to the closed-
loop system (25). Thus the controller bounds the effect of the
“energy” in the signal on the “energy” in the error signal

.
Remark 5.1: It should be noted that the closed-loop system

(25) will meet the objective (26) if it is strictly bounded real with
disturbance attenuation . Indeed, it follows from Definition 4.3
that the closed-loop system (25) will be strictly bounded real
with disturbance attenuation if and only if there exists a real
positive definite symmetric matrix and a constant such
that

(27)

From this, (26) follows with and .
Necessary and sufficient conditions for the existence of a spe-

cific type of controller which achieves this goal for a given are
given in the next section, as well as explicit formulas for

, and . The results parallel the corresponding well-known
results for classical linear systems (see, e.g., [3], [21]).
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C. Necessary and Sufficient Conditions

In order to present our results on quantum control, we
will require that the plant system (21) satisfies the following
assumptions.

Assumption 5.2:
1) .
2) .

3) The matrix is full rank for all .

4) The matrix is full rank for all .

Our results will be stated in terms of the following pair of
algebraic Riccati equations:

(28)

(29)

The solutions to these Riccati equations will be required to
satisfy the following assumption.

Assumption 5.3:
i) is a sta-

bility matrix.
ii) is a

stability matrix.
iii) The matrix has a spectral radius strictly less than one.
Our results will show that if the Riccati equations (28), (29)

have solutions satisfying Assumption 5.3, then a controller of
the form (23) will solve the control problem under consid-
eration if its system matrices are constructed from the Riccati
solutions as follows:

(30)

We are now in a position to present our main result concerning
controller synthesis.

Theorem 5.4: Necessity. Consider the system (21) and sup-
pose that Assumption 5.2 is satisfied. If there exists a controller
of the form (23) such that the resulting closed-loop system (25)
is strictly bounded real with disturbance attenuation , then the
Riccati equations (28) and (29) will have stabilizing solutions

and satisfying Assumption 5.3.
Sufficiency. Suppose the Riccati equations (28) and (29) have

stabilizing solutions and satisfying Assumption
5.3. If the controller (23) is such that the matrices

are as defined in (30), then the resulting closed-loop system
(25) will be strictly bounded real with disturbance attenuation

. Also the constant in Definition 4.1 can be chosen as
in (19), with replaced by the corresponding
matrices of the closed-loop system.

The controller parameters , and the controller
noise are not given in the construction described in the

sufficiency part of Theorem 5.4. They are free as far as the
objective is concerned. In the next subsection, we show

how they may be chosen to give a controller that is physically
realizable.

D. Physical Realization of Controllers

We now show that given an arbitrary choice of commutation
matrix for the controller, it is always possible to find a phys-
ically realizable controller in the sense of Definition 3.3. This
means that the controller can be chosen to be purely quantum,
purely classical, or a combination of quantum and classical com-
ponents.

Theorem 5.5: Assume is
canonical. Let be an arbitrary triple (such as
given by (30)), and select the controller commutation matrix

to be canonical or degenerate canonical, as desired. Then
there exists controller parameters , and the controller
noise such that the controller (23) is physically realizable.
In particular, for all
whenever .

The proof of this theorem depends on the following lemma for
the case in which is canonical. For the degenerate canon-
ical case, this lemma can be applied to an augmentation of the
controller. We shall use the notation of Section III-A, and as in
the discussion in Section II, we may take to have an even
number of columns and to have an even number of rows.

Lemma 5.6: Let be canonical and be such
that

and for positive integers
and , and is canonical. Then there exists
an integer and such that the
system (23) is physically realizable with

(31)

(32)

(33)

(34)

(35)

(36)

where and . Here, is any
complex matrix such that

(37)
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where is any real symmetric matrix such that the
right hand side of (37) is nonnegative definite.

The Proof of Lemma 5.6 is given in the Appendix.
Remark 5.7: Note that the condition is significant

since it implies that there is no direct feedthrough of the signal
to as required for (23). For compatibility between the

(23) and (21), it is necessary that the corresponding Ito matrices
satisfy the following condition:

(38)

However, since and are, by convention, in canonical
form, (38) is always satisfied. To see this, we simply note that
the elements of are a subset of pairs of conjugate
real and imaginary quadratures in . Hence it follows that if

is canonical then must also be canonical and (38) is
automatically satisfied.

VI. ROBUST STABILITY

The control approach of Section V leads to a closed-loop
quantum system of the form (25) which is strictly bounded real
with disturbance attenuation . We now show that this prop-
erty can be used to guarantee stability robustness against real
parameter uncertainties. Indeed, we will suppose that the true
closed-loop quantum system corresponding to the system (25)
is described by the equations

(39)

where and is a constant but unknown uncer-
tainty matrix satisfying

(40)

Definition 6.1: The closed-loop quantum system (39) is said
to be mean square stable if there exists a real positive definite
matrix and a constant such that

for all Gaussian states .
The following lemma and theorem relates the robust stability

of the above system to its properties. The proofs of this
lemma and this theorem can be found in the Appendix.

Lemma 6.2: The quantum system (39) is mean square stable
if and only if the matrix is a stable matrix.

Theorem 6.3: If the closed-loop quantum system (25) is
strictly bounded real with disturbance attenuation , then the
true closed-loop system (39) is mean-square stable for all
satisfying (40).

VII. SYNTHESIS IN QUANTUM OPTICS

Quantum optics is an important area in quantum physics and
quantum technology and provides a promising means of im-
plementing quantum information and computing devices; e.g.,
see [17]. In this section we give some examples of controller

Fig. 1. Optical cavity (plant).

design for simple quantum optics plants based on optical cav-
ities and optical amplifiers coupled to optical fields; e.g., see
[2] and [14]. We give explicit realizations of controllers which
are fully quantum, fully classical, and mixed quantum-classical
using standard quantum optical components and electronics.

A. Quantum Controller Synthesis

We consider an optical cavity resonantly coupled to three op-
tical channels as in Fig. 1. The control objective is to
attenuate the effect of the disturbance signal on the output

—physically this means to dim the light emerging from re-
sulting from light shone in at .

The dynamics of this optical cavity system is described by the
evolution of its annihilation operator and its creation operator

(the adjoint of )

(41)

where are respectively the annihilation
process of the input fields in channels (in the vacuum
state), while are respectively the output fields
of channels and . In this model, the boson commutation
relation holds. Derivation of the
above dynamics for a cavity can be found in, for example, [13],
[14], [29].

The operators in the dynamics (41) are not self-adjoint and in
general the system coefficients may be complex-valued. How-
ever, it is convenient to work with self-adjoint operators and
real-valued coefficients (since the latter is the usual setting for
the formulation and solution of control problems). Therefore,
we rewrite (41) in the quadrature notation of (21), with
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, and
.

The quantum noises have Hermitian Ito matrices
. This leads to a system of the form (21) with the

following system matrices:

Moreover, it follows from the definition of and and the
commutation relation that the commutation matrix
for this plant is .

In our example, we will choose the total cavity decay rate
and the coupling coefficients .

With a disturbance attenuation constant of , it was found
that the Riccati equations (28) and (29) have stabilizing solu-
tions satisfying Assumption 5.3. These Riccati solutions were
as follows: . Then, it follows from Theorem
4.2 that if a controller of the form (23) is applied to this system
with matrices defined as in (30) then the resulting
closed-loop system will be strictly bounded real with distur-
bance attenuation . In our case, these matrices are given by

In this case, the controller (23) can be implemented with an-
other optical cavity with annihilation operator (with quadra-
tures

), corresponding to , connected at the
output with a phase shifter (see Remark 3.6). The con-
troller cavity has coupling coefficients

, and and is a physically realizable system
with dynamics

where
are the quadra-

tures of two independent canonical quantum noise sources,
and is the output of the cavity. The overall output
of the controller is , given by , where

. Here models the 180 phase shift at the
output of the cavity. Thus, the overall controller (an optical
cavity cascaded with a 180 phase shifter) is of the form (23)
with and as given before. This controller
is illustrated in Fig. 2. An experiment based on this example
has recently been completed [34].

B. Robust Stability in Quantum Optics

We now modify the above example to allow for uncertainty
in one of the optical cavity parameters using the results of
Section VI. Indeed, we consider the same set up as in Fig. 1
and assume that there is uncertainty in the value of the coupling

Fig. 2. Optical cavity quantum realization of the controller �� � �� for the
plant shown in Fig. 1.

coefficient corresponding to the optical channel . In this
case, the (21) describing the optical cavity now have matrices

(42)

This is our true system which depends on the unknown param-
eter .

In order to apply our theory together with the results of
Section VI to this system, we must overbound the uncertainty in
the matrix . Indeed, let be any nonsingular matrix. If ,
then we can write where

and satisfies . Hence, if we
consider a family of systems of the form (21) with the system
matrices

(43)

where , this will include the true system. Now, in
order to apply the result of Section VI to this problem, we con-
sider the problem defined by a system of the form (21)
where

(44)

Here, is the disturbance attenuation parameter in the con-
trol problem to be considered. Note that the matrix depends
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on the unknown parameter . However, this matrix is not in-
volved in the calculation of the controller.

As in the original example, we will choose the nominal cavity
decay rate and the nominal coupling coefficients of

. Also, we let . That is, we are
considering a 10% variation in the coupling coefficient. With a
disturbance attenuation constant of and , it
was found that the Riccati equations (28) and (29) have stabi-
lizing solutions satisfying Assumption 5.3. These Riccati solu-
tions were as follows: . Also, the
corresponding controller matrices were given by

(45)

Now as in the original example, the controller defined by the
matrices (45) can be implemented by another optical cavity. In
this case, ,
and . As in the original example, the controller
is illustrated in Fig. 2.

It follows from Theorem 4.2 that the resulting closed-loop
system satisfies the strict bounded real condition with distur-
bance attenuation . Indeed, this closed-loop system will be de-
scribed by the (25) where

Now, since this system is strictly bounded real with dis-
turbance attenuation , it follows from Corollary 4.5 that

. From this, we can conclude that

(46)

(47)

Using Corollary 4.5, (46) implies that the nominal closed-loop
system strictly bounded real with disturbance attenuation .
Also, (47) implies that the closed-loop system

is strictly bounded real with unity disturbance attenuation. From
this, it follows from Theorem 6.3 that the closed-loop uncertain
system

is mean square stable for all matrices such that .
Hence, we can conclude that the true closed-loop system is mean
square stable.

Note that for this example, it is also possible to verify that the
true closed-loop system must not only be mean square stable
but must also be strictly bounded real with disturbance attenu-
ation .

C. Classical Controller Synthesis

In Section VII-A, we obtained a quantum controller corre-
sponding to the choice . We now show that if we in-
stead choose , the controller that is realized is classical,
with appropriate transitions to and from the quantum plant.

Now, suppose we choose to be the quadratures of two
independent noise channels (i.e., ).
Setting , (12) and the compatibility requirement
(38) in this context results in the following pair of equations:

(48)

(49)

In order to find and solving (48) and (49), we assume
the following forms for and

Since , substitution of these forms into (48) and
(49) gives

It can be readily checked, by direct substitution, that these equa-
tions are solved by and , where

. This completely specifies the classical realiza-

tion of the controller, illustrated in Fig. 3. The quantum signal
is converted to a classical signal

by imperfect continuous measurement of
the real and imaginary quadratures of the optical beam, imple-
mented in Fig. 3 by a beam splitter and two homodyne detec-
tors [2]. The classical signal is processed by a classical linear
system to produce a classical control signal

, which then modulates (displaces) a field to produce
the optical control signal . This classical
controller achieves exactly the same performance as the
quantum controller of Subsection VII-A.

This classical controller has access to the full quantum signal
, and the quantum measurement occurs in the controller.

The algebra based on the commutation relations enforces the
quantum measurement, and also the modulation. If we were to
include measurement as part of the plant specification, then in
general a different classical controller will result, with different
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Fig. 3. Classical realization of the controller �� � �� for the plant shown in Fig. 1. The controller includes quantum measurement and classical modulation of
optical fields.

Fig. 4. Optical cavity (plant) with classical output. The (real) quadrature mea-
surement is achieved by homodyne photodetection (HD(Re)).

performance. To see this, suppose that is replaced by
its real quadrature in the plant specification; this situation is
described by the matrices

(50)

and is illustrated in Fig. 4. Thus the output of the plant is a
classical single-variable signal.

With a disturbance attenuation constant of , it was
found that the Riccati equations (28) and (29) have the following
stabilizing solutions satisfying Assumption 5.3:

It now follows from Theorem 4.2 that if a controller of the
form (23) is applied to this system with the following matrices

defined as in (30), then the resulting closed-loop
system will be strictly bounded real with disturbance attenua-
tion

In this case, the controller (23), (51) is a classical system which
can be implemented using standard electronic devices. This

Fig. 5. Classical controller �� � �� for the plant of Fig. 4.

Fig. 6. Optical amplifier-cavity system (plant).

second classical controller is illustrated in Fig. 5, and is different
to the previous one. Here we have chosen ,
and the quantum noise is canonical. The control signal is

, a coherent optical field.

D. Classical-Quantum Controller Synthesis

As a final example, we illustrate the synthesis of a controller
with both classical and quantum components. The plant has two
degrees of freedom, and is formed as a cascade of an optical
amplifier [14] and the cavity discussed above. This plant is il-
lustrated in Fig. 6.

The optical amplifier has an auxiliary input , which is an
inverted heat bath with Ito matrix , where

is a positive thermal parameter. The complete system
shown in Fig. 6 is of the form (21) with matrices

(51)
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Fig. 7. Quantum-classical controller �� � ������� � 		 for the plant of Fig. 6.

Here, and are parameters of the optical amplifier. The sig-
nals have Ito matrices and

, and the parameters values are
and .

With a gain , the Riccati equations (28) and (29)
have stabilizing solutions satisfying Assumption 5.3:

. Using (30), the controller matrices are

We choose in order to implement
a degenerate canonical controller, with both classical and
quantum degrees of freedom. We write , where

are classical and are quantum
variables. A realization is shown in Fig. 7, which consists of a
four-mirror optical cavity, a classical system, and homodyne de-
tection and modulation for interfacing the classical and quantum
components. The quantum noises in Fig. 7 are all canonical.
The cavity has coupling coefficients
and . The interconnection fields are given by

, and , where
. For this

realization, we have

VIII. CONCLUSION

In this paper, we have formulated and solved an syn-
thesis problem for a class of noncommutative stochastic models.

Models important to quantum technology, such as those arising
in quantum optics, are included in this class. We have provided
results for the physical realization of the controllers. Our re-
sults are illustrated with examples from quantum optics, which
demonstrate the synthesis of quantum, classical and quantum-
classical controllers. Future work will include further develop-
ment of the approach initiated here, and application of the syn-
thesis methods to particular problems in quantum technology.

APPENDIX A
PROOFS

Proof of Theorem 2.1: To preserve the commutation re-
lations for all and all , we must have

for all . We now develop a general
expression for . Indeed, let ,
where the 1 is in the -th row. It is easy to see that for any

. There-
fore, . Now, we expand

using the quantum Ito rule (e.g., see [20]) as follows:

Substituting into the above and noting that
and vanish to order gives
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We now write and
, where the vectors and de-

note the -th row of matrices and , respectively. Then we
have

(52)

Also, we have

(53)

Subtracting (53) from (52) gives us

(54)

Here we are using the fact that elements of commute with
those of and due to the adaptedness of and . Hence,

(55)

where .

Since (by assump-
tion) and , (55) takes the form

(56)

from which the result follows.
Proof of Theorem 3.4: Let us first consider the case

where is canonical. If the system is realizable then (7)–(10)
holds. Since is unitary for each , we have that

; i.e., the canonical commu-
tation relations are preserved. By Theorem 2.1 this is equivalent
to (12). Let be column vectors such that

. Then using (8) and
(9), we obtain the following after some algebraic manipula-
tions:

Therefore, we conclude that (13), (12), and (10) are necessary
for realizability.

Conversely, now suppose that (13), (12) and (10) hold. We
will argue that these conditions are sufficient for realizability by
showing that they imply the existence a symmetric matrix and
a coupling matrix such that (7)-(9) are satisfied. First we note
that after some simple algebraic manipulation

# for some complex matrix . Hence,
# . Substituting the last expression into (12)

and after further manipulations we get:

#

Writing # # , we may rewrite the last
expression as follows:

#

#

#

#

implying that # . Since
is real, we have the decomposition
for a unique pair of real symmetric matrix and real skew sym-
metric matrix and obtain the condition # .
Hence, # . Setting and

, we get and
as desired, and also prove the second statement of the theorem.
After substituting the expression, just obtained for (in terms
of , and ) into (13) and more algebraic manipulations
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we then get (9). Since the expression for has been hypoth-
esized as (10), we conclude that (13), (12) along with (10) gives
matrices which are the coefficients of a realizable
system.

Now, we consider the case where is degenerate canonical,
i.e., . Let us write

with

and . Consider the following
augmentation:

where , and and sat-

isfy the following:

It follows by inspection that such matrices , and exist.
Let and define

If (12) holds then it can be verified, by direct substitution, that
the matrices and satisfy:

(57)

Recalling that is only canonical up to permutation, we now
need to transform it into canonical form. To do this, introduce
the variable where is a permutation matrix such
that . Then the components of are a
relabelling of the components of . This gives us the following
dynamics for

Denoting , and
, we see that (57) implies that

(58)

Continuing further using (13), we have the following:

(59)

If is given by (10) then (58) and (59) implies, as we have
already shown for the case of canonical , the system defined by
the matrices is realizable in the sense of Point 1 of
the theorem. Hence, the original system defined by the matrices

is then realizable in the sense of Point 2 of the
theorem.

Finally, suppose conversely that (1) is realizable
and let be a suitable augmentation. Then

is a quantum harmonic oscillator, with
as defined before. Hence, , and are

given by the right hand sides of (7)–(10) for a canonical
and some and . It follows that and are given
by the same set of equations by replacing and by

and , respectively. We then
have, from the same line of arguments given for the case of
canonical , that

(60)

(57) holds, and satisfies (10). Reading off the first rows of
both sides of (60) then gives us (13), while reading of the first
rows and columns of both sides of (57) gives us (12), as required.
This completes the proof.

The Proof of Theorem 4.2 will use the following lemma.
Lemma A.1: Consider a real symmetric matrix and corre-

sponding operator valued quadratic form for the system
(15). Then the following statements are equivalent.

i) There exists a constant such that
for all Gaussian states .3

ii) The matrix is negative semidefinite.

3Here ��� �� denotes the expectation with respect to the Gaussian state �.
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Proof: . To establish this part of the lemma,
consider a Gaussian state which has mean and covariance
matrix . Then, we can write

(61)

Now for any constant , consider the inequality of part (i)
where is a Gaussian state with mean and covariance ma-
trix . Then it follows from this bound and (61) that

for all . From this, it immediately follows
that . However , the mean of the Gaussian state
was arbitrary. Hence, we can conclude that condition of the
lemma is satisfied. . Suppose that the matrix is neg-
ative semidefinite and let be any Gaussian state and suppose
that has mean and covariance matrix . Then, it fol-
lows from (61) that . However,

and implies and . Hence,
and condition is satisfied with .

Proof of Theorem 4.2: Let the system be dissipative with
. By Ito’s rule, the table (20) and the quantum

stochastic differential equation (15), we have

(62)

where is given by (19). We now note that (e.g., see [20, p.
215]) , where denotes expec-
tation with respect to , and is an initial Gaussian state. Com-
bining this with the integral of (62) and (16), we find that

Let to obtain

Here, and denote the initial conditions. An application of
Lemma A.1 implies (17). Also, (18) is a straightforward conse-
quence of this inequality when is replaced by where

.
To establish the converse part of the theorem, we first assume

that (17) is satisfied. Then with , it follows from
(62) that

for all and all . Hence, inequality (16) is satisfied
with given by (19).

If matrix inequality (18) is satisfied, then it follows by similar
reasoning that there exists an such that

Hence, inequality (16) is satisfied with given by (19)
and with replaced by by .

Proof of Theorem 5.4: Using the Strict Bounded Real
Lemma Corollary 4.5, the theorem follows directly from the
corresponding classical result; e.g., see [15], [21], and
[32].

The Proof of Theorem 5.5 will use the following lemma.
Lemma A.2: If is a Hermitian matrix then there is a real

constant such that for all .
Proof: Since is Hermitian it has real eigenvalues and

is diagonalizable. Hence, for some real diagonal
matrix and orthogonal matrix . Now let , where
is the smallest eigenvalue of . The result follows since

while for all .
Proof of Lemma 5.6: The main idea is to explicitly

construct matrices
and , with ,

such that (7)–(10) are satisfied by identifying
and with

and , respectively. To this end, let
, with . We

first construct matrices , and according
to the following procedure:

1) Construct the matrix according to (35).
2) Construct a real symmetric matrix such that

the matrix

is nonnegative definite. It follows from Lemma A.2 that
such a matrix always exists.

3) Construct a matrix such that , where
has at least 1 row. This can be done, for example, using the
singular value decomposition of (in this case will
have rows).

4) Construct the matrices and according to (34)
and (36), respectively.

Let . We now show that there exists an
integer such conditions (7)–(10) are satisfied with
the matrix as defined and with and

(63)
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First note that necessarily since
has at least columns. Also, by virtue of our choice of

, we have

and hence

Since , we have . Therefore,
(7) is satisfied.

Now, as in the Proof of Theorem 3.4, observe that
# for some

complex matrix . But by taking the conjugate transpose
of both sides of (35) which defined , we conclude that

. Hence

(64)

From (34) which defined , we obtain

(65)

Combining (36), (64), and (65) gives us

Therefore, (8) is also satisfied. Moreover, it is straightforward
to verify (9) by substituting as defined by (63) into the right
hand side of (9). Finally, since , it follows that

is precisely the right hand side of (10). This
completes the Proof of Theorem 5.5.

Proof of Lemma 6.2: We first observe that the system (39)
is mean square stable if and only if it is dissipative with a supply
rate defined by the matrix . Hence, it follows
from Theorem 4.2 that the system (39) is mean square stable if
and only if there exists a real positive definite symmetric matrix

such that . Hence, using a standard
Lyapunov result (e.g., see [32]), it follows that the system (39) is
mean square stable if and only if the matrix is asymptotically
stable.

Proof of Theorem 6.3: It follows from Corollary 4.5 that
the closed-loop quantum system (25) is strictly bounded real
with disturbance attenuation , then is a stable matrix and

. From this, it follows using the
standard small gain theorem (e.g., see Theorem 9.1 on page 218
of [32]) that the matrix is stable for all sat-
isfying (40). Hence using Lemma 6.2, it follows that the true
closed-loop system (39) is mean square stable for all satis-
fying (40).
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