

Canadian Journal of Microbiology

Revue canadienne de microbiologie

H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus

Journal:	Canadian Journal of Microbiology
Manuscript ID	cjm-2017-0315.R2
Manuscript Type:	Article
Date Submitted by the Author:	05-Oct-2017
Complete List of Authors:	 Wang, Yan; Faculty of Tropical Medicine and Public Health, Second Military Medical University Yiquan, Zhang; Jiangsu University Yin, Zhe; Beijing Institute of Microbiology and Epidemiology Wang, Jie; Beijing Institute of Microbiology and Epidemiology Zhu, Yongzhe; Faculty of Tropical Medicine and Public Health, Second Military Medical University Peng, Haoran; Faculty of Tropical Medicine and Public Health, Second Military Medical University Zhou, Dongsheng; Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity Qi, Zhongtian; Faculty of Tropical Medicine and Public Health, Second Military Medical University
Is the invited manuscript for consideration in a Special Issue? :	N/A
Keyword:	Vibrio parahaemolyticus, swarming, lateral flagella, H-NS

SCHOLARONE[™] Manuscripts

H-NS represses transcription of the flagellin gene *lafA* of lateral flagella in *Vibrio parahaemolyticus*

Yan Wang¹, Yiquan Zhang³, Zhe Yin², Jie Wang², Yongzhe Zhu¹, Haoran Peng¹,

Dongsheng Zhou², Zhongtian Qi¹, Wenhui Yang²

1, Department of Biological Defence (Microbiology), Faculty of Tropical Medicine and Public Health, Second Military Medical University, Shanghai, 200433, China; 2, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; 3, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China

Corresponding authors:

Wenhui Yang, Email: fionyoung@163.com

Zhongtian Qi, Email: qizt2013@163.com

1	
2	Abstract
3	Swarming motility is ultimately mediated by the proton-powered lateral flagellar
4	(laf) system in Vibrio parahaemolyticus. Expression of laf is tightly regulated by a
5	number of environmental conditions and regulatory factors. The nucleoid-associated
6	DNA-binding protein H-NS is a small and abundant protein that is widely distributed
7	in bacteria, and H-NS like proteins-dependent expression of <i>laf</i> genes have been
8	identified in V. cholerae and V. parahaemolyticus. The data presented here shows that
9	H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single
10	σ^{28} -dependent promoter was detected for <i>lafA</i> encoding the flagellin of the lateral
11	flagella, and its activity was directly repressed by the H-NS. Thus, H-NS represses
12	swarming motility by directly acting on <i>lafA</i> . Briefly, this work revealed a novel
13	function for H-NS as a repressor of the expression of $lafA$ and swarming motility in V .
14	parahaemolyticus.

15 Key words: *Vibrio parahaemolyticus*; swarming; lateral flagella; H-NS

16	Flagella are elongated, curved and membrane anchored proteinaceous structures
17	with a diversity of roles in infection processes, biofilm formation and motility
18	(Chaban et al. 2015). Motilty correlated with flagella can be classified into two
19	categories: swimming and swarming. Swimming is an individual behaviour that
20	allows bacteria to swim in aqueous environment, while swarming is the movement of
21	a group of bacteria over solid surfaces, or viscous environment (Harshey 2003).
22	Vibrio parahaemolyticus expresses two distinct types of flagella adapted for life
23	under different circumstances (McCarter 2004). The sodium motive force powers
24	polar flagellum for swimming, while the proton motive force powers the peritrichous
25	lateral flagella (laf) for swarming (McCarter 2004). The polar flagellum is expressed
26	continuously, whereas the laf is induced by surface growth, iron limitation, calcium
27	presence, and inhibition of polar flagella (McCarter and Silverman 1989; Kawagishi
28	et al. 1996; Gode-Potratz et al. 2011). When Vibrio parahaemolyticus encounters a
29	surface or viscous environment, the polar flagellum is impaired while <i>laf</i> is induced.
30	Many of the <i>laf</i> genes are classes of σ^{54} -dependent as well as σ^{28} -dependent (Stewart
31	and McCarter 2003). LafK, a σ^{54} -dependent transcription factor, acts as an activator
32	of laf genes (Stewart and McCarter 2003). The scrABC locus, encoding a
33	diguanidylate cyclase/phosphodiesterase GGDEF-EAL domain protein, appears to
34	activate laf expression, any mutation of the three genes decrease swarming and laf
35	genes expression (Boles and McCarter 2002). Quorum sensing also involves in
36	regulating laf genes (Jaques and McCarter 2006; Wang et al. 2013). In addition,
37	overexpression of <i>swrZ</i> or mutation of <i>swrT</i> represses <i>laf</i> genes expression and

swarming motility (Jaques and McCarter 2006).

39	The nucleoid-associated DNA-binding protein H-NS is a small and abundant
40	protein that is involved in chromosome organization, gene regulation, and bacterial
41	genome evolution (Dan and Loparo 2015). Low concentrations of H-NS can
42	recognize and bind to the A+T-rich DNA sequences, then multimerize into higher
43	order complexes that form bridges between adjacent DNA helices to organize bacteria
44	chromosomes or repress gene transcription (Fang and Rimsky 2008). The A+T% of
45	horizontally transferred DNA is generally higher than the resident genome DNA.
46	Repression of the horizontally transferred genes by H-NS can promote these foreign
47	genes integration into the existing regulatory networks (Fang and Rimsky 2008). In
48	contrast, bacteria also evolve a set of anti-silencing mechanisms to derepress silenced
49	foreign genes to benefit from their expression (Navarre et al. 2007; Fang and Rimsky
50	2008).
51	Previous studies showed that H-NS acts as a repressor of major virulence gene loci
52	in V. parahaemolyticus including T6SS1, T6SS2, T3SS1, and Vp-PAI (Salomon et al.
53	2014; Sun et al. 2014; Zhang et al. 2016). The present study shows that H-NS is a
54	repressor of swarming motility through acting on <i>lafA</i> encoding the flagellin of the
55	lateral flagella in V. parahaemolyticus.
56	
57	Materials and Methods

58 Bacterial strains and growth conditions

59 The wild-type (WT) *V. parahaemolyticus* RIMD 2210633, the nonpolar *hns*

60	deletion mutant (Δhns) and its complemented mutant were previously described
61	(Makino et al. 2003; Sun et al. 2014). Strains were grown on HI plates (2.5% Bacto TM
62	Heart Infusion and 1.5% agar) at 37°C (Zhang et al. 2012). When necessary, the
63	antibiotics were used: gentamicin 50 μ g/ml and chloromycetin 5 μ g/ml. The
64	concentration of arabinose was used at 0.1% for induction.
65	Swarming motility assay
66	The swarming motility assay was performed as previously described (Wang et al.
67	2013). Briefly, 2 μ l of each culture was spotted onto a solid swarm plate, and the
68	diameter of the colony zone was measured after being incubated at 37 °C for 24-48 h.
69	Quantitative reverse transcription PCR (qRT-PCR)
70	Isolation of total RNAs, preparation of cDNAs, and the qRT-PCR assay were
71	performed and analyzed as previously described (Gao et al. 2011). The experiments
72	were done at least three times. Primers used in this work are listed in Table 1.
73	Primer extension assay
74	Primer extension and sequencing reaction assays were performed as previously
75	described (Gao et al. 2011; Sun et al. 2014). The products were analyzed in a 6%
76	polyacrylamide-8 M urea gel, and the results were detected by the Fuji Medical X-ray
77	film.
78	LacZ fusion and β-galactosidase assay
79	Construction of the <i>lacZ</i> strains and measurement of the β -galactosidase activity in
80	the bacteria cellular extracts were performed as previously described (Sun et al. 2014).
81	The experiment was done at least three times.
82	Preparation of purified His-H-NS protein
83	The recombinant 6×His-tagged H-NS protein (His-H-NS) was prepared as
	-

84 described previously (Sun et al. 2014). The concentration of purified His-H-NS was

- concentrated to approximately 0.3 mg/ml.
- 86 Electrophoretic mobility shift assay (EMSA)
- EMSA was designed, performed and analyzed as previously described (Gao et al.
- 88 2011; Sun et al. 2014). Briefly, the ³²P-labeled DNA probes were incubated with the
- increasing amounts of His-H-NS at room temperature for 20 min. The products were
- then loaded onto a native 4 % polyacrylamide gel, and analyzed with the Fuji Medical
- 91 X-ray film. The assay was done at least two times.
- 92 **DNase I footprinting**
- The DNase I footprinting was carried out as previously described (Gao et al. 2011;

Sun et al. 2014). Briefly, after being incubated with the increasing amounts of

- 95 His-H-NS, the ³²P-labeled DNA probes were digested by the optimized RQ1
- 96 RNase-Free DNase I (Promega). The digested DNA fragments were then analyzed in
- a 6% polyacrylamide-8 M urea gel, and the radioactive species were detected by the
- 98 Fuji Medical X-ray film. The assay was done at least two times.
- 99 Statistical method

100 The results of LacZ fusion, qRT-PCR and swarming motility assays were expressed

- as mean \pm standard deviation. Paired Student's t-test was employed to calculate the
- statistically significant differences, p < 0.01 was considered to indicate statistical
- 103 significance.

104

105 **Results**

106 Mutation of *hns* increases swarming motility

107 In this work, the regulation of swarming motility by H-NS was investigated in *V*.

108	parahaemolyticus RIMD2210633. As shown in Fig. 1, when the swarming motility of
109	Ahns/pBAD33 was tested on the solid swarming plate, it was found that mutation of
110	hns lead to increased swarming motility compared to that of WT/pBAD33. In contrast,
111	when the hns mutant was complemented (Ahns/pBAD33-hns), swarming motility was
112	reduced to almost the same level as that of WT/pBAD33, suggesting that H-NS acts
113	as a repressor of the swarming motility in V. parahaemolyticus.
114	H-NS represses the transcription of <i>lafA</i>
115	Swarming motility ultimately depends on proton-powered lateral flagella function
116	(Shinoda and Okamoto 1977). Thus, we investigated the effects of H-NS upon the
117	expression of <i>lafA</i> , encoding the flagellin of the lateral flagella (Stewart and McCarter
118	2003). The qRT-PCR experiment was performed to quantify the mRNA levels of <i>lafA</i>
119	in WT and <i>Ahns</i> (but not WT/pBAD33 and <i>Ahns</i> /pBAD33). The results (Fig. 2a)
120	revealed that the mRNA level of <i>lafA</i> was significantly enhanced in Δhns compared to
121	that in WT. The primer extension assay was further employed to detect the yield of the
122	primer extension product of <i>lafA</i> in WT and <i>Ahns</i> (Fig. 2b). This assay detected a
123	single transcriptional start site for <i>lafA</i> , which was located at 91 bp upstream of
124	translational start site and has been confirmed as σ^{28} -dependent (Stewart and
125	McCarter 2003). Additionally, a heavy primer extension product was detected in Δhns ,
126	indicating the negative regulation of <i>lafA</i> by H-NS.
127	Mutation of <i>hns</i> greatly increases the promoter activity of <i>lafA</i>
128	The LacZ fusion and β -galactosidase assay was employed to test the action of
129	H-NS on the promoter activity of <i>lafA</i> . The results showed that the promoter activity
130	of <i>lafA</i> in Δhns was significantly enhanced than that in WT, indicating a negative

131 regulation of *lafA* by H-NS (Fig. 3).

132 Direct binding of H-NS to the *lafA* promoter

- 133 The A+T% of 304bp upsteam of *lafA* is 63.16%, which is higher than the average
- 134 of the whole genome in this bacterium (Makino et al. 2003). Thus, we conducted the
- 135 EMSA and DNase I footprinting assays to investigate the binding activity of H-NS to
- 136 *lafA* promoter DNA. As shown in Fig. 4a, the EMSA results revealed that His-H-NS
- 137 was able to bind to the *lafA* promoter DNA fragment in a dose-dependent manner *in*
- 138 *vitro*, and the His-H-NS proteins at all amounts used could not bind to the 16S rDNA
- fragment as the negative control. As further determined by DNase I footprinting (Fig.
- 4b), His-H-NS protected a single region from 205 to 40 bp upstream of *lafA* against
- 141 DNase I digestion in a dose-dependent manner. Taken tegether, H-NS represses *lafA*
- 142 transcription in a direct manner.
- 143 Structural organization of *lafA* promoter region
- 144 Collection of the translation/transcription start sites, H-NS site, core promoter -10
- and -35 elements, and Shine-Dalgarno (SD) sequence (ribosomal binding site)
- enabled us to depict the structural organization of *lafA* promoter region characterized
- 147 herein (Fig. 5).
- 148

149 **Discussion**

- 150 In the present work, H-NS acts on *V. parahaemolyticus* swarming motility and
- 151 *lafA* transcription were elucidated by using a series of experiments. The results show
- that mutation of *hns* significantly increased the swarming motility of *V*.

153	parahaemolyticus (Fig. 1), suggesting a negative correlation between H-NS and
154	swarming. Meanwhile, the transcription of <i>lafA</i> was hugely repressed by H-NS (Fig.
155	2 and 3). Primer extension detected a single transcriptional start site for <i>lafA</i> , which
156	is located at 91 bp upstream of <i>lafA</i> (Fig. 2). DNase I footprinting detected a single
157	protected region from 205 bp to 40 bp upstream for <i>lafA</i> against DNase I digestion
158	(Fig. 4). The H-NS site overlaps the transcription start site as well as the core
159	promoter-10 and -35 elements (Fig. 5), which would block the entry of RNAP and
160	thus represses <i>lafA</i> transcription.
161	Despite being described as a widely distributed repressor, H-NS has been identified
162	as a positive regulatory factor for the biogenesis of flagella. Studies in E. coli showed
163	that the hns mutant exhibits immotile phenotype on semisolid medium predominantly
164	due to the downregulation of the flagellar master regulators FlhD and FlhC (Bertin et
165	al. 1994; Soutourina et al. 1999). Another study suggested that, H-NS-dependent
166	regulation of flagellar synthesis is mediated by repressing <i>hdfR</i> , encoding a LysR
167	family regulatory protein represses flagellar genes expression (Ko and Park 2000).
168	Moreover, cross-linking assays revealed that H-NS can interact with the flagellar
169	torque generating rotor protein FliG to form a complex to increase in flagellum
170	rotational speed (Donato and Kawula 1998; Paul et al. 2011). However, Eun A. Kim
171	and David F. Blair proved H-NS influences motility via numerous regulatory
172	molecules besides FlhDC, but has little or no effect on FliG organization (Kim and
173	Blair 2015). Studies in V. cholera demonstrated that the hns mutant also exhibited
174	reduced motility due to low FlrA production (Amalendu Ghosh 2006). Two H-NS-like

175	proteins have been reported to act as an activator of swarming behavior in V. cholera
176	and V. parahaemolyticus, respectively(Tendeng et al. 2000; Park et al. 2005).
177	However, a recent study in Shewanella piezotolerans WP3 demonstrated that H-NS
178	acts as a repressor of swarming motility through directly repressing the transcription
179	of <i>laf</i> genes including <i>lafA</i> (Jian et al. 2016). The data presented here revealed a novel
180	function for H-NS as a repressor of the expression of <i>lafA</i> and swarming motility in a
181	Kanagawa-positive V. parahaemolyticus strain RIMD2210633. Nevertheless, whether
182	other laf genes are directly repressed by H-NS, needs to be further characterized.
183	
184	Acknowledgements
185	This work was supported by the National Natural Science Foundation of China
186	(31471184), the Natural Science Foundation of Jiangsu Province (BK20160505), and
187	the Foundation of State Key Laboratory of Pathogen and Biosecurity of China
188	(SKLPBS1517).
189	
190	References
191	Ghosh A, Paul K, Chowdhury R. 2006. Role of the Histone-Like Nucleoid
192	Structuring Protein in Colonization, Motility, and Bile-Dependent Repression of
193	Virulence Gene Expression in Vibrio cholerae. Infect Immun. 74(5):
194	3060-3064.
195	Bertin P, Terao E, Lee EH, Lejeune P, Colson C, Danchin A, Collatz E. 1994. The

196 H-NS protein is involved in the biogenesis of flagella in *Escherichia coli*. J

197	Bacteriol. 176(17): 5537-5540.
198	Boles BR, McCarter LL. 2002. Vibrio parahaemolyticus scrABC, a novel operon
199	affecting swarming and capsular polysaccharide regulation. J Bacteriol. 184(21):
200	5946-5954.
201	Chaban B, Hughes HC, Beeby M. 2015. The flagellum in bacterial pathogens: For
202	motility and a whole lot more. Semin Cell Dev Biol. 46: 91-103.
203	Song D, Loparo, JJ. 2015. Building bridges within the bacterial chromosome. Trends
204	Genet. 31(3): 164-173.
205	Donato GM, Kawula TH. 1998. Enhanced binding of altered H-NS protein to
206	flagellar rotor protein FliG causes increased flagellar rotational speed and
207	hypermotility in <i>Escherichia coli</i> . J Biol Chem. 273(37): 24030-24036.
208	Fang FC, Rimsky S. 2008. New insights into transcriptional regulation by H-NS.
209	Curr Opin Microbiol. 11(2): 113-120.
210	Gao H., Zhang Y, Yang L, Liu X, Guo Z, Tan Y, Han Y, Huang X, Zhou D, Yang R.
211	2011. Regulatory effects of cAMP receptor protein (CRP) on porin genes and its
212	own gene in Yersinia pestis. BMC Microbiol. 11: 40.
213	Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. 2011. Surface
214	sensing in Vibrio parahaemolyticus triggers a programme of gene expression
215	that promotes colonization and virulence. Mol Microbiol. 79(1): 240-263.
216	Harshey RM. 2003. Bacterial motility on a surface: many ways to a common goal.
217	Annu Rev Microbiol. 57: 249-273.
218	Jaques S, McCarter LL. 2006. Three new regulators of swarming in Vibrio
	11

219 *parahaemolyticus*. J Bacteriol. 188(7): 2625-2635.

- Jian H, Xu G, Gai Y, Xu J, Xiao X. 2016. H-NS is a negative regulator of the lateral
- flagellar system in the deep-sea bacterium *Shewanella piezotolerans* WP3. Appl
- 222 Environ Microb. 82(8): 2388-2398.
- 223 Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M. 1996. The
- sodium-driven polar flagellar motor of marine *Vibrio* as the mechanosensor that

regulates lateral flagellar expression. Mol Microbiol. 20(4): 693-699.

- 226 Kim EA, Blair DF. 2015. Function of the Histone-Like Protein H-NS in Motility of
- *Escherichia coli*: Multiple Regulatory Roles Rather than Direct Action at the
 Flagellar Motor. J Bacteriol. 197(19): 3110-3120.
- Ko M, Park C. 2000. H-NS-Dependent regulation of flagellar synthesis is mediated
 by a LysR family protein. J Bacteriol. 182(16): 4670-4672.
- Liu X, Matsumura P. 1996. Differential regulation of multiple overlapping
 promoters in flagellar class II operons in *Escherichia coli*. Mol Microbiol. 21(3):
 613-620.
- 234 Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima
- 235 Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga
- T, Honda T, Shinagawa H, Hattori M, Iida T. 2003. Genome sequence of Vibrio
- 237 *parahaemolyticus*: a pathogenic mechanism distinct from that of V cholerae."
- 238 Lancet. 361(9359): 743-749.
- 239 McCarter L, Silverman M. 1989. Iron regulation of swarmer cell differentiation of
- 240 *Vibrio parahaemolyticus*. J Bacteriol. 171(2): 731-736.

Canadian Journal of Microbiology

241	McCarter LL. 2004. Dual flagellar systems enable motility under different
242	circumstances. J Mol Microbiol Biotechnol. 7(1-2): 18-29.
243	Navarre WW, McClelland M, Libby SJ, Fang FC. 2007. Silencing of xenogeneic
244	DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense
245	system that recognizes foreign DNA. Genes Dev. 21(12): 1456-1471.
246	Park KS, Arita M, Iida T, Honda T. 2005. vpaH, a gene encoding a novel
247	histone-like nucleoid structure-like protein that was possibly horizontally
248	acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio
249	parahaemolyticus TH3996. Infect Immun. 73(9): 5754-5761.
250	Paul K, Carlquist WC, Blair DF. 2011. Adjusting the spokes of the flagellar motor
251	with the DNA-binding protein H-NS. J Bacteriol. 193(21): 5914-5922.
252	Salomon D, Klimko JA, Orth K. 2014. H-NS regulates the Vibrio parahaemolyticus
253	type VI secretion system 1. Microbiol. 160(Pt 9): 1867-1873.
254	Shinoda S, Okamoto K. 1977. Formation and function of Vibrio parahaemolyticus
255	lateral flagella. J Bacteriol. 129(3): 1266-1271.
256	Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P.
257	1999. Multiple control of flagellum biosynthesis in Escherichia coli: role of
258	H-NS protein and the cyclic AMP-catabolite activator protein complex in
259	transcription of the <i>flhDC</i> master operon. J Bacteriol. 181(24): 7500-7508.
260	Stewart BJ, McCarter LL. 2003. Lateral flagellar gene system of Vibrio
261	parahaemolyticus. J Bacteriol. 185(15): 4508-4518.
262	Sun F, Zhang Y, Qiu Y, Yang H, Yang W, Yin Z, Wang J, Yang R, Xia P, Zhou D.

263	2014.	H-NS	is	a	repressor	of	major	virulence	gene	loci	in	Vibrio
264	paraha	aemolyti	cus.	Fr	ont Microb	iol. 5	5: 675.					

- ²⁶⁵ Tendeng C, Badaut C, Krin E, Gounon P, Ngo S, Danchin A, Rimsky S, Bertin P.
- 266 2000. Isolation and characterization of *vicH*, encoding a new pleiotropic
 267 regulator in *Vibrio cholerae*. J Bacteriol. 182(7): 2026-2032.
- 268 Wang L, Ling Y, Jiang H, Qiu Y, Qiu J, Chen H, Yang R, Zhou D. 2013. AphA is
- required for biofilm formation, motility, and virulence in pandemic *Vibrio parahaemolyticus*. Int J Food Microbiol. 160(3): 245-251.
- 271 Zhang Y, Osei-Adjei G, Ni B, Fang H, Zhang L, Zhao X, Huang X, Yang H, Yang
- W, Sun F. 2016. Transcription of *exsD* is repressed directly by H-NS in *Vibrio parahaemolyticus*. Microb Pathog. 97: 221-225.
- 274 Zhang Y, Qiu Y, Tan Y, Guo Z, Yang R, Zhou D. 2012. Transcriptional regulation
- of *opaR*, *qrr2-4* and *aphA* by the master quorum-sensing regulator OpaR in
- *Vibrio parahaemolyticus*. PLoS One. 7(4): e34622.
- 277

278 279	Figure legends
280	Fig. 1 The <i>hns</i> gene mutant and complemented strain effect on the swarming
281	motility . T1: WT/pBAD33; T2: Δhns/pBAD33; T3: Δhns/pBAD33-hns. The results
282	were analyzed by Paired Student's t test. ** represent $p < 0.01$.
283	
284	Fig. 2 H-NS represses the transcription of <i>lafA</i> . The negative and positive numbers
285	indicated the nucleotide positions upstream and downstream of <i>lafA</i> , respectively. a)
286	qRT-PCR . The <i>lafA</i> transcripts in Δhns and WT were detected. ** $p < 0.01$. b) Primer
287	extension. An oligonucleotide primer was designed to be complementary to the RNA
288	transcript of <i>lafA</i> . The primer extension products were analyzed with 8 M urea-6%
289	acrylamide sequencing gel. The transcriptional start site was indicated by arrow with
290	nucleotide and position. Lanes C, T, A, and G represented the Sanger sequencing
291	reactions.
292	
293	Fig. 3 H-NS represses the promoter activity of <i>lafA</i> . The promoter DNA region of
294	<i>lafA</i> was cloned into pRBR309 vector, and then transformed into WT or Δhns to
295	determine the β -galactosidase activity (miller units) in cellular extracts. The negative
296	or positive numbers indicated the nucleotide positions upstream or downstream of
297	<i>lafA</i> , respectively. ** $p < 0.01$
298	
299	Fig. 4 DNA binding analysis. The negative and positive numbers indicated the
300	nucleotide positions upstream and downstream of <i>lafA</i> , respectively. a) EMSA. The
301	radioactively labeled DNA fragment from 417 bp upstream to 29 bp downstream of
302	lafA was incubated with increasing amounts of purified His-H-NS protein, and then

303	subjected to 4% (w/v) polyacrylamide gel electrophoresis. Shown below is the
304	schematic representation of the EMSA design. b) DNase I footprinting. Labeled
305	coding or non-coding DNA probes was incubated with increasing amounts of purified
306	His-H-NS (Lanes 1, 2, 3, and 4 containing 0, 44.2, 66.3, and 77.3 pmol, respectively),
307	and then subjected to DNase I footprinting assay. The footprint regions were indicated
308	with vertical bars. Lanes G, A, T, and C represented the Sanger sequencing reactions.
309	
310	Fig. 5 Organization of <i>lafA</i> promoter DNA region. Shown were translation and
311	transcription start, SD sequence, H-NS site (underlined nucleotide sequence), -10 and

- -35 core promoter elements, and *E. coli* σ^{28} sequence (Liu and Matsumura 1996).
- 313

Fig. 1 The hns gene mutant and complemented strain effect on the swarming motility 33x26mm (600 x 600 DPI)

46x24mm (600 x 600 DPI)

42x36mm (600 x 600 DPI)

Fig. 4 DNA binding analysis

62x25mm (600 x 600 DPI)

TTTTTCTCGTTTTAGATTTTCTCTTTTGCCTTAATCTTATGCCG<u>ATCAAAGCACATCGGAAACTAACGCTAA</u>

Fig. 5 Organization of lafA promoter DNA region

45x13mm (600 x 600 DPI)

	Table 1. Primers used in this study	
targets	Primers (5'→3', sense/anti-sense)	
Construction of mutant		
hns	GTGACTGCAGACTTATGATGAGAACCAATGC/CAA	
	GAACGATTAGATTAGGAATTAGTCAGCTCTGACAT	
	AACG	
	CGTTATGTCAGAGCTGACTAATTCCTAATCTAATCG	
	TTCTTG/GTGAGCATGCAGAGTGGGCTGATATGGT	
	G	
	GTGACTGCAGACTTATGATGAGAACCAATGC/GTG	
	AGCATGCAGAGTGGGCTGATATGGTG	
Construction of complemented mutant		
	GATCCCGGGAGGAGGAATTCACCATGTCAGAGCT	
hns	GACTAAAACAC/GACGTCGACTTAGATTAGGAAAT	
	CGTCTAG	
Protein expression		
hns	AGCGGGATCCATGTCAGAGCTGACTAAAACAC/A	
	GCGAAGCTTTTAGATTAGGAAATCGTCTAG	
Primer Extension		
lafA	/AAGTGATGCGTAGTTAGTGTG	
LacZ fusion		
lafA	GCGCGTCGACCTGTCTTTCCGTTCCTTTGATG/CGC	
	GAATTCCAAGTGATGCGTAGTTAGTGTG	
qRT-PCR		
lafA	CACTAACTACGCATCACTTG/CGTTACGCATTGCTA	
	CAG	
EMSA		
lafA	CTGTCTTTCCGTTCCTTTGATG/CAAGTGATGCGTA	
	GTTAGTGTG	
DNase I footprinting		
lafA	GCTTTTTTACTTTTCTCGTTTTAG/CAAGTGATGCG	
	TAGTTAGTGTG	