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Introduction 

T h e  c lass ical  t h e o r y  of H v spaces  cou ld  be  c o n s i d e r e d  as a c h a p t e r  of c o m p l e x  f u n c t i o n  

t h e o r y  a l t h o u g h a  f u n d a m e n t a l  one,  w i t h  m a n y  i n t i m a t e  c o n n e c t i o n s  t o  F o u r i e r  an a l y -  

Sis. (1) F r o m  our  p r e s e n t - d a y  p e r s p e c t i v e  we  c a n  see t h a t  i t s  h e a v y  d e p e n d e n c e  on  such  

spec ia l  tools  as B l a s c h k e  p r o d u c t s ,  c o n i o r m a l  m a p p i n g s ,  etc.  w a s  n o t  a n  i n s u r m o u n t a b l e  

o b s t a c l e  ~barring i t s  e x t e n s i o n  in  s eve ra l  d i rec t ions .  T h u s  t h e  m o r e  r e c e n t  n - d i m e n s i o n a l  

t h e o r y  (begun  in  [24], b u t  w i t h  m a n y  r o o t s  in  ear l ie r  work)  s u c c e e d e d  in  s o m e  m e a s u r e  

(1) See Zygmund [28], Chapter I I I  in particular. 

10-  722902 Acta mathematica 129. Imprim6 le 2 Octobre 1972 



138 C. I~EFFERMAN AND ~.  M. STEIl~ 

because it was able to exploit and generalize in a decisive way the circle of ideas centering 

around conjugate harmonic functions, harmonic majorization, etc. (1) 

The purpose of the present paper(~) is to develop a new Viewpoint about the H ~ 

spaces which pushes these ideas even further into the background, hut  which brings to light 

the real variable meaning of H p. Besides the substantial clarification that  this offers, it 

allows us to resolve several questions tha t  could not be at tacked by  other means. We shall 

now sketch the requisite background. 

Background 

We can isolate three main ideas tha t  have made their appearance in the last several 

years and which can be said to be at  the root of the present development. We list them 

in order of occurrence. 

(i). The realization tha t  the results of boundedness of certain singular integral operators 

could be extended from the L p spaces, 1 < p  < co, to the H p spaces, p ~< 1. (~) But  those 

results had two draw-backs, first, an esthetic one, since the proofs often depended on more 

complicated auxilliary functions, (e.g. the g~ functions and the H ~ inequalities for the S 

function of Calderdn [3] and Segovia [16]) which in reality did not help to clarify matters.  

A more basic objection was tha t  with those methods, operators such as the more strongly 

singular integrals (corresponding to 0>0 ,  in the definition in w 1), could not be treated 

at all. 

(ii). The theorem of Burkholder, Gundy and Silverstein [2], tha t  in the classical situa- 

tion of an analytic function F = u + i v ,  the property F E H  ~, 6 < p <  ~ ,  is equivalent with 

the non-tangential max.function of u belonging to /2.  This striking theorem (proved, 

incidentally, by Brownian motion) raised, however, many  questions. Explicitly: how could 

the results be extended to n-dimensions; and implicitly: what  was the rSle, fundamental  

or merely incidental, of the Poisson kernel in these matters? 

(iii). The third idea (which is part  of the subject mat ter  of the present paper) i s  the 

identification of the dual of H 1 with the space BMO, the space of functions of bounded 

mean oscillation. The latter space had previously been introduced in a different context 

by  John and Nirenberg [13]; it had since been noted tha t  in several instances BMO served 

as a substitute for L% The duality ties together these facts. But  more significantly, it leads 

to new ways of approaching various problems about  H 1, and sometimes also gives us hints 

about  possible extensions to H p, p < 1. 

(1) Compare [25,: Chapter  VI]. Among  o ther  significant  general izat ions of the  classical t heo ry  are 

H ~ spaces of several  complex variables,  and  analogues in t he  con tex t  of Banach  algebras,  

(2) Some of the  results  of the  present  paper  were announced  in two sepera te  notes  [10] and  [22]. 

(a) See [21, Chapte r  VIII .  
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Main results 

Our results are of two kinds: those valid for all H Y, 0 < p  < c~, and sharper and more 

far-reaching ones for H 1. We sketch first the results for H 1. 

Our first main result is that  the dual of H 1 is BMO. At the same t ime tha t  we prove 

this we also give several equivalent characterizations of BMO, among which is one in terms 

of Poisson integrals (Theorems 2 and 3 in w 2) as a rather immediate consequence of the 

duality we obtain boundedness on H 1 of a variety of singular integral transformations, and 

of certain maximal functions. The duality, in fact, allows us to obtain these results under 

"sharp"  hypotheses. 

Further  applications require the introduction of another idea, namely the function/#.  

I t  is defined by  

Iv(x) IQI 
= s u p - -  I I ( y ) -  dy. 

Observe tha t  /EBMO is equivalent with [#EL% The result we prove is tha t  ]#EL Y 

impl ies /EL Y, if p < co; this may  be viewed as the inverse of the corresponding inequality for 

the maximal  function. I t s  significance for us is tha t  it provides the link between BMO 

and L Y, and so allows us to interpolate in the complex sense between H 1 a n d / / .  The 

resulting interpolation theorem (Corollaries 1 and 2 in w 5) is the key step in the new esti- 

mates we make for L ~ multipliers. Examples of our results are as follows. First, if ~ is the 

uniform measure distributed on the unit sphere of R ~, then the operator 

(0; 

n - - l "  

Secondly, we also obtain sharp L ~ estimates, 1 < p <  o% for multipliers of the form 

m(~)=exp (ilalo)/lal , lal large, where 0 < a < l ,  f l>0,  with m locally smooth. 

The results we have sketched for H 1 make up parts  I I  and I I I  of our paper. In  parts  

IV and V we carry out the general theory, valid for H Y, 0 < p  < co. 

We say, by definition, tha t  a harmonic function u(x, t) on R$ +1 is in H" if it and a 

requisite n u m b e r  of conjugates satisfy an appropriate boundedness condition o n / 2 .  (See 

the definition in w 8). For such harmonic functions we may  speak of their boundary values, 

limt_~0u(., t )= / ( . ) ,  taken in the sense of distributions, Then u(., t)=Pt-)e[. Conversely, 

for tempered distributions / on R ~, we may  ask when these arise as H Y boundary values. 

The answer is contained in the equivalence of the following four properties: 
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(1) / = l i m u ( . , t ) ,  u 6 H  ~. 
t ->0 

(2) sup I(/-x- %) (x) l 6 /2 ,  with ~t (x) = t-n~0 ~- , for all sufficiently "regular" ~0 (say 
t > 0  

~eS). 
o 

That (2) holds for one such ~o, with I ,  ~0dx4=0. (3) 

(4) I (y, t) le L'. 

The equivalence of (1) and (4) is the generalization of the Burkholder-Gundy- 

Silverstein theorem, which we prove by means of the corresponding results for the Lusin 

S-function. But  also of capital importance is the equivalence of these two with (2) and (3), 

which gives the real-variable interpretation of the classes H ~. I t  shows that  the H ~ spaces 

are ut terly intrinsic and arise as soon as we ask simple questions about regularizing 

distributions with approximate identities. There is thus no need, when formulating certain 

basic properties, to have recourse to analytic functions, conjugate harmonic functions, 

Poisson integrals, etc. 

That  these ideas can be applied to Fourier analysis on H p spaces and in particular 

to singular integrals, can be understood as follows. In making the usual L 1 estimates (for 

singular integral operators) it  is, in effect, the Hardy-Littlewood maximal function which is 

controlling, and is at the bottom of the weak-type estimates that  occur in this context. 

However because of property (2) on H p, appropriate substitutes of the maximal function are 

bounded in L ~, and this leads to H ~ results for various operators. In briefl our equivalences 

(1) to (4) make it almost routine to carry over the main ideas of the usual Calder6n- 

Zygmund techniques to H ~. 

Further remarks 

To some extent the different sections of this paper may be read independently. For 

instance, th e reader mainly interested in the duality of t t  I with BMO, and  its applications 

to / 2  multipliers need on ly  look at  parts I I  and III;  while for ~the, reader  principally 

interested in the generalities about H p, parts IV and V would suffice. On the othe r hand, 

anyone who wants t o  understand the various interrelations that  exist and the larger 

picture we are sketching, must resign ~ himself to read the  whole paper. 

Our results suggest the possibility of several generalizations and also raise a variety 

of problems. Some examples are: 

(1) I t  seems likely t h a t  the theory given here goes over to any smooth compact 

manifold, in place of IV, In  particular it is indicated t h a t  Theorem 11 should have a 

complete analogue in ~that context~ and ,thus lead t o  intrinsically defined H ~ classes. 
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(2) Another problem is the extension of these results to products of half-spaces, and 

more particularly to the H p theory of polydiscs or tube domains over octants. (:) 

(3) We may ask what is the meaning of the conjugaey conditions (in w 8), depending on 

p, in the definition of H ", particularly in view of the fact  tha t  the other characterizations 

mentioned above do not vary with p. For instance, are the exponents Pk the best possible, 

as for as the definition of H p is Concerned ? 

We have obtained partial results for the first two of these problems, and hope to 

return to these matters at another time. 

With great pleasure we thank A. Zygmund who sparked the research of parts I I  and 

I I I  by his incisive questions about BMO. We owe a real debt to D. Burkholder and R. Gundy 

for several illuminating discussions on H p spaces and for many helpfu ! ideas contained 

in their earlier work. Finally, we thank R. Wheeden for several useful observations 

concerning the sawtooth region in section 7. 

H. Duality of H ~ and BMO 

1. Functions of bounded m e a n  osci l lat ion:prel imlnaries  

Le~ ] be a locally integrable function on R ~. Then ] is of bounded mean oscillation 

(abbreviated as BMO) if 

sup II(x)-lQI IIlll,< ~ (I.I) 
Q 

where the supremum ranges over all finite cubes Q in R ~, [ Q ] is the Lebesgue measure of Q, 

and {a denote the mean value of { over Q, namely {~=(1/IQI SQ/(x)dx). The class of 

functions of bounded mean oscillation, modulo constants, is a Banach space with the norm 

ll" II, defined above. 
We note first that  a consequence of (1.1) is the seemingly stronger condition 

sup FO/ I/(x)-/Q]2dx<<.A 1]/112,< oo (1.1') 
Q h~[ 

which is itself an immediate corollary of an inequality of John  and Nirenberg about 

functions of bounded mean oscillation. Their inequality is as follows (see [13]) 

I{x e Q: I](x) - /Q  I > e -  o~/tI,H. [Q I, for every ~ > 0. 

fR < co, more precisely 
l/(x) l 

We observe next  that  if ] is BMO then ~ 1 + [xl ~+I dx and 

(x) For  H ~ t h e o r y  in th i s  c o n t e x t  see [28], Chap te r  17, a n d  r25], Chap te r  I I I .  
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where Q is the  cube whose sides have  length 1, and is centered a t  the  origin: (1) 

Le t  us prove  (1.2). Le t  Q2~ be the  cube with  the same center as Q bu t  whose sides have  

common  length 2 e. Then  of course [J'Q~k-I[/(X)--fQ~k]dx[ <~.~Q2~ [[(x)--fQ~ [dx<~2nk[[/[[,, 

and therefore [/Q~_, - ] a ~  ] ~< 2n[[/][ *" Adding these inequalities gives [/Q2~-]0 [ ~< 2nk[[/][ *, 

and finally 

A last  addit ion in k then  gives (1.2). Now the mapping / (x ) -~ / (~- lx ) ,  6 >0 ,  is clearly a 

Banach  space i somet ry  of BMO to itself. Thus,  b y  mak ing  the  indicated change of 

var iables  (1.2) leads to the  following extension of itself 

f ll(~)-l~ld~-<AIIlll,, a>0 (1.2') 

where Q~ is the  cube whose sides have  length ~, and is centered a t  0. 

We show nex t  t h a t  the  class BMO arises as the  image of L ~176 u n d e r  a va r ie ty  of 

"singular  in tegra l"  t ransformat ions .  Le t  K be an integrable funct ion on R n, and  suppose 

0 is a fixed pa rame te r  with 0 4 0  < 1. I f  0 = 0 we shall assume t h a t  

f l  [ K ( x -  dx<~B, all =kO Y) K(x) l Y 
zl~>21yl 

and I~(~)1 < ~. 

When 0 < 0  < 1, we assume K vanishes when I~1 > 1, and if l Yl <1,  

f IK(~-y)-K(~)Id~<B; ako I~(~)l<B(l+l~l)-n% 
xl~>21yl 1-o 

T ~ o ~ M  1. The mapping 1-~ To(l) = I ;  ~e / is bounded/tom L ~176 to BMO, with a bound 

that can be taken to depend only on B (and not the L 1 norm o / K ) .  

This theorem is known in the  case 0 =0;  (see [17], and  [20]). We shall assume therefore 

t h a t  0 < 0 < 1 .  The  la t ter  class of t r ans format ion  corresponds to the  "weak ly-s t rong ly"  

singular integrals of [9]. 

(1) /:[ere mad below the constant A may vary from inequality to inequality. A is always independent 
of the function ], the cube Q, etc. but may depend on the dimension n or other explicitly indicated 
parameters. 
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Let Q be any cube of diameter 5, which for simplicity we may assume is centered at 

the origin. Take first ~<~1. W r i t e / = / 1 + / ~ ,  w h e r e / 1 = / i n  the ball Ixl ~<2(~ 1-~ a n d / s = /  

when Ix] >2~ 1-~ We write also u =  To(l), and u j=  T0(/j), ?'= 1, 2. In terms of the Fourier 

transform ~1(~) =/~(~) ]1 (~) = [~] ~a/s ]/~(~) ] ~ [ - n0/3 fl (~). According to our assumptions, the 

factor ] ~ I n0/s/~(~) is bounded by B, while by the Hardy-Litt lewood-Sobolev theorem of frac- 

tional integration [~]-~~ n~ ) is the Fourier transform of an L v function whose 

L ~ norm does not exceed A[[/~(~)[~[n01~f~ (~)[[~ ~< A B  1[~(~)[[2 = A B  [[h[12, with l ip = 1/2 - 0/2; 

see e.g. [21, 116-120]. Thus SQ l ux [2' dx <~ YR" l ux [~dz < A~B" H]~II~ <. A~'B~ ~n(,-o)~/2 H/H~. 

Summarizing, we get 

1s 
IQI lul(x)]dx<~ABll/ll~" (1.3) 

Now Set aQ = .~ K(  - y)/2 (Y) dy. Since us(x ) - aQ = ~ [K(x - y) - g(y)]/3 (Y) dy, if Ix [ ~< ~, 

(which is certainly the case if xeQ) ,  then [u2(x ) -aQ[ <~ S l~ l>~s ly l~ -o lg (x -y ) -K( -  y)[ dy 

]]/[[~ ~< B [[]U~. When this is combined with (1.3) it gives 

1 fQ ~ IQ--[[ lu(x)--aQldx.~A B[I/H | (1.4) 

from which it follows immediately that  

IQI lu(x)--uQIdx<2A'Bll/II| (1.5) 

This disposes of the case when the diameter ~ of Q is not greater than 1. Suppose now 

(~>1. Let  c be a positive constant, sufficiently small so that  c~-a~<~+l ,  for all ~>~1. 

Le t / l (x )= / (x )  if Ixl <~c~ ~-o, and/s(x) =/(x), if Ixl >c51-0. Then for u 1 we get, as before, 

the estimate (1.3). ~owe~er when I~l < ~, ~(~)= $~t,~K(U)/3(~-U)dU =0, since then ~ - U  

ranges outside the support of /3. This leads, as above to (1.4) (with a a = 0  ) and hence 

to (1.5). The proof of the theorem is therefore complete. (1) 

The theorem we have just proved will be extended below to show that  the operator T O , 

in effect, maps BMO to itself. 

We show now by an example how Theorem 1 can be applied to the standard singular 

integrals (other applications are below). Let  g ( x )  = ~ (x ) / I x  I n = c,~x~/ I x I ~+~, ] = 1, ..., n, 

be the kernels of the Riesz transforms. For every e >0  consider their truncation K~, defined 

by K ~ ( x ) = g ( z )  if Ix] >e, and K~(x)=O, if IxI ~<~. If / is a bounded function define 

R~(/) by 

(x) An extension of this result to a general class of pseudo-differential operators has been obtained 
by one of us in [11]. 
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Rj ( / ) (x )= l im  | [K~(x-y) K~(y)]/(y)dy=u(x). (1.6) 
e--.,-O J R n 

We observe tha t  for each fixed s and x the integral converges absolutely; it is also 

well known tha t  the limit exists almost everywhere in x and, say, in the L 2 norm on 

each finite cube. We claim tha t  with our assumption tha t  /EL  ~~ the Rj(/) belong to BMO. 

To see  this write u~(x)= ~ R , [ g s ( x - y ) - g l ( - y ) ] / ( y ) d y ,  and c~= ~R,[K~( y)--gl( y)]fdy. 

Note aIso tha t  u~ uN--KeN~/, where K~N--Ks--KN, and the integrable kernels K~N 

satisfy the conditions for Theorem 1 (with 0 - 0 ) ,  uniformly in s and N. Thus 

lfo IQI ]u'(x)-uN(x)-u~+uA'Qldx<'Alt/H~176 (1.7) 

with A independent of s, N and Q. We remark tha t  UN(X) --CN = ~[KN(X --y) --KN(--y)J/(y) dy 

-+0 uniformly as ~T--> c~, if CN= ~ [KN(-y)--Kl(--y)]f(y)dy. Since in (1.7) we can replace 

uN by  UN--% without changing the inequality, we get, upon letting hT-+ co and then s-+0 

IQI 

which is our desired conclusion. We remark tha t  everything W e have said extends to the 

case when K(x)= ~(x)/]x] ~ is any CalderSn Zygmund kernel, i.e. where ~ is homogeneous 

of degree zero, satisfies a Dini condition, and has mean-value zero on the unit sphere. 

2. Duality o f / ~  and BMO 

We shall b e  studying the equivalence of several definitions Of the H ~ spaces later. 
i 

For the  present, however, it will be useful to adopt  the following definition when  p =1: 

H 1 consists of tha t  class of L1 functions/ ,  so tha t  there exist~ L 1 function~ /1, /2; , f~ with 

the property tha t  fi(~)=(:i~/[~])f(~): We write ]j=Rj(/). T o  define the H 1 norm (see 

also [21, p. 221]) we set 

n 

IIIII,,, = I11111 + ~JIRjll , . '" 

zt will be techni0any usefu] to rise a certain dense subspace Ho' of H', ([21, p. 22@. If/eZ]~, 

t h e n  among other things, it is bounded and rapidly decreasing at infinity, in 'part icular ,  

this shows tha t  H I N L 2 is dense in HL With these matters  out of the way we come to one 

of our k e y  results. 

(1) The definition of Etj-we have  used here differs f rom (1,6) b y  an  additive constant ,  Since in the  

la t ter  context  we view the  range of the  R as BMO, the addit ive constan~ here: does no t  lead to any  real 

ambigui ty .  
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THEOREm 2. The:dual o / H  1 is BMO, in the tollowlng sense. 

(a) Suppose q~ e BMO. Then the linear/unctional [---> SR~/(x)~(x)dx, initially defined/or 

/EH~, has a bounded extension to H 1. 

(b) Conversely, every continuous linear/unctional on H 1 arises as in (a) with a unique 

element cf o] BM0.  

The norm o/ q~ as a linear /unetional on H 1 is equivalent with the BMO norm. 

The proof of Theorem 2 requires certain other  equivalent  character izat ions of the  

class BMO. I n  order to s ta te  t h e m  we observe t h a t  if ~ is any  funct ion t h a t  satisfies 

SR, Iq~(x)l/(1 + Ixl n+~) dx< ~ ,  then  its Poisson integral  ~(x, t) is well defined as 

of(x, t) = f~ ,P t ( x - y ) c f ( y )  dy, t >0 ,  
c,~ t 

where Pt (x)= ixlh(n+., . 

T~]~ORE~ 3. The/oUowing three conditions on q~ are equivalent: 

(i) ~ is BMO. 

n 

(ii) ~=~o§  where q~o, q~l . . . .  , q~n eL~~ 

( Icf(x)[dx<~c~, sup I t[Vq~12dxdt<.Ah~, 0 < h <  where (iii) j R ,  1 § ixp+l  and co 
~ceeR n J T(Xeoh) 

IV~I2 ~ + ~ ~ a n d T ( x ~ 1 7 6  

the Poisson irdegral o /% 

The various implications in Theorems 2 and  3 will be proved  in the  order which we 

schematize as follows: 2 ~ 3(ii) ~ 3(i) ~ 3(iii) ~ 2. 

Le t  B be the  Banach  space wh ich  consists of the  direct sum of n § copies of L~(R~). 

Tha t  is, B = {(/0, [1, --.,/n), [j eLI(R~)}. We define a norm on B b y  sett ing II (/0, 5, .,., [o)ll = 

~7=0]l/J]]l. Le t  S be the  subspace of B for which /j=Rj(/o), i = l ,  ,... n. Clearly S i s  a 

closed subspace of B, and  the  m a p p i n g / o ~ ( / o ,  R 1 [o . . . .  , RJo  ) is a Banach  space i somet ry  

of H 1 to S. Any  continuous l inear  functional  on H 1 can be identified with a corresponding 

functional  defined on S, and  hence b y  the  H a h n - B a n a c h  theorem,  it  extends  to a continuous 

linear functional  on B. N o w ' B = L I | 1 7 4  1 and thus  the  dual  to B is equivalent  to 

L ~176 |176176 |  Rest r ic t ing a t t en t ion  to  S (and hence H 1) we get the following conclusion. 

Suppose 1 is a continuous linear funct ional  on H l, then  there exists ~0, ~ t . . ' .  ~ EL~176 so t h a t  

~ ]jq)jdx, where / = / o ,  and [~=R ([), ] = 1  . . . .  n. l(/) = (2.1) 
j=O J R n  
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Now the "ant i -Hermit ian"  character of the Riesz transforms gives us 

fRRJ(])q)jdx=-fR]RJ(q)j)dx',~ ,~ if[EH~'~J EL~176 

(This is obvious by  the Fourier transform if both [0 and ~j are in L2; the case where we 

assume tha t  q jEL ~ and ]EH~ follows from this by  a standard limiting argument whose 

details may  be left to the reader). 

Therefore 

Thus we have proved tha t  when restricted to H~, every continuous linear functional arises 

from ~ which can be written as qJ=q~o-~TffilRj(q~j), with ~0 ....  ~neL ~. This proves the 

implication 2 *3(ii). The implication 3(ii)=~3(i) is immediate, since we have seen earlier 

tha t  the Riesz transforms of an L ~176 function are BMO. We consider therefore next  the 

implication 3(i) ~3(iii). 

Observe tha t  we have already proved (see (1.2)) tha t  if ~ e B M O  then 

~[~(x)]/(1 + Ix] n+l) dx< oo. In  proving the second inequality of (iii) let us assume tha t  

x ~ =0.  We let Q4hc R ~ be the cube whose sides have length 4h, with center the origin. 

We write Z for the characteristic function of this cube, and ~ for the characteristic function 

of the complement. With ~Q~h denoting the mean-value of ~ over Q4h, we have 

= ~r + (q - qr Z + (~ - qr Z = ~1 + q2 + q3. 

We also have ~(x, t)--ql(x,  t)+7~2(x, t)+qa(x, ~), for the corresponding Poisson integrals. 

In  the integral with the gradient square, qx contributes nothing since it is constant. Now 

(by [21, p. 83]). 

The last quanti ty does not exceed Ah n ]]qH~., by (1.1'). Altogether then 

~,o.~ t lv~l~dxdt<Ah=l l~ l lL  

However 

Ix-yl] I~(Y)-q~Q'~I dy" 

So if (x, t) E T(O, h) then 
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1 "~.+i 1 

t+lx-yl/ < Ah~+'+lYl=+" 

when yE CQah, and therefore by (1.2') IVq~3(x, t)l <<. Ah -~ I1~11,. 
From this it is obvious that  j'~r t)l~dzdt<Ah"l[~ll~,, and a combination 

of the above remarks shows that  

fr(0,h)t I v I ~ dx  d t <  A h  n I1~11~ ~0(x, t) 

which concludes the proof of the implication 3(i)~3(iii). 

The last implication, and the deepest, is that  whenever q satisfies the condition 3(iii), 

then it gives rise to a continuous linear functional/-~S/cfdx on H 1. 

To see this we begin by showing that  for appropriate [EH t 

I fR,+ t(V/(z,t)) (V~(x, t)) dxdt l < A lll]l,,. (2.2) 

The [ we deal with have the following properties: there exists F=(u0,  ul, ..., un), 

so that  the function uj(x, t) satisfy Cauchy-Riemann equations in R~+~; F is continuous 

and rapidly decreasing at infinity in fi~+l; IF  I >0 and A lF]=O(lx l+t  + 1) -~-a in R~+I; 

and finally Uo(X, 0) =/(x). The fact that  / EH t means then that  ~R- supt>0 IF(x, t) ldx <~ AII/]IH,. 
By a simple limiting argument it  suffices to prove the inequalities for such / (see [21,225- 

227]). 

Now the quantity on the left of (2.2) is clearly majorized by 

f~%+1 t l v/(~, t)l I v~(~, t)l gx dt < JR%+ ltl VF(x, t) ll V~(z, t) l d~ dt 
/ ,  

< (fR~++ltlVq~(X,t)121~'(x,t)ldxdt) ' (fR~++lt[-F(x,t)]-l]v.F(x,t)[adxdt) �89 
Let q=(n--1)/n, g(x)~]F(x,O)] q, and g(x,t) the Poission integral of g. Then 

IF(x, t)l ~<(g(x, t)) v, with p=l /q>l ,  gEL"(R"), and llgll~=Sa.lF(~, 0) I d~<.AII/ll..; (see 
[21, 222-223]). From this we get that  

RV tlVq~(~,t)l~lF(x,t)ldxdt< ~RWtlVq~(z,t)l~(g(x,t))'dxdt. (2.3) 

The last integral can be estimated by observing that  the condition 

sup ~ t I Vcfl2dxdt<~ Ah ~, 
x* J T(xn,h) 
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is precisely the property that  the measure t I V~ pdxdton R~ +1 satisfies the hypothesis of 

an inequality of Carleson (for which see [15] and [21, p. 236]). The result is that  the 

second integral in (2.3)is majorized by AII~II~<A,H]IIm. 

Next we invoke the inequality Iv l < 1)~(IFI)  ([21, p. 217]) and hence 

fR~+ +~tI-F'-l[V2''2dxdt4(n+ l) fR tA(,F(x,t)l)d dt=(n+ l) f .  [F(x,O)ldx<Xll/ll.,. ~++~ 

The next-to-the-last inequality holds by a simple argument involving Green's theorem. 

Thus a combination of the last few inequalities proves (2.2). To conclude the proof 

of the implication 3(iii) ~ 2 we observe that  

fR"/( x) ~(x) dx = 2 fR,++lt(V/(x , t)) (V~(x, t))dx dt 

whenever, say, both ] and ~ are in Z~(R~), (see [21, 83, 85]). The extension of this iden- 

t i ty  to the case when /E H~, and ~ E BMO is then routine. This shows that  

whenever 

and hence ]-->S]q~dx extends to a continuous linear functional on H 1. Since t h e  series 

of implications 2 ~3(ii) ~3(i) ~3(iii) ~2 have all been proved, the fact that  the norm of 

as a linear functional on H ~ is equivalent with its BMO norm follows either b y  a priori 

grounds (the closed graph theorem), or  when one keeps track of  the various constants 

that  arise in the proof just given. QED 

Remarks. (a) We sketch an alternate proof of the main step (3i i i )~E(H1) * above. 

Given u(x, t) harmonic and h E [0, oo], define Sh(u) (x) = (~lx-~l<t<htl-~ivu(y, t] 2dydt)�89 
This auxilliary :function is intimately connected both ~ t h  H 1 and BMO. For any ] E//1 

with Poisson integral /(x, t), we know that  ]]Soo(/)(x)Ill <~ CH/I[H1 (see CalderSn [3]; Seg0via 

[16] and Theorem 9 Corollary 1 below). In addition, any ~ whose Poisson integral ~(x, t) 

satisfies (3iii) must also satisfy ~B(y.h)(Sh(~)(x))~dx<~Ch ~ for all y, h, which implies: 

Let h(x) = sup {h >~ O ISa(~) (x) ~< 1000 C}; (Thus, Shcx~:(~) (x) ~< 1000 C automatically). 

(2.4) 
Then I{x E B(y, h) lh(x ) > h}] >7 ch n. 

Now to show that  q~E (H1) *, we write 
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[ ,fRJ(x)9(x) dxl < 2 f fR~++ltiV /(y, t)l IV ~(y, t)l dydt 

~ C  fR" f f x-v,<t<h(z) t l -n 'V / (y ' t ) "Vq~(Y ' t ) 'dyd tdx  

(as follows from (2.4) and a change in the order of the triple integral) 

< dx <~ C lllH.,, 

since Sh(~)(9) (x)~< 1 000 C and ]]S~(/)II ~ ~< C II/l[n~. The proof is complete. 

b) Theorems 2 and 3 have natural analogues in martingale theory. Let  :~0--- :~1--- :~-~ ... 

. . ._ : ~  be an increasing sequence of Borel fields, l~or each :~-measurable  function f, 

form the conditional expectat ion/n = E(/I:~,). We say that  / E H  1 if the maximal function 

/*(x) =SUpn>~o]/n(x) l belongs to L ~. Let  BMO denote the space o f / ' s  for which 

III,-I.+iII  < o fo r  all n and 

(13) I lE(I I - I=I  l~=)ll~<c for all n. 

Then (H1) * =BMO. We shall not give the proof, but only remark that  the reasoning in 

(a) above goes over to the martingale setting. A. Garsia and C. Herz have since discovered 

other proofs of the martingale version of (H1) * =BMO. 

3. Some applications to / /1  

Our purpose here is to give those applications of the duality of H 1 and BMO which 

are rather straight-forward consequences of this relation. Further applications will be 

found in part  I I I  below. 

COROLLARY 1. Let To(/)=K~e/be as in Theorem 1. Then T O is a bounded operator o/ 

H ~ to itself, with a bound that can be taken to depend only On B. 

If we considered T O as bounded  mapping from H 1 to L 1 only, the corresponding 

conclusion would follow immediately from Theorems 1 and 2. However the proof of the full 

assertion:requires a further idea~ 

Let  K ( x ) = K ( ~ : x ) , a n d  T(]):=K~-] b e t h e  "dua l"  to T0. Then clearly 

fRoTo(/) dx=fRo#( )dX (311) 
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whenever ]EL' and ~EL ~~ Assume now tha t  leH1, and let ~ range over the unit ball of 

L% I t  then follows from (3.1) and Theorem 2 that  II To(/)II1 <A li]l]~' {supNtN~<I]] T(~)ll*}- 

However ~ satisfies the same conditions as T, and thus  by  Theorem 1 {I T(~)[I* ~<A [[~[[~o. 

Altogether then 

llTo (I)111 < A II111,,, /3.2) 

where A depends only on the bound B (and not the L 1 norm of K). 

We now invoke the fact (which is trivial only when n = 1), t ha t  the Riesz transforms 

are bounded on H 1. That  is, we have the inequality 

IIRj/iI.,<AIIIIt.I, i=~ .... ,.~, I ~ W  (3.3) 

where (Rsl)" (~) = (~t,/Itl)l(t); or equivalently 

IIR, RglI~<~A ~ IIR'(/)II, , =  / e l l  1, I ~<],k<n. 

(See  [21,  p .  232] ) .  (1) 

Now T o Rs = Rs To, as bounded operators on H 1. (At this stage we use the trivial result 

tha t  T o is bounded on H 1, but  with a norm tha t  m a y  depend on t h e  L 1 norm of K.) 

Combining (3.2) and (3.3) then gives 

IITo(/)ll.,--Ilmo(l)lll +,~IlIR'T~ < A {11/11.,, + ~ IIR,/II.,} < A' II/ll.,, 

with A'  tha t  depends only on B. The proof of the corollary is therefore complete. 

The corollary allows us to prove the boundedness of singular integrals on H ~ in 

various new circumstances. For the singular integrals corresponding to 0 <0  < 1, no results 

were known previously concerning boundedness on H 1. In  the case of the "s tandard"  

singular integrals (corresponding to 0=0) where boundedness results were originally 

developed, the above technique leads to those results but  with sharper cenditions. We 

s t a t e  two theorems of this kind. 

First let m(~) be a function satisfying [m(~)[ ~< B, and 

sup R2M-"( {mC~'(~)pd~<B, for0<l~l<k, 
0</~< oo ,J/~<[~[<2/t 

where k is the smallest integer > n/2. Then m is a multiplier on H 1. These conditions on m 

are exactly HSrmander 's  hypothesis for the Mihlin multiplier theorem. Secondly it can be 

shown tha t  the singular integrals with the CalderSn-Zygmund kernels ~(x)/I x ]" (where 

(1) The last inequality could also be proved by appealing to (3.2). 
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is homogeneous of degree zero, satisfies l)ini's condition and has mean-value zero) give 

hounded operators on ~ H I. Both these results, which could he proved from Corollary 1 

by what are now rather standard arguments, sharpen the corresponding theorems in [21]. 

Let T be the dual of the operator T, where the latter is considered as an operator on 

H I. Then T is an extension of T 0. From Corollary I (applied to K in place of K) and Theorem 

2 one then obtains immediately 

COI~OLLAI~Y 2. T i8 a bounded operator ]rom BMO to itsel/, with a bound that can be 

t~ken to depend only on B. 

We show next how one can obtain sharp results for maximal functions on H 1. Maximal 

functions of this kind, but  studied by  different methods, are at  the heart  of the "real- 

variable" theory of H p described in par t  V. Let  ~0 be a function on t t  n which satisfies 

either condition (A) or (B) below; for tha t  mat te r  various other conditions of the same 

kind would also do. 

(A) ~ has compact support and ~ satisfies a Dini condition, i.e. if 

~o(6)= sup [~(x) -~(y) [ ,  then; 0)((~) 
Ix-yl<0 ~ d~< oo. 

Alternatively, 

(B) for some e > 0, 

-< -A! yI~ for 21YI<I~I. n ~ ( x ) I < A 0 + I x [ )  -~-~ and ]q~(x-y)-q~(x)[-~(l+lxl)n+2~, 

For such ~0, let q)t(x)=t-nq~(x/t), t > 0 .  

T~EOg~.M 4. Suppose q~ satisfies either (A) or (B) above. Then whenever/E H 1 

sup [(/~ ~) (x)[ c L ~, 
t>0 

and fR,,ITP ( /~  ~)  (x) l dx ~ A II/t1~. (3.4) 

The same conclusion holds/or the "non-tangential" version, tha t is, where [supt>0 (/~- ~) (x)[ 

is replaced by 
sup [ /~ ~(y) l. 

Ix-yl<~t  

We shall prove the theorem for the case supt>0](/~-~t)(x)], under alternative (A). 

The other variants are proved in the same way, and the details may  be left to the 

interested reader. 
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I t  is no loss o f  generality t o  assume tha t  the support  of ~ is inside the unit ball. 

Let  x-+t(x) be any  positive, measurable function on R ~ which is bounded and bounded 

away f r o m  zero. I t  will  suffice to show tha t  

f~.l(/ ~ v.: , )  (x) l dz < A II/ll., (3.4) 

where the constant A above does not depend on the particular function t(x) tha t  is used. 

We dualize this inequality, and see by  Theorem 3 tha t  the problem is reduced to the 

following: consider the mapping 

Then this is a bounded mapping from L ~~ to BMO, with a bound independent of t(x), 

The proof of this last assertion follows the same lines as the proof of Theorem 1. Fix a 

cube Q =Qh whose sides have length h and whose center is y0, and let Q~ b e the cube with 

the same center as Q, whose sides have length 2h. We shall estimate (I) in Q by  writing 

O=(I)l+(D2, where (I) s arises from ~Fs, 1F=~FI+W~, ~Iel =z~F, ~F2=(1-Z)~F, and g is the 

characteristic function of Q2a- Now 

(3.5) 

Write aQ = fcQi (x -Y~  tF(x) dx. (t(x))-~ \ t(x) / 

and in view of the support condition o n  q0 we may  assume either t(x)>~ Ix--Yl or 

t(x)>~ lx-yOl. Since if yeQ and xeCQ2h then Ix -y[  ~ [ x - y ~  we obtain tha t  in either 

ease t(x) >~ c ] x -  yO[ for some small positive c. The Dini condition applied to ~ therefore gives 

I(D'(Y)-aQt<~A r , ]x_yOi_n~[ y_yO 't _< ' 

as long as yE?~,. Combining this w i th  (3.5). gives 

f lr ~1 dye< XlQ111~11~ 

where A is independent of Q or t(x), which is the desired result. 
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We remark tha t  the Dini type condition imposed on ~ cannot be essentially relaxed 

Thus in one dimension the conclusion of Theorem 4 would be false if we took for ~ the 

characteristic function of the unit interval. To see this consider the (limiting) case when 

t(x) = [x[; ~ is the characteristic function of [ - 1 ,  1]. Let  ~F be the characteristic function 

of [0, 1]. Then 

- --flx_l~9(x-Yldx.~_log2 i f  O < ~ y ~ 2 ,  

and d)(y)=0 otherwise. But  it is easy to see tha t  qb is not BMO. Therefore by  the duality, 

the mapping ]~(/~t(x))(x)  cannot be bounded from H 1 to L 1, and hence the property 

(3.4) does not hold for this ~. 

III. Applications to L P boundedness 

4. The f u n c t i o n f  # 

In  order to apply the above duality to the boundedness i n / 2  of various operators, 

we shall need to introduce a device tha t  mediates between BMO and the L v spaces. This 

device is the function ]# defined as follows. Whenever ] is locally integrable on R n we set 

t#(x)=sup ([~[ fQ'/(Y)--/Qldy} (4.1) 

Of course, /EBMO is identicM with the s t a t emen t /#EL~;  the interest o f /#  is the fact  

tha t  [# EL v, p < ~ implies /EL". Define the maximal  function M/ by 

(M/) (x) = sup 1 fQ 

As is well known, if ]E/2, then M/eLY, and HM/H,<A~H/H,, when 1 < p <  ~ .  Obviously 

M/>~l/l" The precise statement concerning ] ~is as follows. 

THeOReM 5. Suppose /EL~*(R~),/or some 290. Assume that 1 < p <  ~ ,  1 <po <--.p, and 

that/#E/2(R"). Then M]E/2(R~), and we have the a priori inequality 

IIM/II, <A, II/#]],. (4.e) 

Proo/. We apply the CalderSn-Zygmund lemma to [/1" For fixed ~ >0,  we divide 

R ~ into a mesh of equal  cubes so t h a t  (1/IQI)SQ]/] dx<~ for every cube in this mesh. 

(This can be done since /E/2 ' ,  P0 < 0%) Next  by  repeated bisection, obtain a disjoint family 

of cubes {Q~}, so tha t  

11 -722902 Acta mathematica 129. Imprim4 le 20ctobre  1972 
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J g < ~ dx <~ 2rig (4.3) 

and I[(x) l <~ g if x r [.Jj Q~. (For details see CaIdcr6n and Zygmund [5].) 

This decomposition can be carried out simultaneously for all values of a .  I t  is then 

convenient to restrict attention to a fixed family of meshes--the "dyadic" ones. Note that  

if gl>g2, the cubes in {Q~} are then sub-cubes of t h e  cubes ih (Q~}: Let  us denote by 

#(g) = ~J I Q~I" The main estimate will be the inequality: 

/~(g)~< x . / # > ~  ~_2 (4.4) 

which is to hold for all positive g and A. 

Fix a cube ~j, = Q0, and look at all the  cubes Q~ ~ Q~0 . We divide considera- 

tion into two cases. 

Case 1. Qo c {x:/# > a/A}. Then trivially, 

Z IQ;I < I{ x:/~>glA} n Qol. (4.5) 
Q~ C Q0 

Case 2. Qor {x:/# >a/A}. 

1 fQo I/(x)-/~~ dx< g/A. (4.6) Then obviously ]Qo] 

However by (4.3) I/Col ~< 2~(2-~-1~) = g/2, and I/IQ~ >~.  Bence 

fQTi/(x)-/ .ldx   IQTt, 

where Q~ is any cube c Qo- Summing over ~lt such cubes and comparing with (4.6) gives us 

Q F C Qo 

Finally we sum over all the cubes Q0 (these are the cubes in {Q~2-~-1}), taking into 

account the estimates for eases 1 and 2 it; (4.5)' and (4.7). This proves (4.4). 

Let ).(g)= [{x;M[(x)>a}l be the distribution function of the maximal function M[. 

When we compare ~, with # we obtain two estimates 

{~(g) < ~(g) (4.8) 
~(6~) ~ Cl#(C2g) ,  where c 1 and c~ >0.  
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Observe tha t  IQsl SQTIt(x)I dx >~, so tha t  (M h (x) > ~  whenever x e  Q~, and there- 

fore {x: M/(x) > ~} ~ Uj  Q~, which gives the first inequality. 

Next  let Qj be the cube with the same centers as Q~ but  expanded by  a factor of 2. 

Suppose x ~ U j Q j ,  and let Q be any cube Such tha t  xEQ. Consider 

fQ ,](y),dy~ fQn{t]Q~.} '/(Y)' dY+ fQn{C~Q~.} ,/(y),dy. 

In  the second integral bn the right the value of I/I does not exceed ~. Thus this 

integral is majorized by  ~IQI" For  the first integral we use the simple geometric 

observation: if Qfi Q~ =~0, and Q r  (because xEQ), then Q~]cQ. Here Q is the cube 

with the same center as Q but  expanded by  a factor of 4. Therefore for the first integral we 

h a v e  

;on(t]Q~.)l/(Y)ldY<~ ~ .  fQTI/(Y)ldY< ~ _ 2 ~ T I Q ~ I < ~ 2 " ' 4 ~ l Q t .  
~7c ~ QTc 

Altogether then, for such Q, ~o ]/(y)] dy < (1 + 2 ~ 4 ~) ~ ]Q]; this gives M/ix ) < (1 + 2~4 ~) ~. 

Therefore (x: M/(x) > (1 + 2~4 ~) ~} ~ Uj ~~ Qj, which means tha t  2((1 + 2~4 ~) ~) ~< 2nju(~), 

proving the second inequality in (4.8). 

L e t  us now consider the quanti ty IN defined by l~=pS~o:~-l/~(:c)d~. By (4.8) 

IN ~< P SN ~ - ~  2(~) d~, and we know tha t  Po .~ ~'~ 2(~x) do~ = IMII~ < co, if 1 < P0 < co or 

else 2(~) ~ O(a -1) if P0 = i .  I n  either case, then, IN< co, since Po ~ P, and 1 < p, according 

to our hypotheses. Le t  us carry out the corresponding integration of both sides of (4.4) 

over the interval 0 < a < N. We then get 

2 ~N 

f Clearly P c~-~/~(2-~-Z~)d~=P 2 (~+~)~ NZ~-~ f �9 ~ - i # ( ~ )  d~ ~< p2  (=+~)~ I~. 
j0 

2 �9 2 (n+l)~ 
Hence, Z=<A'III III+ A Z=" 

Choose now A = 4 . 2  (n+l)p. The resulting inequality is therefore I= 4 2 .4 " .  2 (=+~)" II1 11. 
When we let N -> c~ we see tha t  by  (t.8) we have 

f f IIM(I)III-  p dc~<~ c~ce "p c~'-]#(r ~ c~ c~ ~ lim I ~ <  c~ c ~ . 2 . 4 " . 2  (n+~)'~ IIl llI. 
N---> or 

Thus M/~ L ~, and the inequality (4.2) is also proved, with A.~. C ~. In  particular, note 

that  A~ remains bounded as p -+ 1. 
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5. Intermediate spaces 

The properties of the function [#, together with the duality, allow us to determine 

the intermediate spaces between H 1 a n d / 2 ,  and also between BMO and L ~, in terms of 

the complex method of interpolation. To be specific, let [., .]0 be the complex method of 

interpolation as described in Calder6n [4]. Then we can state the following identities, with 

l<p~<oo,  p ' - l + p - l = l ,  q ' - l + q - l = l ,  0 < 0 < 1 ,  and q-~=l-O+Op-l: 

[H 1, LP]o = L  q, and [BM0, L~']o =L  q'. (5.1) 

In order not to get side-tracked in various details that  are not relevent to the central 

subject of this paper, we shall not give a proof of this result here, Instead we shall formulate 

and prove two corollaries of it, which are of the form most useful for applications. In 

addition, these corollaries already contain the essential ideas of the general identity (5.1). 

We shall deal with a mapping z~T~ from the closed strip 0 <~R(z)~<1 to bounded 

operators on L2(R~). We shall assume that  this mapping is analytic in the interior of the 

strip, and strongly continuous and uniformly bounded in the closed strip. 

COROLLARY 1. Suppose 

sup 
-oo <y<oo 

IIT,~(I)III <.MolII I I . , ,  / o r / E L  ~ n t t  1, (5.2) 

and sup IIT,+,~(I)II~ <<.MIIIIII~, / o r iEL  ~. (5.3) 
--00 <y<oO 

Then IIT,(I)II~ < M, II111,,/or/E L ~ N L ~ whenever 0<  t <  1, p -  ' = 1 - �89 t, and M t  depends 

COROLLARY 2. Suppose 

sup ]]T~y(/)H, <.ioll/lloo, ~or /EL  2 NL% (5.2/ 
--r 

and sup IIT,+,y(I)II2<MIlIIll2, /or /EL  ~, (5.3)' 
- o r  < y < o o  

Then I ITt (1) 11,' < M, I I111~', lot I e L ~ N Z2", where p-1 + p,-1 = 1 and with the notations o/ 

Corollary 1. 

Proo/. Our proof of Corollary 1 will at the same time give a proof for Corollary 2. 

The proof of Corollary 2 will not, however, require the duality of H 1 and BMO. For 

each z in the strip let S~ denote the (Hilbert space) adjoint of T;. Thus 

on Mo, M, and t only. 
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Observe tha t  as a result z-+S~ is analytic in the interior, and strongly continuous 

and uniformly bounded in the closure of the strip. Moreover if z-~ T~ satisfies the 

conditions of the type (5.2) and (5.3), then z--->Sz satisfies conditions of the type (5.2)' 

and (5.3)'. Let  us prove this for (5.2)'. By  (5.4), whenever g E L ~  L ~176 then the mapping 

/-~R,~/S~(g)dx is the restriction to .L2NH 1 of a bounded linear functional on H 1 whose 

norm does not exceed Mollglloo. Therefore by  Theorem 2, S,~(g)eBMO, and IIS~(g)ll, <<. 

AMoHgHo o. This proves the condition of the type (5.2)' for Sz, but  with a possibly larger 

constant. (The increase in the size of the bound is immaterial in what  follows.) The condi- 

tion of type (5.3)' follows immediatly from the self-duality of L 2. 

We m a y  therefore assume tha t  S satisfies the conditions of Corollary 2, and we shall 

prove that ,  as a result, S satisfies the conclusions of tha t  corollary. Write F =S  z (/), and 

let x--->Q(x) be any measurable function from R ~ to cubes in R = with the property tha t  

x EQ(x), and let ~(x, y) be any measurable function on R = x R  n such tha t  [~(x, y)[ =1.  

Define the operator ]---> Uz(]) by  

1 
JQ [F(y)-FQ(,~]~(x,y)dy, F=Sz(]).  u~(/) (x) = ~ (,) 

Observe that IU,(l)(x)l< r#(x), and conversely sup I u,(/)(x)l= F#(x), if the supremum 

is taken over all possible functions x~Q(x) and (x, y ) - ~ ( x ,  y) described above. Since 

[] F# 1]~ < 2 H M(F)[Is ~< C[[ F I[ 2 , it is easy to see tha t  the function z ~ ,[Rn U~ (/) g dx, is analytic in 

the strip 0 < R(z)< 1, and continuous and bounded in the closure of tha t  strip. Also 

I lv,~(/)l l~ < I1~#11~ = I IF l l ,  = IIS,~(/)II. < AMolI/ I I~, i f / e L ' n L ~ .  

Similarly I IU--,~(/) I I ,<I lY#11,<ClIFII ,  = qlSI+,~(/) I I ,<OM~II / I I ,  for l eZ ' .  

We may  therefore apply to the analytic family of operators z-~ U~ a known interpolation 

theorem (see e.g. [25, chapter V]) and conclude tha t  

II u,(l)I1~.-< (AMo)I-t(CM) t II/11,. (5.5) 

whenever /EL2NL v', with .p'-X=lt, and O < t < l .  Observe tha t  bound (AMo)I-t(CM1) t 

does not depend on the particular choice of the function x--->Q(x) and ~l(x, y). We take 

therefore the supremum over all such functions, and then (5.5) yields 

II F#llv. = II(st(t))#ll,. ~< (AMo) ~-t (CM~) ~ II/11~., /eL~ n I2'. 

I f  / EL ~, of course St(l) EL 2, and obviously 2 ~<p' < oo. We may  then invoke Theorem 

5 (see (4.2)), and conclude tha t  
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whenever /EL2DL ~'. Thus the Corollary 2 is proved. Going back to T z via the duality 

(5.4) also proves Corollary 1 (with Mt=A~.(AMo)I-t(CM1)t). 

Remarks. As is the case in theorems of this kind, estimates of the type (5.2) can be 

replaced by  weaker bounds, such as ]] T,~(/)]]~ ~< Mo(y ) H/I]-', where Mo(y ) = 0(e e~ a < ~/2. 

Similarly for (5.3), (5:2)', and (5.3'). In practice, however, all that  is needed is the case 

where M~ (y)= 0(1 + ] y [ )N, for some N, This case can be deduced directly from the corollaries 

as stated by taking eZ~Tz instead of T~. 

In the classical case ( n = l )  Corollary l had been known previously, even in a more 

extended form which applied to  'all H ~ spaces; see Stein and Weiss [23], Zygmund [28, 

Chapter XII],  and the earlier literature cited there. However, when n = 1 one used complex 

methods :(e,g. Blaschke products, etc.), and these of course are unavailable in the general 

context treated here. 

6, LP boundedness of certain convolution operators 

We begin by dealing with operators of the type arising in Theorem 1 (in w 1). Here we 

shall assume that  0 .<0<1,  because there is no analogue of the result below when 0='0. 

We shall also change the hypotheses slightly, g will be a distribution of compact support, 

which is integrable away from the origin. Its Fourier t ransform/~ is of course a function. 

We make the following assumptions 

( IK(x-Y):-K(x)Idx<~B, 0 < ty l<~ l  
J ,xl>~2,yll-o (6.1) 

- " ~  

TI~Eo~a~M 6. Suppose K satis]ies the above assumptions. Then ]~l~/~(~) is a bounded 

multiplier/or (L~(Rn), LV(R~)), i/ 1�89189 l < p <  0% and ?>~0. 

The main interest of the theorem is the case when 1�89 -P-l[  =�89 -?~nO; the full assertion 

is then a consequence of this, and anyway the result when ] �89  < �89  was known 

previously. 

Let  ~ be a fixed C ~~ function on R ~ with compact support and which is normalized 

i.e. ~R- ~ dx = 1. Let  q0~(x) = s-'qp(x/s), s > 0, and write K~ = K ~ ~0e. I t  is not difficult to show 

(see [9]) that  when 0 <s  ~< 1 the (C ~176 functions K~ satisfy the condition (6.1) uniformly in e, 

and :of course have their support in a fixed bounded set. Moreover/~(~) =/~(~) ~(s~) ~/~(~), 

as s-~0. I t  is easy to see, then, that  it suffices to prove the following: For each such e, 
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]~;Iv/~8(~) i s  a bounded multiplier on (I2,L~), (where 1�89 =�89 with a bound 

independent of s. 

For this purpose write T~ as the multiplier operator on L 2 defined by 

(Tzl)" (~) = I ~ I n~ I~ (~) f (~), 

whenever IEL2(Rn). In  view of fact that  I~(~)=O(l~]-no/2), it follows tha t  z->T z is 

analytic in the strip 0 < R ( z ) < l ,  strongly continuous and uniformly bounded in the 

closure of that  strip. Clearly, also 

sup IITI+~/II~<AII/II~ (6.2) 
- -  O o ~ y ~ o O  

where A does not depend on s. 

Next assume /EL  2 fi H 1, Then we can write 

where (I~y (F))^ (~) = L~]~~ 

By Corollary 1 (in w the o p e r a t o r s / - ~ K ~ - / a r e  bounded on H 1, with norms tha t  

are uniformly bounded in e. Also by Corollary 1 the fractional integration operators of 

purely imaginary order, I~, are bounded on H ~ with norms that  do not exceed A (1 + I Y I )~+~" 

(This was known before). Thus 

[IT,~ (1)II~--IIx,~(K.~ 1)11~ < A(1 + [yI) "+~ IlK, ~/II,, < A(1 + lYl )~+~ II//I-,. (6a) 

Finally, consider d'Tz instead of T~. The former then satisfies all the conditions 

of Corollary 1 (in w 5), where the bounds M 0 and M 1 are independent of e, The corollary 

then gives the desired result when 1 < p < 2 ,  p - l - � 8 9 1 8 9  where p , l = l - J t ,  and 

Y =nOt~2. The corresponding statement for ~1 _~-1__yl-y/nO is just the dual of the pre- 

ceeding, and this concludes the proof of Theorem 6. 

The argument we just gave clearly generalizes to yield also the proof of the following 

theorem of wider scope. 

T ~ O ~ M  7. Suppose m is a bounded multiplier on (H', H1). Assume also that 

Im(~)l ~<AI~I -~, ($>0. Then I~]v m(~) is a bounded multiplier/or (L ~, liP) i] 1 < p <  oo and 

[1--~-~1--.<~-7/2(~, and >10. ~ I ~ V 

We define the operator T~ by T~(1)" (~) = l~]~m(~)/(~). The argument is then the same 

as for  Theorem 6. An immediate corollary is 

COROL~).R~:, Suppose d# is a finite Borel measure on R ~ and assume its Fourier 

trans/orm fz(~) is 0([~-~) ,  as [$l-->0% (~>~0. Then iI~l~12(~) is a multiplier ~or (L ~, L ~) 

i] 1 4 p 4  ~o, ] �89 4�89 ' and y>~0. 
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Obviously ll/~d~ll~<iid~[ [ 1[/11~, and (/~d~)^=~(2)f(2), so p(2) is  a multiplier o n  

H 1, and the corollary follows from Theorem 7. 

We shall now give some representative examples of the applications of Theorems 6 

and 7. 

Example 1. Let  ~0 be a fixed C ~ function on R n which vanishes near the origin, 

and is = 1 for all sufficiently large 2. Suppose 0 < a  < 1. Then 

~(2)  e'I~" 12I- ~ = too, ~ (2) (6.4) 

is a multiplier on (L ~', L'), whenever 1 < p < ~ ,  and 

n a  
< - - .  (6.5) 

2 

In fact the analysis of Wainger [27, p. 41-53] shows that  whenever n + 2 > 0 ,  then 

m~.b(2)=l~(2), where K = K t + K  ~ and K 1 is a distribution of compact support, while 

g~ is an L t function. Moreover /~2(2)--0(]2{ -N) as 121-~oo for all N, and thus 

/~1(2) ~yJ(2)~l~l'{ 2{-b. In addition it one can show that  K~ (x) is a function away from the 

origin with 

gl(x)~c~{x{-"-% '~''~''', as x -~0  

w h e r e  a - l + a ' - l = l .  Also  I v K I ( x ) I  < Ix l -~ - l§  

Now set 0 =a,  and 2 = 0  (i.e. b=na/2). Then it follows from what we have just said 
TU~ 

tha t  the distribution K 1 satisfies the conditions (6.1), for Theorem 6, (/~1 (2) ~ W(2) *l~la { 2 { - Y 

in this ease). By taking ? = � 8 9  we obtain the desired result. 

Example 2. Define T~ by 

/(x--y) (etl~l" /ly]'~+~)dy, /E C~ (6.6) T~ (/) = l im 
e--~0 de<lyK<l 

where a' <O, ~ >~0. 

Then {[Ta(/)[[v<Av{[/{[,,, where p, a and ~ are related by (6.5), and a - l + a ' - l = l .  

This example is very closely related to the previous one and can be obtained by the same 

analysis. 

The results in examples 1 and 2, when there is strict inequality in (6.5), are due to 

Hirsehmann [14] and Wainger [27], who also show that  t h e / 2  inequalities do not hold 

when {�89 > (b/n)[�89 +~)]. The sharp result, i.e. the case of equality in (6.5), 

is new. 
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Example 3. Let  d~ be the uniform mass distributed on the unit sphere in R n. Consider 

the distribution (8/ax) ~ a, where ~ = (~1 ..... ~n) and [ a I = ~1 § ~ . . . . .  § ~ .  Then if n ~> 3 

(the cases n = l  and n=2 are vacuous), 

~ is a multiplier for (L p,/2), when 2 p 2 n - l "  (6.7) 

In  fact ~ ~ = ( - 2 ~ i ~ : F e ( ~ )  ( -2~ i~ )~  

I t  is very well known tha t  ~(~) = 0(I ~J-(~-1)/2), and thus I~] I~l ~(~) is a multiplier on (L ~, L ~) 

when l�89 -P - l l  <~ �89 - [ a  I/(n- 1), according to the corollary. In  addition since ( -  2 =i~)~/I ~l I~l 

is homogeneous of degree 0 and smooth on the unit sphere, i t  is a multiplier on (L ~,/2), 

for l < p <  c~; (see e.g. [21,96]). 

(6.7) answers several questions raised in the s tudy of A~ algebras; see Eymard  [8]. 

Results of this kind may  also be used to give new estimates for solutions of the wave 

equation. 

IV. Characterization of H p in terms of boundary properties of harmonic [unctions 

7. Area integral and non-tangential max.functions 

This par t  is organized as follows. Section 7 contains the basic result relating the 

/ / n o r m s ,  0 <p ,  of the non-tangential max.function and the area integral of any harmonic 

function. The consequences for the H p spaces are then set down in Section 8. These are, 

among others, the extension to n-dimensions of the theorem of Burkholder-Gundy-  

Silverstein [2] characterizing H ". Section 9 consists of a series of lemmas about  harmonic 

functions tha t  are used in sections 7 and 8 and also in later parts. Section 10 presents the 

second main result of this part,  namely tha t  max.functions formed with "arb i t ra ry"  

approximate identities work as well for H ~ as the one formed with the Poisson kernel. This 

result was anticipated, in the context of H i, in w 3; for the case of general H ~ it is taken 

up again as the main theme of Par t  V. 

We begin with the first theorem, and fix the notation: u=u(x, t) will be a harmonic 

function in R~+I; p will be an exponent so tha t  0 < p  < c~; and 1"1 and F 2 will be a pair of 

cones whose vertices are the origin, i.e. r~---((x, t): Ix[ <c~t}, i= 1, 2. We denote by  

l'~(x), IxER~), the translate of F~ so that  its vertex is x. 

THEOREM 8. With the notation above, set 

u*(x)= sup lu(x',t)l, and (Su)(x)= IVu(x',t)12tl-ndx'dt 
(x', ~)eF1 (x) 2(x 
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Then the ]ollowing two conditions are equivalent 

(a) u* EL" 

(b) u(x, t)-->O, as t ~ ,  and S(u)EL v. 

Moreover, ]]u*ll ~ ~ IlS(u)lt~p; 0 < p  < ~ .  (~) 

This result is well-known when 1 : p <  ~ ;  see [19]. Thus in proving the theorem we 

shall assume that  p<2.(~) The proof will be an adaptation of the proof of the earlier 

known "local analogue" of this theorem, namely that  the sets where u* < ~ and where 

s(U) < ~ are equivalent. We shall therefore follow the main lines of the proof o f  

the 10cal analogue (see [21, chapter VII])I but we will need to find the right quantitative 

estimates in place of certain qualitative statements. 

The implication (a)~  (b): llS(u) ll, clln*ll . 
I t  is convenient to make" certain additional assumptions that  will be removed at the 

end of the proof. We assume: u is the Poisson integral of anL 2 function; and the cone defining 

S is strictly contained in the cone defining u*, i.e. c~<c r 
We let E be the closed set E={xER~: u * ( x ) ~ }  and B its complement. So, if 

2 :  is the distribution function of u*, then 2~*(~) = I B I" Write ~ = [J Z ~sF2(x). By a simple 

argument, if lu(x, t) I <~ in U~EF~(x), we have ItVu(x, t)l <~C~, for (x, t )E~.  Now 

An estimate for the last integral is obtained by replacing the region ~ by an 

approximating family of sub-regions, ~ :  and then transforming the resulting integrals by 

Green's t~heorem. We can choose the ~ so that  their boundaries, Be, are given as 

hypersurfaces t=cglS~(x), with 8ix) smooth and  [~/~xj[ ~<1, i = l  ..... n. See [21; 206]. 

In applYing Green's theorem the point corresponding to the boundary  "a t  infinity" 

Will vanish in view of the assumption that  u i s the  Poisson integral of an L 2 function, a s the  

reader may easily verify. Since A lu 12 = 21Vu I ~ We have 

~oLJs, St dal (a) (7.1) fs(Su(x))~dx<~limI F t ~ d c ~  f s )u[2~ j" 

(1) In his thesis at Washington University, Jia-Arng Chao has obtained a~.anal0gue Of this 
theorem and a partial analogue of Theorem 9 in the context of p-adic fields. 

(2) When n = 1, see Burkholder, Gundy and Si!verstein [2]. 
e) We have ffR (AAB - BAA) dx dt ~ ton (A (OB/~n) "B{OA/~n)) da, and Sake ,.4 ~ t, B = �89 l u I ~. 
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We now divide the boundary:B., into parts B8 = B~ (J BY, where B~ is that  part  above 

the set E, and B s that  part  lying above the set B. However, supt>olU(x,t)l and 

sups> o t t Vu(x, t) I are both in L 2, and limt_~ o t l Vu(x, t)] = 0 almost everywhere. Thus 

t - ~ - d ~ - ~ O ,  

as s -~ O, since dcr~ dx. We have already observed that  [tVu(x, t) l< C~in R; also lu(x, t)] < 
in R, since R = U~EF2(x), and u*(x)< ~ for xEE. Therefore 

e ~ d se 

f ,u, Next ~n = E + 

The first integral is dominated by .~E (u*) ~ d(~ <~ C.~E (u*) ~ gx < C .[~ t~, (t) dt, since u* ~< 

on E. For the second integral we have as majorant y ~ l u  I S da ~< ~ YBda ~< C~ ~ I BI = C~ ~ ~ ,  (~). 

Altogether then by  (7.1) 

From this, and the fact that  l C El = I B[ = ~u* (u), it follows that  

Integrating with respect t o ~  then gives, 

]]S(u)ll~=io f/gP'l~z(ul (~)d~<- C {p f/otP-lAu,(cc) d~+p fo~t~u,(t) { ft:co~'-gda}dt} 

~C]]u*I[~, if O<p<2. 

We assume, as above, that  u is the Poisson integral of an L 2 function; in addition we 

suppose that  the cone defining u* is strictly contained in the cone defining S, i.e. c 1 < c~. 

We let E be the closed set {xERn: S(u)(x)<~}, and B its complement. Thus 

As(u) (~) = 181- Now let E o be those points a t  which E has relative density at least �89 more 

precisely set E 0 = {x e R~: for every cube Q, such that  x EQI I E ~ Q[/> I lQ ] }. Observe that  

since E is closed, Eo~ E; clearly E 0 is also closed. If Z is the characteristic function of 
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B=~E, then CEo=B*={x:M(y,)>{}, where M is the maximal function. Thus 

I B*I < C I B  I =C,~(~,(~). 
We now form the region ~ = 13 xe s~ F1 (x), with the corresponding aproximating regions 

~ ,  and t ry  to estimate the integral of ]u]3 on ~ = B~. We have 

f (su (x))3 d~ = f u r~(~, I V u(y, t) l ~ l {x e E: (y, t) e F~ (x)} I t l  - n dy dt. 
xGE 

In  the second integrM we restrict integration over (y, t) E ~. Then (y, t) E ~ ~ for some 

2EE0, (y, t)EFI(~), i.e. 12-yl <c~t. But then (y, t)EF2(x), whenever ]x-~ l <(c2-cOt. 
Thus I{~eE: (y, t)er~(~)}l/> IEn BI, where B is the ball of center ~ e E  0, and radius 

(c2-cOt. In  view of the definition of E0, the latter quanti ty exceeds ct n, and so 

We transform the last integral by Green's theorem, obtaining as above 

f (S~(z))~dx~q f~81u(y, Ol~d~-C~ f~81~(y,t)ltlw(Y, OId~ (7.3) 

where C 1 and C~ are two positive constants (independent of e). 

Let Ys= (L~l~(y,t)l~d~) ~. We have h~l~(y,t) l~d~ < s < C s oo 

in view of the assumption tha t  u is the Poisson integral of an L 2 function. Hence J8 is 

finite for every e. Next  

f~)u(y,t),t,Vu(y,t)]d(l= f~,.+ f,,,. 

We know tha t  [tV u(y, t) <~ [Co: in R, since S(u) (x) < o: for x E E. By Schwarz's inequality, 

we get therefore tha t  

fE B, < :~"~(B2*) ~ < ~ c  IB*I ~ < c~(~(~, (~))~. 
8 

Also, as we have seen before, 18 = ~ ~  with e-~0.  Hence 

C .~ (Su(x)) 2 dx + CY~ (~Asu(a)) �89 + CI8 and therefore 

Y' = f~i 'u(y, t)12 d(~< C { ~  (Su(x))' dx + ~ ~s(u)(~ 

if e is small enough. 

(7.3) gives Y~ ~< 

(7.4) 
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l~ext for each e>0 ,  define a function /~ on R = by  setting /~(x)=C]u(x, cf~(x))] + 
C~ZB. (x) where ZB* is the characteristic function of B*, and t = q0~(x) is the equation of the 

hypersurfaee B~=~R~. Let  U~(x, t) be the Poisson integral of the /~, which because of 

(7.4) are obviously L 2 functions. Then as in [21; 211] we have the majorization 

]u(x, t)] ~< U~(x, t) on B~, whence on ~ .  

We select then a subsequence of the/~ which converges weakly t o / E L  2. Notice tha t  

because of (7.4) we then have 

fR ]/12 dx <~ C {fE(Su(x))2 dx + ~ ~s(~)(a) }. (7.5) 

Passing to the limit we obtain, tha t  

[u(x,t)[<<. v(z,t) (x,t)eR 

where U is the Poisson integral o f / ,  and therefore u*(x)<~ U*(x), for xEE o. So of course, 

fs~ fEo(U*(x))adx<~ C fR (/(x))2dx. 

Thus ](x eZ0: u* (x)> zr ~< C(~s(u, (~) + o~ -2 ;~ t2s(u~ (t) dt} and [ (x e CE0)[ = IB*[ < C(2s(u)(~)). 

Altogether then 

,~u,(:r <. C {~s(~,(o~) + o~-2~ t~s(~)(t) dt}. (7.6) 

This inequality is the same kind as (7.2), bu t  with u* and S(u) interchanged. Carrying 

out a similar integration gives 

Ilu*ll~.<Clls(~)ll,, ~ 0<~<2.  

We need now only to remove the restrictions on u and the cones F 1 and F2 to 

conclude the proof of Theorem 8. Assume therefore u'EL v, p<~2. Then if u~(x,t)= 
u(x,t+r it follows by  Lemma 3 in w below, that  supt>o.[R,[u~(x,t)12dx<~, and 

hence u~ is the Poisson integral of an L 2 function. Therefore by  what we have proved 

IlS(u~)ll, ~ Cl lu% 

and a simple limiting argument, involving the monotone convergence theorem then shows 

that IIS(~)II,<ClI~*II ,. 
The argument for the converse is only slightly more complicated. Let  ueN(x, t)= 

u(x, t + e) -u(x, t + 2Y). Then 
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/ 

<~ gl(U) (log ~) '<~ C~,NS(u) (x), 

in view of the known majorization g(u)(x)<-..CS(u)(x), (see [21; 90]), Thus 

supt>0 ~R-[UeN(x, t)t~dx< oo, and again by Lemma 3 of w 9 we see that  u~N is the PoissOn 

integra lof an L 2 function. 

Thus by what is already proved 

llu:Nll, clIs(u N) ll . 
However S(U~N) (x) ~ S(u~) (x) § S(uN) (x) <~ CS(u) (x), as is easily verified, and moreover 

lim sup Ilu* ll, >t Ilu%, 
N--~ 

by Fatou's lemma, since UN-~O as N-~oo. The result is then Ilu%< CllS(u)ll . 
Finally the restriction on the cones (we supposed that  P~ is strictly eontained in F1 

to prove (a)*(b),  and the reverse to prove (b)~(a)), is removed by the following lemma 

which will also be useful later. 

L~M~a 1. Let u(x, t) be any continuous/unction on R~_ +1. J~/ the-non-tangentiat:maxi , 

real/unction u*(x) = supj~_~t<~ In(y, t) l e l ?  (0 < p < ~ ), then U *N ( x )  = suplz_y I<Nt In(y, t)I is 
also in L~; in/act the "tangential" maximal/unction 

u**(x)= sup lu(y,t)l ( t )M <~.,>~+, I~-yl+t el?, /or M>n/p. 

Moreover, ]]u**lIT   llu*ll . 

Proo/. Let E~ = (u*(x) > ~); and  E* = (M(ZE~)(x) > C/N~}. Then we have I E* I ~< 

CNnl Eal by the maximal theorem. On the other hand, u*(x)<~c~ for x C E*. For,. pick 

any (y, t) with Ix-y/<2Vt.  The ball /3(y; t) cannot be contained in E~ since if it were 

M(ZE~) (x) >1 1 B(x; Nt) 1,11 B(y; t) l/> c/N" Therefore  U* (z) ~< ~ for  some z e B(y; t), which 

implies lu(Y, t) l <u*(z) <~. Thus, Ug ~< ~ except on E*. So 

which ~estimates u* y.. To prove . . . .  the more refined estimate on u**, just no te  that  u** (x)~< 

sup2~=N>~I (N-Mn*(X)), SO that  
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(u** (x))Vdx <~ ~ (2-Mr~u*N(X)) v dx 
m ~ l  n 

I .l ll  oo. 

Remarks 

1. The theorem holds when the harmonic funct ion u is real-valued~ or complex-valued, 

or  more generally if u takes its values in a Hilbert  space. I t  is to  be unders tood of course 

tha t  then the symbol  " I stands for the norm in tha t  Hi lber t  space, whenever t h a t  is 

appropriate.  I n  fact  an examinat ion of the a rgument  above shows tha t  all the estimates 

save one tha t  are made  hold in the even more general case of Banach-spaee valued functions, 

with I " I designating the  norm. The exceptional estimate, va l id  only in the  Hilbert  space 

context,  is the ident i ty  A ( [ u I 2 ) = 2 ] V u l  e. This ident i ty  follows immediately  from the  

scalar-valued case by passing to an or thonormal  base of the Hilbert  space. The Hilbert  

space var iant  of the theorem will be used in w 8 below. 

2. The estimates (7.2) and (7.6), linking the distribution functions of u* and S(u), 

can be used to prove other  inequalities relating u* and S(u). I n  particular the funct ion 

O( t )= t  v, 0 < p <  ~ ,  which is used in theorem 8 can be replaced by  a variety of others,  

such as ~ ( t ) - ( l o g  (t +1))~, 5 > 0 .  (~) 

8. Characterizations of H v 

We begin by  defining t h e  H ~ spaceS, when 0 < p <  ~ .  F o r  our purposes  it will be 

convenient  to adopt  the following point  of view. The elements of each H p space will consist 

of (complex,valued) harmonic functions u(x, t) defined on R~+I, satisfying certain additional 

conditions: We shall specify  these additional conditions in stages, 

1. Case when 1 < p < ~ .  

u e H ~ . ~ s u p  [ lu(x , t ) lVdx=llul l~p< oo. 
t > 0  . ]Rn 

I t  is well known (see e:g. [25, Chapter  123)" t ha t  with this definitio~ u eH~-~u: i s4he  

Poisson integral of an ] e L  ~, and ][ul]~p= H/l];. 

2. Case when ( n - l ) / n < 2 <  co. 

We say u E H  ~ if there~is a ( n + l ) t u p l e  of harmonic functions U=Uo, u 1 .. . .  , un, on 

B~ +1 so t h a t  w i t h  t=x0,  this  ( n + l ) t u p l e  satisfies the equa t ions  of eon iugacy  

(1) A systematic study of such (I) inequalities has since been made by  B~rkhgldcr and Gundy [1]. 
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uj_~u~ 0 < i , j ~ < n  
0x~ ~ x '  

(8.1) 
n 

j=0~x i 

and the condition supt>0 ~R- (~=0]Uj(X, t) l~)~/2dx = Ilull~ < oo. We remark first, tha t  in 

this case u = u  o uniquely determines uz ..... u ,  as the reader may  easily verify. Thus it is 

consistent to speak of u 0 as the element of H ~, instead of the n + 1 tuple %, u 1 . . . .  , un, as is 

usually done. Secondly, this definition is consistent with the previous one when 1 < p  < c~, 

and gives an equivalent norm; this last s tatement  is equivalent with t h e / 2  boundedness 

of the Riesz transforms. Of course the "raison d '6tre" for this definition (originally given 

by [24]) is the fact tha t  (~']=olUj(X) 12) p/~ is sub-harmonic when p > / ( n -  1)/n. Similar 

considerations motivate the following general definition. (') 

3. General case, Pk= ( n - 1 ) / ( n -  1 +I t )<p ,  k a positive integer. 

For the general case we consider tensor functions of rank k, satisfying additional 

conditions as follows. The components of the tensors are written as uj,,~ ..... ~, where 

j 's  range between 0 and n. We require tha t  the tensor is symmetric in the ]c indices, and 

tha t  i t s  traces vanish; the latter condition can be expressed as follows, in view of the 

symmetry  of the indices, 

n 

~ u z j  ...... j = 0  all ]3,]4 . . . . .  ]~. 
t=0 

Now to the differential equations satisfied by  these functions. We consider the tensor 

of rank k § 1 obtained from our tensor by  passing to its gradient, namely uj,... J~k+~ = 3/~xs~+~ 

(u~,...a). Then the equations analogous to (8.1) are precisely the s tatement  tha t  this 

tensor of rank /c + 1 is symmetric in all indices, and all its traces vanish. (See [6] and [26]). 

Finally we say tha t  a harmonic function n is in H ~ if there exists a tensor of rank k of the 

above type, with the property tha t  u(x, t) = u o ..... o(x, t) and supt>0 ~R- (~(j)[ u(j)(x, t) I ~)P/~dx = 

The fact tha t  these definitions of H ~, with different lc, are consistent is not obvious, 

but  is contained in the theorem below, the main result of this section. 

TH~,ORWM 9. Suppose u(x, t) is harmonic in R~ +1. Then u E H  ~ i / a n d  only i/ the non- 

tangential max./unction u*EI2.  Also the de/initions given above /or H ~ are all mutually  

consistent, and the resulting H p "norms"  are all equivalent. (~) Moreover [[u*ll~ [[UlIHp. 

(1) Tha t  the  defini t ion given for H 1 agrees wi th  the  not ion used in par t s  I I  and  I I I ,  see [21; 

p. 221]. 

note  H" Ii-  aotu lly  orm when p 1. 
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We shall prove this by showing tha t  whenever u EH ~ (defined according to definition 3, 

with some fixed /c), then u ' E / 2 ;  and next, whenever u 'EL ~ it follows tha t  uEH p, when 

defined with respect to any k. 

Suppose then tha t  u e l l  ~. The key point is tha t  (~(j~lu(j~ (x, t)[~)~k/2 is sub-harmonic if 

p~ = ( n - 1 ) / ( n - 1  +/c), see [6] and [26]. Then by  the arguments in [25, chapter VI] there 

exists a harmonic majorant  h(x, t), so tha t  (~(~)lu(~)(x, t)I~)~/~ <~h(x. t) and 

sup sup Ilull ,p. 
t > 0  n t>0  n 

Since P/Pk > 1, It(x, t) is the Poisson integral of a n  L p/~ function It(x), with 

Ilhll ,   Ilull,  . Now lu(x,t)l<(Z.)lu(.(x,t)p)~<~ (h(x,t))l/~k. Thus u*(x) <<.(h*(x))11~ 
C(M(h) (x)) i/~k . Finally then 

C fR (Mh(x))'< C fRo(it(x))'l" dx=CHull;p. 

So we have proved tha t  u ' e L  p, and Ilu*llp<~AHuHg p. 

Next  suppose u ' e L  ~. Then it follows from Lemma 3 in w 9 tha t  Ilu(x, t)H~=O(t-$ ), 

(~>0, as t ->w,  and hence by  a standard argument,  tha t  [[(~/ax)~u(z, t)H~o=O(t-~-I~l), 

t--> cr where (~/~x) ~ is any differential moniomial of order l al (see e.g. [21; 143]). This will 

allow us to define the "conjugates of order /c" of u(x, t). In  fact observe tha t  if /c>~l 

u ( x , t ) = ( ~ l ) ~ ,  f ( s - - t )k - l~(u(x , s ) )ds ,  t > 0 .  

The integral on the right converges, because of the observation we have just made, 

and also has as value u(x,t), since u(x, t), (~/~t)u(x,t) . . . . .  (~k-!/0tk-1), U(X, t)~O, as t ~  ~ .  

NOW for any/c-tuple of indecies (1")= (?1, ?'~ ..... ]k), each 0 ~1"~ ~<n, we define u(j)(x, t) by 

! - 1 ) k  k 1 [ ~  ~_/) 

where 8/SXo=~/~s. These integrals again converge, and the tensor-function u(j) satisfies 

the identities of symmetry  and vanishing traces required in definition 3. Moreover 

ur I f  we invoke Theorem 8, we see tha t  the assumption u 'EL ~ implies 

S(u) EL ~. The main point now is tha t  S(u(j))(x)<~CS(u)(x), as long as the cone defining 

S(uj) is strictly interior to tha t  of S(u), which follows by repeated application of the 

lemma in [21, p. 213]. (The results stated there are for t runcated cones, but  there is no 

problem in passing to the corresponding inequality for non-truncated cones). However  

from (8.2) it is clear tha t  u(j~(x, t)-->O, as t-+ ~ ;  thus when we invoke Theorem 8 again we get 

12 - 722902 Acta mathematica 129. I m p r i m 6  le 3 0 c t o b r e  1972 
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and hence suPt > 0 j fm \(,)(~lu(')(x't)12) ~'adx<<'C~l[u(')llp<<'Cllu*[Ig'(,) * p 

This proves tha t  u E H ~ and 

Since this par t  was carried out for any k, the proof of the theorem is therefore 

complete. An immediate consequence of Theorems 8 and 9 is the following (for which see 

CalderSn [3] and Segovia [16J). 

COROLLARY 1. Let u(x, t) be harmonic in R~ +t. Then uEH ~, 0 < p <  cr i /and only i/ 

S(u)EL ~, and u(x, t)~O, as t-->~. 

We next show that  the non-tangential max.function can be replaced by its "radial"  

analogue in characterizing H ~. In  fact, define u+ by u+(x)=sup;>0 [u(x , t)]. 

COROLLARY 2. Let u be harmonic in l~ TM, Then uEH ~, 0 < p < ~ ,  i/ and only i/ 

Moreover Ilull,   Ilu%. 

In  view of what we know already, and the fact tha t  u+(x) <~u*(x), it suffices to prove 

tha t  

Ilu*ll <  llu§ (8.3) 

For simplicity of notation, let us assume that  the aperture of the cone defining u* 

is 1. Now if (y, t)EF(x), then [ x - y  I <t; hence if B(y, t) denotes the ball of radius t 

centered at (y, t), its projection on R n is contained in the ball of radius 2t centered at  x. 

But  by the mean-value property expressed in Lemma 2 in w 9, we have 

[u(y,t)l~I~<. Ct--n-l~ lu(z,t')[~l~dzdt' 
J B(y, t)  

J B(y.t)  J I x - z l < g t  

Thus (u* (x)) ~l~ <~ CM[(u+)~I2J (x), and by the maximal  theorem for L ~ we have 

(u*(x)), dx<  c < c dx, 

proving (8.3) and the corollary. 

Remark. For another argument leading to the proof of Corollary 2 see the reasoning in 

Theorem 11 below. 
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In the same spirit as Corollary 2, the S function (which is non-tangential), can be 

replaced by the g function (its radial analogue), g(u)(x) = ( j ' ~ ivu  (x, t) i2tdt) �89 

COROLLARY 3. Let u be harmonic 

g(u)EL ~, and n(x, t)~O as t ~ .  

I t  clearly suffices to show that  

in R ~. Then uEH ~, 0 < p < ~  i/ and only i/ 

IlS(n)(x)ll~ < cllg(~)(z)ll~, o < p < o o .  (8.4) 

The reverse inequality is of course a consequence of the pointwise estimate 

g(u) (x) < CS(u) (x). 

We may simplify matters, as in the proof of Theorem 8, by assuming that  u is the 

Poisson integral of an L ~ function. Once the a priori inequality (8.4) is proved for such 

functions, the general case follows by the limiting argument already given above. 

Let  ~ be the t tflbert  space defined as follows 

whenever u(x, t) is a harmonic function on R~ +I, we shall define another harmonic func- 

tion U, this time with values in ://. Write for each (x, t) 

u(x, t) = Vu(x, t + s). 

Thus ] U(x,t)i= ( f / i v u ( x , t  + 8)i~sds) �89 (x), 

and hence U+(x) = sups>0 I U(x, t)] = g(u) (x) E I2. The Hilbert space analogue of (8.3) and 

Theorem 8 (see Remark 1 at the end of w 7) thus give us 

IIs(u) (x) H~ < vIIg(~)(x)[[~. (8.6) 

Writing out S(U) we have 

(We have taken F(x)=  {(y, t): I x -  Yl < t}, to be the cone defining S). Two of the in- 

tegrations above may be assimilated into one, and if we use the simple estimate 

f:( u-t) t l -ndt>~cu 8-n, for u>~2a, 
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(s(u) c f lv u(y, t) l~tS-n dtdy. 

We now invoke the simple estimate 

(8.6) 

whenever Vu(y, t)-~0 as t-+ ~ (the latter is a consequence of the fact that  u is the Poisson 

integral of an L 2 function). 

This ineqUality is stated in [21, p. 216]. Unfortunately the proof outlined there is 

correct only when n = 1. We take this opportunity to give a correct proof. I t  suffices to 

demonstrate (8.7) for x = 0 .  Let  ~ be any unit vector in R~ +1 which lies in the cone 

{(y, t): 2[y] <t}.  Then clearly 

(es)[ < rj f i V2u(et) I dr, I(Vu) 

By Hardy ' s  inequality 

if s > 0 .  

s ~ l v , *  I = (es) s ds < s  = u(et)I ' t ~ dr, 

and a final integration over all unit vectors ~ lying in the cone gives (8.7); in combination 

with (8.6) and (8.5) this concludes the proof of the corollary. Q.E.D. 

Remark. There is a similar result for the functions gl(u)and g~(u) (defined in terms of 

the t or x derivatives of u only), but  the proof is somewhat more elaborate. 

9. Lemmas for harmonic functions 

In  this section we have gathered several  results on harmonic functions some of 

which have already been used, and others tha t  we will apply later. 

LEMMA 2. Suppose B is a ball in R n+l, with center (x ~ to). Let u be harmonic in B and 

continuous on the closure o/ B. For any 19 > 0, 

i (xO, O)l  

This lemma is of course standard when p ~> 1 (then C~ = 1). When p < 1 the result is 

essentially due to Hardy  and Littlewood [12], where other 'closely related questions are 

studied. 

f f2j,_yl<JVu(y't)t2t~-n dtdy <~ c f f2r~_yl<tlV2u(y, t)12f-n dtdy (8.7) 
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I n  proving (9.1) when p < l  we m a y  assume t h a t  B is the  uni t  ball centered a t  the  

origin, and t h a t  ~B ]u(x, t)IVdxdt=l. Let  us wri te  

= , O <  r <  1,  
xl~+t~=r 

and m ~  (r) for the  sup [ u(x, t) ] t aken  over  the  sphere of radius r. We m a y  also assume 

t h a t  m~(r) 1> 1, all 0 < r  < 1, for otherwise there  is nothing to prove.  B y  H61der's inequal i ty  

ml(r ) ~(m~(r))l-O(m~(r)) o, O < r < l ,  wi th  0 < 0 < 1 ,  

since p < l ,  as we assumed. B y  s tandard  es t imates  for the  Poisson kernel  of the  sphere, 

we have  mo~(~)<~A(1-~r-1)-~ml(r ), whever  0 < ~ < r .  Now take  ~ = r  a, with a > l ;  a will 

be chosen to be sufficiently close to 1 near  the  end of the proof. Inse r t  this es t imate  in the  

above  , t ake  the  logar i thm of bo th  sides and integrate.  The result  is, 

f l  _ f~ dr+ ( l _ O ) f  logmv(r)df . log m~(r ~) drr <<" C~ + 0 log moo (r) r 

The  last  integral  above is bounded  by  a constant ,  since Slo(m~(r))~rdr = 1 b y  assumpt ion:  

I f  we m a k e  the  appropr ia te  change of var iables  in the  integral  on the  left side, t hen  we 

have  

log moo (r) ~< C~ + 0 log moo (r) - - .  (9.2) 
�89 r 

Since we assumed m~o(r) >~ 1, it follows t h a t  

f(1 f�89 dr log moo (r) dr >~ log moo (r) - - .  
�89 r r 

Choose now a, close enough to 1, so t h a t  1/a > 0. By(9.2)thenS~�89 ( r ) r - ld r  <~ Co, 
and hence for a t  least one r 0, moo (r0) ~< C = C~, which gives (9.1) by  the  m a x i m u m  principle. 

Q.E.D. 

LEMMA 3. Suppose u(x, t) is harmonic in R~ +1, and/or some p, O < p <  c~, 

supt>0 ~R- l u ( x '  t) l~ d x  < ~ ' 

then s u p x E R -  l U(X, t) l <- A t  -~Ip, 0 < t < ~o . 

B y  L e m m a  2, if B denote the  ball of radius t centered a t  (x, t), t hen  
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]u(x, t) l~ <~ C~t-n-l f fB lu(z,t')l~ dzdt' < C~t-n-l f~t {fR lu(z,t)p dz} dt 

t > 0  J R  n 

T h u s ,  ]u(x,t)[<~ Cpt -"p sup( ( ~l lp  \ jR,  lu(x,t)l~dx) , O<p< ~ (9.3) 
t > 0  

and l emma 3 is proved.  Q.E.D.  

LEMMX 4. Suppose u satis/ies the conditions o/the above lemma. Then limt_~oU(X, t) =/(x)  

exists in the sense o/tempered distributions. 

We mus t  show t h a t  there  exists a t empered  dis tr ibut ion /(x), so t h a t  whenever  

belongs to the  space of tes t ing funct ions 

limfR"u(x't)q~(x)dX=~R/(X)qJ(x)dx',-~o 

This is of course well known when p >~ 1. Thus  if ~ > p  > 1 the  convergence is also 

in L ~ norm, while if p = 1 the  convergence is in the  weak* topology of finite measures.  We  

m a y  assume therefore t h a t  p ~< 1. Le t  us be defined by  u~(x, t)=u(x, t+(~), for (x, t )ER~ +1, 

and  ~ >0.  Then  because of L e m m a  3 supt>0 ~a,  lug(x, t[ dx< co, and so u~ is the  Poisson 

integral  of a finite measure  (see e.g. [25, Chapter  II]) ;  this measure  is the  weak  l imit  of 

us(x, t)=u(x, t+(~), as t-~0, and  hence is the  integrable funct ion uk(x, O)=u(x, ~). B y  the  

Fourier  t ransform,  ~(~ ,  t) = ~ (~, 0) e -u' '~' t, i.e. 4(~, t + ~) = ~ (~, 0) e -~l~' t = u0 (~:) e-~'l~l (t+~), 

for  an  appropr ia te  cont immus funct ion u0(~)- Also ]r 
At -~'-~-~], t > 0  b y  (9.3). Thus  ]d0(~)] ~<A I~] N (with N = n [ p - ~ - l ] ) .  Howeve r  

and so i t  is clear t h a t  lim~_,~u(x, t) = / e x i s t s  where / is the  inverse Fourier  t r ans form of the  

t empered  funct ion 40. Q.E.D.  

Remark. Observe t h a t  the  boundary  value / uniquely determines  u. For  the  proof 

shows t h a t  if / = 0  then  u = 0. 

The  l emma  implies in par t icular  t ha t  whenever  ~ ~ $, the  functional  

u-~ limt -~ 0 ,~I~U(X, t) of(x) dx 

is continuous on H ~ and also 
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We shall make a more accurate statement momentarily, but  for this we shall need 

another lemma (which will also be useful later). 

LwM~A 5. Suppose l < p 0 < r < o  % r / p 0 = l + 2 .  I] u is the Poisson integral o/ an 

] eL~o(R"), then 

3R+ 

The lemma is known in even more general form, see Flett  [lla]. Here we shall give 

an alternate proof for the special ease we will need. 

The assumptions require that  0 < 2 <  ~ .  I t  will suffice to prove the inequality for 2 

positive and sufficiently small (say 0 <~<1 ) ;  for if it is true for 21 it also follows for 2~, 

whenever 23 >2x, which we can see by writing 

fR~++ t~,nlu(x,t ) r dxdt fR,+ t~n [ u I ~ ~< sup t (a~-a~ ]u(x, t)[r~-~ (x, t)I ~' dxdt 
t (x, t) t 

and invoking the inequality (9.3). 

Assume, then, tha t  0<  2<  1, and that  in addition [>~0. We have 

L ,  "-,,.<r t '~u~(z ' t ) -T-  JR" t~o ~r x~ dt 

v~ (M(/) (z)) "-~ 1~  (1) (z) <~ dx 
JR 

Here 1 n - , ~+an  d ( Ia j ) ( x )=~-~ )  fR [(x-y)IYl  Y, 

and the last inequality results from the observation that  

(ixl~ + t~)r d$=c  

HSlder's inequality and 8obolev's theorem [21; 119] on fractional integration then 

gives 

~< A IIIII;:IA II/ll,. = A II/IIL. 

Here, q is the exponent conjugate to po/(r-1), so q - l = l - ( r - 1 ) P o l = P o l - 2 ,  which 

allows the application of the fractional integration theorem. Q.E.D. 

For the next  lemma recall the spaces A~(Rn), ~>0;  (see [21; 141]). Briefly stated, 

when 0 < ~ < 1, A~ consists of the continuous and bounded functions ~ on R n which satisfy 
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the Lipschi tz  condition I~(x)-~(y)[ <Mlx-y l~;  for general fl, A~ is the image of 

A~ under the mapping ~-~ya_~(~). Here (y~_~(~)) ^ (~) = (1 +4~]~[2)-(~-~)/2~(~). (1) I t  ean 

be proved that  the dual of H ~, 0 < p < l ,  can be identified with A~ where ~ = n [ p - l - 1 ] .  

(In the case n = l  the theorem is proved in Duren, Romberg and Shields [7]). In  the 

general case the essential par t  of this duality is given by the following inequality. 

LEMMA 6. Let uEH ~, and suppose /=limt~o u(x, t) in the sense o/ distributions. I/ 
0 < p < l ,  and ~ = n [ p - l - 1 ] .  Then 

We have already seen tha t  

sup fR lu(x,t)ldx< 
t>to>O n 

and thus replacing u(x, t) by u(x, t + to), we may  assume tha t  u is the Poisson integral of an 

L 1 function and reduce the problem to proving the a priori inequality 

where u = P.I .  (/). Let  q~(x, t) be the Poisson integral of T, then one can verify tha t  for 

each integer/c >/1 

fR /q~dx=ck f .+lt~k-~u(x't)  ~ t k ' t )  dxdt. 
" J R+ ~t  k 

In  fact if f and the Fourier transforms of and then the above a r e  respectively / % 

identity is the same as 

2 ~ 

By a basic porperty of the space A~ (see [21, p. 145]), we know tha t  II~kq~(x, t)/atkll~ <. 

At-k+~ H~]IA~, whenever k > ~. Thus 

and it suffices to prove that  

(1) The reader should be warned that the spaces A1 so defined axe called AI* by Zygmund [28]. 
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~ t k + ~ _ l  ~kU( ",  t} et ~ ldt <-< A lluH.,. (9.6) 

We shall prove (9.6) first in the case /c=0. Using the argument of the proof of 

Theorem 9, we choose/c so tha t  Pk= ( n - 1 ) / ( n - 1  + k ) < p ,  and let h(x, t) be the harmonic 

majorant  described there. Recall tha t  u(x, t) ~ (h(x, t)) ~/~k, and h is the Poisson integral of 

a function in L ~/~k. Now use Lemma 5 with h in place of u, r =p~l, Po =P/Pk; then 1 + i  = 

rPol=p -1, and so ~ = p - l - 1 .  Thus with ~ = n ~ = n [ p - l - 1 ] ,  we have 

which proves (9.6) when k =0. The case for/c > 0  follows from this case by  observing tha t  

 )li , ,  

Remark. I t  is true, conversely, tha t  whenever, say, ~oe $, then ISR,[q)dx] <. A]lu]],,, 

all ueI1  ~, implies ~eA~. To see this, take ut~ t)= (Oe/~t~)Pt+to(x) where Pt(x) is the 

Poisson kernel, and/c is sufficiently large (/c > nip - ~ -  1]). Then ut~ e H p and 1[ % [[ ~p ~ Atg ~+~. 

So the condition implies tha t  ]lOeb(x, to)/OF]]~<.Ato ~+~ which means ~eA~.  

10. Passage to "arbitrary" approximate identies 

In  section 8 we saw tha t  functions in L ~ can be characterized in terms of the max.- 

functions of (what amounts to) the Poission integral of their boundary values. I t  will be 

shown here that  the Poisson kernel can be replaced by  arbi trary "smooth"  functions, which 

are sufficiently small at  infinity. In  this way we are led to one of our main results namely 

tha t  the H ~ classes can be characterized without any recourse to analytic functions, 

conjugacy of harmonic functions, Poisson integrals, etc., and have an intrinsic "reM- 

variable" meaning of their own. Our analysis in this section will be rather  "fine"; our results 

will be in the nature of best possible, or nearly so. In  the last par t  of this paper we take 

up these results again; we obtain there an alternative (less precise but  more elementary) 

derivation which nevertheless allows us to obtain the full converse of Theorem 10 below. 

We shall consider the elements u E H p in terms of their boundary values ], according 

to Lemmas 4 and 6 above. Our result states tha t  whenever ~v is sufficiently smooth and 

small at  infinity, and ~v~(x) =e-~(x /e ) ,  then u EH ~ implies tha t  sups> 01 (/~+~v~) (x)[ EL v. We 

state the required conditions on q0. For a fixed a>~0, we require 

sup (l + [xl)n+l'l+nl or rot ~]<c~ all ]y]~<~, some >0 .  (1O.1) 
x o R -  " ] O x ~ ' x ' [  ' 
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(10.1) is the full requirement in ease g is a positive integer. Alternatively, if 

k < a < k + l ,  with k a positive integer we assume (10.1), and in addition the following 

condition on all ~(x)= (~V/~x ~) ~(x), where I Tl=]c. 

sup (1 lyl~_,-~(x)l< ~ ,  some ~>0.  (10.2) ~ , ~ ,  +lxlr +~+'l~(x-y) 

These conditions, although complicated in appearance, say (very roughly) that  

~0EC ̀~', and that  its ~th derivatives are 0(1 + ]x[) -~-~-n, as I~1 ~ .  

T ~ E O R ] ~  10. Suppose [EH ~, /=Iimt.,ou(x, t), and cp satisfies the conditions (10.1) 

and (10.2) above with some ~ > n [ p - l - 1 ] .  (We require ~=0,  i / p > l ) .  Then 

sup I(/~-W)(w)IEL" , and Ilsupl/~q~lll~<AIl~ll~. 
e>0 e>O 

This theorem, in a more precise form, will be a consequence of two lemmas. To state 

these lemmas we require some notation. For fixed ~>~0, let B be the class of ~ which 

satisfy (10.1) and (10.2), and such that  the quantities appearing as the left sides of these 

inequalities are bounded by 1. For any u=u(x,  t) harmonic in R~ +1, define 

/ ! 

where T(~~ I:~-~~ 0<t<h}.  

LEMMA7. supsupl(,~-~/)(:~)l<AM~(u)(x), i! n2<~,~>0.  
~e~e>O 

LE•MA 8. Suppose 0 < P 0 <  1 , p ~ l ~ l + ~ ,  thus 0 < A <  oo. Then the mapping u ~  

M~(u) is o/ "weak-type (P0,P0)", and "strong type (p, p)", whenever po < p <  ~ .  This means, 

and IIM~(~)II~ < A~ I1~11~,, p 0 < p <  ~ .  

Remarks 

1. Clearly only the second conclusion of Lemma 8 is needed for Theorem 10. We state 

the weak-type result for the sake of completeness. 

2. The Poisson kernel satisfies the conditions (10.1) and (10.2), (for each ~), which is as 

it  should be. Observe also that  u*(x)<~cM~(u)(x), for each s  as a simple argument 
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involving the mean-value proper ty  shows. Thus Lemma 8 gives a ref inement  of the 

result involving the non-tangential  max.funct ion.  

3. These results are essentially sharp. For  example, if P < P 0 ,  there  exists u E H  p, so 

tha t  M ~ ( u ) = ~  everywhere.  Alo the condition ~ > n [ p - l - 1 ]  cannot  be much relaxed. 

While Theorem 4 (in w 3) shows tha t  when p = 1 we may  replace the Lipsehitz conditions 

of positive order by  a Dini condition, the result would be false if ~ < n ip  -1 - 1] in Theorem 10. 

Proo/ o / L e m m a  7. This is easy. The simplest case arises if ~ is integral and more 

precisely, an even positive integer o~=Ic=2l. Let  q )=  (--A) z ~. Then  as is easily verified 

(Just  take the Fourier  t ransform of both  sides. For  the left side we obtain ](~) q?(E~), 

and for the right side (~-k/P(k)) f(~) $(e~) {S~ e-e'l~J~ tk-ldt} = f(~)~(e~), if we keep in mind 

the  fact  t ha t  @(~) = (2z[~[)k~(~).) 

Nex t  write 

In  view of our assumptions on ~, ]@(y/e) l<~ A on T(0, e) and [(I)(y/e)] ~< A2  -j[~+~§ 

for (y, t) e T(0, 2Je) - T(0, 2 j-1 e). Moreover Sr(0.2~)t k-1 dx dt = c e n+k 2 jE~+k]. Insert iag this in 

the above and using the definition of M~, with n t  = k, gives 

[(/ee ~ )  (x)[< A( ~. 2 -in) M~ (u) (x). 
j~0 

Passing to the sup. over ~ we obtain Lemma 7, in the case/c is an even positive integer  

(in fact  here in the sharper form tha t  n l  = it, instead of n l  < k). 

Nex t  assume 0 < a < 2 ,  and n l < ~ .  Fix  a /~ so tha t  n] t<f l<~.  We write down the  

analogous ident i ty  as (10.3) 

8- n-fl 

= r- i- ffR .+l  y, ,) r (:) (10.3) 

except  now (I) is the ~th derivat ive of ~, more precisely (~(~)=(2g1~1)~r Then  311 we 

need to show is t ha t  as a consequence of our assumptions (10.1) and (10.2) on we have 

I < A(1 + J )- (10.4) 
But  we know tha t  

f a  (see [21, 162]). 
dy 

(I) (x) = c~ . [~(x + y) + ~(x - y) - 2 ~0(x)] l yp+~, 

Break up the range of integrat ion into the sets I xl < 2  [Yl and I xl >~21yI" For  the first 
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set use the estimate (10.1) for ~0; for the second set the estimates (10.1) (and (10.2) if 

necessary), show tha t  I~o(x+y) +of(x-y) -2~(x)  l < A lyl:(1 + Ixl )-n-a-n, when Ixl >~21y I . 

I t  follows immediately tha t  the inequality (10.4) for (I) holds, and so the proof of the lemma 

can be concluded as in the previous ease by showing that  sup~_~01 (/~q%) (x) l < AM~, (u)(x) 

with n2' =/~; this implies the stated result for M~. The case of general ~ is a simple 

combination of the ideas described for a even integral and 0 < ~ < 2; details are left to the 

interested reader. Observe tha t  the case ~ = 0 corresponds to the usual maximal function 

with 1 <p .  Q.E.D. 

We come now to the proof of Lemma 8. I t  will be an immediate consequence of 

harmonic majorization and the following lemma about Poisson integrals of L ~~ functions. 

Suppose 1 <P0 < r  where r/po = 1 +4. Let  / E / 2  ~ (Rn), and u its Poisson integral 

LEMMA 9. The mapping 

�9 , Jr dy dt] 11~ 
? 

is o/ weak type (Po, Po), and o! ~trong type (p, 1)) i/Po < P  ~< oo. 

Proo/. The result is obvious when p = o% and so by the Mareinkiewiez interpolation 

theorem it suffices to prove the weak type (P0, P0) result. This has some connection with 

the tangential maximal function considered in [18] and [21, p. 236 w 4.5], but  we shN1 

follow the spirit of the argument given in [9] for the sharp estimates of the g~ function. 

We shall prove tha t  if /E//~ then for an appropriate large constant C 

We may  assume ]>~0. We set up a modified Calder6n-Zygmund decomposition for 

(/)~~ (as in [21, pp. 19, 169]) as follows. Let  ~=(x:  (M(/)'~176 Then [~[ ~< 

Ca -~~ [[/[[~:. Let  (Qk) the disjoint family of cubes guaranteed by  Whitney's  lemma, whose 

union covers s and whose diameters are comparable to their distances from ~ .  We 

then have 

1 fQ /" dx ~ Co~ "~ 

Of course / ~< a in ~f2. Let Q* be the cube with the same center as Qe, but  expanded by a 

fixed factor of 6/5. Then no point is contained in more than N of the Q* (e.g. N = (12)n). 

Also let Qe denote the cube with the same center as Qk but  expanded by  a factor of 2. We 

--P0 P0 write ~ =  (JkQk. Since ]h  I ~<C:r H/ll,0, it will suffice to estimate ~ ( / )  on C~. 
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Write first  [ = / 0 + ~ = l / k .  Here /o=/Zcw and /k=/ZQk, k>~l, where ZE denotes the 

characteristic function of the set E. Write also uj(x, t) for the Poisson integral for ]j. 

Since 0 ~</0 ~< ~, then ~/~ (/0) (x) ~< ~, all x, and hence {x: ~/~ ([) (x) > ~} = O. ~u need to 

estimate therefore ~/~ (~=i/k)- 

Write U(x, t)=~=IZQ~,(X)Uk(X, t), and V(x, t)=~=1 (1-ZQ~(x))u~(x, t). Then U +  Vis 

the Poisson integral of ~ o  /~, and it suffices to estimate 

f f T t ~n dx dt ' 
(~, h) t 

xe C5, (10.5) 

and the analogous expression with U replaced by V. 

Since the cubes Q~ have the bounded intersection property, 

f f r ~n T dy dt t (V(y,t)) ~ - < N T - 1  5 f f  go.(y)(u~(y,t))rt ~ndydt 
(X,h) k = l  J J T(x.h) k 

For each integral appearing in the sum in the right-hand side there are two possi- 

bilities 

(i) Either T(x, h) N {Q* x (0, ~)}  = 0, 

and then: the summand is zero. 

(if) Or T(x, h) fl {Q* • (0, oo } 4 0 ; 

by the geometry of the situation, since x ~ Qk, it follows that  then h >~ C I x -  x k I, where x k 

is the center of Qk. In this case we replace the integral over T(x, h) by the integral over 

all of R~ +1 and invoke the estimate (9.4), giving 

However for the/cth term 

f f r t~ dydt=ch~+~ >~clx-xkta~+~" 
(x,h) t 

Thus, altogether as an estimate for (10.5) we have 

(~(y) denotes the distance of y f rom ~2 .  The first inequality above follows from the fact 

that  the diameters of the Qk are comparable to their distances from Of 2, and that  
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Ix-x~l ~ Ix -y  I, if yeO~, xtQ,. The expression I(x) is the familiar Marcinkiewiez inte- 

gral involving the distance function, and we have therefore ]{xeCh:Ca*I(x)>a*}l-~< 

CSc~I(x)dx<~ C]~] <~ Ca-P~ ~, by [21, 16]. We have thus obtained the correct esti- 

mate  for (10.5). To prove the analogue of (10.5) with V in place of U, observe tha t  since 

1 - ZQ?, is non-vanishing only in C Q*, and u k is the Poisson integral of a function supported 

on Q~ it follows tha t  (1-ZQ~)Uk(X,t)~< CUk(x,t  ) where U k is the Poisson integral of 

the function which is constant on Q~ and has the same mean-value on Qk as ]ZQ~ =/~. 

Thus ( 1 -  ga~)uk(x, t)<~ C Poisson integral of aZQ~. Altogether then 

V (x, t) = ~ (1 - ZQ~) uk (x, t) < Ca P. I. (Zc~) < Ca, 

and so we have reduced matters  here to the trivial estimate for L ~176 Gathering all these 

estimates together we have 

I{x: ~(/)(x) >2a) l < 151+ I{xe C5: n~(fo)(:~) >a}l 

+ I{xe C~: n~( "~ 1~)(x) >a}l < ca-,,. II/11~:. 
k = l  

This concludes the proof of Lemma 9. 

Proo] el Lemma 8. 

We repeat the argument of harmonic majorization used several times before. We 

have u(x, t)<~hl/P~(x, t) where h(x, t) is the Poisson integral of an L p/pk f u n c t i o n / a n d  

llull~'=ll/ll~l~. We set then r=l /pk ,  and apply Lemma 9, with of course h~/'(x,t) in 

place of l u(x, t)It" The critical relation then becomes po 1 = 1 + ~, and so Lemma 8 follows 

from Lemma 9. 

With this we have also concluded the proof of Theorem 10. By the theory of H ~ 

spaces we know that  whenever u E H  ~, lim,_,0u(x,t) exists almost everywhere and also 

dominatedly i n / 2  (see [25, Chapter VI], and also Theorem 9 in Section 8). Let  us call this 

pointwise l imit/(x),  (mindful of the possible ambiguities this may  cause since we also called 

] the distributional limit of u(x, t) as t-~0). 

COROLLARY. Let u EH ~, and suppose ~o satisfies the conditions o/ Theorem 10. Assume 

in addition that ~i~ q~dx = 1. Then lim~_~0(u~T~ ) (x) exists and equals/(x) /or almost every x. 

In  fact write u~(x, t) = u(x, t + ~). Then u = ua + (u - us), and ] - -  u~(., O) + ( / -  u6(., 0)). 

So/~-~0~ =ua(- ,  O)~v~ + ( / - u ~ ( . ,  0)) ~-~,  as s~O, u~(., O) ~-%-~ua(-, O) everywhere; but  by 

Theorem 10 I l sup~>o( / -u~ ( . ,o ) ) *~ l l ,< .A l lu -u~ l l , ,~O as a-~o, and so the coronary 

follows by standard arguments. (~) 

(1) The fact that In-no a,~--> 0, as ~--> 0, when uEH p is most easily proved by using the fact 
n U gg t " pf2 " that SR (~u) l (1)( , )1 ) dx is a decreasing function in $> 0. Compare [24]. 
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V. Real-variable theory ot H ~ 

11. Equivalence ot several definitions 

The extension of the theorem of Burkholder-Gundy-Silverstein (Theorem 9 in Section 

8) shows that  H ~ arises naturally as a space of harmonic functions, free from notions of 

conjugacy. Theorem 10 goes further, and suggests that  the H ~ spaces are utterly intrinsic-- 

they arise as soon as we ask simple questions about regularizing distributions with 

approximate identities. From this point of view the special rSle of the Poisson kernel 

fades into the background. 

In  this section we shall show how to carry out much of H p theory by purely real 

variable methods. By our methods H p can be treated in many ways like L ~, with certain 

natural changes. As a result, we can sharpen some known H p theorems, and also prove 

results unattainable by earlier techniques. 

We begin with an indication of our goals. Fix ~ e $ with SR~q~(x) dx = 1. We are tempted 

to say that  a tempered distribution / is of the class H ~ (0 < p  < c~), if the maximal function 

supt>0 I~t~-/(.)l belongs to L~(q~t(x)=t-nq~(x/t)). For this definition to be significant, the 

resulting class H p would have to be independent of the given ~ E S we started from, and if so 

H ~ would be intrinsically defined. In  fact we would also want that H p to be the same 

as the H ~ space studied in parts I I - IV .  Fortunately all this turns out to be so. 

The assertions just made have interesting consequences. For instance consider the 

H ~ space defined in terms of the heat equation in R~ +1 (there q)(x)=(2y~)-n/2e-EXl~). A 

solution of ~u/~t=Axu belongs to H~eat (R~ +~) if the maximal function supt>0 [u(x, t)l 

belongs t o / 2 .  Then ,~Pheat ~/~n+1~+ j is really the same as the ordinary H p, which arises from 

Laplace's equation. More precisely the functions in both H" spaces have the same 

"boundary values" on R n. 

All these claims are immediate from the following theorem. 

THEOREM 11 . .F ix  0 < p < c ~ .  For any tempered distribution /, the ]ollowing are 

equivalent. 

(A) u+(x) = sup I q~t ~ /(x)] e L ~ /or some qJ e S satis/ying j'R,~(x) dx = 1. 
t > 0  

(B) u*(x) = sup [~t ~/(Y)] e 1.2/or some q~ as above. 
}x-yl<t 

(C) /*(x) = sup sup [O t ~/(y)]  e L ~, where 
ffPe~4lx-y]<t 

and N O is a large number depending only on p and n. 
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(D) The distribution / arises as limt~ o u(x, t), where u E H ~. 

In view of the above theorem we shall say, with a slight abuse of language, that  a 

tempered distribution / satisfying the conclusions (A), (B), (C) or (D) is of class H ", 

Remarks 1. Condition (D) could alternately by phrased as follows: P ~ / ( x ) =  

lim~-~0 SR- e-~iyl'Pt (y)/(x - y) dy exists and suPl~_ yl<t I(Pt ~+/) (Y) I E L~. Many other variants 

are possible. 

2. We also have ttu+llp~llUllH,, with similar equivalences for (B) and (C), as the 

proof of Theorem 11 shows. 

3. The purpose of the class A in (C) is merely to  fix some reasonable normalization for 

approximate identities. In all that  follows, the "large number" N 0 defining A in (C) may 

change from one occurrence of A to the next. This justifies statements like "r implies 

~(I)l~xl e A".  
4. Condition (C) plays an important  rhle in the real-variable theory for H ~. For, con- 

sider the simple problem of estimating j'R-/(x)~(x)dx for ~ E $, /E H ~ (0 < p < 1). If ~ E A, 

then of course I ~R,,/(x) ~(x) dx ] = I/-)e q0(0) I ~</* (0). More generally, if ~0 can be written in the 

form q)(x) = A d- ~ ( ( x  - Xo)/d ) with (I) E A, x 0 E R n, A and d > 0, then l ~a,/(x) of(x) dx I <~ 

A/*(y) whenever Ix 0 -  Yl < d. In other words, 

I JR n i x o _ y [ <  d 

where 

(11.1) holds for all /E/-/P, q)E S, x0E R ~, d >0.  In practice, N'(~; %, d) is easily computed. 

Roughly speaking, if ~p is a "bump"  function of "thickness" d, centered at %, then 

N(~0; xo, d) is essentially .~R ~ I (x) l d~. 

From (11.1) we obtain at once 

I ~  /(x)~(x)dxl<~N(q~;xo, d) ( l  fl~_~oI<d(/*(y))'dy)l~. (11.2) 

Proo/o/ Theorem 11. The idea is straight-forward, We simply have to formalize the 

plausible fact that  all approximate identities are more or less alike, and that  a n y  one 



H ~ SPACES OF SEVERAL VARIABLES 185 

can be built up from any other. First we prove (B) ~(C) ~(A) ~(B) and then we take care 

of (D). 

(B) ~ (C). Set u(x, t) = q~t-)e ] (x), assume u* E/2,  and fix a (I) E 14. According to 

Lemma 1 in w 7, the "tangential maximal function" 

u**(x)=sup ,u(y,t)] x - y  I t )  
y e R  n 

also belongs to L ~. We shall prove that  sup lx_yl<t I@ t ~-](y)l<~ Cu** (x) for all x E R ~. 

Step 1. Assume first that  (I) has the form (I) = ~ ~e ~8 with ~fl E • and 0 < s ~< 1. Then 

for [ x - y l <  t, we have 

I (b~ ~e /(Y) l = ' W~ ~e (cf st ~e h (Y) ' = } ~R W~ (Y-- Z) u(z, st) dz ] 

since ~ e  A. Thus, suplx_~l< , I (I), ~-/(y)[ ~< Cs-Nu ** (x) if (I) = yJ ~e ~s, ~ e  A, 0 <  s ~< 1. 

Step 2. Suppose (I)e~ and ~)(~) is supported in I~1 <2r" Then (I) can be written as 

(I) = ~ 0 . ~  with ~0EA and s=c.2 -~ (c small but independent of r). To see this, we simply 

set ~(~)=~P(~)/r and check that  q~(s~)40 in support (~)%{1~1 <2~} �9 Actually, 

I~(s~)l~>�89 for I~] <2r=c/s, since ~ is continuous, ~)(O)~-~R~Cf(x)dx=l, and I s~ -o l  ~<c 

for I~] < 2L So (I)=~p~-Ts as claimed. By the conclusion of step 1, we have suPlx_yl< t 

IOt~e/(y)l<~C.2 Nr u**(x)if (I)EA and qb(~) is supported in {l~l <2r} �9 

Step 3. Any C E A  may be written in the form qb=~ffioC~qb(~), with C9,r)EA, ~)(~) 

supported in {l~l < 2~}, and C~ = O(2-~~ (Simply cut up ~).) By the conclusion of step 2, 

C 
I x - Y l < t  ffi 

Therefore, /*(x)<~Cu**(x) for all x e R  ~, so that li/*iI <Cilu**ll <clI *ll,< This proves 

(B) ~ (C). 

Remark. Taking (~=~/3x~ above, we obtain ]]U*ll~<~Cllu*lla where u(x, t )=q~/ (x )  

and U(x, t)=t I V~ u(x, t) l. For technical reasons, we set 

sup 
Ix-Yl<t<e-1 

(') and U*N(X)= SUp tlv. (y,t)l ~ (l+~lyl) -~, 
~x--y~<t<~--I 

1 3 -  722902 A c C a  m a t h e m a t i c a  129. Imprim6 le 3 0 c t o b r e  I972 
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* ~ * and assert that  [[ U~[[ v-~ C[[u~:l] p for all / E S', with C independent of 0 <e < 1. (The p roof 

simply copies that  of (B)~(C) above, with obvious changes). As s-->O, u*~:(x)Tu*(x) and 

U*~(x)f U*(x) for all z e R  =. However, given any ]ES', there is a large N>O which 

makes * U~N('), u*N(')ELmflI2 ' for all e>0.  

(C) ~(A) is trivial. 

(A) ~(B). We adapt an alternate proof of Corollary 2 of Theorem 9, devised by 

D. Burkholder and R. Gundy. Set u(x, t)=~-x-/(x), and assume u+(x)=supt>o[U(X, t)] eL  v. 

To prove that  u*(x)=supl~_vl<t ]u(y, t)] e L  Y, we shall dominate u* by the function 

M(x)=sup  1 (u+(y))~dy ( 0 < r <  p). 
x~Q 

IIM("/11.-< Cllu+ll. by the ma imal theorem. 

Fix a large N > 0 so that  u*ee, defined above, belongs to L ~ for all e > 0. We want to 

prove Hu*zc[Iv<CIIM(.)[]p with C independent of e. Rather than compare u*ee(x) with 
* _< M(x) for all x eR ~, we shall restrict attention to x's in the "good" set Ge~= {U,N-~ BU*N}. 

The set G~N already captures most of the bad behavior of u'N, since 

JR JR t, B ~  -~eN(U*sN(X))PdX~ ( -OeN(U*~N(X)~Vdx "<I  , p C 

<~ - (u*u (x))O dx 
2 

(by the remark) if B is large enougb. Since s > 0, we know a priori that .fR~ (u*~ (x)) v dx < co ; 
hence, the above chain of inequalities shows that  

J GeN 

Therefore, we need only estimate u~g (x) for x e G~N. 

We claim that  U'jr(X) <~ CM(x) for xe  G~.  To see this, pick (y, t) C R~ +1 satisfying 

I x - y ] < t <  s -1, lu(y,t)(t/(s +t))~(l +elyl)-~l>�89 U*v(Z). Since xe G~, we have 

t]VzU(Z, t)l 1 ( ~ +  t)N(1 +slz,)-N}<~2Blu(y, t)] {(~-t++ t)N (1 + v,y,) -ee} 

for all z satisfying I x -  zl < t. By the geometry of the situation, the two factors in braces 

are roughly the same, so that  t I V~u(z, t) I <~ C lu (y, t)] for all z with I z - x I < t. Consequently, 

lu(oo, t)]>>-�89 I for all o~ in the fat set P={o~eR~I Ioo-xl<t, lo~-yl<t/2c}.  In 
- N  1 * particular, ]u(oo, t)l>�89 >~u~N(x) for ~oeP. From that  key 

fact, u~N (x) < M(x) is easy. We simply write 
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C M T (x) IB(Z,2t)] j B(x,2~) (u+(~'))r d~' 

f B IF[ C(U *N >~ ]B(x,C 2r r 2~) lu(w't)[rdw>~c(~u~* (x))r[B(x, 2t)~>~ (x))r" 

Thus, * u~N (x) <~ CM(x) for xe G~N which implies that  

fR (U*N(x))~dx<<. 2 fG~ (U*N (x)Fdx 

<- c (M (x))'dx<C (u+(x)) "dx, 

with C independent of e. Letting e ~ 0, we obtain ][u*[[~< C]]u+[[p, which completes the 

proof of (A) ~ (B). 

To conclude the proof of Theorem 1, we prove (C) ~ (D) ~ (A). Both steps are easy, 

since the Poisson kernel is "almost" in A- - i t  just doesn't decrease fast enough at infinity. 

(C)~(D).  First of all, note that  Pt-~/(x)=lim~__,o~R~e-~'~l'P~(y)/(x--y)dy - 
lim~-~0Pt.~ ~-/(x) always exists for (x, t) e R~ +~, since lim0,.0~-~0 ](Pt.~, - Pt.o,) ~/(x)[ = 0 
by (11.2). Details are left to the reader. To estimate Pt-~/('), just write Pt=Pt.~,+ 

p _ Co k ~F=,(Pt.ok-- t.ok ~ ) ~ k = 0 P t ,  with 0k=2-2kt -2. For Ix--y[< t, (11.1) yields 

I(Pt ~e/) (Y) I <~ ~ I P~ ~+/(Y)I < ~ N(P~; O, 2 k t)/* (x) <~ C/*(x). 
k=O k - O  

Thus suplx_y,<t ]Pt ~/(Y)] E L p, and Pt ~- ] satisfies the H p characterization of Theorem 9 

Hence ] satisfies (D). 

(D) ~ (A). We manufacture a rapidly decreasing approximate identity from the Pois- 

son kernel. Let cft(x)=]~(t)Pt/~(x ) ds, where v/ is rapidly decreasing at infinity, and 

satisfies 

fsky~(s)ds={:  if k=O 
if 7c=1,2,3 . . . . .  

(See [21, p. 183] for such a yJ). Then q0te $. To see this, note that  q~t(x)=t-ncfl(x/t) and 

that  ~1(~)= ~r is automatically rapidly decreasing at infinity and smooth 

outside the origin. Near the origin, we expand e -~'~' in powers of s[~] to obtain ~ ( ~ ) =  

Z~J~ ( -- l)k/k !I~[k~s%f(s)ds+ O([~l ~) = 1 + 0(l~I ~) for each 2~ >0. Therefore ~ is also 

smooth at the origin, so tha t  ~ ~ $ and hence ~1~ S. Also, recall that  ~E~ ~ (x)dx = 
~(0) = 1: So ~ is as required in (A). However, sup,>0 ]~t ~e/(x)[ = supt>o ] j:~ ~0(s) (Pt/~ -~ 
/(x)) ds[ <~ supt> o [P~ ~/(z)  ~? ]~o(s) [ ds <~ C supt>o [P~ ~e/(x)[ for all xe R ~. This proves (A). 

Theorem 11 is proved. Q.E.D. 
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12. Applications 

Theorem 11 provides us with great flexibility in studying the Fourier analysis of H p 

spaces. Instead of relying exclusively on complex methods when n = l ,  or conjugate 

harmonic functions for general n, we can now apply the circle of ideas leading to the 

Calder6n-Zygmund inequality. Often, this produces simpler proofs of more precise results 

than those previously known. To illustrate, we prove the analogue of the Calder6n- 

Zygmund inequality for H ~ by real-variable methods. 

Let  K be a tempered distribution whose Fourier transform is a bounded function 

[~(~)[< B. Assume also that  K is of class C (~~ away from the origin, and 

~ K  
<~Blxl -n-'~', lacl<~No. 

(N o is the index appearing in statement (C) of Theorem 11). Next let y) be a fixed C ~ function 

of compact support which is 1 in a neighborhood of the origin. Write K M  = KyJ(x/M). 

Finally let ~0 be another fixed C ~ function with compact support such that  ~Tdx= 1. 

Write cf~(x)= e-~q~(x/e), and K~M = KM~eCf~. Then each K~M is a C ~ function of compact 

support; and the K~M satisfy the conditions imposed on K, uniformly in e and M. (1) 

LEMMA 10. Suppose /ELI(Rn), then K ~e /=  lim~_~O.M_~K~M~e / converges in the sense 

o/ tempered distributions, and the limit is independent o/ the choice o/ ~ and % 

This follows immediately from the fact, which the reader may easily verify, tha t  

/~eM(~) converges boundedly to /~(~), as e-~0 and M-~ ~ .  

We pass to the basic a priori inequality. 

LEMi~A 11. Let / be a bounded C ~176 /unction on R n. Then H sup~[g~M* /(" )] II,<~ C~II/*H~ 

( 0 < p <  ~) ,  with C~ independent o/ M. 

1)1"oo/. We imitate the proof of the Calder6n-Zygmund [5] inequality. Given a > 0, set 

~={/*(x)  >a}. The proof of the Whitney extension theorem [21] exhibits a collection 

{Qj} of cubes, and a family of smooth functions {Tj} on R ~, with the properties: 

(1) ~ is the disjoint union of the {Qj}. 

(1') Z~=~J~s and each ~j>~0. 

(2) distance (R n -  ~,  Q j) ~ diameter (Q~) ~ d~. 

(2') Cs is supported in the cube Q~ expanded by the factor ~, say. 

(1) To see this, notice first that the last assertion is evident for K M. It then follows for ~e~KM = gem 

by the argument in [9, w 3]. 
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(2") ~0 t has "thickness" 4" That is, [[O~%/Ox~H~<~C~d71~l for each multi-index ~. 

Also, a t = ffR'~t (x) dx ~ d~. 

Denote the center of Qt by x t. 

Now /=/gR' -a+~t /q~t .  We shah replace / by the "good" function f = / Z R - - a +  

~jbt~t, where bj is a constant so chosen that  SR, bKft(x ) dx= SR~/(x)eft(x ) dx. Here, qt is 

analogous to g%, and b t corresponds to the average of / over Qt" We have bj= 

(I/at) SR~I(x) q)j(x) dx. 

To estimate sUp<MIK~M@](" )1' we shall study IK~M@]I and IK~.~ (/-])[. Let us 

begin with the first term. We claim that  II][[oo~< Ccr For, we know from (2) that  

infl~_~l<~/*(y)~<a for each ]. Elementary computations with (2') and (2") show that  

~(cf~/at;xt, dr)= 0(1), so that  Ibt [ = I SR-(1/a~) cft(y ) ](y)dyl<~ C iafl~.-~1 < ~ ]*(Y) ~ Co~. Therefore, 

1 t(*) I < l l(*) zR._n (x) l + c~  ~ ~, ( . )  = I l(z) t xR._n (.) + c= za (z) 

for all x e R  ~, which proves that  Illl[m~< ca.  Now we can write 

I { s u p l & ~ . / ( . )  I > ~}l < Ilsup" I K ~ * / (  ")lll~ < cIl/ll~< ~ II(v)l~@+clal, 
8 ~2 ~2 ~X ~ n _ ~  

(12.1) 

by virtue of our estimates for ]. (12.1) is our basic estimate for KeM")~'t. 
We turn to the "error" term 

KeM-)e (/-- ]) (X) = ~ K~M-)e (/q~j -- bjcpj) (x). (12.2) 
J 

For fixed ?', 

KeM~e ([q~j- bFfj) (x) = fRnK~M(X -- O)) ~ft(W)/(O))dw - f n  K~M(X -- y)btcft(y) dy 

= f~ K~M(X--o)) q~/o)) /(o)) do)-- fw K~M(x-Y) [~ ~ q~/o)) /(o)) do)] q~/y) dy 

= fR K~M(Z-- o))~t(o)) /(o)) do) -- fR. [~ fi~ K~M(x--Y) qJ/y) dyJ qJt(o)) /(o)) do) 

= fR~{K~M(X--o))-- [~ fR K~M(x--Y) ~/y) dy]} cf/o)) /(o)) do)--lJ �9 

Here, { -  } plays the rhle of { g ( x - y ) - g ( x - x t )  } from standard Calder6n-Zygmund 

proofs, and l j  is like S % { K ( x -  o)) - K ( x -  xt) }/(w) do). Elementary computations show 

that  N({ - } cfj; xj; dr)<~ (Cd']+l)/Ix-ztp +1 for each fixed x e R  ~ -  ~.  Therefore, by  (ll.1), 

f R do) Cd'] + ~ d'] + l Ii, I = { -}~ , (o ) ) / (o ) )  < ~+1 min l*(y)<<.C~ ~ - ~  ~,_~ <~; I . - ~ Z  § 
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Put t ing  this into (12.2) yields 

2 n + 1  

sup, I K , ~  ( ! - ] ) (x) l  < c~ Z, ix -x,~" l n-+~=-C~ #(x) for xr163 (12.3) 

( . )  is a standard 1VIarcinkiewicz "distance function integral", and we apply the well- 

known trick: 

fR ,~n+l 
n_~ j j Rn_~j ; 

so tha t  #(x)~< 1 except on a set of measure ~< C I ~  I. From (12.3) we obtain I{sups]K~M~ 

(1-1) (.)1 > ~)1 < c l a I, and then from (12.1) we f ind 1(~) ~ I{supc t KsM ~ 1(" )1 > ~}l  ~< 

(C/a ~) ~<,.<=> (t* (y))~dy + C I{/* > a}l. Consequently, 

L , ( sup  IK~M./(y)IFdy=C ~'-li(o:)do: g 

f: r 

=CfR( /*  (y))Vdy+ c f R ( / *  (y))2f,.:y)o~v-8 dady 

= ( / ,  ( l ,  (/,  = dy 

as in the proof of Theorem 8. Thus, I lsup: l~:~+l(-) l l l .~<GIIr l l : .  Q.E.D. 

t~emark. Under the same conditions as Lemma 11 the proof also gives 

II snp ,~up~ l~ ,~g~ / ( ' ) I  lb = l l s u p , s u p ~ l ~ , ~ , ~ K ~ / I  lb < GIII*II,. 

Notice tha t  all the constants do not depend on M. 

THV,0REM 12. Let / be a distribution in H ~. Then K +/=lime+o.M~K~M+ / exists in 

the sense o/distributions, and is in H v. The limit is independent o/the choice o/V and q~. 

A l so /+K+]  is bounded on H ~. 

In  proving the theorem we may  assume p ~< 1, because only in this ease are there any 

technical difficulties in deducing the theorem from Lemma 11. 

Notice tha t  w h e n e v e r / E H  p, KeM • ] 6 H ~. In  fact (Pt-~ KeM + ] = KeM % (qgt % /) , and qh + / 

is bounded and C% So we can apply the remark at the end of Lemma 12, and also 

Theorem 11 (see Remark  2 ) t o  get IIK~M~/llsV'~]lsupt]e2t-)eK~M-)e]] I[v<<.A]]/*]lv. 

This also shows tha t  the mappings /~K~M~/ are uniformly bounded, as mappings 

o n  H p. 
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Next,  as in the argument at  the end of section 10, w r i t e / = / s  + ( / - / s ) .  Here u(x, t) is 

the harmonic function whose boundary values a re / ,  and/s(x) =u(x, ~). Then we know tha t  

)r is HvNC ~ and also in L 1. Write KeM~/=K~M~-/s+K~M~e(/--fS). By Lemma 1, 

KsM'-)5/#--->K'~]$ in the sense of distributions. Also by  what  we have just seen 

IIK~([-/a)II~<~AIIf-/$IIHv~O, as (~-+0. Altogether, then K~M ] converges in the sense of 

distributions as s-~0, and M-+c~. To finish the proof, observe tha t  

f sup [ss~ K~M~+/l~ dx < A IIlll~ 

with A independent of ~, s and M. Letting e -~ 0, and M -+ oo, and then ~ -+ 0, gives us 

via Fatou 's  lemma tha t  

]lsup < A II/]l. 
t>O 

which proves tha t  K-~/EH p, and tha t  the mapping / ~ K ~ - / i s  hounded on H ~. Q.E.D. 

Remarks. 1. The proof just given could easily be adapted to give boundedness on H ~ 

under essentially sharp conditions on the kernel K. We in effect have to find the best 

possible _N o in (11,1) and (11.2) and the definition of A. We get this by  using Theorem 10 

instead of Theorem 11. Then the result can be formulated as follows: K is a tempered 

distribution whose Fourier transform is a bounded function. For any a > 0 ,  we assume 

that  K is of the class C (k) away from the origin, where k is the greatest integer ~< a; and also 

In  addition, whenever/~ is one of the derivatives of totM order k of K, we assume tha t  

i~(x_y)_t~(x)l<~ A l y ~ ,  if 21Yl< Izl. 

Then f~K~e/=lims~o.M~ KeM-)ef is bounded on H p with a>n[p -1 ~ 1]. This refines and 

extends the results given by the "Li t t lewood-Paley" proof in [21]. 

2. The theorem applies in particular to the Riesz transforms and their products, and 

so in effect, it gives us a new proof of Theorem 9. 

3. The methods can also be used to obtain results for H p boundedness, p <  1, for 

operators of the type arising in examples 1 and 2 of w 6 .  Let  us, for instance, consider 

the operator T~. Suppose 0 < P0 4 1, 1/p 0 - �89 = (b/n) [(�89 n + 2)](b + ~)], with a, a',  b and 2 

satisfying the relations described in w 6. 
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Then  T~. is bounded  on H p, for p >P0. This  s t a t e m e n t  is false for p <P0; b u t  t h e  ease 

P =Pc  is left  open. The in te res t  of th is  resul t  is t h a t  i t  gives, as far  as  we know, t he  f i rs t  

example  of an  H"  inequal i ty ,  p < 1 for opera to rs  of the  t y p e  T~. Since we bel ieve t h a t  

th is  theorem is p r o b a b l y  no t  the  final resul t  (when p c = l ,  we know t h a t  t he  conclusion 

is va l id  for  p =P0, using p a r t  I I I ) ,  we shall  no t  give the  proof; we po in t  ou t  only  t h a t  i t  is 

in the  same spi r i t  as L e m m a  11, b u t  a d a p t s  the  techniques  of [9], which gave  the  sharp  

" w e a k - t y p e "  resul ts  for P0 = 1. 
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