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Abstract: In this paper, we propose a novel Maxwell dynamic vibration absorber (DVA) with lever,
inerter, and grounded stiffness. Firstly, the governing equation of the coupled system is established.
The analytical formula of the amplitude amplification factor of the primary system and the natural
frequencies of the coupled system are derived. There are three fixed points in the amplitude–
frequency response curve of the primary system, which are independent of damping. Then, based
on H∞ optimization criterion, two possible optimal parameter designs of the proposed model are
obtained. Considering the practical engineering application and ensuring the stability of the system,
the optimal grounded stiffness ratio is selected, and six working ranges of inerter–mass ratio are
calculated. Furthermore, the performance of the vibration reduction is compared for six cases. It is
found that when the values of the mass ratio, lever amplification ratio, and inerter–mass ratio change
in different intervals, and the optimal grounded stiffness ratio has different cases of negative, zero,
and positive results. Especially when the stiffness coefficient of the viscoelastic Maxwell model and
another grounded stiffness are positive at the same time, the vibration absorption effect is better
theoretically. Finally, comparing with the traditional DVAs, the performance of the novel DVA
is better under harmonic excitation and random excitation. The results could provide theoretical
guidance for the design of inerter-based Maxwell-type DVA with a lever component.

Keywords: dynamic vibration absorber; Maxwell model; lever component; inerter–mass; H∞ optimization

1. Introduction

In practical engineering applications, harmful vibration under complex working
conditions affects the efficiency, reliability, accuracy, and safety of the equipment structure.
The dynamic vibration absorber (DVA) is one of the vibration control equipment, which is
attached to the vibration control object, and the vibration state of the primary structure is
changed by adjusting the mechanical parameters and structure of the DVA. DVA is widely
used in engineering practices due to its superior properties of simple structure and low
cost. The design and optimization of high-performance DVA has always been the focus
of attention. Since Frahm [1] invented the first DVA, many scholars have optimized the
structure of DVA to improve the effect of vibration suppression and formed three traditional
models: Voigt-type DVA [2], three-element-type DVA [3], and grounded-type DVA [4]. At
present, the fixed-point theory [5] has been widely used in the parameter optimization
of DVA.

With the gradual deepening of engineering practice research, the application of vis-
coelastic materials provides a greater space for development in various fields. Viscoelastic
materials are very effective energy dissipation materials, and their force–displacement hys-
teresis curves are approximately elliptic. In many engineering fields, viscoelastic materials
often have stiffness and damping characteristics at the same time. A three-element-type
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DVA model was proposed, namely the Maxwell model, which could describe the char-
acteristics of viscoelastic materials very well [3]. The Maxwell model has good vibration
suppression effect, which greatly reduces the resonance amplitude value and broadens the
range of vibration reduction frequency. Wong et al. [6] proposed a modified fixed-point
theory and applied to the derivation of the optimal parameters formulas of a viscoelastic
DVA. Batou et al. [7] presented the optimal design parameters of viscoelastic tuned mass
dampers. Chang et al. [8] proposed an extended Maxwell-type viscous dampers model
and the state determination algorithm, which could be used for the simulation of various
damped dynamic systems. Dai et al. [9] introduced a Maxwell element into the tuned mass
damper, and applied to reduce bridge vibration.

Negative stiffness devices have the advantages of strong carrying capacity, little de-
formation, and great controllability, which are more and more used in vibration reduction.
The force generated by the negative stiffness system or mechanism is in the same direc-
tion as the displacement, and the force decreases with the increase of the displacement.
Shen et al. [10,11] designed different types of DVAs with negative stiffness and found
that it could show good reduction effect. Yao et al. [12] proposed a tri-stable nonlinear
energy sink combining negative stiffness and found that it had good vibration suppression
performance under transient and steady state excitation. Salvatore et al. [13] discussed the
nonlinear dynamic response of a vibration isolation system with superelastic hysteresis and
negative stiffness. Chang et al. [14] investigated a quasi-zero-stiffness DVA, which showed
good vibration reduction performance under harmonic excitation. Baduidana et al. [15]
proposed a novel tuned inertial damper with double flywheel structure, and its optimal
grounded stiffness ratios were negative, zero, and positive. The results showed that the
proposed tuned inertial damper with positive grounded stiffness could provide better
control performance. In recent years, many scholars have carried out a series of studies on
nonlinear systems [16–18]. Zhang et al. [16] studied an optimization procedure involving
nonlinear aeroelastic effect for self-excited vibration control, and the results showed that
the nonlinear objective and optimization method was more reliable than the traditional
optimization method.

A typical force amplification mechanism, such as an inerter, has a good engineering
application prospect. The inerter element itself has the function of inertia regulation, and
the physical mass of the structure is basically unchanged when the inertia of the structure
is changed. The DVA with the inerter has the characteristics of low natural frequency,
large load bearing, and superior vibration reduction effect. In addition, the role of the
inerter is to optimize the system quality, so as to achieve vibration reduction effect, which
was applied in different structural types [19–23]. The influence of the inerter depends
significantly on the terminal locations. Yu et al. [23] found that the performance of non-
linear energy sink inerter strongly depended on the inerter locations. Brzeski et al. [24]
discussed the effect of additional damping and an inerter on the dynamical behavior of the
system and compared the vibration reduction effects caused by added damping and inerter.
Javidialesaadi et al. [25] proposed a novel inerter-based three-element-type DVA and in-
vestigated its suppression effect. Furthermore, some scholars considered introducing both
negative stiffness and inerter devices to enhance the vibration reduction effect [15,26–28].
Li et al. [26] proposed a novel inerter-based DVA with negative stiffness and determined
the best working range of inerter. In terms of the arrangement of the inerter, damper,
and spring, Baduidana et al. [27] designed a series of tuned mass dampers with negative
stiffness and analyzed the vibration reduction performance of tuned mass dampers under
different excitation. When the system is subjected to harmonic excitation, the H∞ opti-
mization criterion is usually used for parameter optimization. Kun et al. [28] proposed
a tuned inerter damper with negative stiffness device and performed H∞ optimization
and numerical analysis for different degree-of-freedom structures. Alotta et al. [29] put
forward an improved inertia-based vibration absorber by inserting the inerter into a rhom-
bus truss structure. Weber et al. [30] investigated two tuned mass damper with inerter
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topologies. Zhang et al. [31] introduced inerter into a nonlinear energy sink and discussed
the advantages of inertial nonlinear energy sink.

Lever mechanism can improve the effective quality of the systems. Flannelly [32]
introduced the lever element and designed a new vibration isolator. Li et al. [33] proposed
a lever-type multiple tuned mass dampers and used it to suppress bridge vibration, which
showed stronger robustness. Liu et al. [34] proposed the lever-type vibration isolation
system with the X-shaped structure, which had excellent vibration isolation performance.
Zang et al. [35] designed a lever-type nonlinear energy sink. Under the proper pivot
location, the absorption performance was superior to the traditional nonlinear energy
sink. Cao et al. [36] introduced the lever-type nonlinear energy sink to a fluid-conveying
pipe coupled system and found that the lever-type nonlinear energy sink could reduce
the resonance response amplitude by 91.33%. In the meantime, it was found in the liter-
ature [37–40] that some scholars worked on the performance of the DVA by introducing
lever and other devices simultaneously. Yan et al. [37] introduced eddy current damping
into a lever isolator. Shen et al. [38] studied a novel DVA with grounded stiffness and
lever component and concluded that the control effect of the presented DVA with positive
grounded stiffness was better. Shen et al. [39,40] designed two different types of DVA that
simultaneously contained a lever, inerter, and grounded stiffness, and it was found that the
system would be unstable if the inerter was inappropriate. Furthermore, the performance of
the vibration absorber could be further improved by adding variable negative stiffness [41],
a metamaterial component [42], or a distributed arrangement [43,44].

The lever, inerter, and grounded stiffness, as new and effective vibration control
components, have made significant contributions to structural vibration reduction. These
three devices can change the natural frequency of the system, thereby improving the control
performance of the DVA. In addition, the Maxwell model is very valuable to study as the
mechanical model in engineering practice. However, most studies only introduce one or
two components. With the increasing demand for vibration suppression of equipment,
the performance of such DVAs has difficulty meeting the growing needs of engineering
practice. The purpose of this paper is to investigate the influence of the coexistence of
multiple control elements on the vibration reduction performance of Maxwell-type DVA
and to provide a theoretical basis for the optimal design of vibration absorpers.

The paper is organized as follows. In Section 2, a novel inerter-based Maxwell-type
DVA model is presented, which contains lever component and grounded stiffness. Then
the optimal parameters of the system are obtained by the H∞ optimization criterion. In
Section 3, we analyze the working range of inerter in different conditions. In Section 4,
the influence of system parameters on response characteristics is presented. In Section 5,
compared with the existing DVAs under the harmonic excitation and random excitation
shows that the DVA in this paper has obvious reduction vibration advantages. In Section 6,
we end with conclusions.

2. Dynamic Model and Parameters Optimization

Since many vibration control devices, such as air springs and metal rubber, have
viscoelastic characteristics, the Maxwell three-element model is a typical model describing
the viscoelastic characteristics. Therefore, this paper proposes a Maxwell-type DVA with
lever, inerter, and grounded stiffness, as shown in Figure 1. The model has a fixed support
lever frame between the primary system and the DVA, and its fulcrum is O. In a real
installation, the lever fulcrum O can be fixed to the ground or other inertial frame of
reference. The resistance arm and the power arm of the lever are r1 and r2, respectively,
which represent the distance between the lever fulcrum O and the articulated points M,
N. The masses of the primary system and DVA are m1 and m2, respectively. The stiffness
coefficients of the primary system, DVA, the viscoelastic Maxwell model, and the grounded
spring are k1, k2, k3, and k4, respectively. The inerter coefficient is b. The damping coefficient
of viscoelastic Maxwell model is c. The displacements of the primary system and the DVA
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are x1 and x2, respectively. The split point of the spring and damping in Maxwell model is
x3. F and ω represent the excitation amplitude and frequency, respectively.

m1
m2

k2

k4

x2
x1

OM

N

k1Fcos(ωt)
  c

 b
k3

x3

Figure 1. The viscoelastic Maxwell-type DVA model with lever, inerter, and grounded stiffness.

It should be noted that the influence of the inerter depends significantly on the terminal
locations. The amplification ratio of the lever increases means that the distance between
the inerter position and the primary system increases, and then the force provided by
the inerter will be amplified. We define L = r2/r1 as the amplification ratio of the lever
mechanism. Ignoring the mass of the lever and the frictional resistance in the movement,
according to Newton’s second law and lever principle, the governing equation of the
system is established as

m1 ẍ1 + k1x1 + k2L(Lx1 − x2) = F cos (ωt)

(m2 + b)ẍ2 + k2(x2 − Lx1) + k4x2 + c(ẋ2 − ẋ3) = 0

k3x3 + c(ẋ3 − ẋ2) = 0 (1)

2.1. The Analytical Solution

We introduce the following parameter transformations

ω1 =

√
k1

m1
, ω2 =

√
k2

m2
, ξ =

c
2m2ω2

, µ =
m2

m1

α1 =
k3

k2
, α2 =

k4

k2
, f =

F
m1

, β =
b

m2

where ω1 and ω2 represent the natural frequencies of the primary system and the DVA,
respectively. ξ represents the damping ratio of the DVA. µ represents the mass ratio of
the DVA to the primary system. α1 and α2 represent the corresponding stiffness ratios. f
represent the ratio of the external excitation amplitude to the mass of the primary system.
β represent the ratio of the inerter coefficient to the mass of the DVA.

Equation (1) becomes

ẍ1 + ω2
1x1 + µLω2

2(Lx1 − x2) = f cos (ωt)

(1 + β)ẍ2 + ω2
2(x2 − Lx1) + 2ξω2(ẋ2 − ẋ3) + α2ω2

2x2 = 0

2ξω2(ẋ3 − ẋ2) + α1ω2
2x3 = 0

(2)

Suppose the form of steady state solutions is

xi = Xiejωt, i = 1, 2, 3 (3)
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Substituting Equation (3) into Equation (2) yields

X1 =
f (B2C3 − B3C2)

det
(

∑3
i=1
(
∂3, 3

1, i (Ai) + ∂3, 3
2, i (Bi) + ∂3, 3

3, i (Ci)
)) (4)

where the symbol ∂m , n
p , q (M) represents m× n block matrix, with (p , q)-th block M, and all

other blocks are zero matrices [45]. We have

A1 = −ω2 + ω2
1 + µL2ω2

2, A2 = −µLω2
2, A3 = C1 = 0

B1 = −ω2
2 L, B2 = −(1 + β)ω2 + 2jωω2ξ + (1 + α2)ω

2
2

B3 = C2 = −2jωω2ξ, C3 = 2jωω2ξ + α1ω2
2

(5)

For the convenience of derivation, we introduce the following parameters

λ =
ω

ω1
, ν =

ω2

ω1
, δst =

F
k1

The amplitude amplification factor A of the primary system can be written as

A =

∣∣∣∣∣X1

δst

∣∣∣∣∣ =
√

D2
1 + D2

2ξ2

D2
3 + D2

4ξ2
(6)

where

D1 = α1v[−(1 + β)λ2 + (1 + α2)v2], D2 = 2λ[h1v2 − (1 + β)λ2]

D3 = α1v
{
(1 + β)λ4 − [(1 + β)

(
1 + µv2L2

)
+ (1 + α2)v2]λ2 + h2

}
D4 = 2λ[(1 + β)λ4 −

(
1 + β + h3v2

)
λ2 + h1v2 + µ(α1 + α2)v4L2]

h1 = 1 + α1 + α2, h2 = (1 + α2)v2 + α2µv4L2

h3 = h1 + r, r = µ(1 + β)L2 (7)

By setting the undamped denominator part of Equation (6) equal to zero, the dimen-
sionless natural frequencies Ω1 and Ω2 of the coupled system can be obtained as

Ω1,2 =

√
2

2
1√

1 + β

√
Φ∓

√
Φ2 −Ψ

Φ = ω2
1(1 + β) + ω2

2(1 + α2 + r)

Ψ = 4ω2
2(1 + β)[(1 + α2)ω

2
1 + µL2α2ω2

2 ]

(8)

As can be seen from the Equation (8), the natural frequencies of the coupled system are
affected by the stiffness ratio α2. The inappropriate stiffness ratio α2 will make the natural
frequencies imaginary numbers, which further leads to the instability of the coupled system.

2.2. Parameters Optimization

The primary structure in Figure 1 is subjected to harmonic excitation F cos(ωt); hence,
the H∞ optimization method is used to tuning the optimal parameters. For the given mass
ratio µ, the amplification ratio L, and inerter–mass ratio β, the aim is to determine four
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optimal parameters ν, α1, α2, and ξ relating to µ, L, and β, which minimize the maximum
of A in Equation (6). The mathematical formula is as follows

min
(

max
ν,α1,α2,ξ

A(λ)
)

According to Equation (6), for given values of µ, β, ν, α1, α2, L, the amplitude ampli-
fication factor A of the primary system can be plotted with respect to λ. In Figure 2, the
normalized amplitude–frequency curves of model with several different damping ratios
of 0.2, 0.5, and 0.8 are given. The curves all pass through three fixed points P, Q, and R,
which are independent of the damping ratio.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
=0.2
=0.5
=0.8

P
Q

R

A

4

λ

ξ
ξ
ξ

Figure 2. The normalized amplitude–frequency curves of system with µ = 0.1, β = 1.5, ν = 2, α1 = 1,
α2 = 0.7, L = 3.5.

The position of three fixed points in the amplitude frequency curve can be determined
by the damping ratio ξ = 0 and ξ → ∞ in Equation (6). Aided by the idea of fixed-point
theory, the response values are equal when the damping ratio approaches zero or infinity
in Equation (6) ∣∣∣∣∣D1

D3

∣∣∣∣∣ =
∣∣∣∣∣D2

D4

∣∣∣∣∣ (9)

We further obtain a cubic equation of λ2

λ6 + p1λ4 + p2λ2 + p3 = 0 (10)

where

p1 =− 1− µν2L2 − (α1 + 2α2 + 2)ν2

1 + β

p2 =
[
(
1 + µν2L2)(1 + α1 + 2α2) + 1]ν2

1 + β
+

(1 + α2)h1ν4

(1 + β)2

p3 =− µL2[α1(1 + 2α2) + 2α2(1 + α2)]ν
6 + 2h1(1 + α2)ν

4

2(1 + β)2

(11)
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When ξ = 0, we can obtain

A =

∣∣∣∣∣X1

δst

∣∣∣∣∣ =
∣∣∣∣∣ (1 + α2)ν

2 − (1 + β)λ2

(1 + β)λ4 − l1λ2 + h2

∣∣∣∣∣ (12)

when ξ → ∞, we can obtain

A =

∣∣∣∣∣X1

δst

∣∣∣∣∣ =
∣∣∣∣∣ h1ν2 − (1 + β)λ2

(1 + β)λ4 − (l1 + α1ν2)λ2 + l2

∣∣∣∣∣ (13)

where

l1 = (1 + β)
(

1 + µν2L2
)
+ (1 + α2)ν

2, l2 = h1ν2 + µL2(α1 + α2)ν
4

When ξ = 0 and ξ → ∞, the amplitude amplification factor of the primary system
corresponding to P, Q and R are equal on the amplitude–frequency response curves, but
the phase difference is 180◦, which is a positive and negative sign difference. Hence by
Equations (12) and (13), we have

A =

∣∣∣∣∣X1

δst

∣∣∣∣∣ =
∣∣∣∣∣ (α1 + 2α2 + 2)ν2 − 2(1 + β)λ2

α1ν2(1 + µL2ν2 − λ2)

∣∣∣∣∣
Let λ2

P, λ2
Q and λ2

R be the three roots of Equation (10), and the ordinates of P, Q and R
are as follows. ∣∣∣∣∣X1

δst

∣∣∣∣∣
P

=

∣∣∣∣∣ (α1 + 2α2 + 2)ν2 − 2(1 + β)λ2
P

α1ν2(1 + µν2L2 − λ2
P)

∣∣∣∣∣∣∣∣∣∣X1

δst

∣∣∣∣∣
Q

=

∣∣∣∣∣− (α1 + 2α2 + 2)ν2 − 2(1 + β)λ2
Q

α1ν2(1 + µν2L2 − λ2
Q)

∣∣∣∣∣∣∣∣∣∣X1

δst

∣∣∣∣∣
R

=

∣∣∣∣∣ (α1 + 2α2 + 2)ν2 − 2(1 + β)λ2
R

α1ν2(1 + µν2L2 − λ2
R)

∣∣∣∣∣
(14)

The ultimate goal of H∞ optimization is to minimize the maximum value of the
amplitude–frequency curve, so we expect these three fixed points to be almost at the peak
of the amplitude–frequency curve. In order to realize the optimal control effect, the optimal
frequency ratio, stiffness ratio and damping ratio should be searched. It takes two steps to
adjust the three fixed points to the same height.

The first step is to adjust the ordinate of P and R to the same height, i.e.,∣∣∣∣∣X1

δst

∣∣∣∣∣
P

=

∣∣∣∣∣X1

δst

∣∣∣∣∣
R

(15)

Because of the value
∣∣∣X1

δst

∣∣∣ is independent of λ2, Equation (15) gives rise to

α1 =
2[(1 + µL2ν2)(1 + β)− (1 + α2)ν

2]

ν2 (16)
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Substituting Equation (16) into Equation (10), and solving Equation (10) for λ2 , yields

λ2
P =1 + µν2L2 −

√
(1 + µν2L2)2 − (1 + β)h4ν2 − (α2 + 1)2ν4

(1 + β)2

λ2
Q =1 + µν2L2

λ2
R =1 + µν2L2 +

√
(1 + µν2L2)2 − (1 + β)h4ν2 − (α2 + 1)2ν4

(1 + β)2

(17)

where h4 = µν2L2(1 + 2α2) + 2(1 + α2). Thus, Equation (14) can be written as follows∣∣∣∣∣X1

δst

∣∣∣∣∣
P,R

=

∣∣∣∣∣ 1 + β

(1 + β)(1 + µν2L2)− (1 + α2)ν2

∣∣∣∣∣∣∣∣∣∣X1

δst

∣∣∣∣∣
Q

=

∣∣∣∣∣ (1 + β)(1 + µν2L2)− (1 + α2)ν
2

µν4L2

∣∣∣∣∣
(18)

In the second step, the ordinates of point P (or R) and point Q are adjusted to the same
height, and two different optimal frequency ratio can be obtained.

case 1 : νa =

√
1 + β

1 + α2 − r +
√

r

case 2 : νb =

√
1 + β

1 + α2 − r−
√

r

(19)

Firstly, we consider νopt = νa. By substituting νa into Equation (16), the corresponding
first optimal stiffness ratio can be obtained as

α1opt = 2
√

r (20)

Then, we can obtain the response of the primary system at the fixed points, as follows∣∣∣∣∣X1

δst

∣∣∣∣∣
2

P,Q,R

=
[−1− α2 + r−

√
r]2

r
(21)

Thus, the optimal frequency ratio and possible maximum amplitude are obtained
when the three fixed points are adjusted to the same height, as shown in Figure 3. At
this time, changing the damping ratio ξ can change the height of the resonance peak. The
optimal damping ratio can be achieved by adjusting the two resonance peaks to the same
height. It can be seen from Figure 3 that when the fixed points P, Q, and R are at the same
height, the tangent of the frequency response curve at the Q point is almost horizontal. The
abscissa of Q point has been calculated, and the approximate optimal damping ratio can be
obtained according to the abscissa of Q point.

∂A2

∂λ2 = 0

α1 = 2
√

r

ν =

√
1 + β

1 + α2 − r +
√

r

λ2
Q = 1 + µν2L2

(22)
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2
=1.4790
=1
=0.4
=0.8

λ

A

P Q R

ξ
ξ
ξ
ξ

Figure 3. The normalized amplitude–frequency curves of system with µ = 0.1, β = 1.5, ν = 2.3904,
α1 = 3.5, α2 = 0.75, L = 3.5.

Solving the above equation, we can obtain

ξopt ∼=
√

µL2(1 + β)√
1 + α2 +

√
r

(23)

Because the grounded stiffness in the model of this paper may be negative stiffness,
according to the characteristics of negative stiffness devices, a pre-compression spring
or pre-compression connecting rod is a common mechanism to realize negative stiffness
characteristics, and pre-loading will cause pre-displacement of the system. We can use
the pre-displacement as the amplitude at the fixed points. We further adjust the response
values at the three fixed points to be equal to the response values when λ = 0, namely∣∣∣∣∣X1

δst

∣∣∣∣∣
2

λ=0

=

∣∣∣∣∣X1

δst

∣∣∣∣∣
2

P,Q,R

(24)

where ∣∣∣∣∣X1

δst

∣∣∣∣∣
2

λ=0

=
(1 + α2)

2(−1− α2 + r−
√

r)2

[r− (1 + α2)
√

r− (1 + α2)2]2

Solving Equation (24), all possible optimal stiffness ratios can be obtained

α2a = −1 + r−
√

r

α2b = −1 +
√

r

α2c = −1−
√

r

α2d = −1 + (−1−
√

2)
√

r

α2e = −1 + (−1 +
√

2)
√

r

(25)

The appropriate grounded stiffness ratio should be selected on the premise of ensuring
the stability of the system. Taking these five grounded stiffness into Equations (8), (21) and
the first part of Equation (19), it is found that all these grounded stiffness ratios, except α2b,
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will make the natural frequency of the coupled system or the optimal natural frequency ratio
νa as imaginary number. So, α2b is choosen as the optimal grounded stiffness ratio, namely

α2opt = α2b = −1 +
√

r (26)

By analyzing the formula of the optimal grounded stiffness, we discover that the
optimum grounded stiffness ratio α2opt will exhibit three different kinds of stiffness charac-
teristics (positive, zero, and negative).

α2opt < 0, if 0 < r < 1

α2opt = 0, if r = 1

α2opt > 0, if r > 1

(27)

For the case 1, when νa is selected as the optimal frequency ratio, all optimal parameters
of the model are obtained as

νopt =

√
1 + β

2
√

r− r

α1opt = 2
√

r

α2opt = −1 +
√

r

ξopt ∼=
[

r(1 + β)2

4

] 1
4

(28)

Similarly, for the case 2, when νb is selected as the optimal frequency ratio, all optimal
parameters of model are obtained as follows

νopt =

√
1 + β√
2r− r

α1opt = −2
√

r

α2opt = −1 + (1 +
√

2)
√

r

ξopt ∼=
[

r(1 + β)2

2

] 1
4

(29)

Obviously, there are three possibilities for the value of α2opt, the grounded stiffness
ratio can be negative, zero, or positive, namely

α2opt < 0, if 0 < r < 3− 2
√

2

α2opt = 0, if r = 3− 2
√

2

α2opt > 0, if r > 3− 2
√

2

(30)

3. Analysis of the Working Ranges of Inerter in Different Conditions

Considering Equations (28) and (29), when the mass ratio µ is fixed, there are still
adjustable parameters in the optimal parameters formulas, namely the inerter–mass ratio
β and the lever magnification ratio L. In the optimal design of DVA, the inerter–mass
ratio exist the working range under the premise of ensuring the stability of the system. In
addition, the inerter–mass ratio has different operating ranges for different stiffness ratios
α1 and α2.
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3.1. The Working Range of Inerter

With the optimal stiffness ratios of α1opt < 0 and α2opt ≤ 0, the presented DVA may
have multiple negative stiffness springs. Based on Equation (29), the working range of
inerter–mass ratio β should satisfy the optimal frequency ratio νopt > 0, optimal damping
ratio ξopt > 0, and the optimal grounded stiffness ratio α2opt ≤ 0. We can obtain the
working range of inerter

0 < β ≤ 3− 2
√

2− µL2

µL2 (31)

for 0 < µL2 ≤ 3− 2
√

2.
Furthermore, the working ranges of inerter in other situations can be calculated simi-

larly, as shown in Table 1. The results show that when the coupling term of magnification
ratio and inerter–mass ratio takes different values, and the working ranges of inerter
are different.

Table 1. The working ranges of inerter in different situations.

Different Cases The Sign of α1 The Sign of α2 Ranges of µL2 Ranges of β

case 1a α1 > 0 α2 ≤ 0 (0, 1] 0 < β ≤ 1−µL2

µL2

case 1b α1 > 0 α2 > 0 (0, 1] 1−µL2

µL2 < β < 4−µL2

µL2

case 1c α1 > 0 α2 > 0 (1, 4) 0 < β < 4−µL2

µL2

case 2a α1 < 0 α2 ≤ 0 (0, 3− 2
√

2] 0 < β ≤ 3−2
√

2−µL2

µL2

case 2b α1 < 0 α2 > 0 (0, 3− 2
√

2] 3−2
√

2−µL2

µL2 < β < 2−µL2

µL2

case 2c α1 < 0 α2 > 0 (3− 2
√

2, 2) 0 < β < 2−µL2

µL2

3.2. Response Characteristics of Primary System for Different Cases

Based on Table 1, there are six ranges of inerter–mass ratio β, and the parameters
selected are shown in the Table 2. It should be noted that µL2 can use a range of values;
here, we choose a value in the interval to calculate the optimal parameters. The normalized
amplitude–frequency curves for different cases are shown in Figure 4. When α1 > 0, the
control effect of DVA is the best for case 1c and the worst for case 1a. When α1 < 0, the
damping effect of DVA is the best for case 2c and the worst for case 2a. In case 1c and
case 2c, the corresponding grounded stiffness α2 is positive. However, case 1c and case 2c
require a high value of µL2. Whether positive stiffness is selected as grounded stiffness
should be based on the actual situation.

Table 2. The parameters of the system for different cases.

Different Cases µ L β v ξ α1 α2

case 1a 0.1 3 0.1 1.0488 0.7397 1.9899 −0.0050
case 1b 0.1 3 0.2 1.0963 0.7896 2.0785 0.0392
case 1c 0.1 3.5 1.7 2.8612 1.5669 3.6373 0.8186
case 2a 0.1 1 0.1 1.7503 0.5079 −0.6633 −0.1992
case 2b 0.1 1.2 0.5 1.8437 0.7021 −0.9295 0.1220
case 2c 0.1 2 0.3 1.6128 0.8142 −1.4422 0.7409
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λ

A

Figure 4. The normalized amplitude–frequency curves for different cases.

To gain the optimal reduction vibration effect of the vibration absorber under different
optimum grounded stiffness ratios, Figure 5 shows the dimensionless transient response
x1/x0 of the primary system under the six sets of parameters in Table 2. The initial
displacement is selected as x0 = 1 m. The fourth-order Runge-Kutta method with a fixed
time step of 10−4 s is used for simulation. The primary system vibration attenuation speed
under case 1c is obviously faster than that of the other cases. In all cases, shimmy will not
occur after the system is stable.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

−1

−0.5

0

0.5

1
case 1a
case 1b
case 1c

x /x1 0

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time

−1

−0.5

0

0.5

1
case 2a
case 2b
case 2c

x /x1 0

(b)

Figure 5. Transient response to initial displacement x0: (a) α1 > 0. (b) α1 < 0.

4. The Influence of System Parameters on Response Characteristics
4.1. The Relationship between System Parameters and Optimal Parameters

Considering the needs of practical engineering applications, we give the relationship
between the optimal parameters in Equations (28) and (29) and the system parameters
µ, L, and β under different cases. The coupling term µL2 is taken as abscissa, and the
inerter–mass ratio is taken as ordinate. It can be observed from Figures 6 and 7 that the
system is stable within the range of the selected parameters.
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Figure 6. The relationship between optimal parameters and system parameters when α1 > 0: (a) α1opt.
(b) α2opt. (c) νopt. (d) ξopt.
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Figure 7. The relationship between optimal parameters and system parameters when α1 < 0: (a) α1opt.
(b) α2opt. (c) νopt. (d) ξopt.
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4.2. The Effect of Lever Mechanism on the Amplitude of Primary System

The mass ratio µ = 0.1 and inerter–mass ratio β = 0.1 are selected for the two cases.
The value of the amplification ratio L is greatly related to the maximum amplitude of the
primary system. The amplitude–frequency response curves of the primary system with
different values of L are given in Figure 8. As we can see, the larger the amplification ratio
is, the lower the amplitude and the wider the distance between the two resonance peaks are.
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0.5
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2.5
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0

0.5

1

1.5

2
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L=3
L=3.5
L=4

2.5

A

λ

(b)

Figure 8. The effect of the magnification ratio L on the response of the primary system: (a) α1 > 0.
(b) α1 < 0.

4.3. The Effect of Inerter–Mass Ratio on the Amplitude of the Primary System

The mass ratio µ = 0.1 and magnification ratio L = 2 are selected. The inerter–mass
ratios β = 0.1, 0.4, 0.7, 1, 1.3 are selected within the working range of inerter for the two
cases. The normalized displacement amplitude–frequency response curves of the primary
system with different values of β are shown in Figure 9. We find that the larger the
inerter–mass ratio is, the lower the amplitude and the better the effect are.
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Figure 9. The effect of the inerter–mass ratio β on the response of the primary system: (a) α1 > 0.
(b) α1 < 0.

5. Comparisons of the Control Performances

In this section, the results of cases 1c and 2c are compared with other classical DVAs.
The classical Voigt-type DVA [2], grounded-type DVA [4], and the DVAs in Ref. [11] (IN-
Maxwell-type DVA), Ref. [38] (L-grounded-type DVA) are shown in Figure 10. The model
in Figure 10c shows a special case of our model, when L = 1, and the model in Figure 10d
is a special case of our model when the stiffness coefficient of the viscoelastic Maxwell
model is zero and the inerter coefficient is zero. The formulas of optimal parameters for
each model are given in Table 3.
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Figure 10. The classical models of DVAs: (a) Voigt-type. (b) Grounded-type. (c) IN-Maxwell-type.
(d) L-grounded-type.

Table 3. The formulas of optimal parameters of DVAs.

The Model of DVAs νopt ξopt αopt

Voigt-type [2] 1
1+µ

√
3µ

8(1+µ)
−

Grounded-type [4] 1√
1−µ

√
3µ

8(1−0.5µ)
−

IN-Maxwell-type [11]

√
1+β

2
√

µ(1+β)−µ(1+β)

[
µ(1+β)3

4

] 1
4 α1opt = 2

√
µ(1 + β)

α2opt = −1 +
√

µ(1 + β)

L-grounded-type [38]

√
1

1+α−µL2

√
3µL2(1+α)

8(1+α)2−4µL2
−1 +

√
2µL2

case 1

√
1+β

2
√

r∗−r∗

[
r∗(1+β)2

4

] 1
4 α1opt = 2

√
r∗

α2opt = −1 +
√

r∗

case 2

√
1+β√
2r∗−r∗

[
r∗(1+β)2

2

] 1
4 α1opt = −2

√
r∗

α2opt = −1 + (1 +
√

2)
√

r∗

* The expression of r is in Equation (7).

5.1. Comparison with Other DVAs under Harmonic Excitation

The mass ratio of each model takes µ = 0.1. The inerter–mass ratio β = 0.3 is selected
for the IN-Maxwell-type DVA and this paper’s case 2c. The magnification ratio L = 3.5 is
selected for the L-grounded-type DVA and this paper’s case 1c. According to the optimal
parameters formulas in Table 3, the normalized amplitude–frequency curves of each model
under the optimal parameters are shown in Figure 11.
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Figure 11. Comparison of amplitude–frequency response curves with other DVAs: (a) Comparison
of classical DVA with our results. (b) Comparison of IN-Maxwell-type, L-grounded-type DVA with
our results.

The results show that the vibration reduction effect of proposed DVA is significantly
better than the traditional Vogit-type and grounded-type DVAs under harmonic excitation.
Compared with the IN-Maxwell-type and L-grounded-type DVAs, we can find that the
lever and inerter have an effect of reducing the amplitude of the primary system and
broadening the frequency band range. Moreover, the DVA control performance with
positive grounded stiffness is better among these cases, especially when the stiffness
coefficient of the viscoelastic Maxwell model and another grounded spring are positive
simultaneously, while the performance drops slightly in the high frequency range. This
performance degradation can be better explained by the change of natural frequencies, due
to the addition of an inerter.

Based on Equation (8), the mass ratio µ = 0.1 and lever amplification ratio L = 2
are selected. The variation of two dimensionless natural frequencies with inerter–mass
ratio β is shown in Figure 12. As the inerter–mass ratio increases, two natural frequencies
move to the high frequency direction, which will lead to a slight decline in the vibration
absorption performance of the proposed DVA with positive grounded stiffness in the high
frequency direction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

4

8

12

16 1

2

Ω

Ω

Ω

Figure 12. The variation of the two dimensionless natural frequencies with inerter–mass β under
µ = 0.1.

The harmonic force G(t) = Fcos(ωt) is applied to the primary system. The excitation
amplitude is taken as F = 1 N, and the excitation frequency is taken as ω = 10.5 rad/s.
Figure 13 presents the normalized displacement response of the primary structure equipped
with DVAs and without control. The displacement response of the primary structure
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without inerter or lever vibration absorbers exhibits obvious fluctuation. By using the
proposed vibration absorber, the large vibration of the primary system is alleviated.

0 2 4 6 8 10 12 14 16 18 20
Time

−0.2

−0.15

−0.1

−0.05
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0.05

0.1

0.15

Without control
Voigt-type
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IN-Maxwell-type
L-grounded-type
case 1c
case 2c

0.2

x1

Figure 13. Normalized displacement response of the primary system under a harmonic force excita-
tion, when ω = 10.5 rad/s.

5.2. The Comparison with Other DVAs under Random Excitation

In civil and construction engineering, the system is usually excited by random excita-
tion. Suppose that the primary system is subjected to random excitation with zero mean,
with the power spectral density as S(ω) = S0. The power spectral density function of the
displacement response of different models can be expressed as

SV(ω) = |XV1 |
2S0, SG(ω) = |XG1 |

2S0, SIN(ω) = |XIN1 |
2S0

SL(ω) = |XL1 |
2S0, SNM(ω) = |XNM1 |

2S0

(32)

where the subscripts V, G, IN, L, and NM represent the Voigt-type DVA, the grounded-
type DVA, the IN-Maxwell-type DVA, the L-grounded-type DVA, and the DVA in this
paper, respectively. Based on optimal parameters, the mean square responses of the primary
systems of these DVAs can be derived as follows

σ2
V =

∫ +∞

−∞
SV(ω)dω =S0

∫ +∞

−∞

∣∣XV1

∣∣2dω =
πS0YV

2µξω3
1ν

σ2
G =

∫ +∞

−∞
SG(ω)dω =S0

∫ +∞

−∞

∣∣XG1

∣∣2dω =
πS0YG

2µξω3
1ν5

σ2
IN =

∫ +∞

−∞
SIN(ω)dω =S0

∫ +∞

−∞

∣∣XIN1

∣∣2dω =
πS0YIN

2µξω3
1ν7α2

1(1 + α2 + α2µν2)

σ2
L =

∫ +∞

−∞
SL(ω)dω =S0

∫ +∞

−∞

∣∣XL1

∣∣2dω =
πS0YL

2µL2ξω3
1ν5(1 + α + αµν2L2)

σ2
NM =

∫ +∞

−∞
SNM(ω)dω = S0

∫ +∞

−∞

∣∣XNM1

∣∣2dω =
πS0YNM

2µL2ξω3
1ν7α2

1(1 + α2 + α2µν2L2)
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where

YV =ν4(1 + µ)2 + ν2[− 2− µ + 4ξ2(1 + µ)
]
+ 1

YG =ν4 + ν2(−2 + 4ξ2 + µ) + 1

YIN =4ξ2(1 + α2 + α2µν2)(η1 + η2ν4) + α2
1ν2(η3 − η4ν2 + η5ν4)

YL =η6ν4 + η7ν2 + α + 1

YNM =4ξ2(1 + α2 + α2µν2L2)(η1 + η8ν4) + α2
1ν2(η3 − η9ν2 + η10ν4)

with

η1 =− 2ν2(1 + α1 + α2)(1 + β) + (1 + β)2

η2 =r1 + α2(2 + α2) + α2
1r1 + 2α1(α2 + r1)

η3 =(1 + α2)(1 + β)2, η4 = (1 + β)[2α2(2 + α2) + r1 + 1]

η5 =3α2
2 + α3

2 + r2
1 + α2(2r1 + 1)

η6 =(1 + α)3 − 2αµL2(α− 2ξ2 + 1) + αµ2L4

η7 =2α(2ξ2 + µL2 − α− 2) + 4ξ2 + µL2 − 2

η8 =γ + α2(2 + α2) + α2
1γ + 2α1(α2 + γ)

η9 =(1 + β)[2α2(2 + α2) + γ + 1], η10 = 3α2
2 + α3

2 + γ2 + α2(2γ + 1)

r1 =1 + µ(1 + β), γ = 1 + r

The mean square response of the primary system under the optimal parameters can
be separately calculated when µ = 0.1.

σ2
V =

6.401πS0

ω3
1

, σ2
G =

5.780πS0

ω3
1

σ2
IN =

2.969πS0

ω3
1

, σ2
L =

0.405πS0

ω3
1

σ2
NM1c =

0.109πS0

ω3
1

, σ2
NM2c =

1.314πS0

ω3
1

(33)

where the NM1c, NM2c represent the mean squares of the presented DVA in case 1c, case
2c, respectively. σ2

IN is calculated at β = 0.3, and σ2
L is calculated at L = 3.5.

The results show that, under the same initial parameters, the presented Maxwell DVA
has the minimum mean square response, which shows that it has good vibration absorption
performance under random excitation. Moreover, the proposed viscoelastic Maxwell DVA
with two positive grounded stiffness shows better performance.

To simulate engineering reality, a random force excitation with zero mean value and
unit variance is constructed in the 50 s, and its time history is shown in Figure 14. The mass
and stiffness of the primary system is selected as m1 = 1 kg, k1 = 100 N/m, and the mass
of DVA is m2 = 0.1 kg. Then, the corresponding time history of different DVAs attached to
primary system are shown in Figure 15. Table 4 summarizes the variances and decrease
ratios of the the displacements of the primary system.
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Figure 14. Random force excitation.

Table 4. The variances and decrease ratios of the displacements of the primary system.

Model of DVA Variances Decrease Ratios (%)

Without DVA 2.8464 × 10−4

Voigt-type DVA 3.7631 × 10−5 86.78

Grounded-type DVA 3.0478 × 10−5 89.29

IN-Maxwell-type DVA 2.7244 × 10−5 90.43

L-grounded-type DVA 2.2196 × 10−6 99.22

DVA of case 1c 7.5018 × 10−7 99.74

DVA of case 2c 1.0018 × 10−5 96.48

From Figure 15 and Table 4, it can be seen that, when the primary system is subjected
to random excitation, the proposed DVA, under two sets of optimal parameters, has lower
amplitude than classical DVAs. Compared with the IN-Maxwell-type DVA, it is found
that under the same initial conditions µ = 0.1, β = 0.3, the proposed model for case 2c
has better control performance under random excitation, which indicates that the lever
element plays a role in vibration absorption. Compared with the L-grounded-type DVA,
the model proposed in this paper for case 1c has a better control performance under the
same initial conditions µ = 0.1, L = 3.5, which indicates that the inerter plays a role in
vibration absorption. Furthermore, when µL2 is in the range of 1 to 4, the proposed DVA
has satisfactory reduction vibration effect, and the DVA has two positive grounded stiffness.

Although the performance of the DVA, with negative grounded stiffness in this paper,
may be worse than that of the DVA with positive grounded stiffness, sometimes it may
need to be selected according to the actual engineering situation. The model and two
groups of optimization formulas proposed in this paper can be alternately implemented in
building protection and bridge seismic resistance.
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Figure 15. Comparison of the time histories of the primary system with different DVAs: (a) Com-
parison of classical DVAs with our results. (b) Comparison of L-grounded-type DVA with case 1c.
(c) Comparison of IN-Maxwell-type DVA with case 2c. (d) Comparison of case 1c with case 2c.
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6. Conclusions

A novel Maxwell DVA based on amplifying mechanism, inerter, and grounded stiff-
ness is proposed. Aided by the H∞ optimization principle, the optimal frequency ratio,
stiffness ratio, and damping ratio are obtained. In the process of parameter optimization,
two groups of different optimal parameters formulas are obtained according to different
frequency ratios. The optimal grounded stiffness is discussed in different cases of positive
and non-positive stiffness, respectively, and the working range of inerter under different
conditions is determined. The effect of the selection of system parameters of the inerter
within the optimal working range on the system response is further analyzed. The results
show that, when the amplification ratio and mass ratio coupling reach a certain value,
the stiffness coefficient of viscoelastic Maxwell model and another grounded stiffness are
positive at the same time, and the vibration absorption effect is better in this case. Com-
pared with traditional DVAs under harmonic and random excitation, it is found that proper
selection of grounded stiffness, inerter–mass ratio, and amplification ratio can obviously
reduce the vibration amplitude and greatly broaden the damping frequency band.

Beam structure is a typical structure in mechanical and civil engineering. Through
the literature review, it can be found that multiple or distributed vibration absorbers are
the current research hotspots. The model structure of this paper can provide a more
accurate theoretical basis and calculation method for the optimization and control of the
vibration absorber. In future research work, we will add the model structure in this paper
to the design of multiple or distributed vibration absorbers to further improve the control
performance and accuracy of vibration absorbers and provide a more effective solution for
the vibration control of beam structure.
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