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In this study, we propose a simple and novel data structure using hyper-links, H-struct, and a new mining algorithm, H-mine, which
takes advantage of this data structure and dynamically adjusts links in the mining process. A distinct feature of this method is that
it has a very limited and precisely predictable main memory cost and runs very quickly in memory-based settings. Moreover, it can
be scaled up to very large databases using database partitioning. When the data set becomes dense, (conditional) FP-trees can be
constructed dynamically as part of the mining process. Our study shows that H-mine has an excellent performance for various kinds
of data, outperforms currently available algorithms in different settings, and is highly scalable to mining large databases. This study
also proposes a new data mining methodology, space-preserving mining, which may have a major impact on the future development
of efficient and scalable data mining methods.

Keywords: Frequent pattern mining, FP-tree, transaction databases

1. Introduction

Frequent pattern mining plays an essential role in many
data mining tasks and applications, such as mining associ-
ation rules (Agrawal et al., 1993), correlations (Brin et al.,
1997; Silverstein et al., 1998), sequential patterns (Agrawal
and Srikant, 1995), episodes (Mannila et al., 1997), multi-
dimensional patterns (Kamber et al., 1997), max-patterns
and frequent closed patterns (Bayardo, 1998; Pasquier et al.,
1999), partial periodicity (Han et al., 1999), emerging pat-
terns (Dong and Li, 1999), classification (Liu et al., 1998),
and clustering (Agrawal et al., 1998).

The numerous studies on the fast mining of frequent pat-
terns can be classified into two categories. The first category,
candidate-generation-and-test approaches, such as Apriori
(Agrawal and Srikant, 1994) and many subsequent stud-
ies, are directly based on an anti-monotone Apriori prop-
erty (Agrawal and Srikant, 1994): if a pattern with k items

∗Corresponding author
†Deceased

is not frequent, any of its super-patterns with (k + 1) or
more items can never be frequent. A candidate-generation-
and-test approach iteratively generates a set of candidate
patterns of length (k + 1) from a set of frequent patterns
of length k (k ≥ 1), and checks their corresponding occur-
rence frequencies in the database.

The Apriori algorithm achieves a good reduction in
the size of candidate sets. However, when there exist
a large number of frequent patterns and/or long pat-
terns, candidate-generation-and-test methods may still
suffer from generating a large number of candidates
and taking many scans of large databases in frequency
checking.

Recently, another category of methods, pattern-growth
methods, such as FP-growth (Han et al., 2000) and Tree Pro-
jection (Agarwal et al., 2000, 2001), have been proposed. A
pattern-growth method uses the Apriori property. However,
instead of generating candidate sets, it recursively partitions
the database into sub-databases according to the frequent
patterns found and searches for local frequent patterns to
assemble longer global ones.

0740-817X C© 2007 “IIE”
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594 Pei et al.

Nevertheless, these proposed approaches may still en-
counter some difficulties in different cases. First, a huge
memory space is required to serve the mining, and the main
memory consumption is usually hard to precisely predict. An
Apriori-like algorithm generates a huge number of candi-
dates for long or dense patterns. To find a frequent pattern of
size 100, such as {a1, . . . , a100}, up to 5 × 1030 units of main
memory space is needed to store candidates. FP-growth
(Han et al., 2000) avoids candidate generation by compress-
ing the transaction database into an FP-tree and pursuing
partition-based mining recursively. However, if the database
is huge and sparse, the FP-tree will be large and the space
requirement for recursion is a challenge. Neither approach
is superior in all cases.

Second, real databases contain all the cases. Real data
sets can be sparse and/or dense in different applications.
For example, for telecommunications data analysis, calling
patterns for home users could be very different to that for
business users: some calls are frequent and dense (e.g., to
family members and close friends), but some are huge and
sparse. Similar situations arise in market basket analysis,
census data analysis, classification and predictive modeling,
etc. It is hard to select an appropriate mining method on
the fly if no algorithm fits all cases.

Last, large applications need more scalability. Many exist-
ing methods are efficient when the data set is not very large.
Otherwise, their core data structures (such as FP-tree) or
the intermediate results (e.g., the set of candidates in Apriori
or the recursively generated conditional databases in FP-
growth) may not fit into the main memory and can easily
cause thrashing.

This poses a new challenge: can we work out a better
method in that: (i) the main memory requirement is precisely
predictable and moderate, even for very large databases; and
(ii) it is efficient in most occasions (dense vs. sparse, huge vs.
memory-based data sets)?

In this paper, we propose a new data structure, H-struct,
and a new mining method, H-mine, to overcome these
difficulties, with the following progress. First, a memory-
based, efficient pattern-growth algorithm, H-mine(Mem),
is proposed for mining frequent patterns for the data sets
that can fit into the (main) memory. A simple, memory-
based hyper-structure, H-struct, is designed for fast min-
ing. Second, we show that, theoretically, H-mine(Mem) has
a polynomial space complexity and is thus more space effi-
cient than pattern-growth methods such as FP-growth and
TreeProjection when mining sparse data sets, and also more
efficient than Apriori-based methods which generate a large
number of candidates. Experimental results show that, in
many cases, H-mine has a very limited and exactly pre-
dictable space overhead and is faster than the memory-
based Apriori and FP-growth methods. Third, based on
H-mine(Mem), we propose H-mine, a scalable algorithm
for mining large databases by first partitioning the database,
mining each partition in the memory using H-mine(Mem),
and then consolidating globally frequent patterns. Fourth,

for dense data sets, H-mine is integrated with FP-growth
dynamically by detecting the swapping condition and con-
structing FP-trees for efficient mining. Last, such efforts
ensure that H-mine is scalable in both large and medium-
sized databases and in both sparse and dense data sets. Our
comprehensive performance study confirms that H-mine is
highly scalable and is faster than Apriori and FP-growth on
all occasions.

The rest of the paper is organized as follows. Sec-
tion 2 is devoted to H-mine(Mem), an efficient algorithm
for memory-based frequent pattern mining. In Section 3,
H-mine(Mem) is extended to huge, disk-based databases,
together with some further optimizations techniques. Our
performance study is reported in Section 4. We draw con-
clusions in Section 5.

2. H-mine(Mem)H-mine(Mem): Memory-based mining

In this section, H-mine(Mem) (memory-based hyper-
structure mining of frequent patterns) is developed, and in
Section 3, the method is extended to handle large and/or
dense databases.

Definition 1. Let I = {x1, . . . , xn} be a set of items. An
itemset X is a subset of items, i.e., X ⊆ I . For the sake
of brevity, an itemset X = {x1, x2, . . . , xm} is also denoted
as X = x1x2 · · · xm. A transaction T = (tid, X) is a 2-tuple,
where tid is a transaction-id and X an itemset. A transac-
tion T = (tid, X) is said to contain itemset Y if and only if
Y ⊆ X . A transaction database TDB is a set of transactions.
The number of transactions in TDB containing itemset X
is called the support of X , denoted as sup(X). Given a trans-
action database TDB and a support threshold min sup, an
itemset X is a frequent pattern, or a pattern in short, if and
only if sup(X) ≥ min sup.

The problem of frequent pattern mining is to find the com-
plete set of frequent patterns in a given transaction database
with respect to a given support threshold.

2.1. General idea of H-mine(Mem)H-mine(Mem)

We illustrate the general idea of H-mine(Mem) using an
example.

Let the first two columns of Table 1 be our running trans-
action database TDB. Let the minimum support threshold
be min sup = 2.

Table 1. The transaction database TDB used as our running
example

Transaction ID Items Frequent-item projection

100 c,d,e,f,g,i c,d,e,g
200 a,c,d,e,m a,c,d,e
300 a,b,d,e,g,k a,d,e,g
400 a,c,d,h a,c,d
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Frequent pattern mining in large databases 595

Fig. 1. Divide-and-conquer frequent patterns.

Following the Apriori property (Agrawal and Srikant,
1994), only frequent items play roles in frequent patterns. By
scanning TDB once, the complete set of frequent items {a :
3, c : 3, d : 4, e : 3, g : 2} can be found and output, where
the notation a : 3 means item a’s support (occurrence fre-
quency) is three. Let freq (X) (the frequent-item projec-
tion of X) be the set of frequent items in itemset X . For
ease of explanation, the frequent-item projections of all the
transactions of Table 1 are shown in the third column of
the table.

Following the alphabetical order of frequent items1

(called an F-list) a-c-d-e-g, the complete set of frequent
patterns can be partitioned into five subsets as follows: (i)
those containing item a; (ii) those containing item c but not
item a; (iii) those containing item d but no item a nor item
c; (iv) those containing item e but no item a nor item c nor
item d; and (v) those containing only item g, as shown in
Fig. 1.

If the frequent-item projections of transactions in the
database can be held in the main memory, then they can
be organized as shown in Fig. 2. All items in frequent-item
projections are sorted according to the F-list. For example,
the frequent-item projection of transaction 100 is listed as
cdeg. Every occurrence of a frequent item is stored in an
entry with two fields: an item-id and a hyper-link.

A header table H is created, with each frequent item entry
having three fields: an item-id, a support count, and a hyper-
link. When the frequent-item projections are loaded into the
memory, those with the same first item (in the order of the
F-list) are linked together by the hyper-links into a queue,
and the entries in header table H act as the heads of the
queues. For example, the entry of item a in the header table
H is the head of the a-queue, which links frequent-item

1As you may be aware, any ordering should work, and the alpha-
betical ordering is just for the convenience of explanation.

projections of transactions 200, 300, and 400. These three
projections all have item a as their first frequent item (in the
order of the F-list). Similarly, the frequent-item projection
of transaction 100 is linked as a c-queue, headed by item
c in H. The d-, e- and g-queues are empty since there is
no frequent-item projection that begins with any of these
items.

Clearly, it takes one scan (the second scan) of the trans-
action database TDB to build such a memory structure
(called the H-struct). Then the remaining mining can be
performed on the H-struct only, without referencing any
information in the original database. After that, the five
subsets of frequent patterns can be mined one by one as
follows.

First, let us consider how to find the set of frequent pat-
terns in the first subset, i.e., all the frequent patterns con-
taining item a. This requires us to search all the frequent-
item projections containing item a, i.e., the a-projected

Fig. 2. H-struct, the hyper-structure to store frequent-item pro-
jections.
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596 Pei et al.

Fig. 3. Header table Ha and the ac-queue.

database2, denoted as TDB|a. Interestingly, the frequent-
item projections in the a-projected database are already
linked in the a-queue, which can be traversed efficiently.

To mine the a-projected database, an a-header table Ha
is created, as shown in Fig. 3. In Ha, every frequent item,
except for a itself, has an entry with the same three fields
as H, i.e., item-id, support count and hyper-link. The sup-
port count in Ha records the support of the corresponding
item in the a-projected database. For example, item c ap-
pears twice in the a-projected database (i.e., frequent-item
projections in the a-queue), thus the support count for the
entry c in Ha is two.

By traversing the a-queue once, the set of locally frequent
items, i.e., the items appearing at least two times, in the
a-projected database is found, which is {c : 2, d : 3, e : 2}
(note: g : 1 is not locally frequent and thus will not be
considered further). This scan outputs frequent patterns
{ac : 2, ad : 3, ae : 2} and builds up links for the Ha header
as shown in Fig. 3.

Similarly, the process continues for the ac-projected
database by examining the c-queue in Ha, which creates
an ac-header table Hac, as shown in Fig. 4.

Since only item d : 2 is a locally frequent item in the ac-
projected database, only acd : 2 is outputed, and the search
along this path completes.

Then the recursion backtracks to find patterns contain-
ing a and d but not c. Since the queue started from d in
the header table Ha, i.e., the ad-queue, links all frequent-
item projections containing items a and d (but excluding
item c in the projection), one can get the complete ad-
projected database by inserting frequent-item projections
having item d in the ac-queue into the ad-queue. This in-
volves one more traversal of the ac-queue. Each frequent-
item projection in the ac-queue is appended to the queue of

2The a-projected database consists of all the frequent-item pro-
jections containing item a, but these are all “virtual” projec-
tions since no physical projections are performed to create a new
database.

Fig. 4. Header table Hac.

the next frequent item in the projection according to F-list.
Since all the frequent-item projections in the ac-queue have
item d, they are all inserted into the ad-queue, as shown in
Fig. 5.

It can be seen that, after the adjustment, the ad-queue
collects the complete set of frequent-item projections con-
taining items a and d. Thus, the set of frequent patterns
containing items a and d can be mined recursively. Please
note that, even though item c appears in frequent-item pro-
jections of the ad-projected database, we do not consider it
as a locally frequent item in any recursive projected database
since it has been considered in the mining of the ac-queue.
This mining generates only one pattern ade : 2. Notice also
that the third level header table Had can use the table Hac
since the search for Hac was done in the previous round.
Thus, we only need one header table at the third level. Later
we can see that only one header table is needed for each level
of the whole mining process.

For the search in the ae-projected database, since e con-
tains no child links, the search terminates, with no patterns
being generated.

After the frequent patterns containing item a are found,
the a-projected database, i.e., a-queue, is no longer needed
for the remaining mining processes. Since the c-queue

Fig. 5. Header table Ha and the ad-queue.
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Frequent pattern mining in large databases 597

Fig. 6. Adjusted hyper-links after mining the a-projected database.

includes all frequent-item projections containing item c ex-
cept for those projections containing both items a and c,
which are in the a-queue. To mine all the frequent patterns
containing item c but not a, and other subsets of frequent
patterns, we need to insert all the projections in the a-queue
into the proper queues.

We traverse the a-queue once more. Each frequent-item
projection in the queue is appended to the queue of the next
item in the projection following a in the F-list, as shown
in Fig. 6. For example, frequent-item projection acde is in-
serted into the c-queue and adeg is inserted into the d-queue.

By mining the c-projected database recursively (with a
shared header table at each level), we can find the set of
frequent patterns containing item c but not a. Notice item
a will not be included in the c-projected database since all
the frequent patterns having item a have already been found.

Similarly, the mining goes on. In the next section, we
verify that the above mining process finds the complete set
of frequent patterns without duplication. The remaining
mining process is left as an exercise to interested readers.

Notice also that the depth-first search for mining the first
set of frequent patterns at any depth can be done in one
database scan by constructing the header tables at all levels
simultaneously.

2.2. H-mine(Mem)H-mine(Mem): The algorithm

Now, let us summarize and justify the mining process dis-
cussed in Section 2.1.

Given a transaction database TDB and a support thresh-
old min sup, let L be the set of frequent items. F-list, a list of
frequent items, is a global order over L. Let x and y (x �= y)
be two frequent items. We denote x ≺ y iff x is before y ac-
cording to the F-list. For example, based on the F-list in
Section 2.1, we have a ≺ c ≺ d ≺ e ≺ g.

Frequent-item projections of transactions in TDB are
organized in an H-struct. An H-struct contains the set of
frequent-item projections of a transaction database. Each
item in a frequent-item projection is represented by an entry
with two fields: item-id and hyper-link.

An H-struct has a header table. The header table is an
array of frequent items in the order of the F-list. A sup-
port count and a hyper-link are attached to each item in
the header table. When the H-struct is created, items in the
header table are the heads of the queues of frequent-item
projections linked by hyper-links.

The hyper-structure shown in Fig. 2 is an example
of an H-struct. For every transaction, H-struct stores its
frequent-item projection. Besides frequent-item projec-
tions, H-struct also stores a header table whose size is
bounded by the number of frequent items. This is all the
space needed by the H-struct. Therefore, the space require-
ment of an H-struct is �(

∑
t∈TDB |freq(t)|), where freq(t)

is a frequent-item projection of a transaction t . Only two
scans of a transaction database are needed to build an
H-struct.

Given a transaction database TDB and F-list, the com-
plete set of frequent patterns can be partitioned into a series
of subsets without overlap, as stated in the following lemma.

Lemma 1. (Partition of search space.) Given a transac-
tion database TDB and support threshold min sup, let F-list
“x1 -. . . -xn” be a list of frequent items. The complete set of
frequent patterns can be partitioned into n subsets without
overlap as follows: the kth subset (1 ≤ k ≤ n) contains pat-
terns having item xk but no item xi (1 ≤ i < k).

To mine the subsets of frequent patterns, we introduce the
concept of a projected database. Let P be a frequent pattern.
The P-projected database is the collection of frequent-item
projections containing pattern P, denoted as TDB}P.

Clearly, to mine the kth subset of frequent patterns in
Lemma 1, we only need to look at the xk-projected database
TDB|xk and ignore occurrences of items xi (1 ≤ i < k).
How can H-struct facilitate the construction of projected
databases? We have the following lemma.

Lemma 2. (Projected databases.) Given a transaction
database TDB and support threshold min sup, let F-list “x1-
· · · -xn” be the list of frequent items. In the H-struct: (i) The
x1-projected database is the x1-queue in the header table; (ii)
the x2-projected database is the x2-queue in the header table
and the frequent-item projections starting at item x2 in the x1-
queue; (iii) in general, the xk-projected database (1 < k ≤ n)
is the xk-queue in the header table and the frequent-item pro-
jections starting at xk in the xi-queues (1 ≤ i < k).

Based on Lemma 2, we can first find the complete set
of frequent patterns containing x1, using the x1-queue
available in H-struct. Conceptually, we treat the queue of
frequent-item projections in the x1-projected database as
a sub-H-struct and apply the techniques recursively. That
is, we find the locally frequent items, further partition the
subset of frequent patterns and perform recursive mining.
The storage of frequent-item projections, i.e., H-struct, can
be shared. We only need a new header table to be able to
form queues within the x1-projected database.
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Then, we insert those frequent-item projections in the x1-
queue starting at item x2 into the x2-queue in the header
table, and form the complete x2-projected database. Since
the projections exclude x1 in the x2-projected database by
starting at x2, we can find the complete set of frequent pat-
terns containing item x2 but not item x1.

Similarly, we can find the complete set of frequent pat-
terns. Based on the above reasoning, we have the following
algorithm.

Algorithm 1 (H-mine(Mem)) (Main) memory-based hyper-
structure mining of frequent patterns.

Input: A transaction database TDB and a support thresh-
old min sup.

Output: The complete set of frequent patterns.
Method:

Step 1. Scan TDB once, find and output L, the set of fre-
quent items. Let F-list: “x1-. . . -xn” (n = |L|) be a
list of frequent items.

Step 2. Scan TDB again, construct H-struct, with header
table H, and with each xi-queue linked to the cor-
responding entry in H.

Step 3. For i = 1 to n do
(a) Call H-mine({xi}, H, F-list).
(b) traverse the xi-queue in the header table H, for

each frequent-item projection X , link X to the
xj-queue in the header table H, where xj is the
item in X following xi immediately.

Procedure H-mine(P, H, F-list)//P is a frequent pattern
// Note: The frequent-item projections in the P-
projected database are linked as a P-queue in the header
table H.

Step 1. Traverse the P-queue once, find and output its lo-
cally frequent items and derive F-listP: “xj1 -. . . -
xjn′ ”.
// Note: Only the items in the F-list and are located
to the right of P are considered. Items in the F-listP
follow the same order as that in the F-list.

Step 2. Construct header table HP, scan the P-projected
database, and for each frequent-item projection X
in the projected database, use the hyper-link of xji
(1 ≤ i ≤ n′) in X to link X to the Pxji -queue in the
header table HP, where xji is the first locally fre-
quent item in X according to the F-listP.

Step 3. For i = 1 to n′ do
(a) Call H-mine(P ∪ {xji}, HP, F-listP).
(b) Traverse Pxji -queue in the header table HP, for

each frequent-item projection X , link X to the
xjk -queue (i < k ≤ n′) in the header table HP,
where xjk is the item in X following xji immedi-
ately according to F-list.

Now, let us analyze the space requirement of Algorithm
1. As discussed previously, the space complexity of con-
structing an H-struct is �(

∑
t∈TDB |freq(t)|). To mine the

H-struct, the only space overhead is a set of local header
tables. At first glance, the number of header tables seems to
be of the order of that for the frequent patterns. However,
a close look at the algorithm finds that only a very limited
number of header tables exist simultaneously. For exam-
ple, to find pattern P = bcde, only the header tables for the
“prefixes” of P, i.e., Hb, Hbc, Hbcd and Hbcde, are needed.
All the other header tables are either already used and can
be freed, or have not yet been generated. The header tables
for patterns with item a have already been used and can be
freed since all the patterns having item a have been found
before pattern bcde. On the other hand, all the other header
tables are for patterns to be found later and thus need not be
generated at this moment. Therefore, the number of header
tables is bounded by the maximal length of a single frequent
pattern. Thus, we have the following lemma.

Lemma 3. (Number of header tables.) The maximum num-
ber of header tables needed in the hyper-structure mining
of frequent patterns. i.e., H-mine(Mem), is bounded by the
maximal length of a single frequent pattern that can be found.

Since the maximal length of a single frequent pattern
cannot exceed the maximal length of a transaction, and in
general, the maximal length of a transaction is much smaller
than the number of transactions, we have the following the-
orem on the space complexity of H-mine(Mem).

Theorem 1. (Space complexity.) The space complexity of Al-
gorithm 1 is �(

∑
t∈TDB |freq(t)|), where freq(t) is a frequent-

item projection of a transaction t.

Comparing with other frequent pattern mining methods,
the efficiency of H-mine(Mem) comes from the following
aspects.

First, H-mine(Mem) avoids candidate generation and
test by adopting a frequent-pattern growth methodology,
a more efficient method shown in previous studies (Han
et al., 2000; Agrawal et al., 2001). H-mine(Mem) absorbs
the advantages of pattern growth.

Second, H-mine(Mem) confines its search to a dedicated
space. Unlike other frequent pattern growth methods, such
as FP-growth (Han et al., 2000), it does not need to physi-
cally construct memory structures of projected databases. It
fully utilizes the well organized information in the H-struct,
and collects information about projected databases using
the header tables, which are light-weight structures. That
also saves a lot of effort on managing space.

Last, H-mine(Mem) does not need to store any frequent
patterns in the memory. Once a frequent pattern is found,
it is outputed on to a disk. In contrast, the candidate-
generation-and-test method has to save and use the frequent
patterns found in the current round to generate candidates
for the next round.
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3. From H-mine(Mem) to H-mine: Efficient mining
on different occasions

In this section, we first extend our algorithm H-mine(Mem)
to H-mine, which mines frequent patterns in large data sets
that cannot fit into the main memory. Then, we explore
how to integrate FP-growth when the data sets being mined
become very dense.

3.1. H-mine: Mining frequent patterns in large databases

H-mine(Mem) is efficient when the frequent-item projec-
tions of a transaction database plus a set of header tables
can fit into the main memory. However, we cannot expect
this to always be the case. When they cannot fit into the
memory, a database partitioning technique can be devel-
oped as follows.

Let TDB be the transaction database with n transactions
and min sup be the support threshold. By scanning TDB
once, one can find L, the set of frequent items.

Then, TDB can be partitioned into k parts, TDB1,
. . . , TDBk, such that, for each TDBi (1 ≤ i ≤ k), the
frequent-item projections of transactions in TDBi can be
held in main memory, where TDBi has ni transactions,
and

∑k
i=1 ni = n. We can apply H-mine(Mem) to TDBi

to find frequent patterns in TDBi with the minimum sup-
port threshold min supi = �min sup × ni/n� (i.e., each par-
titioned database keeps the same relative minimum support
as the global database).

Let Fi (1 ≤ i ≤ k) be the set of (locally) frequent patterns
in TDBi. Based on the property of partition-based mining
(Savesere et al., 1995), P cannot be a (globally) frequent pat-
tern in TDB with respect to the support threshold min sup
if there exists no i (1 ≤ i ≤ k) such that P is in Fi. Therefore,
after mining frequent patterns in the TDBi, we can gather
the patterns in Fi and collect their (global) support in TDB
by scanning the transaction database TDB one more time.

Based on the above observation, we can extend
H-mine(Mem) to H-mine as follows.

Algorithm 2 (H-mine) Hyper-structure mining of frequent-
patterns in large databases.

Input and output: same as Algorithm 1.
Method:

Step 1. Scan the transaction database TDB once to find L,
the complete set of frequent items.

Step 2. Partition TDB into k parts, TDB1, . . . , TDBk, such
that, for each TDBi (1 ≤ i ≤ k), the frequent-item
projections in TDBi can be held in the main mem-
ory.

Step 3. For i = 1 to k, use H-mine(Mem) to mine frequent
patterns in TDBi with respect to the minimum sup-
port threshold min supi = �min sup × ni/n�, where
n and ni are the number of transactions in TDB and

TDBi, respectively. Let Fi be the set of frequent pat-
terns in TDBi.

Step 4. Let F = ⋃k
i=1 Fi. Scan TDB one more time, col-

lect support for patterns in F . Output those pat-
terns which pass the minimum support threshold
min sup.

One important issue in Algorithm 2 is how to partition
the database. As analyzed in Section 2.2, the only space cost
of H-mine(Mem) is incurred by the header tables. The max-
imal number of header tables as well as their space require-
ment are predictable (usually very small in comparison with
the size of the frequent-item projections). Therefore, after
reserving space for header tables, the remaining main mem-
ory space can be used to build an H-struct that covers as
many transactions as possible. In practice, it is good to first
estimate the size of the available main memory for mining
and the size of the overall frequent-item projected database
(similar in size to the sum of support counts of frequent
items), and then roughly evenly partition the database to
avoid the generation of skewed partitions.

Note that our partition-based mining approach shares
some similarities with the partitioned Apriori method pro-
posed in Savasere et al. (1995) in which a transaction
database is first partitioned, every partition is mined using
Apriori, then all the locally frequent patterns are gathered
to form globally frequent candidate patterns before count-
ing their global support by one more scan of the transaction
database. However, there are two essential differences be-
tween these two methods.

First, as also indicated in Savasere et al. (1995), it is not
easy to obtain a good partition scheme using the parti-
tioned Apriori approach since it is hard to predict the space
requirement of Apriori. In contrast, it is straightforward
for H-mine to partition the transaction database, since the
space overhead is very small and predictable during mining.

Second, H-mine first finds globally frequent items. When
mining partitions of a database, H-mine examines only
those items which are globally frequent. In skewed parti-
tions, many globally infrequent items can be locally fre-
quent in some partitions, but H-mine does not spend any
effort to check them unlike the partitioned Apriori approach
which does so check.

Furthermore, we can do better in consolidating glob-
ally frequent patterns from local ones. When mining a large
transaction database, if the database is partitioned relatively
evenly, it is expected that many short globally frequent pat-
terns are frequent in every partition. In this case, a pattern
frequent in every partition is a globally frequent pattern,
and its global support count is the sum of the counts in all
the partitions. H-mine does not need to test such patterns
in its third scan. Therefore, in the third scan, H-mine checks
only those locally frequent patterns which are infrequent in
some partitions. Furthermore, a pattern is checked against
only those partitions where it is infrequent.



D
ow

nl
oa

de
d 

By
: [

C
an

ad
ia

n 
R

es
ea

rc
h 

Kn
ow

le
dg

e 
N

et
w

or
k]

 A
t: 

16
:5

6 
2 

Ap
ril

 2
00

7 

600 Pei et al.

In general, the following factors contribute to the scala-
bility and efficiency of H-mine.

First, as analyzed in Section 2, H-mine(Mem) has a small
space overhead and is efficient in mining partitions which
can be held in the main memory. With current memory
technologies, it is likely that many medium-sized databases
can be mined efficiently by this memory-based frequent-
pattern mining mechanism.

Second, no matter how large the database, it can be
mined by at most three scans of the database: the first scan
finds globally frequent items; the second mines the parti-
tioned database using H-mine(Mem); and the third verifies
globally frequent patterns. Since every partition is mined
efficiently using H-mine(Mem), the mining of the whole
database is highly scalable.

Last, one may wonder that, since the partitioned Apri-
ori algorithm of Savasere et al. (1995) takes two scans of
TDB, whereas H-mine takes three scans, how can H-mine
outperform it? Notice that the major cost in this process
is the mining of each partitioned database. The last scan
of TDB for collecting supports and generating globally fre-
quent patterns is fast because the set of locally frequent
patterns can be inserted into one compact structure, such
as a hashing tree. Since H-mine generates fewer partitions
and mines each partition very quickly, it has a better overall
performance than the Apriori-based partition mining algo-
rithm. This is also demonstrated in our performance study.

In summary, a major advantage of H-mine comes from
the fact that it uses a more efficient data structure and al-
gorithm than the hash-tree-based approaches discussed in
the previous studies.

3.2. Handling dense data sets: Dynamic integration
of H-struct and FP-tree-based mining

As indicated in Bayardo et al. (1999), Han et al. (2000) and
Pei et al. (2000) finding frequent patterns in dense databases
is a challenging task since it may generate dense and long
patterns which may lead to the generation of a very large
(and even exponential) number of candidate sets if an Apri-
ori-like algorithm is used. The FP-growth method proposed
in our recent study (Han et al., 2000) works well on dense
databases with a large number of long patterns due to the
effective compression of shared prefix paths in the mining.

In comparison with FP-growth, H-mine does not gener-
ate physical projected databases and conditional FP-trees
and thus saves space as well as time in many cases. However,
FP-tree-based mining has its advantages over mining us-
ing H-struct since the FP-tree shares common prefix paths
among different transactions, which may lead to space and
time savings as well. As one may expect, the situation un-
der which one method outperforms the other depends on
the characteristics of the data sets: if data sharing is rare
such as in sparse databases, the compression factor could
be small and the FP-tree may not outperform mining using
H-struct. On the other hand, there are many dense data sets

in practice. Even though the data sets might not be dense
originally, as mining progresses, the projected databases be-
come smaller, and data often becomes denser as the rela-
tive support goes up when the number of transactions in
a projected database reduces substantially. In such cases,
it is beneficial to swap the data structure from H-struct to
FP-tree since the FP-tree’s compression by common prefix
path sharing and then mining on the compressed structures
will overweigh the benefits brought by H-struct.

The questions arise of what are the situations in which
one structure is more preferable than the other one and also
how to determine when such a structure/algorithm swap-
ping should happen. A dynamic pattern density analysis
technique is suggested as follows.

In the context of frequent pattern mining, a (projected)
database is dense if the frequent items in it have a high rel-
ative support. The relative support can be computed as

absolute support
number of transactions (or frequent-item projections)

.

in the (projected) database

When the relative support is high, such as 10% or over, i.e.,
the projected database is dense, and the number of (locally)
frequent items is not large (so that the resulting FP-tree
is not bushy), then an FP-tree should be constructed to
explore the sharing of common prefix paths and database
compression. On the other hand, when the relative support
of frequent items is low, such as far below 1%, it is sparse,
and H-struct should be constructed for an efficient H-mine.
However, in the middle lies the gray area, and which struc-
ture and method should be used will depend on the size of
the frequent-item projection database, the size of the main
memory and other performance factors.

With this discussion, one can see that Algorithm 2
(H-mine) should be modified as follows.

In Step 3 of Algorithm 2 which mines frequent pat-
terns in each partition TDBi, H-mine(Mem) is called. How-
ever, instead of simply constructing H-struct and mining
the H-struct iteratively till the end, H-mine(Mem) will ana-
lyze the basic characteristics of data to determine whether
H-struct should be constructed or utilized in the subse-
quent mining or whether FP-trees should be constructed
for frequent-pattern growth.

4. Performance study and experimental results

To evaluate the efficiency and scalability of H-mine, we
have performed an extensive performance study. In this sec-
tion, we report our experimental results on the performance
of H-mine in comparison with Apriori and FP-growth. It
shows that H-mine outperforms Apriori and FP-growth
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Fig. 7. Runtime on data set Gazelle.

and is efficient and highly scalable for mining very large
databases.3

All the experiments were performed on a 466 MHz Pen-
tium PC machine with 128 Mb main memory and 20 Gb
hard disk, running Microsoft Windows/NT. H-mine and
FP-growth were implemented by us using Visual C++6.0,
while the version of Apriori that we used is a well-known
version, GNU Lesser General Public License, available at
http://fuzzy.cs.uni-magdeburg.de/∼borgelt/. All reports
of the runtime of H-mine include both the time of con-
structing H-struct and mining frequent-patterns. They also
include both CPU time and I/O time.

We have tested various data sets, with consistent results.
Limited by space, only the results on some typical data sets
are reported here.

4.1. Mining transaction databases in the main memory

In this sub-section, we report results on mining transaction
databases which can be held in the main memory. H-mine
is implemented as stated in Section 2. For FP-growth, the
FP-trees can be held in the main memory in the tests re-
ported in this sub-section. We modified the source code for
Apriori so that the transactions are loaded into the main
memory and the multiple scans of database are pursued in
the main memory.

Data set Gazelle is a sparse data set. It is a web store visit
(clickstream) data set from Gazelle.com. It contains 59 602
transactions, with up to 267 items per transaction.

Figure 7 shows the run-times of H-mine, Apriori and
FP-growth on this data set. Clearly, H-mine is superior to
the other two algorithms, and the differences (in term of
seconds) become larger as the support threshold goes lower.

3A prototype of H-mine has also been tested by a third party in
the US (a commercial company) on business data. Their results
are consistent with ours. They observed that H-mine is more than
ten times faster than Apriori and other participating methods in
their test when the support threshold is low.

Fig. 8. Space usage on data set Gazelle.

Apriori works well for sparse data sets since most of the
candidates that Apriori generates turn out to be frequent
patterns. However, it has to construct a hashing tree for
the candidates and match them in the tree and update their
counts each time when scanning a transaction that contains
the candidates. That is the major cost for Apriori.

FP-growth has a similar performance to that of Apriori
and sometimes it is even slightly worse. This is because when
the database is sparse, the FP-tree cannot compress data
as effectively as it can for dense data sets. Constructing
FP-trees over sparse data sets recursively has its overhead.

Figure 8 plots the high water mark of space usage for
H-mine, Apriori and FP-growth in the mining procedure.
To make the comparison clear, the space usage (Y axis) has
a logarithmic scale. From the figure, we can see that H-mine
and FP-growth have similar space requirements and are very
scalable in term of space usage with respect to the support
threshold. Even when the support threshold reduces to very
low levels, the memory usage is still stable and moderate.

The memory usage of Apriori does not scale well as the
support threshold goes down. Apriori has to store level-
wise frequent patterns and generate next level candidates.
When the support threshold is low, the number of frequent
patterns as well as that of candidates are non-trivial. In
contrast, pattern-growth methods, including H-mine and
FP-growth , do not need to store any frequent patterns or
candidates. Once a pattern is found, it is output immediately
and never read back.

What are the performances of these algorithms when ap-
plied to dense data sets? We use the synthetic data set gen-
erator described in Agrawal and Srikant (1994) to generate
a data set T25I15D10k. This data set generator has been
used in many studies on frequent pattern mining. We re-
fer readers to Agrawal and Srikant (1994) for more details
on the data set generation. Data set T25I15D10k contains
10 000 transactions and each transaction has up to 25 items.
There are 1000 items in the data set and the average longest
potentially frequent itemset has 15 items. It is a relatively
dense data set.
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Fig. 9. Runtime on data set T25I15D10k.

Figure 9 shows the runtime of the three algorithms on this
data set. When the support threshold is high, most patterns
are of short lengths, Apriori and FP-growth have similar
performances. When the support threshold becomes low,
most items (more than 90%) are frequent. Then, FP-growth
is much faster than Apriori. In all cases, H-mine is the fastest
algorithm. It is more than ten times faster than Apriori and
four to five times faster than FP-growth.

Figure 10 shows the high water mark of space usage of
the three algorithms in mining this data set. Again, the
space usage is plotted on a logarithmic scale. Since the num-
ber of patterns goes up dramatically as the support thresh-
old goes down, Apriori requires an exponential amount of
space. H-mine and FP-growth use a stable amount of space.
For a dense data set, an FP-tree is smaller than the set of
all frequent-item projections of the data set. However, long
patterns mean more recursions and more recursive FP-trees.
This means that FP-growth will require more space than
H-mine in this case. On the other hand, since the num-
ber of frequent items is large in this data set, an FP-tree,
though compressing the database, still has many branches
in various levels and becomes bushy. That also introduces
non-trivial tree browsing cost.

Fig. 10. Space usage on data set T25I15D10k.

Fig. 11. Runtime per pattern on data set Gazelle.

Figures 11 and 12 explore the runtime per frequent pat-
tern on data sets Gazelle and T25I15D10k, respectively.
As the support threshold goes down, the number of fre-
quent patterns goes up. As can be seen from the figures,
the runtime per pattern of the three algorithms keeps going
down. This observation explains the scalability of the three
algorithms. Among the three algorithms, H-mine has the
smallest runtime per pattern and thus has the best perfor-
mance, especially when the support threshold is low.

In very dense data sets, such as Connect-4 4, and pumsb5,
H-mine builds FP-trees since the number of frequent
items is very small. Thus, it has the same performance as
FP-growth. Previous studies, e.g., Bayardo (1998), show that
Apriori is incapable of mining such data sets.

We also tested the scalability of the algorithms with re-
spect to the average number of items in transactions in the
synthetic data sets. The experimental results are consistent
with the results reported in Agrawal and Srikant (1995):
as the average size goes up, the runtime goes up linearly.
FP-growth and H-mine have a similar trend.

4.2. Mining very large databases

To test the efficiency and scalability of the algorithms
to mine very large databases, we generated data set
T25I15D1280k using the synthetic data generator. It has
1280 000 transactions with similar statistical features to the
data set T25I15D10k.

We enforced memory constraints on H-mine so that the
total memory available is limited to 2, 4, 8 and 16 Mb,
respectively. The memory covers the space for H-struct and
all the header tables, as well as the related mechanisms.
Since the FP-tree built for the data set is too big to fit into

4From UC-Irvine: (www.ics.uci.edu/∼mlearn/MLRepository.
html)
5From IBM Almaden Research Center: www.almaden.ibm.com/
cs/quest/demos.html
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Fig. 12. Runtime per pattern on data set T25I15D10k.

the main memory, we do not report the performance of
FP-growth on this data set. We do not explicitly impose any
memory constraint on Apriori.

Figure 13 shows the scalability of both H-mine (with the
main memory size constrained to be 2 Mb) and Apriori
with respect to the number of transactions in the database.
Various support threshold settings were tested. Both algo-
rithms have a linear scalability and H-mine is a clear winner.
From the figure, we can see that H-mine is more efficient
and scalable at mining very large databases.

To study the effect of the memory size constraints on
the mining efficiency and scalability of H-mine in large
databases, we plot Fig. 14. The figure shows the scalabil-
ity of H-mine with respect to the support threshold with
various memory constraints, i.e., 2, 4, 8 and 16 Mb, respec-
tively. As shown in the figure, the runtime is not sensitive to
the memory limitation when the support threshold is high.
When the support threshold goes down, as available space
increases, the performance improves.

Figure 15 shows the effect of available memory size on
mining large data sets. At high support levels, the perfor-
mance is not sensitive to the available memory size and
thus the number of partitions. When the support threshold
is low, the memory size plays an important role in deter-
mining performance.

With a high support threshold, the number of frequent
patterns is small and most frequent patterns are short. The
dominant cost is the I/O cost and thus it is insensitive to the
size of the available memory. When the support threshold
is low, with a larger available memory, H-mine has less par-
titions and thus generates fewer locally frequent patterns,
i.e., the locally frequent patterns contain more globally fre-
quent ones and less noise. Therefore, H-mine can run faster
with more memory. The results show that H-mine can fully
utilize the available memory to scale up the mining process.

Does H-mine have to check all or most of the locally fre-
quent patterns against the whole database in its third scan
of the database? Fortunately, the answer is no. Our experi-
mental results show that H-mine has a very light workload
in its third scan. We consider the ratio of the number of pat-
terns to be checked in the third scan over that of all distinct
locally frequent patterns, where a locally frequent pattern is

Fig. 13. Scalability with respect to the number of transactions.

Fig. 14. Scalability of H-mine on large data set T25I15D1280k.

Fig. 15. Effect of memory size on mining a large data set.

Fig. 16. The ratio of patterns to be checked by H-mine in the third
scan.
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to be checked in the third scan if it is not frequent in every
partition. Figure 16 shows the ratio numbers. In general,
as the support threshold goes down, the ratio goes up. This
means that mining with a low support threshold may lead
to some patterns being more frequent in certain partitions.
On the other hand, less memory (small partition) leads to
more partitions and also increases the ratio. As shown in
the figure, only a limited portion of locally frequent pat-
terns, e.g., less than 35% in our test case, needs to be tested
in the third scan. This leads to a low cost of the third scan
in our partition-based mining.

5. Conclusions

In this paper, we develop a simple and novel hyper-linked
data structure, H-struct, and a new frequent pattern min-
ing algorithm, H-mine, which takes advantage of the
H-struct data structure and dynamically adjusts links in
the mining process. As shown in our performance study,
H-mine has a high performance and is scalable in many
kinds of data, with a very limited and precisely predictable
main memory overhead, and outperforms currently exist-
ing algorithms with various settings.
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