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The classical theory of H? spaces could be considered ‘as a chapter of complex function

theory¥alth0ugh‘a fundamental one, with many intimate connections to Fourier analy-

sis. (1) From our present-day perspective we can see that its heavy dependence on such

special tools as Blaschke products, conformal mapi)in'gs, etc. was not an insurmountable

obstacle barring its extehsion in several directions. Thus the more reeent n-dimensional

theory, (begfm in [24], but with many roots in earlier Work) succeeded in some measure

() See Zygmund [28], Chapter III in particular.
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138 C. FEFFERMAN AND E. M. STEIN

because it was able to exploit and generalize in a decisive way the circle of ideas centering
around conjugate harmonic functions, harmonic majorization, ete.(})

The purpose of the present paper(?) is to develop a new viewpoint about the H”
spaces which pushes these ideas even further into the background, but which brings to light
the real variable meaning of H?, Besides the substantial clarification that this offers, it
allows us to resolve several questions that could not be attacked by other means. We shall

now sketch the requisite background.

Background

We can isolate three main ideas that have made their appearance in the last several
years and which can be said to be at the root of the present development. We list them
in order of occurrence.

(). The realization that the results of boundedness of certain singular integral operators
could be extended from the L” spaces, 1 <p<eo, to the H? spaces, p<1.(3) But those
results had two draw-backs, first, an esthetic one, since the proofs often depended on more
complicated auxilliary functions, (e.g. the g7 functions and the HP inequalities for the S
function of Calderdn [3] and Segovia [16]) which in reality did not help to clarify matters.
A more basic objection was that with those methods, operators such as the more strongly
singular integrals (corresponding to >0, in the definition in § 1), could not be treated
at all.

(ii). The theorem of Burkholder, Gundy and Silverstein [2], that in the classical situa-
tion of an analytic function F =u v, the property FEH?, Q0 <p <o, is equivalent with
the non-tangential max.function of 4 belonging to L?. This striking theorem (proved,
incidentally, by Brownian motion) raised, however, many questions. Explicitly: how could
the results be extended to n-dimensions; and implicitly: what was the réle, fundamental
or merely incidental, of the Poisson kernel in these matters?

(iii). The third idea (which is part of the subject matter of the present paper) is the
identification of the dual of H' with the space BMO, the space of functions of bounded
mean oscillation. The latter space had previously been introduced in a different context
by John and Nirenberg [13]; it had since been noted that in several instances BMO served
as a substitute for L®. The duality ties together these facts. But more significantly, it leads
to new ways of approaching various problems about H!, and somefimes also gives us hints

about possible extensions to H?, p<1.

() Compare [25,' Chapter- VI]. Among other significant generalizations of the classical theory are
H? spaces of several complex variables, and analogues in the context of Banach algebras.

(2) Some of the results of the present paper were announced in two seperate notes {10] and [22].

(3) See [21, Chapter VII].
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Main results

Our results are of two kinds: those valid for all H?, 0 <p < oo, and sharper and more
far-reaching ones for H'. We sketch first the Tesults for H!.

Our first main result is that the dual of H* is BMO. At the same time that we prove
this we also give several equivalent characterizations of BMO, among which is one in terms
of Poisson integrals (Theorems 2 and 3 in § 2) as a rather immediate consequence of the
duality we obtain boundedness on H! of a variety of singular integral transformations, and
of certain maximal functions. The duality, in fact, allows us to obtain these results under
“sharp” hypotheses.

Further applications require the introduction of another idea, namely the function f*.
It is defined by

1
f#(w)=sup~f |7() — fol dy-
reQ |Q‘ Q@

Observe that f€BMO is equivalent with f#€L®. The result we prove is that f#€L?
implies fEL?, if p < oo; this may be viewed as the inverse of the corresponding inequality for
the maximal function. Its significance for us is that it provides the link between BMO
and L?, and so allows us to interpolate in the complex sense between H! and L”. The
resulting interpolation theorem (Corollaries 1 and 2 in § 5) is the key step in the new esti-
mates we make for L? multipliers. Examples of our results are as follows. First, if ¢ is the

uniform measure distributed on the unit sphere of R", then the operator
a &
=) o

is bounded on L?, whenever

1
2 n—-1"

1 1
e
¥

Secondly, we also obtain sharp L? estimates, 1 <p < co, for multipliers of the form
m(&)=exp (¢]&|%/|&[P, |&] large, where 0<a<1, B0, with m locally smooth.

The results we have sketched for H! make up parts IT and III of our paper. In parts
1V and V we carry out the general theory, valid for H?, 0 <p<oo.

We say, by definition, that a harmonic function u{x, t) on R**! is in H? if it and a
requisite number of conjugates satisfy an appropriate boundedness condition on L”. (See
the definition in § 8). For such harmonic functions we may speak of their boundary values,
lim; ,ou(+, #)=f(-), taken in the sense of distributions. Then wu(-, t) =P,%f. Conversely,
for tempered distributions f on R”, we may ask when these arise as H” boundary values.

The answer is contained in the equivalence of the following four -properties:
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(1) f=limu(-,?), u€ H".
t—->0

(2) sup |(f* ¢,) (x)| €LP, with g, (x)=¢"¢ (atf), for all sufficiently “regular” ¢ (say
t>0

pES).
(3) That (2) holds for one such ¢, withf @ dz=+0.
R”

4) sup |u(y,t)|€ L.
lz—yi<t

The equivalence of (1) and (4) is the generalization of the Burkholder-Gundy-
Silverstein theorem, which we prove by means of the corresponding results for the Lusin
S-function. But also of capital importance is the equivalence of these two with (2) and (3),
which gives the real-variable interpretation of the classes HP. It shows that the H? spaces
are utterly intrinsic and arise as soon as we ask simple questions about regularizing
distributions with approximate identities. There is thus no need, when formulating certain
basic properties, to have recourse to analytic functions, conjugate harmonic functions,
Poisson integrals, ete.

That these ideas can be applied to Fourier analysis on H? spaces and in particular
to singular integrals, can be understood as follows. In making the usual L! estimates (for
singular integral operators) it is, in effect, the Hardy-Littlewood maximal function which is
controlling, and is at the bottom of the weak-type estimates that occur in this context.
However because of property (2) on H?, appropriate substitutes of the maximal function are
bounded in L?, and this leads to HP results for various operators. In brief: our equivalences
(1) to (4) make it almost routine to carry over the main ideas of the usual Calderén-

Zygmund techniques to H?.

Further remarks

To some extent the different sections of this paper may be read independently. For
instance, the reader mainly interested in the duality of H! with BMO, -and its applications
to L? multipliers need only look at parts Il and III; while for the reader principally
interested in the generalities about H?, parts IV and V would suffice, On the other hand,
anyone who wants to understand the various interrelations that exist and the larger
picture we are sketching, must resign-himself to read the whole paper,

Our results suggest the possibility of several generalizations and also raise a variety
of problems. Some examples are:

(1) It seems likely that the theory given here goes. over: to any smooth compact
manifold, .in place of R” In particular it is indicated :that Theorem 11 should have a

complete analogue in that context; and thus lead to intrinsically defined H” classes.
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(2) Another problem is the extension of these results to products of half-spaces, and
more particularly to the H? theory of polydiscs or tube domains over octants. (1)

(3) We may ask what is the meaning of the conjugacy conditions (in § 8), depending on
P, in the definition of H?, particularly in view of the fact that the other characterizations
mentioned above do not vary with p. For instance, are the exponents p, the best possible,
as for as the definition of H? is concerned?

We have obtained partial results for the first two of these problems, and hope to
return to these matters at another time.

With great pleasure we thank A. Zygmund who sparked the research of parts II and
III by his incisive questions about BMO. We owe a real debt to D. Burkholder and R. Gundy
for several illuminating discussions on H” spaces and for many helpful ideas contained
in their earlier work. Finally, we thank R. Wheeden for several useful observations

concerning the sawtooth region in section 7.

II. Duality of H* and BMO
1. Functions of bounded mean oscillation: preliminaries

Let f be a locally integrable function on R™ Then f is of bounded mean oscillation
(abbreviated as BMO) if

sgpl—éTfQIf(x)—fQ|dx="]‘"*< oo (1.1)

where the supremum ranges over all finite cubes  in R”, |@] is the Lebesgue measure of ¢,
and f, denote the mean value of f over Q, namely fo=(1/|Q| {o f()dx). The class of
functions of bounded mean oscillation, modulo constants, is a Banach space with the norm
|l defined above.

We note first that a consequence of (1.1) is the seemingly stronger condition

1 ,
SUp o7 f |f(2) = folPda< A ||f|Z< oo (1.1%)
o 19 Jo
which is itself an immediate corollary of an inequality of John and Nirenberg about
functions of hounded mean oscillation. Their inequality is as follows (see [13])

{z€Q: |f(zx) — fo| >a}|<e=lls|@Q|, for every x>0.

We observe next that if f is BMO then f —‘M— dx < oo, and more preecisely

re 1+ |xl"’”

(*) For H® theory in this context see [28], Chapter 17, and [25], Chapter IIL.
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[ o=l g ap., 02
where ) is the cube whose sides have length 1, and is centered at the origin. (1)

Let us prove (1.2). Let Qy¢ be the cube with the same center as @ but whose sides have
common length 2. Then of course | [gu1[f(®)—fouplde| < fou|f(®)—fou [da <27 ||f],,
and therefore |foi1—fou| <27f||«. Adding these inequalities gives |fo—fo| <2°||f] .
and finally

fQ klﬂx) — foldw< 2™ 1 + 27 k] |||,

A last addition in £ then gives (1.2). Now the mapping f(x)—>f(0—1z), 6 >0, is clearly a
Banach space isometry of BMO to itself. Thus, by making the indicated change of
variables (1.2) leads to the following extension of itself

If(x)_anldx A
— = , > 1.2
fR” 6n+1 + |x|n+1 F) ”f”* >0 ( )
where ; is the cube whose sides have length 6, and is centered at 0.
We show next that the class BMO arises as the image of L® under a variety of
“singular integral” transformations. Let K be an integrable function on R", and suppose

0 is a fixed parameter with 0<0<1. If #=0 we shall assume that

f |K(z—y)— K(z)|de<B, all y+0
[z]>2|y]

and |K(&)| <B.

When 0<f<1, we assume K vanishes when |z|>1, and if |y] <1,
f |K(z—y)— K(x)|de< B; also |K(&)|<B(1+|&|)~ "=
Jefz2lyit=0

TEEOREM 1. The mapping f— Tylf) =K %} is bounded from L® to BMO, with a bound
that can be taken to depend only on B (and not the L' norm of K).
This theorem is known in the case § =0; (see [17], and [20]). We shall assume therefore

<

that 0<@<1. The latter class of transformation corresponds to the “weakly-strongly”

singular integrals of [9].

(*) Here and below the constant A may vary from inequality to inequality. 4 is always independent
of the function f, the cube Q, etc. but may depend on the dimension n or other explicitly indicated
parameters.
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Let @ be any cube of diameter §, which for simplicity we may assume is centered at
the origin. Take first § <1. Write f=f, +f,, where f;=f in the ball |z| <269, and f,=f
when |z| >20'-0. We write also u=T,(f), and u;=T(f;), j=1, 2. In terms of the Fourier
transform 4, (§) = K(§)f, (&) = |&| 2| K(£)|&| =" f,(&). According to our assumptions, the
factor |£| 2K (£) is bounded by B, while by the Hardy-Littlewood—Sobolev theorem of frac-
tional integration |&|~"*2R(&)|&| "¥2f,(&) is the Fourier transform of an L” function whose
L? norm does not exceed A|| K (&) |&|"2f, (&)l < AB|fi(&)lla= 4B ||f,llo, with 1/p =1/2—6/2;
see e.g. [21, 116-120]. Thus fo|u,[? do < [ga|u,[Pda < A7 B2 ||f,||3 < 47 B? 6"~ 072 f[[2,.

Summarizing, we get

a1 ]l as< 4B ). 13)

Now let ag= [ K(—y)f»(y)dy. Since uy(z) — ag= [ [K(x —y) — K@) f2(9)dy, it |2 <3,
(which is certainly the case if x€Q), then |uy(x) —q| < [ ng1-0l K — ) — K(— )| dy
Iflleo < B|flc When this is combined with (1.3) it gives

ﬁJ;)]u(x)—aQ[dx<A'B[[f”00 (1.4)

from which it follows immediately that

I%IJ () 00| dw < 2 4" B|f] (1.5)
)

This disposes of the case when the diameter d of @ is not greater than 1. Suppose now
d>1. Let ¢ be a positive constant, sufficiently small so that ¢§=9<d+1, for all §=1.
Let fy(x) =f(x) if |2] <cd™?, and fo(x) =f(z), if |x|>co'-0. Then for u, we get, as before,
the estimate (1.3). However when || <8, %y (%) = ;<1 K(y) fo(x —y)dy =0, since then & —y
ranges outside the support of f,. This leads, as above to (1.4) (with a;=0) and hence
to (1.5). The proof of the theorem is therefore complete. (1)

The theorem we have just proved will be extended below to show that the operator T,
in effect, maps BMO to itself.

We show now by an example how Theorem 1 can be applied to the standard singular
integrals (other applications are below). Let K(z) =Q(x)/|x|"=c,z,/ ||, j=1, .., n,
be the kernels of the Riesz transforms. For every ¢ >0 consider their truncation K., defined
by K(x)=K(x) if [z]>¢, and K. (x)=0, if |z|<e. If f is a bounded function define
Ry(f) by

(*) An extension of this result to a general class of pseudo-differential operators has been obtained
by one of us in [11].
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R;(h) (x)=1€i_)ﬂli) Rn[Ke(x*?/)—Kl(—y)] Hy) dy = u(x). (1.6)

We observe that for each fixed ¢ and x the integral converges absolutely; it is also

well known that the limit exists almost everywhere in z \an_d, say, in the LZ‘:norm on

each finite cube. We claim that with our assumption that fEL® the R,(f) belong to BMO.

To seo this write u,(z) = fua[Ku(z —y) —Ky(~9))f(y)dy, and ¢, = [malK.(—y) —Ey(~y)]fdy.

Note also that wu,—uy=K.y*f, where K,y=K,—K,, and the integrable kernels K,y
satisfy the conditions for Theorem 1 (With 6=0), uniformly in ¢ and N. Thus

fmelug(x)—un(x)—uEQ+uNQIdx<Aﬂfﬂw (1.7)

with 4 independent of &, N and Q. We remark that uy(z) —cy = {[Ky(x —y) — Ky(—9)1{(y) dy
-0 uniformly as N— oo, if o= § [Kx(—y) —K(—¥)1{(y)dy. Since in (1.7) we can replace
Uy by uy—cy without changing the inequality, we get, upon letting N— oo and then ¢—~0

1

a1 |0~ walda< 4 1l

which is our desired conclusion. We remark that everything we have said extends to the
case when K(z)=Q(x)/|x|" is any Calderén-Zygmund kernel, i.e. where Q is homogeneous

of degree zero, satisfies a Dini condition, and has mean-value zero on the unit sphere.

2. Duality of H' and BMO

We shall be studying the equivalence of several definitions of the H” spaces later.
For the present, howévér, it will be useful to adopt the following definition ‘when p=L
H? consists of that class of I functions f, so that there exist& L functions f,, fy ... , 1, with
the property that f,(&)=(i&;/|&])f(E). We write f,=R,(f). To define the H! norm (see
also [21, p. 221]) we set

e =+ 31l

It will be technically useful to use a certain dense subspace Hy of H, ([21, p. 225]). If f€H,
then among other things, it is bounded and rapidly decreasing at infinity. In particular,
this shows that H'n L2 is dense in H!. With these matters out of the way we come to one

of our key results.

(1) The definition of B;-we-have used here differs from (1:6) by an additive constant: Since in the
latter context we view the range of the B as BMO, the additive constant here does not lead to any real
ambiguity.
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TEEOREM 2. The dual of H ts BMO, in the following sense.

(8) Suppose p €BMO. Then the linear functional — [g.f(x)p(x)dz, initially defined for
fEH,, has a bounded extension to- H!.

(b) Conversely, every continuous linear functional on H' arises as in (a) with o unique
element ¢ of BMO.

The norm of @ as a linear functional on H' is equivalent with the BMO norm.

The proof of Theorem 2 requires certain other equivalent characterizations of the
class BMO. In order to state them we observe that if ¢ is any function that satisfies

fre|@(@)|/(1 +]2|**?) dz< oo, then its Poisson integral ¢(x,1) is well defined as

¢, t
@, t)= L‘”Pt (x—y)p(y) dy, t>0, where P,(x)= EP

TrEOREM 3. The following three conditions on @ are equivalent:

(i) ¢ is BMO.

n
i) ¢= (p0+j=lej (@;); where @g, @y, ..., P, EL®

(iii) I(p(x—)lixl<*00, and sup f t|VpPdadt< AR®, 0<h< oo where
R”1+|xl z°¢R* J T(z%h)
a(p 2 n a(p 2
Vo= P +jz | and T(2° h)={(x,t): 0< t<h, |x—a°| < B}, with ¢(x, )
=1 4

the Poisson integral of ¢.

The various implications in Theorems 2 and 3 will be proved in the order which we
schematize as follows: 2= 3(ii) = 3(i) = 3(iii) = 2.

Let-B be the Banach space -which consists of the direct sum of n+1 copies of L1(R").
That is, B={(fy, f1, ---» fx), [;€L*R™)}. We define a norm on B by setting || (fo,’ fir o F)|| =
27ollfil;- Let S be the subspace of B for which f,=R,(f,), j=1, ,... n. Clearly § is a
closed subspace of B, and the mapping f,— (fo, By fo: ---» Bynfo) is @ Banach space isometry
of H' to 8. Any continuous linear functional on H* can be identified with a corresponding
functional defined on 8, and hence by the Hahn-Banach theorem, it extends to a continuous
linear functional on B. NOW/B=L1(-BL1...®L1 and thus the dual to B is equivalent to
Le@L®... @L®. Restricting attention to § (and hence H') we get the following conclusion.

Suppose ! is a continuous linear functional on HY, then there exists g,, ¢1. ... ¢, €L®, so that

l(f)=g0 . 1yp;dx, where f=fy, and f,}=R (f), j=1,...n. (2.1)
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Now the “anti-Hermitian” character of the Riesz transforms gives us

f R,(f) gy dw= — f IR,(g) dw, if [€H), g € L.
R* R”

(This is obvious by the Fourier transform if both f; and ¢; are in L? the case where we
assume that ¢,€L® and f€H; follows from this by a standard limiting argument whose
details may be left to the reader).

Therefore
= tln-3 mieo}an
Thus we have proved that when restricted to Hy, every continuous linear functional arises
from ¢ which can be written as ¢ =@,— > 1R (p,), with g,, ... ¢, €EL®. This proves the
implication 2 =-3(ii). The implication 3(ii)=3(i) is immediate, since we have seen earlier
that the Riesz transforms of an L® function are BMO. We consider therefore next the
implication 3(i) =3(iii).

Observe that we have already proved (see (1.2)) that if @€BMO then
Jlo@)|/(L+ |@|™*) dz<oco. In proving the second inequality of (iii) let us assume that
29=0. We let @,,=R" be the cube whose sides have length 4k, with center the origin.
We write y for the characteristic function of this cube, and j for the characteristic function

of the complement. With ¢go,, denoting the mean-value of ¢ over @,,, we have

P=@out (@ —Po,) X+ (P — o) =1+ @st+ s

We also have @(x, ) =@, (, ) +pu(=, ) +@s(x, t), for the corresponding Poisson integrals.
In the integral with the gradient square, @, contributes nothing since it is constant. Now

[ ivmpaas [ ivntaa-loeal=tlni=i [ lo-rald
70,y R%Y QU

(by {21, p. 83]).

The last quantity does not exceed A" ||p|[%, by (1.1). Altogether then

[, tivepdsasar|gl.
7¢0,h)

However

1 n+l
[_—] |‘P(y) - (PQ4;.| dy'

Vas@ol< [vPe-vllmwlawsa] |mp

Qi

So if (x, )€ T(0, k) then
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1 n+l 1
S € 4d—n
(t_'_lx_yl) Akn+1+ly|n+1:

when y € ( @y, and therefore by (1.2') |Ves(z, )| < AR ||g]+.
From this it is obvious that [ro.nt|Ves(,t)|2dedt<AR™|gp|[3, and a combination
of the above remarks shows that

[ tvpaopdzdsawlpl:
T(0,h)

which concludes the proof of the implication 3(i)=-3(iii).
The last implication, and the deepest, is that whenever ¢ satisfies the condition 3(iii),
then it gives rise to a continuous linear functional f— ffpdz on HY.

To see this we begin by showing that for appropriate f€H?!

l fRnHt(Vf(x, ) (Vg(z, 1)) dodt | < A ]l (2.2)
+

The f we deal with have the following properties: there exists F =(uy, 43, ..., %),
so that the function u,(x, ¢) satisfy Cauchy-Riemann equations in R+ F is continuous
and rapidly decreasing at infinity in R%*%; | F| >0 and A|F| =0(|e| +¢+1)-"-% in R%Y
and finally u,(%, 0) = f(x). The fact that f € H! means then that {rasup,.,|F (=, ¢)|dx <A||f] .
By a simple limiting argument it suffices to prove the inequalities for such f (see [21, 225-
2277).

Now the quantity on the left of (2.2) is clearly majorized by

fR’f:l t| Vi@ ) Vo, t)] dedt < fR»;H”VF("’ t)|| V(. t)| de ds

3 ¥
<(J‘Ri+lt|V<p(x,t)|2|F(x,t)[dxdt) (fRTltlF(x,t)I‘l|VF(x,t)[2dxdt) .

Let g=(n—1)/n, g(x)=|F(x,0)]% and g(x,f) the Poission integral of g. Then
| Flz, t)| <(g(, t))*, with p=1/g>1, g€L’(R"), and [|g]|5=fr=|F(x, 0)] du<A||f|m; (see
[21, 222-223]). From this we get that

fRn+lt|V(p(x, | F(z, t)| dzdt < fRn+1t|V¢(z, t)[2(g(x, 8))” dz dt. (2.3)

+ +

The last integral can be estimated by observing that the condition

sup t| Vol|Pdedi< AR",

%0 J T(xo,h)
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is precisely the property that the measure {| Ve |?dwdt on R} satisfies the hypothesis of
an inequality of Carleson (for which see [15] and [21, p. 236]). The result is that the
second integral in (2.3) is majorized by Allg||3 <A'||f||a:-

Next we invoke the inequality |F|™ |V F|*<(n+1)A(|F|) ([21, p. 217]) and hence
f H P |V FPdedt< (n+ 1)f LA P, b)) dw dé= (n+ 1;f | #(a,0)| de < A |-
er:-l RT'I R

The next-to-the-last inequality holds by a simple argument involving Green’s theorem.
Thus a combination of the last few inequalities proves (2.2). To conclude the proof

of the implication 3(iii) = 2. we observe that
(@) pla) do= 2f V1@, 1) (Vole, 1)) dodi
R" R

whenever, say, both f and ¢ are in L*(R"), (see [21, 83, 85]). The extension of this iden-
tity to the case when f€ Hj, and ¢ € BMO is then routine. This shows that

[[ooee

and hence f— ffpdx extends to a continuous linear functional on H!. Since the series

<A||fllz, whenever f€ Hy,

of implications 2 =3(ii) =3(i) =3(iii) =2 have all been proved, the fact that the norm of @
as a linear functional on H! is equivalent with its BMO norm follows either by a priori
grounds (the closed graph theorem), or when one keeps track of the various constants

that arise in the proof just given. QED

Remarks. (a) We sketch an alternate proof of the main step (3iii) =g €(H")* above.
Given u(x,t) harmonic and h€[0, o], define S,(u) (@) =({§|s-y1<c<nt'~"|Vuly, t|2dyd)*.
This auxilliary function is intimately connected both with H* and BMO. For any f€ H*
with Poisson integral f(z,t), we know that ||S,(f) (®)|| <C||f||m (see Calderén [3], Segovia
f16] and Theorem 9 Corollary 1 below). In addition, any ¢ whose Poisson integral ¢(z, ?)
satisfies (3iii) must also satisfy. {gy, s (Su(e) (#))2dz <Ch" for all y, h, which implies:

Let h(x) =sup {h>0|8,(p) (x) <1000 C}. (Thus, Sy () (x) <1000 C automatically).
(2.4)
Then |{z€ B(y, k)| h(z) >k}| > ch.

Now to show that ¢ € (H")*, we write
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Uﬁnﬂxmm do|< 2 f fnmtlw(y, 0] |Vely, t)] dydt

<0f ff 7|V iy, O] |Voly, )| dy dt dw
R lz—y|<t<h(z)

(as follows from (2.4) and a change in the order of the triple integral)

3 3
<Of (” tl‘"lrvf(y,t)lzdydt) (ff tl‘"]V<p(y,t)|2dydt) dx
R” le~y]<it<h(z) lz—y|<t<h(z)

<[ Sulh) @ o @) 8= Ol

since Sy, () (2)<1000C and [|S,,(Hll; < C ||l The proof is complete.

b) Theorems 2 and 3 have natural analogues in martingale theory. Let F,= F,= F,< ...
. & F, be an increasing sequence of Borel fields. For each - F-measurable function f,
form the conditional expectation f,=E(f| F,). We say that f€H* if the maximal function
f*() =supnzo|fa(x)| belongs to L. Let BMO denote the space of f’s for which

(@) |fa—tns1lleo < C for all » and
B) NE(f=tal| Fa)||e < C for all n.
Then (H')*=BMO. We shall not give the proof, but only remark that the reasoning in

(a) above goes over to the martingale setting. A. Garsia and C. Herz have since discovered

other proofs of the martingale version of (H')*=BMO.

3. Some applications to H"

Our purpose here is to give those applications of the duality of H! and BMO which
are rather straight-forward consequences of this relation. Further applications will be

found in part I1I below.

CoROLLARY 1. Let Ty(f)=K % f be as in Theorem 1. Then T, is a bounded operator of
H? to itself, with a bound that can be taken to depend only on B.

If we considered 7', as bounded mapping from H! to L' only, the corresponding
conclusion would follow immediately from Theorems 1 and 2. However the proof of the full
assertion: requires a further idea.

Let I%(x)=K(:—,x), -and T(f)‘=K~%f be the ‘“‘dual” to T,. Then clearly

f Ty(ppda= fmﬂ“’(w) d (3.1)
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whenever f€L’ and ¢ €EL®. Assume now that f€ H!, and let p range over the unit ball of
L». Tt then follows from (3.1) and Theorem 2 that || To(f)]l1 <A ||f||a: {S“PM ‘ Sl”i’((p)”*}.
However 7' satisfies the same conditions as 7', and thus by Theorem 1 || T(¢)||+ <A4[@]l«-

Altogether then
1o (Ml < Al Aller (3.2)

where 4 depends only on the bound B (and not the I! norm of K).
We now invoke the fact (which is trivial only when n =1), that the Riesz transforms

are bounded on H*'. That is, we have the inequality
| Bfilen <Alfllas, 7=1,..,n, fEH? (3.3)

where (R,f)" (£)=(i&,;/]&])f(£); or equivalently

B A< Al 3 IROI e 1<iken,

{See [21, p. 232)).(1)

Now Ty R;= R; T, as bounded operators on H*. (At this stage we use the trivial result
that T, is bounded on H', but with a norm that may depend on the L! norm of K.)
Combining (3.2) and (3.3) then gives

2ol = NTo P+ 3 IR Tl < 4 Ul + S NB < A W,

with 4’ that depends only on B. The proof of the corollary is therefore complete.

The corollary allows us to prove the boundedness of singular integrals on H! in
various new circumstances. For the singular integrals corresponding to 0 <@ <1, no results
were known previously concerning boundedness on H'. In the case of the “standard”
singular integrals (corresponding to 6'=0) where boundedness results were originally
developed, the above technique leads to those results but with sharper cenditions. We
state two theorems of this kind.

First let m(&) be a function satisfying [m(£)| <B, and

sup R2‘“""f [m'® (&)|?dé<B, for 0<|x|<k,
0<R< o0 R<|é|<2R

where [ is the smallest integer >#/2. Then m is a multiplier on H'. These conditions on m
are exactly Hérmander’s hypothesis for the Mihlin multiplier theorem. Secondly it can be
shown that the singular integrals with the Calderén-Zygmund kernels Q(z)/|z|" (where Q

{*) The last inequality could also be proved by appealing to (3.2).
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is homogeneous of degree zero, satisfies Dini’s condition and has mean-value zero) give
bounded operators on H!. Both these results, which could be proved from Corollary 1
by what are now rather standard arguments, sharpen the corresponding theorems in [21].

Let T be the dual of the operator 7', where the latter is considered as an operator on
H*. Then T'is an extension of 7. From Corollary 1 (applied to Kin place of K) and Theorem

2 one then obtains immediately

CoROLLARY 2. T is a bounded operator from BMO to itself, with a bound that can be
taken to depend only on B.

We show next how one can obtain sharp results for maximal functions on H'. Maximal
functions of this kind, but studied by different methods, are at the heart of the ‘“real-
variable” theory of H” described in part V. Let ¢ be a function on R" which satisfies
either condition (A) or (B) below; for that matter various other conditions of the same
kind would also do.

(A) @ has compact support and ¢ satisfies a Dini condition, i.e. if

1
o(d)= sup |p@) —e@)] thenf @(9) dy< oo,
jz—v)<é 0 ]
Alternatively,
(B) for some ¢>0,
Ayl

lp(@)| <A1 +|2])""¢ and |p@—y)—p@)|<

S fe) for 2[y|<|«|.

For such @, let g, (x) =t "gp(z/t), t>0.
THEOREM 4. Suppose @ satisfies either (A) or (B) above. Then whenever € H*

sup [(f % @,) ()| € LY,

and fR”ISth; (f % o) (@) | dw< A fllan- (3:4)

The same conclusion holds for the ““non-tangential”’ version, that is, where |sup;..o (f * @) ()|
is replaced by
sup |f% gy ().

jz—y|<at

We shall prove the theorem for the case sup;., |(f%¢,)(%)|, under alternative (A).
The other variants are proved in the same way, and the details may be left to the

interested reader.
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It is no loss of generality to assume that the support of ¢ is inside the unit ball.
Let z—i(x) be any positive, measurable function on R” which i3 bounded and bounded
away from zero. It will suffice to show that

J;Jv*wmﬂwﬂdx<AHmm (3.4)

where the constant 4 above does not depend on the particular function #(z) that is used.
We dualize this ineqﬁality, and see by Theorem 3 that the problem is reduced to the

following: consider the mapping

n x—
¥ fm (t(x) " (%;’) W(z) do = D(y).

Then this is a bounded mapping from L® to BMO, with a bound independent of #(x).
The proof of this last assertion follows the same lines as the proof of Theorem 1. Fix a
cube @ =@, whose sides have length % and whose center is »°, and let @, be the cube with
the same center as ¢, whose sides have length 2. We shall estimate @ in @ by Wi‘iting
Q =0, +P,, where @; arises from ¥, ¥'=¥',+¥,, V=¥, ¥o=(1—x)¥, and y is the

characteristic function of @,,. Now

[1owlau< [ @wiar<iph izla<4101T). )
)
Write ag= J; Q2h(t(av))""(p (xt (x:l)/ ) W(x) dx.
- [ (E2Y) o (22
hen S =ao | i) o (i) -+ () ) roras

and in view of the support condition on ¢ we may assume either t(z) > |x—y| or
t(x)>|x—y°|. Since if y€Q and x€(Q,, then |x—y|~|z—y°|, we obtain that in either

case i(x) >¢|x —y°| for some small positive c. The Dini condition applied to ¢ therefore gives
Y-y
e I ot A e A I
[-y%|>csh Clx_?f i
as long as y€@),. Combining this with (3.5) gives

fQ1®<y>—aQ|dy<A|Q1 %)

where 4 is independent of @ or #(x), which is the desired result.
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We remark that the Dini type condition imposed on ¢ cannot be essentially relaxed
Thus in one dimension the conclusion of Theorem 4 would be false if we took for ¢ the
characteristic function of the unit interval. To see this consider the (limiting) case when
t(x) = |z|; @ is the characteristic function of [—1, 1]. Let ¥" be the characteristic function
of [0, 1]. Then

I APV it Mo (F drm 1o 2
(D(y)—fwt(x) ltp(t(x))‘F(x)dx—fox l(p( - )dx—logy, if 0<y<2,

and ®(y) =0 otherwise. But it is easy to see that @ is not BMO. Therefore by the duality,
the mapping f—(f* @) (x) cannot be bounded from H! to L!, and hence the property
(3.4) does not hold for this ¢.

III. Applications to L? houndedness
4. The function f#

In order to apply the above duality to the boundedness in L of various operators,
we shall need to introduce a device that mediates between BMO and the L? spaces. This

device is the function f# defined as follows. Whenever f is locally integrable on R" we set

1#(x) = sup {Iné_l Llf(z/)~fgldy}- (4.1)

TEQ

Of course, f€BMO is identical with the statement f#€L®; the interest of f# is the fact
that ff€LP, p<oco implies fELP. Define the maximal function M} by

(M) (@) = sup f )| dy.
sup ot )

As is well known, if f€L?, then Mf€L?, and || Mf|,<A4,|f|,, when 1 <p<oo. Obviously

Mf=|f|. The precise statement concerning f “is as follows.

THEOREM 5. Suppose fELP(R®), for some p,. Assume that 1 <p<oo, 1 <p,<p, and
that ftELP(R™. Then MfELP(R™), and we have the a priors inequality

31|, < 4[| ], (4.2)

Proof. We apply the Calderén-Zygmund lemma to |f|. For fixed a>0, we divide
R” into a mesh of equal cubes so that (1/|Q])fq|f] dz<a for every cube in this mesh.
(This can be done since f EL™, p,< o0.) Next by repeated bisection, obtain a disjoint family

of cubes {QF}, so that
11 — 722902 Acta mathematica 129. Imprimé le 2 Octobre 1972
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1 !
a<i— | |flde<2"« (4.3)
A e

and |f(x)| <o if ¢ U;Q]. (For details see Calderén and Zygmund [5].)

This decomposition can be carried out simultaneously for all values of . It is then
convenient to restrict attention to a fixed family of meshes—the “dyadic” ones. Note that
if o; >0y, the cubes.in {@F} are then sub-cubes of the. cubes in {Q7*}. Let us denote by

wlx)=2,]Q%|. The main estimate will be the inequality:

ule) <

{x: f# >Z°‘H +% e (4.4)

which is to hold for all positive « and 4.

Fix a cube Q;‘f—”'l =@y, and look at all the cubes @5 < Q2. We divide considera-

tion into two cases.

Case 1. Qy<={z:f*>u/A}. Then trivially,

> |@l<la:ft>ald} n Q|- (4.5)
QfCQ,
Case 2. Qo {x: f# >afA}.
Then obviously l%—l |2y~ fo| dx < o/ A. (4.6)
ol J @

However by (4.3) |fo,| <2"(27" ') =«/2, and |f|Q4‘>oc. Hence
) )

| M=telas= a5l
Q

]
where @ is any cube < @y. Summing over all such cubes and comparing with (4.6) gives us
a 2
> losl<(5) 1@l @7)
Qca,
Finally we sum over all the cubes ¢, (these are the cubes in {Q;‘TH}), taking into
account the estimates for cases 1 and 2 in(4.5) and (4.7). This proves (4.4).
Let A(a) = | {#: Mf(x)>a}| be the distribution function of the maximal function Mf.
When we compare 4. with u we obtain two estimates

{M(oc) < Ma) 4.8)

Moy < ¢ plego), where ¢, and ¢, >0,
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Observe that lQ‘;‘l“lj'Q;,)f(x)l dx >, so that (Mf) (x) >« whenever x€ QF, and there-
fore {z: Mf(x) >a}> U,;Q;, which gives the first inequality.

Next let @; be the cube with the same centers as @f but expanded by a factor of 2.
Suppose xeujéj, and let @ be any cube such that x€¢. Consider

Jiotas= [, o tiolar [ Lol

In the second integral on the right the value of |f| does not exceed a. Thus this

integral is majorized by o«|Q|. For the first integral we use the simple geometric

observation: if @N @F &0, and Qct:é;‘ (because x2€@Q), then Q;‘Cé. 'Here Q~ is the cube
with the same center as @ but expanded by a factor of 4. Therefore for the first integral we
have
[ oias S [ iwlws 3 raei<z el
on (95) Qrca v Q¥c@

Altogether then, for such @, fo|f(y)|dy < (1+ 2"4") «|Q)|; this gives Mf(z) < (1 +2"4") .
Therefore {x: Mf(z)>(1+2"4" a} < U,-Qj-‘, which means that A((1+2"4") )< 2%u(a),
proving the second inequality in (4.8).

" Let us now consider the quantity I, defined by Iy=p 3 &’ ' u(a)dx. By (4.8)
Iy<p Yo 1 Aa)de, and we know that p, 2 o™ ' A(e) doe = || Mf||5e < oo, if 1< py< oo or
else A(o) = O(a ™) if po=1. In either case, then, Iy< co, since p, < p, and 1 < p, according
to our hypotheses. Let us carry out the corresponding integration of both sides of (4.4)
over the interval 0< < N. We then get

<ol Upipps
Iy pf {x.f >A}
ol

0

N

Clearly pf P u2 " ) da=p- 2‘”“”’[0 o (o) do < p2FUP Iy
0

2 N
o da +pr @’ (@7 a) da.
0

2. 2(n+1)p

Hence, Iy<A4? Hf#”ﬁ-*-—TIN.

Choose now 4 =4 - 2"*9?_ The resulting inequality is therefore I, <247 - 2*D?||f#||2.

When we let N - o> we see that by (4.8)-we have

N
||M(f)||§=pf ocp_ll(oc)dcx<clc§ppf a7 (o) doe=cy 057 lim Iy <y ey P 24720087 || 12,

0 N->00

0
Thus Mf€L®, and the inequality (4.2) is-also proved, with 4,< C?. In particular, note

that 4, remains bounded as p — 1.
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5. Intermediate spaces

The properties of the function f#, together with the duality, allow us to determine
the intermediate spaces between H! and L?, and also between BMO and L?, in terms of
the complex method of interpolation. To be specific, let [.,.]s be the complex method of
interpolation as described in Calderén [4]. Then we can state the following identities, with
1<p<oo, p'l4pi=1, ¢1+qg1=1, 0<0<], and ¢ '=1-60+0p1:

[HY, L)y =19 and [BMO, L*], =L, (5.1)

In order not to get side-tracked in various details that are not relevent to the central
subject of this paper, we shall not give a proof of this result here. Instead we shall formulate
and prove two corollaries of it, which are of the form most useful for applications. In
addition, these corollaries already contain the essential ideas of the general identity (5.1).

We shall deal with a mapping z—T, from the closed strip 0 < R(z)<1 to bounded
operators on L?*(R"). We shall assume that this mapping is analytic in the interior of the

strip, and strongly continuous and uniformly bounded in the closed strip.

CorROLLARY 1. Suppose

ws:;lgw 170 Dl < Mol for f€L* 0 HY, (5.2)

and 0 (T (< Myl for fE L2 (5.3)

Then | To(H)ll, < My ||f|l,, for 1€ L* 0 LP whenever 0<t<1,p ' =1—1%¢, and M, depends
on My, M, and t only.

COROLLARY 2. Suppose

s [Tyl for fEZ 0L, 62
and _ooSEy<w”Tl+iy(f)”2<Ml il for fe I (5.3)'

Then ||To(D|l < M, ||fl,, for 1€ L2 N L7, where p~ + p'~* =1 and with the notations of
Corollary 1.

Proof. Our proof of Corollary 1 will at the same time give a proof for Corollary 2.
The proof of Corollary 2 will not, however, require the duality of H' and BMO. For
each z in the strip let S, denote the (Hilbert space) adjoint of 7';. Thus

fR”Tz(f)adF fRnfﬁi@dw, f,9€ L*(R"). (5.4)
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Observe that as a result z—S, is analytic in the interior, and strongly continuous
and uniformly bounded in the closure of the strip. Moreover if z— T, satisfies the
conditions of the type (5.2) and (5.3), then z—8, satisfies conditions of the type (5.2)
and (5.3)". Let us prove this for (5.2). By (5.4), whenever g €L?>N L®, then the mapping
F— IgfSy, (9)dz is the restriction to L2N H! of a bounded linear functional on H* whose
norm does not exceed M|lg||,. Therefore by Theorem 2, S, () EBMO, and ||S;, (9)}}« <
AM,||g||co- This proves the condition of the type (5.2)" for §,, but with a possibly larger
constant. (The increase in the size of the bound is immaterial in what follows.) The condi-
tion of type (5.3)" follows immediatly from the self-duality of L2

We may therefore assume that S satisfies the conditions of Corollary 2, and we shall
prove that, as a result, S satisfies the conclusions of that corollary. Write F =53S,(f), and
let x—>@Q(z) be any measurable function from R" to cubes in R™ with the property that
x€Q(x), and let n(x, y) be any measurable function on R™xR" such that |%(z, y)| =1.
Define the operator f—U,(f) by

U.(f) (@)= (F(y) — Fowlniz,y)dy, F=S,(f)-

|Q | Q(z)

Observe that |U,(f) (z)| < F#(z), and conversely sup | U, (f) ()| = F#(z), if the supremum
is taken over all possible functions x—@Q(x) and (2, y)—>#(wz, y) described above. Since
| F#||, <2|| M(F)|]s < C|| F||,, it is easy to see that the function z— [rs U, (f)gd, is analytic in
the strip 0< R(z)<1, and continuous and bounded in the closure of that strip. Also

1T: Olleo < 1 F# o = I F 114 = 18 Dll« < AMo|[fll s i fEL*N L.
Similarly | Uy (Dl <||F¥ |2 <C|| F|2 = O|S114 Dl <CM,||flfz for fEL2

We may therefore apply to the analytic family of operators z— U, a known interpolation
theorem {see e.g. [25, chapter V]} and conclude that

1T )l < (Ao~ (CIF || ], (5.5)

whenever f€L2NL*, with p'-1=3f, and 0<t<1. Observe that bound (AM)'~*(CM,)
does not depend on the particular choice of the function z—@Q(z) and n(x, y). We take

therefore the supremum over all suech functions, and then (5.5) yields
HE#| = NSl < (AM)—* (OMo) ||, fELANLY.

If f€L2, of course S,(f)€EL?, and obviously 2<p'<co, We may then invoke Theorem
5 (see (4.2)), and conclude that
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18l <N MLl < Ap | (S H|fsr < Ap(AM) - (CHLYIf]],-

whenever f€L2N L”. Thus the Corollary 2 is proved. Going back to T, via the duality
(5.4) also proves Corollary 1 (with M,= 4, (A M) ~{CM,)).

Remarks. As is the case in theorems of this kind, estimates of the type (5.2) can be
replaced by weaker bounds, such as || T,,(f)||l, < M) |||z, where M(y) — 0™, a<gmf2.
Similarly for (5.3), (5.2)’, and (5.3’). In practice, however, all that is needed is the case
where M, (y) =O(1 + |y|)¥, for some N. This case can be deduced directly from the corollaries
as stated by taking T, instead of 7.

In the classical case (n=1) Corollary 1 had been known previously, even in a more
extended form which applied to all H” spaces; see Stein and Weiss [23], ' Zygmund [28,
Chapter XII], and the earlier literature cited there. However, when n =1 one used complex
methods {e.g. Blaschke products, ete.), and these of course are unavailable in the general

context treated here.

6, L? boundedness of certain convolution operators

We begin by dealing with operators of the type arising in Theorem 1 (in § 1). Here we
shall assume that 0-<<0 <1, because there is no aﬁalogue of the result below when 6 —0.
We shall also change the hypotheses slightly. K will be a distribution of compact support,
which is integré,blé away from the origin. Tts Fourier transform K is of course a function.

We make the following assumptions

f |K(x~y)—Kx)|de<B, 0<l|y|<1
Jej=2lyl—0 (6.1)

|E(&)|< B(1+|&])-0e

TaEOREM 6. Suppose K satisfies the above assumptions. Then |£|Y K(£) is a bounded
multiplier for (LP(R™), LP(R™), if |3 —p~|<i—y/nd, 1<p<oo, and y>0.

The main interest of the theorem is the case when |} —p~1| =4 —y/nf; the full assertion
is then a consequence of this, and anyway the result when |} —p~1| <} —y/nf was known
previously.

Let ¢ be a fixed O« function on R” with compact support and which is normalized
ie. fra@pda=1. Let g () = "p(x/e), £>0, and write K, = K % ¢,. It is not difficult to show
(see [9]) that when 0 <e <1 the (C®) functions K, satisfy the condition (6.1) uniformly in &,
and of course have their support in a fixed bounded set. Moreover K, (&) = K(£) P(ef) =K (&),
as ¢—>0. It is easy to see, then, that it suffices to prove the following: For each such e,
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|£]7K.(€) is a bounded multiplier on (L?, L?), (where |§—p~t|=}—y/nf), with a bound
independent of e.

For this purpose write 7', as the multiplier operator on L? defined by

(T.H™ (&) =|&|"**2 K. (&) (&)

whenever fEL*R". In view of fact that K.(&)=0(|& |="072), it follows that 2T,
analytic in the strip 0<<R(z)<1, strongly continuous and umformly bounded in the
closure of that strip. Clearly, also

_:‘:yllw “T1+iyf“2<A”f”2 (6.2)

where 4 does not depend on &.

Next assume f€L2N H'. Then we can write
Tiyj = Iiy(Ks*f)

where (,,(F))" (§) = || "2 F(g).

By Corollary 1 (in §3), the operators f-> K, % f are bounded on H!, with norms that
are uniformly bounded in &. Also by Corollary 1 the fractional integration operators of
purely imaginary order, I, are bounded on H* with norms that do not exceed A(1 + |y|)"**.

(This was known before). Thus
[T Dl = 11y (K¢ Hlle< AQ+ [y )" 1Ko ¢ fllen < AL+ [y )" [fll. (6.3)

Finally, consider ¢*'T, instead of T,. The former then satisfies all the conditions
of Corollary 1 (in § 5), where the bounds M, and M, are independent of ¢. The corollary
then gives the desired result when 1<p<2, p~'—i=1-y/nf, where p~1=1—4t, and
y =n0t/2. The corresponding statement for } —p—1=}—yp/nb is just the dual of the pre-
ceeding, and this concludes the proof of Theorem 6.

The argument we just gave clearly generalizes to yield also the proof of the following

theorem of wider scope.

THEOREM 7. Suppose m is a bounded multiplier on (H', HY. Assume also that
|m(&)| <A]&|-2, 8>0. Then |&|” m(€) is a bounded multiplier for (L, L?) if 1<p<co and
[3—p71[<}—p/26, and y>0.

We define the operator 7', by T, (f)" () = |£]%?m(£) f(£). The argument is then the same

as for Theorem 6. An immediate corollary is

COoROLLARY. Suppose du s a finite Borel measure on R* and assume its Fourier
transform (&) is O(|&]~%), as [&]>o0, 6>0. Then |E]Y (&) is a multiplier for (L, LP)
if 1<p<oo, |3-p~t| <} —y/20, and y=>0.
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Obviously [[f*dulm < [[du|| [fllz. and (fxdu)” =)&), so i) is a multiplier on
H!, and the corollary follows from Theorem 7.

We shall now give some representative examples of the applications of Theorems 6
and 7.

Example 1. Let v be a fixed C® function on R® which vanishes near the origin,

and is=1 for all sufficiently large &. Suppose 0<a<1. Then

P(&) €| E|70 =my,p (8) (6.4)

is a multiplier on (L”, L*), whenever 1 <p< oo, and

11 _(B\Gn+d ., (na_ _ na
!E p'<(n) R w1th/1—<2 b)/(l @), 0<b< . (6.5)

In fact the analysis of Wainger [27, p. 41-53] shows that whenever n+1>0, then
mgy(€) =K(£), where K=K, +K, and K, is a distribution of compact support, while
K, is an L1 function. Moreover K,(£)=0(|£|-") as |£]—>oo for all N, and thus
R, (&) ~yp(£)El7| €] ~b. In addition it one can show that K, () is a function away from the
origin with

K, (m)~¢,|x] " *e”, a5 20

where a1 +a'-1=1. Also |VK,(z}| <|z| """,

Now set =a, and 1=0 (i.e. b=na/2). Then it follows from what we have just said
that the distribution K, satisfies the conditions (6.1), for Theorem 6, (K,(&) ~p(&) ¥1%]&] -5
in this case). By taking y =4na —b we obtain the desired result.

Example 2. Define T; by

T:(f) =lim =9 @/ |y|**Hdy, fEOF (6.6)

&0 Je<lylg

where a’ <0, 1=0.

Then [|Z;(f)||,<A4,|fll,» where p, a and 4 are related by (6.5), and a~!+a"1=1.
This example is very closely related to the previous one and can be obtained by the same
analysis.

The results in examples 1 and 2, when there is strict inequality in (6.5), are due to
Hirschmann [14] and Wainger [27], who also show that the L? inequalities do not hold
when |L{—p=| >(b/n)[in+A4/(6+4)]. The sharp result, ie. the case of equality in (6.5),
is new.
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Ezxample 3. Let dg be the uniform mass distributed on the unit sphere in R”. Consider
the distribution (9/0x)* o, where a=(ay, ..., &0,) and |«| =0y +o,...,+0,. Then if n>3

(the cases n=1 and »=2 are vacuous),

[(a%)ao‘] is a multiplier for (L?, L?), when %——‘ <%_—n|ill (6.7)
2\* 1" : — 27ué)*
In fact [(a_x) o'] =(—2m§)“c‘i(§)=(—|‘z:|7ﬁ:i |&[ 6(&).

It is very well known that 6(£) = O(|&|~~ /%), and thus || (&) is a multiplier on (L?, L?)
when |} —p7| <} —|al|/(n— 1), according to the corollary. In addition since ( — 2 7i&)*/| |
is homogeneous of degree 0 and smooth on the unit sphere, it is a multiplier on (L?, L?),
for 1<p< oo; (see e.g. [21, 96]).

(6.7) answers several questions raised in the study of A4, algebras; see Eymard [8].
Results of this kind may also be used to give new estimates for solutions of the wave

equation.

IV. Characterization of H” in terms of boundary properties of harmonic functions
7. Area integral and non-tangential max.functions

This part is organized as follows. Section 7 contains the basic result relating the
L? norms, 0 <p, of the non-tangential max.function and the area integral of any harmonic
function. The consequences for the H? spaces are then set down in Section 8. These are,
among others, the extension to n-dimensions of the theorem of Burkholder-Gundy-
Silverstein [2] characterizing H”. Section 9 consists of a series of lemmas about harmonic
functions that are used in sections 7 and 8 and also in later parts. Section 10 presents the
second main result of this part, namely that max.funections formed with “arbitrary”
approximate identities work as well for H” as the one formed with the Poisson kernel. This
result was anticipated, in the context of HY, in § 3; for the case of general H® it is taken
up again as the main theme of Part V.

We begin with the first theorem, and fix the notation: u =wu(x, f) will be a harmonic
function in R%*'; p will be an exponent so that 0 <p <oo; and I'; and I, will be a pair of
cones whose vertices are the origin, i.e. I';={(x, t): |#|<¢;t}, i=1, 2. We denote by
T';(2), (x€R™), the translate of T'; so that its vertex is .

TuarorEM 8. With the notation above, set

w*(x)= sup |u(x',t)|, and (Su)(x)=(f |Vu(x’,t)|2t"”dx'dt)&.

@, t)el1 (x) Taz
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Then the following two conditions are equivalent
(a) w*€L?
(b) u(x, £)—~>0, as t->oc, and S(u)ELr.

Moreover, |u*|l,~ ||Sw)|}p, 0<p<oo.(t)

This result is well- known when 1.<p < oo; see [19]. Thus in proving the theorem we
shall assume that p< 2.(2) The proof will be an adaptation of the proof of the earlier
known “local analogue” of this theorem, namely that the sets where u* <o and where
S(u)<oo are equivalent. We shall therefore follow the ‘main lines of the proof of
the local analogue (see [21, chapter VII]), but we will need to find the right quaﬁti’oative
estimates in place of certain qualitative statements.

The implication (a)=(b): ||S(w)|,<C|lw*||,-

It is convenient to make certain additional assumptions that will be removed at the
end of the proof. We assume: % is the Poisson integral of an L2 function; and the cone defining
8 is strictly contained in the cone defining w*, i.e. ¢, <¢;.

We let E be the closed set E={x€R™ u*z)<«} and B its complement. So, if
s 18 the distribution function of w*, then A,.(c) = | B|. Write R= U ;z[s(x). By a simple
argument, if |u(x, )] <o in U,¢zTy(x), we have |tVu(z, t)| <O«, for (z,t)€R. Now

f(Su(x))2dx=ff |Vu(y, )P [{z € B: (y, {) € Dyl)} [ "dydt < fo t|vu(y, > dy dt.
E R R

An estimate for the last integral is obtained by replacing the region R by an
approximating family of sub-regions, R,; and then transforming the resulting integrals by
Green’s theorem. We can choose the R, so that their boundaries, B, are given as
hypersurfaces t=c; 18,(), with d,(x) smooth and [88.fex;| <1, j=1, ..., n. See [21; 206].

In applying Green’s theorem the point corresponding to the boundary “at infinity”’
will vanish in view of the assumption that u is the Poisson integral of an L2 function, as the

reader may easily verify. Since A|u|2=2|vu|? we have

f (Su(x))2dx<lim{ f I“' f luf = % 4 } (7.1)

() In his thesis at Washington University, Jia-Arng Chao has obtained an’analogue of this
theorem and a partial analogue of Theorem 9 in the context of p-adic fields.

(2) When n =1, see Burkholder, Gundy and Silverstein, [2].

(*) We have | fg(AAB BAA4)dwdt={ a5 (4(0B/ony — B(oA[on)) do, and take A =¢, B=1}|ul"
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We now divide the boundary B, into parts B, =B U BZ, where B’ is that part above
the set E, and BZ that part lying above the set B. However, sup;.q|u(z,?)| and
SUps.q t| Vu(x, t)| are both in L% and lim,,t|Vu(, t)] =0 almost everywhere. Thus

2
f 2el o,
54 on

as & > 0, since do ~ dz. We have already observed that [t Vu(z, £)| < Cain R; also |u(x, )| < «
in R, since R = U exI's(x), and u*(x) < « for x€ E. Therefore

olul?
Lft on do

¢
Next f Iulz—a—da=f -l—f .
3, On B Jug

The first integral is dominated by [(u*)?do < C fz(u*)?dz < € [%t1,. (t) dt, since u* < o
on E. For the second integral we have as majorant fz2|u|*do < of [pdo < o B| = Co® Ly ().
Altogether then by (7.1)

< CaszBdaé Co?| B| = Coa? e ().

f (Su(2)2dx < O {azlu* (o) + f i (l) dt}.
E

0

From this, and the fact that |(E|=|B|= 1, (), it follows that

s (@) <C {zu, () + o2 f “tzu, () dt}. (7.2)
0

Integrating with respect to:« then gives,

0P Asq (@) da < C {pf &P Do () dx +‘pf th, (8) {f oc”‘3:doc} dt}
) t

0

Iswlz=s

0

<Cllu*z, if 0<p<2.
The converse (b)= (a): |lu*|, < O] S(x)| -

We assume, as above, that u is the Poisson integral of an L? function; in addition we
suppose that the cone defining u* is strictly contained in the cone defining 8, i.e. ¢; <c,.
We let E be the closed set {z€R™ S(u)(z) <o}, and B its complement. Thus
Asw (@) = | B|. Now let B, be those points at which E has relative density at least 1; more
precisely set B,—{xER™ for every cube @, such that z€Q, |EnQ|>1%|Q|} Observe that
since E is closed, B, E; clearly E, is also closed. If y is the characteristic function of
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B=(GE, then (E,=B*={x: M(y)>%}, where M is the maximal function. Thus
| B*| <C| B| = Chsquy ().

We now form the region R = U .z, I'; (), with the corresponding aproximating regions
R., and try to estimate the integral of |u|2? on dR.=B,. We have

J‘ (Su(x))?dx = fur( )|Vu(y, )P |[{x€E: (y,8) €Ty ()} | " dyddt.
E TeE “

In the second integral we restrict integration over (y, t)€ R. Then (y, t) € R < for some
TEE,, (y,t) €Ly (), ie. |Z—y| <c;t. But then (y, )€l (x), whenever |x—F| <(c;—ey)t.
Thus |{z€E: (y,t)€Dy(x)}| >]|En B|, where B is the ball of center Z€E,, and radius

(ca—¢y)t. In view of the definition of E,, the latter quantity exceeds ct", and so

J‘ (Su(x))?dx > C Jj t|vuly, t)Pdydt=>C ff t|Vuly, t) | dy dt.
E R R,

We transform the last integral by Green’s theorem, obtaining as above

L(Su(x))zdx201fs |u(y, t)]zda—C’zfB |u(y, t)| ¢| Vuly, t)| do (7.3)

where C,; and C, are two positive constants (independent of ).

Let J.= (f3,|u(y,)[*do)}. We have [ |u(y, )|’ do < fgn|u*[Pdo < C fga|u*[Pde< oo,
in view of the assumption that w is the Poisson integral of an L* function. Hence J, is

finite for every . Next

f |u(y,t)|t|Vu(y,t)|d0'=J'B*+fE.
Be B Bsu

We know that |¢vu(y, f) <|Ca in R, since S(u)(z) <o for z€E. By Schwarz’s inequality,
we get therefore that

f 2 < T.ao(BEY < T,a0| B [F< OF, (@ s (@)

€

Also, as we have seen before, I, = IBf"”’ 0, with &--0. Hence (7.3) gives J?<
C fp(Su())?de+ CJ, (o Agy ()t + OI, and therefore

3= f lu(y, )Fdo<C { f (Su(x))* dz + o Asquy (oc)} (7.4)
B, E

if £ is small enough.
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Next for each £>0, define a function f° on R™ by setting f°(x)=C|u(x, . (2))| +
Coyps () where yp« is the characteristic function of B*, and {= ¢, () is the equation of the
hypersurface B,=0R,.. Let U,(z, ) be the Poisson integral of the f°, which because of
(7.4) are obviously IL? functions. Then as in [21; 211] we have the majorization
|uiz, t)| < Uz, t) on B,, whence on R,.

We select then a subsequence of the f* which converges weakly to f€L2. Notice that

because of (7.4) we then have

Lw lfRde< 0 { L (Su())? dac + o Agea) (oc)}. (7.5)

Passing to the limit we obtain, that
|w(x,t)|< Uz, 8) (x,t)€ER

where U is the Poisson integral of f, and therefore u*(z) < U*(z), for € E,. So of course,
f (u* ()2 dae < f (U* () dx < Cf (f())? da.
By Eo R»

Thus | {x € Ey: u* (z) > a} | < O{Asy () + a2 [Eths () dt} and [{z € ( B,}| = |B*| < O{Asw ()}
Altogether then

Z‘ut (a) <C {}'S(u) (a) + a_zfa tﬂs(u) (t) dt} . (76)
: 0

This inequality is the same kind as (7.2), but with «* and S(u) interchanged. Carrying

out a similar integration gives
[[w*]l, <C||S(w)||, if 0<p<2.

We need now ounly to remove the restrictions on % and the cones I'; and T', to
conclude the proof of Theorem 8. Assume therefore w*€L?, p<2. Then if u(x,?)=
u(x, t+¢), it follows by Lemma 3 in §9 below, that sup,., fRnluE(x, t)|2dx< oo, and

hence u, is the Poisson integral of an L? function. Therefore by what we have proved

8@l <Cllugl,

and a simple limiting argument, involving the monotone convergence theorem then shows
that ||S(u)|, <O|w*||,-

The argument for the converse is only slightly more complicated. Let wuy(z, t)=
u(x, t+¢&) —u(x, t+ N). Then
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t+N o0 2 3 t+N 3
j %‘(x, s)ds|< (f o2 ds) (f s'lds)
o8 o |08 t+e

- (CL‘, 8)
t+e
T
< gy (u) (log %) < CenS(u) (2),

‘ueN (III, t)l <

in view of the known majorization g¢(u)(x)<COS(u)(z), (see [21; 90]): Thus
SUPssg JBr | ey (2, 1)|Pda< oo, and again by Lemma 3 of § 9 we see that u,y is the Poisson
integra lof an L? function.

Thus by what is already proved
l[24enll < CllS (@en)|-
However S(u.y) (x) <S(u,) (x) + S(uy) (x) <OCS(u)(x), as is easily verified, and moreover

tim sup [lulyll, > [[w*]l,,
N—>w
by Fatou’s lemma, since uy—>0 as N->oco. The result is then [|u*|,<C||S(u)|,
Finally the restriction on the cones (we supposed that I, is strictly contained in I,
to prove (a)=(b), and the reverse to prove (b)=(a)), is removed by the following lemma

which will also be useful later.

LevmA 1. Let u(w, t) be any continuous function on R%*. If the non-tangential maxi-
mal function w*(x)=supj—yi<; |u(y, )| € L?(0< p< o), then u% ()=supj,—y<ne|u(y,?)| is

also in LP; in fact the “tangential” maximal function

w*(x)= sup |u(y,t)|<m) €L*  for M >n/p.

@, herTH
Moreover, l** | < Ol %*]| -

Proof. Let E,={u*(z)>a}, and Ei={M(X;)()>C/N"}. Then we have |E}|<
CON"|E,| by the maximal theorem. On the other hand, wy(x) <« for x¢E7. For, pick
any (y,t) with |#—y| <Nt The ball B(y; t) cannot be contained in E, since if it were
M(xz,) ()= | B(z; Nt)| | B(y; t)| =¢/N™. Therefore u*(z)<oa for some z€B(y; t), which
implies |u(y, t)] <u*(z) <o Thus, uy <o« except on Hj. So

[, wspae=c| et ) > apldn o[ "o B2
0

0
=]
<N f o[ B,|da~ ON" f (u* (@) de,
0 J R7
which estimates u%. To prove the more refined estimate on %**, just note that w** (x)<

SUPgm_ys1 (N~ MuR(x)), so that



H? SPACES OF SEVERAL VARIABLES 167
f (@™ (@)Pde< 3 @™ uy (@) da
R” m=1 JR”

<CS on-Mom f (u* ()P de < C f (w* (@)Pde< oo. Q.E.D.
m=1 R» Rr®

Remarks

1. The theorem holds when the harmonic function w is real-valued or complex-valued,
or more generally if % takes its values in a Hilbert space. It is to be understood of course
that then the symbol |-| stands for the norm in that Hilbert space, whenever that is
appropriate. In fact an examination of the argument above shows that all the estimates
save one that are made hold in the even more general case of Banach-space valued functions,
with | -| designating the norm. The exceptional estimate, valid only in the Hilbert spaée
context, is the identity A(|u|?)=2}vu|2 This identity follows immediately from the
scalar-valued case by passing to an orthonormal base of the Hilbert space. The Hilbert
space variant of the theorem will be used in § 8 below.

2. The estimates (7.2) and (7.6), linking the distribution functions of «* and S(u),
can be uséd to prove other inequalities relating «* and S(u). In particular the function
Q) =17, 0<p< oo, which is used in theorem 8 can be replaced by a variety of others,
such as ®() =(log (¢t + 1)), >0.(1)

8. Characterizations of H”

We begin by defining the H” spaces, when 0 <p<co. For our purposes-it will be
convenient to adopt the following point of view. The elements of each H? space will consist
n+1
T

of (complex-valued) harmonic funetions u(z, t) defined on R%**, satisfying certain additional

conditions. We shall specify these additional conditions in stages.

1. Case when 1 <p<<oo,

w€ H? < supf |, )P da = Jju)|%e < oo.
: 3

t>0

It is well known (see e.g. [25, Chapter TT]) that with this definition « € H?<wu1is the
Poisson integral of an f€L?, and ||u|z=||f|,.

2. Case when (n—1)jn<p<<oo,

We say uw€H? if there is a (n+1)tuple of harmonic functions w=w,, %, ..., %,, on

RE™ so that with $=m,, this (»-+1)tuple satisfies the equations of conjugacy

(1) A systematic study of such @ inequalities has since been made by Burkholder and Gundy [1].



168 C. FEFFERMAN AND E. M. STEIN
ou; ou;
ox, ox’

ou
00%;

0L, <0
(8.1)

-

=0

M=

j

and the condition sup;.q [re(27-0|us(®, £)|2)P2da=||u|%» < oo. We remark first, that in
this case u=w, uniquely determines u, ..., u, as the reader may easily verify. Thus it is
consistent to speak of u, as the element of H?, instead of the n +1 tuple u,, u,, ..., 4,, as is
usually done. Secondly, this definition is consistent with the previous cne when 1 <p < oo,
and gives an equivalent norm; this last statement is equivalent with the L? boundedness
of the Riesz transforms. Of course the “raison d’&tre” for this definition (originally given
by [24]) is the fact that (X7_o|u,(z)|?)”2 is sub-harmonic when p>(n—1)/n. Similar
considerations motivate the following general definition. ()

3. General case, p=(n—1)/(n—1+k)<p, k a positive integer.

For the general case we consider tensor functions of rank k, satisfying additional
conditions as follows. The components of the tensors are written as u,, ;, .., where
§’s range between 0 and n. We require that the tensor is symmetrie in the % indices, and
that its traces vanish; the latter condition can be expressed as follows, in view of the
symmetry of the indices,

éuﬁh_,"_,ﬂ:o all oy fgr e s -

Now to the differential equations satisfied by these functions. We consider the tensor
=9/ axfkﬂ
(4, ..;)- Then the equations analogous to (8.1) are precisely the statement that this
tensor of rank k+1 is symmetric in all indices, and all its traces vanish. (See [6] and [26]).
Finally we say that a harmonic function % is in H? if there exists a tensor of rank % of the

of rank % +1 obtained from our tensor by passing to its gradient, namely «;, _,, [

above type, with the property that u(z, t) =u,, . o(®,t)andsup,., (& (2| Uy (@, 1) |27 2dx =
fluelfzee < oo
The fact that these definitions of H?, with different k, are consistent is not obvious,

but is contained in the theorem below, the main result of this section.

THEOREM 9. Suppose u(x, t) is harmonic in R Then w€H? if and only if the non-
tangential max.function w*€LP. Also the definitions given above for HP are all mutually

consistent, and the resulting H” “norms” are all equivalent.(®) Moreover [[u*]|,~ || nr-

(") That the definition given for H! agrees with the notion used in parts II and III, see [2I;
p. 2211
(%) Note that “ . “Hp is actually & norm only when p>1.
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We shall prove this by showing that whenever « € H? (defined according to definition 3,
with some fixed k), then »*€L?; and next, whenever u*€L? it follows that »€H?, when
defined with respect to any k.

Suppose then that u€H?. The key point is that (2| % (, £)|2)?2 is sub-harmonic if
Pre=(n—1)/(n—1+k), see [6] and [26]. Then by the arguments in [25, chapter VI] there
exists a harmonic majorant h(z, t), so that (2, |u, (®, 1|22 <h(z. #) and

t>0 t>0

pi2
sup f _(h{x, 1))+ de = sup fR” (%]um(xﬂz) dz = ||ul/%e.

Since p/p,>1, h{z,t) is the Poisson integral of an LP7 function h(z), with
|[h||p,pk=||u||f1§. Now |u(z, 8)| < S |ug @, )P < (h(z, )7, Thus u*(z) < (B*(2))7r <
O(M(h) (x))"#% . Finally then

(u* (x))Pde < C’f (Mh(z))P#r < Cf (h())?'2x dac = O ||w|{%» -
R e R»

So we have proved that w*€L?, and |u*|[,<A4| u| z.

Next suppose «*€L”. Then it follows from Lemma 3 in § 9 that |Ju(x, )|, =0(?),
8>0, as t—oo, and hence by a standard argument, that |[(8/ox)*u(z, 8)]|., =O(>""),
t— oo, where (8/6x)“ is any differential moniomial of order |«| (see e.g. [21; 143]). This will

allow us to define the “conjugates of order & of u(x, t). In fact observe that if k>1

( _ l)k oo ~ ak
) = _pe-19 .
u(z, t) w11 ), (s—1) a&Jc(u(:lc, 8))ds, t>0

The integral on the right converges, because of the observation we have just made,
and also has as value u(z,f), since u(z, t), (8/at)u(x,t), ..., (@ -1jot* 1), u(x, t)—0, as t— .

Now for any k-tuple of indecies (5) = (§, Ja, ..., jx), €ach 0<{j, <n, we define u,(x, {) by

—1 K -] 3 2
Uy (2, 8= (—50 — 1)) ! ft (s—ty? (anl . 87,) (u(z, 8)) ds, (8.2)

where 8fox,=0/0s. These integrals again converge, and the tensor-function u, satisfies
the identities of symmetry and vanishing traces required in definition 3. Moreover
U, . y=u. 1f we invoke Theorem 8, we see that the assumption w*€L? implies
S(u) €L?. The main point now is that S(u,)(x) <CS(u)(z), as long as the cone defining
S(u;) is strictly interior to that of S(u), which follows by repeated application of the
lemma in [21, p. 213]. (The results stated there are for truncated cones, but there is no
problem in passing to the corresponding inequality for non-truncated cones). However
from (8.2) it is clear that u;(z, £)—0, as {— oo; thus when we invoke Theorem 8 again we get
12 — 722902 Acta mathematica 129. Imprimé le 3 Octobre 1972
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lucslls < ClSCuel, < NS, < C 1],

pl2
and hence sup f (Z,u(,-)(x, t)|2) <O July2 < O w2
R™ \(H [$)}

t>0

This proves that » € H? and
llafl e < A flu*]l,-

Since this part was carried out for any k, the proof of the theorem is therefore
complete. An immediate consequence of Theorems 8 and 9 is the following (for which see
Calderén [3] and Segovia [16]).

COROLLARY 1. Let u(x, t) be harmonic in R, Then u€H?, 0 <p <o, if and only if
S(u)EL?, and u(z, t)—~0, as t— oo,

We next show that the non-tangential max.function can be replaced by its “radial”

analogue in characterizing H”. In fact, define ut by u*(x)=sup.. |u(x, t)|.

COROLLARY 2. Let u be harmonic in R"+'. Then w€HP, 0<p<oo, if and only if
ut€LP. Moreover ||ul|m~ ||ut],.

In view of what we know already, and the fact that w*(x) <u*(x), it suffices to prove

that
lu*ll, <A4pllu*]l, 0<p<eo. (8.3)

For simplicity of notation, let us assume that the aperture of the cone defining u*
is 1. Now if (y, #)€I'(x), then |xz—y|<t; hence if B(y,t) denotes the ball of radius ¢
centered at (y, ), its projection on R" is contained in the ball of radius 2¢ centered at z.

But by the mean-value property expressed in Lemma 2 in §9, we have

lu(y,t)[P2< Ot 1 f |w(z,t')|P2dz dt’

B(y.?)

QCt’"‘lf ‘u*(z)l”’zdzdt'<0t‘"f |wt(2)|P'2 dz.
B, b

fr—z|<2t

Thus (w* (x))*2< C M [(»*)?'2](z), and by the maximal theorem for L* we have

f (u* ()P dc < O f [M(u* 2R de < of (w* () da,
RB® R~ R”

proving (8.3) and the corollary.

Remark. For another argument leading to the proof of Corollary 2 see the reasoning in
Theorem 11 below.
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In the same spirit as Corollary 2, the S function (which is non-tangential), can be

replaced by the g function (its radial analogue), g(u)(z) = (| Vu (®, t)|2tdt)?.
CoROLLARY 3. Let u be harmonic in R™. Then w€H?, 0<p<oo if and only if
g(u)€EL?, and u(x, t)—~0 as t—oo.

It clearly suffices to show that
18(w) @), <Cllg(w) @)]|,, 0<p<oo. (84)

The reverse inequality is of course a consequence of the pointwise estimate
9(u) (2) <OS(u) (=).

We may simplify matters, as in the proof of Theorem 8, by assuming that » is the
Poisson integral of an L? function. Once the a priori inequality (8.4) is proved for such
functions, the general case follows by the limiting argument already given above.

Let H be the Hilbert space defined as follows

#=lo= o il =3 [ lpsde< o}

whenever wu(x, ) is a harmonic function on R?*!, we shall define another harmonic func-

tion U, this time with values in . Write for each (x, {)

Uz, t)=vVu(x, t+s).

Thus |U(x,t)| = (fw|Vu(x,t+s) |zsds)% < glu) (v),
0

and hence U™ (%)= sup;.o|U(x,t)| =g(u) (x) € LP. The Hilbert space analogue of (8.3) and
Theorem 8 (see Remark 1 at the end of §7) thus give us

18(0) @)l < Cllg(w) (@)]|,- (8.5)
Writing out S(U) we have

(S(T) (x))2=ffl | t{J'wlvzu(y,t—l-sﬂzsds}tl“"dtdy.
z—-yl< 0

(We have taken I'(z)={(y,!): |x — y| <}, to be the cone defining S). Two of the in-

tegrations above may be assimilated into one, and if we use the simple estimate

u
f (w— ) "dt>cu®", for u>2a,

a
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we obtain (S(U) (x))2 = C’ff IV2ul(y, t) 2" dt dy. (8.6)
2lz—-vy|<t

We now invoke the simple estimate

f f |Vuly,t) i "dedy < O f f [V2uly, §)[*¢* " de dy (8.7)
2|z—y|<t 2jz—y|<t

whenever Vu(y, t)—0 as {— oo (the latter is a consequence of the fact that » is the Poisson
integral of an L? function).

This inequality is stated in [21, p- 216]. Unfortunately the proof outlined there is
correct only when n=1. We take this opportunity to give a correct proof. It suffices to
demonstrate (8.7) for =0. Let ¢ be any unit vector in R%*' which lies in the cone
{(y, t): 2|y| <t}. Then clearly

|(Vu) (gs)|<f |V2u(gt)| dt, if s>0.

By Hardy’s inequality

f |Vul? (os)sds< f |V2u(gt) |2 £ dt,

0 0

and a final integration over all unit vectors p lying in the cone gives (8.7); in combination
with (8.6) and (8.5) this concludes the proof of the corollary. Q.E.D.

Remark. There is a similar result for the functions ¢,(u) and g, («) (defined in terms of

the ¢ or z derivatives of u only), but the proof is somewhat more elaborate.

9, Lemmas for harmonie functions

In this section we have gathered several results on harmonic functions some of

which have already been used, and others that we will apply later.

LemMA 2. Suppose B is a ball in R, with center (x°, £°). Let u be harmonic in B and

continuous on the closure of B. For any p>0,
|u(2®, %) [P < Op—l— f |u(z, t)|? da dt. 9.1
|B] )

This lemma is of course standard when p>1 (then C,=1). When p <1 the result is
essentially due to Hardy and Littlewood [12], where other closely related questions are
studied.
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In proving (9.1) when p<1 we may assume that B is the unit ball centered at the
origin, and that §;|u(z, t)|?dzdt=1. Let us write

1/p
o )= (£r|2+t==r|u(x’ ) |pd0') y 0=r<l,

and m,(r) for the sup |u(z,t)| taken over the sphere of radius r. We may also assume

that m(r)>1, all 0<r<1, for otherwise there is nothing to prove. By Hélder’s inequality
my(r) < (my (1)2=0 (moo(r))?,  0<r<1, with 0<0<1,

since p<1, as we assumed. By standard estimates for the Poisson kernel of the sphere,
we have my(p) <A(l —or~)""m,(r), whever 0<g<r. Now take p=r% with a>1; a will
be chosen to be sufficiently close to 1 near the end of the proof. Insert this estimate in the
above, take the logarithm of both sides and integrate. The result is,

1 0 1 d
f logmw(r“)ﬁ< Cu—i—OJ log moo(r)d—r-l-(l—e)f logmp(r)l.
H r i 4 3 r

The last integral above is bounded by a constant, since fi(m,(r))?rdr =1 by assumption.
If we make the appropriate change of variables in the integral on the left side, then we

have

1 1
(1) f log m, (r) %< Oz + BJ log m o (7) %Z (9.2)
( %

a) Jp®

Since we assumed m,(r) = 1, it follows that

1 1 d
f log m o (7) ﬂ? f log m (7) il
®* r H r

Choose now @, close enough to 1, so that 1/a > 0. By (9.2)then [§,alogm, (r) r~dr < Cj,
and hence for at least one 7y, my(r,) < C = C,, which gives (9.1) by the maximum prineiple.
Q.E.D.

LeMya 3. Suppose u(x, t) is harmonic in R, and for some p, 0<p< oo,

sup f |w(x, t)|Pda < oo,
Rn

t>0
then sup,eps|u(®, t)| < A7™P,0<t< 0.

By Lemma 2, if B denote the ball of radius ¢ centered at (z, t), then
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2t
‘Iu(x,t)l”<0pt_""l‘ff |u(z,t')|”dzdt'<0pt_"_1f {f |u(z,t)|”dz}dt
B 0 R”

<Ct" supf |u(z, )P dz.
t>0 JR®

t>0

1p
Thus, |u(z, t)| < Cpt~ ™" sup (f |u(z, t) I"dx) , O<p<oo (9.3)
Rﬂ

and lemma 3 is proved. Q.E.D.

Luemma 4. Suppose u satisfies the conditions of the above lemma. Then Hm, o u(x, t) =f(x)

exists in the sense of tempered distributions.

We must show that there exists a tempered distribution f(x), so that whenever ¢
belongs to the space of testing functions

lim u(x, f) () de = fR" H(z) p(x) de.

t—>0 J R"®

This is of course well known when p>1. Thus if c>p>1 the convergence is also
in L? norm, while if p=1 the convergence is in the weak* topology of finite measures. We
may assume therefore that p<1. Let u; be defined by u4(z, {) =u(z, t+46), for (x, ) ERTH,
and 6>0. Then because of Lemma 3 sup,.o fre [4s(%, t|dz <o, and so w; is the Poisson
integral of a finite measure (see e.g. [25, Chapter II]); this measure is the weak limit of
uglz, t) =u(z, t+4), as i—>0, and hence is the integrable function u,(z, 0) =u(z, 6). By the
Fourier transform, i4(&, t) =5 (&, 0)e~ 21t ie. 4(&, t+ &) = s (£, 0) e~ 21t = g (&) e~ 2HEI 4O
for an appropriate continuous function #y(£). Also |#,(&)e ¥t < fpa| u(x, £)|da<
At~mTI-n g5 by (9.8). Thus |4y(&)| <A|&|¥ (with N =n[p~1—1]). However

f u(z, t) p(z) dw = f G (£) €2 @(£) dE

R® Rr

and so it is clear that lim, ,qu(x, t) =f exists where f is the inverse Fourier transform of the
tempered function #, Q.E.D.

Remark. Observe that the boundary value f uniquely determines u. For the proof
shows that if f=0 then u=0.

The lemma implies in particular that whenever ¢ € §, the functional
u—lim,_, ¢ frrw(w,t) p(x) dz

is continuous on H? and also

lim fmu(x, t) p(x) dar| < A ||u|ge-

t—0
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We shall make a more accurate statement momentarily, but for this we shall need

another lemma (which will also be useful later).

LemMma 5. Suppose 1<py<r<oo, rlpy=1+A. If u is the Poisson integral of an
fELP(R™), then

1/r
(f ,,Ht‘"lu(w,t)('i”t—dt) < 4flla (9.4)
R+

The lemma is known in even more general form, see Flett [11*]. Here we shall give
an alternate proof for the special case we will need.

The assumptions require that 0 <A< co. It will suffice to prove the inequality for A
positive and sufficiently small (say 0<A<1); for if it is true for 2, it also follows for A,

whenever 1,>4,, which we can see by writing

dadt dxdt

Ao 5 (A3—A1) 2Ty 2 1
f31+1t (@, b - <s(r,2gt " |u(z, )| ’fRTlt ", 8 -

and invoking the inequality (9.3).
Assume, then, that 0<4< 1, and that in addition f>0. We have

f t‘”uf(x,t)d—”—‘l—t<f sup(u(x,t))'—l{f t‘"u(x,t)it}dx
R+ 4 R" ¢>0 0 4

< OfR»(M (N @) () () do

1
H I [y — —ntin g i
ere L3nf) () ) fRnf(x Pyl Y
and the last inequality results from the observation that
o dt oo tln
n e — ~n+ni
fo " Py (z) n cnfo (|x|2+t2)(”+”’2dt ¢ |z .
Holder’s inequality and Sobolev’s theorem [21; 119] on fractional integration then

(r—-1/p, 1/q
j (Mf)’“llm(f)dx<( j (Mf)”"dx) ( f (Im(f))"dx)
R» R® R”

<Al Allfllo = AN
Here, ¢ is the exponent conjugate to py/(r—1), so g l=1—(r—1) p;'=p;*—A, which

gives

allows the application of the fractional integration theorem. Q.E.D.
For the next lemma recall the spaces A (R™, «>0; (see [21; 141]). Briefly stated,
when 0 < <1, A, consists of the continuous and bounded functions ¢ on R" which satisfy
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the Lipschitz condition |p(z)—g@(y)| <M |x—y|* for general §, A is the image of
A, under the mapping ¢—Js_.(p). Here (J5_.()" (€)= (1 +4a2|]2)P-22¢(£).(1) Tt can
be proved that the dual of H?, 0<p<1, can be identified with A, where a=n[p~t—1].
(In the case n=1 the theorem is proved in Duren, Romberg and Shields [7]). In the

general case the essential part of this duality is given by the following inequality.

LeMma 6. Let w€HP, and suppose f=lim, o u(z,t) in the sense of distributions. If
0<p<l, and a=n[p=t—1]. Then

e

We have already seen that

<Alulwllgla, if g€S. 9.5)

sup f | (x,t)| dx< oo

t>t,>0 JR

and thus replacing u(z, £) by u(w, t+1,), we may assume that u is the Poisson integral of an

Lt function and reduce the problem to proving the a priori inequality

e

where #=P.L (f). Let @p(z,t) be the Poisson integral of ¢, then one can verify that for

<A |ullerllola, (9.5)

each integer k>1

Fulx, 8y Folx,t)

: 2%-1 ; :

f R”fq’) dax ckfR1+1$ o pr dxdi.

(In fact if f and ¢ are respectively the Fourier transforms of f and ¢, then the above

identity is the same as

2 4 v 2k—1 ,—4nlé 1 _____22k
fm;(g)qs(-§)d§=ckfmf(§)¢(—§)(-27z]§])2kU= 2 lemt 'tht}ds with ck=[,(2k)).

[

By a basic porperty of the space A, (see [21, p. 145]), we know that || g(z, £)/0t]| , <
At ¥ *|lp| s, whenever k>a. Thus

Uﬁpdx <A(f pera-l
1}

and it suffices to prove that
(1) The reader should be warned that the spaces A, so defined are called AT by Zygmund [28].

Pul, ¢t
L) )l
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oo
tk+az—1
1]

We shall prove (9.6) first in the case k=0. Using the argument of the proof of
Theorem 9, we choose k so that p,=(n—1)/(n —1+k) <p, and let h(z, t) be the harmonic
majorant described there. Recall that u(x, £) <(h(z, £))/?%, and & is the Poisson integral of

Kol . £y
M—k’t)” dt < Alju|g». (9.6)
a |,

a function in L%, Now use Lemma 5 with % in place of u, r =px!, py=p/ps; then 1 +1=
rpgt=p1, and so A=p~'—1. Thus with a=ni=n[p1—1], we have

Ju), rotiantazas [, [ ety S8 < Al = 4l

which proves (9.6) when k£ =0. The case for k>0 follows from this case by observing that

ol ) G ren). o el 2l =)

ot*

Remark. 1t is true, conversely, that whenever, say, p €S, then | frafpdz|< A|ul|xr,
all w€H?, implies g €A,. To see this, take wu, (2, t) = (6%/06%) P, (x) where Pyx) is the
Poisson kernel, and & is sufficiently large (£ >n[p~' —1]). Then u,, € H? and [lu,|| zo ~ Aty ***.
So the condition implies that ||6%p(, £,)/0t]|, <Aty *** which means @€ A,.

¢
<At*®
1

Q.E.D.

u (2, t)

1 1

10. Passage to “arbitrary” approximate identies

In section 8 we saw that functions in L? can be characterized in terms of the max.-
functions of (what amounts to) the Poission integral of their boundary values. It will be
shown here that the Poisson kernel can be replaced by arbitrary “smooth” functions, which
are sufficiently small at infinity. In this way we are led to one of our main results namely
that the H?” classes can be characterized without any recourse to analytic functions,
conjugacy of harmonic functions, Poisson integrals, etc., and have an intrinsic “real-
variable”” meaning of their own. Our analysis in this section will be rather “fine”’; our results
will be in the nature of best possible, or nearly so. In the last part of this paper we take
up these results again; we obtain there an alternative (less precise but more elementary)
derivation which nevertheless allows us to obtain the full converse of Theorem 10 below.

We shall consider the elements « € H? in terms of their boundary values f, according
to Lemmas 4 and 6 above. Our result states that whenever ¢ is sufficiently smooth and
small at infinity, and @, () =¢"p(z/c), then u € H? implies that sup,., | (f ¥ ¢.) (z)| EL?. We

state the required conditions on ¢. For a fixed «>0, we require

v
n+lyl+n 3_

o < oo, all |y|<«, some 5>0. (10.1)

sup (1+]]) ()

zeR”
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(10.1) is the full requirement in case « is & positive integer. Alternatively, if
k<a<k-+1, with k& a positive integer we assume (10.1), and in addition the following
condition on all @(x)=(3"/0x") p(x), where |y|=Fk.

sup (1+ (q;l)ﬂ+“+ﬂwl< o

JzI>21y) [y~ W , some 5>0. (10.2)

These conditions, although complicated in appearance, say (very roughly) that
@E€C, and that its ath derivatives are O(1 + |z|)""™*7", as |a|->oo.

TrarorEM 10. Suppose fEH?, f=lim,, ,u(x, t}), and @ satisfies the conditions (10.1)
and (10.2) above with some a>n[p=1—1]. (We require a=0, if p>1). Then

sup [(f % ¢o) (@)| € 27, and {lsup |fx @e|ll, < A flull .

This theorem, in a more precise form, will be a consequence of two lemmas. To state
these lemmas we require some notation. For fixed «>0, let B be the class of ¢ which
satisfy (10.1) and (10.2), and such that the quantities appearing as the left sides of these

inequalities are bounded by 1. For any u=wu(x, {) harmonic in R?*?, define

dx dt

f |ute, ] —=
My(w) (@) = sup §=FE2

0<n<o J‘ pin dx dt
TI'(ze, k) t

where T(2% b) = {(z,1): |z —2°| <k, O<ti<h}.

Lemma 7. sup sup l(ge* 1) (x)| < AM 3 (n) (2), if nA<a, 0>0.
peBE>

Lemma 8. Suppose 0<p,< 1, pgl=1+4, thus 0< A< oo. Then the mapping u —
M (u) is of “weak-type (pg, pg)”°, and “strong type (p, p)”, whenever py< p< oo. This means,

Ha: M;(u) >q} < A7 [|ul5m, oll >0
and 23l < Ay luflar,  Po<p< oo.
Remarks
1. Clearly only the second conclusion of Lemma, 8 is needed for Theorem 10. We state

the weak-type result for the sake of completeness.

2. The Poisson kernel satisfies the conditions (10.1) and (10.2), (for each «), which is as

it should be. Observe also that #*(z) <cM;(u){z), for each 1>0, as a simple argument
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involving the mean-value property shows. Thus Lemma 8 gives a refinement of the
result involving the non-tangential max.function.

3. These results are essentially sharp. For example, if p <p,, there exists uw€H?, so
that M,(u)=occ everywhere. Alo the condition «>n[p~—'—1] cannot be much relaxed.
While Theorem 4 (in § 3) shows that when p=1 we may replace the Lipschitz conditions
of positive order by a Dini condition, the result would be false if & <n[p— —1}in Theorem 10.

Proof of Lemma 7. This is easy. The simplest case arises if « is integral and more

precisely, an even positive integer a =k =2I. Let ® =(—A) ¢. Then as is easily verified

(%90 @ =Fp ” @ —y,t) ( )t" 1dt dy. (10.3)

(Just take the Fourier transform of both sides. For the left side we obtain f(£) (),
and for the right side (e~/T'(k)) (&) D(c&) {fe 2t -1 gL — f(£) @(e), if we keep in mind
the fact that (f>(§)=(2n|£|)’°¢(§).)

Next write
f f f f 70,8 j {10.299-70,2"" 10}

In view of our assumptions on ¢, |®(y/e)|< 4 on T(0, &) and |D(y/e)| < A2~ An+ktm,
for (y, )€ T(0,27¢) — T(0,2' ' ¢). Moreover [, s t" 'dadt=ce"**2/""+* Inserting this in
the above and using the definition of M;, with nd=Ek, gives

| (f % @e) x)|<A 2 ) M (w) (2).

Passing to the sup. over ¢ we obtain Lemma 7, in the case k is an even positive integer
(in fact here in the sharper form that ni=Ek, instead of nd<k).
Next assume 0<a<2, and ni<a. Fix a f§ so that nd<g<a. We write down the

analogous identity as (10.3)

_" ﬂ
(% @e) (x) = f f D w (@ 0) (D(g)tﬁ”ldtdy (10.3)

except now @ is the Sth derivative of @, more precisely (&) =(27|&| P $(£). Then all we

need to show is that as a consequence of our assumptions (10.1) and (10.2) on we have

[(D(x)l <A1+ ]x])‘”‘ﬁ‘". (10.4)
But we know that

d
D(z)= cafm [p(@+y)+lz—y) —2¢()] ﬁg (see [21, 162]).

Break up the range of integration into the sets |x| <2|y| and |x] >2|y|. For the first
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set use the estimate (10.1) for ¢; for the second set the estimates (10.1) (and (10.2) if
necessary), show that |g(z+y) +e@ —y) —2¢(@)| < 4|y|*(1+|=])~"*", when |z| >2]y|.
It follows immediately that the inequality (10.4) for ® holds, and so the proof of the lemma
can be concluded as in the previous case by showing that sup,, | (f ¥ @) (@)| < AM; (w) (z)
with »nA’=p; this implies the stated result for M, The case of general « is a simple
combination of the ideas described for « even integral and 0 <a <2; details are left to the
interested reader. Observe that the case =0 corresponds to the usual maximal function
with 1<p. Q.E.D.

We come now to the proof of Lemma 8. It will be an immediate consequence of
harmonic majorization and the following lemma about Poisson integrals of L” functions.

Suppose 1 <py<r where #/p,=1+A1. Let fELP(R™), and » its Poisson integral

Lemma 9. The mapping

A
(I, rrwor®
f__)sup Tz, h) t
A
Pz, k) t

is of weak type (p,, po), and of strong type (p, p) if py<p<°.

=M

Proof. The result is obvious when p= oo, and so by the Marcinkiewicz interpolation
theorem it suffices to prove the weak type (pg, p,) result. This has some connection with
the tangential maximal function considered in [18] and [21, p. 236 § 4.5], but we shall
follow the spirit of the argument given in [9] for the sharp estimates of the g; function.

We shall prove that if f€L**(R"), then for an appropriate large constant C

|{z: ML(F) (2) > o} | < O™ ||fl|Be,  all «>0.

We may assume f>0. We set up a modified Calderén-Zygmund decomposition for
(H™ (as in [21, pp. 19, 169]) as follows. Let Q={x: (M(f)™)(z)>a’}. Then [Q[<
Co ||f||Z:. Let {@.} the disjoint family of cubes guaranteed by Whitney’s lemma, whose
union covers Q and whose diameters are comparable to their distances from Q. We

then have

1
— | frde<Coa™.

Of course f< « in Q. Let QF be the cube with the same center as @, but expanded by a
fixed factor of 6/5. Then no point is contained in more than N of the @; (e.g. N =(12)").
Also let Q~,¢ denote the cube with the same center as @, but expanded by a factor of 2. We
write Q= U,Q,. Since IQI <Co ™ ||f||5e, it will suffice to estimate j(f) on ca.
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Write first. f=fo+ > 21/, Here fy= freg and fr=fyq, £>1, where yz denotes the
characteristic function of the set K. Write also u,(x, t) for the Poisson integral for f,.
Since 0<f,<«, then M;(fy) ()<, all x, and hence {z: Ni(f)(x)>a}=0. We need to
estimate therefore Y5 (2521 f,).

Write Uz, t) = >, Koz (@) ug(, £), and V(z, ?) =>r.( —Xoy(®))uy(x, t). Then U+ Vis

the Poisson integral of >¥..f,, and it suffices to estimate

dyd
[ wwor®
T(z,h)

J f dx dt ’
T(x,h)

and the analogous expression with U replaced by V.

z€QQ, (10.5)

Since the cubes @% have the bounded intersection property,

dydt &
f f (Ul ) <N f f Fap ¥) (e (g, ) £
T(z,h) k=1 T(z.h)

dydt
5

For each integral appearing in the sum in the right-hand side there are two possi-
bilities

(i) Either T(z, h) N {Q% x (0, )} =@,
and then the summand is zero.

(i) Or T(x,k) 0 {QF x (0, 0} +;

by the geometry of the situation, since x¢(ék, it follows that then k> C|x — 2*|, where &*
is the center of ¢),. In this case we replace the integral over T'(z, k) by the integral over
all of R:*! and invoke the estimate (9.4), giving

dy di
J] ot ores L2 < apgl <olqme
A
However for the kth term

ff tln dydt — chln+n > CI:L‘ _ xklln+n_
T(x,h) t

Thus, altogether as an estimate for (10.5) we have

o 3 U _ g fl y)z"d-”—oafz(x).

s l‘x xk|n1+n l/’ln+n

d(y) denotes the distance of y from (Q. The first inequality above follows from the fact
that the diameters of the ), are comparable to their distances from (}Q, and that
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| —2*|~|2—yl, if y€Q,, x¢@,. The expression I(z) is the familiar Marcinkiewicz inte-
gral involving the distance function, and we have therefore |{x€ Gf):C’oc’I (x) >} <
C fpol(x)de < O|Q|< Ca?||f|j%, by [21, 16]. We have thus obtained the correct esti-
mate for (10.5). To prove the analogue of (10.5) with V in place of U, observe that since
1-% ot is non-vanishing only in (j @%, and w, is the Poisson integral of a function supported
on @, it follows that (l—in)u,c (#,8) < CU,(x,t) where U, is the Poisson integral of
the function which is constant on ¢, and has the same mean-value on Q, as fXo = fi-
Thus (1-— XQE) u, (%, £) < C Poisson integral of aXo,. Altogether then

Vizg,t)=2>(1 — X W, H<CaP.1.(Xp) < Ca,

and so we have reduced matters here to the trivial estimate for L®. Gathering all these

estimates together we have
[{z: M) (@) > 20} | < | Q) + [{z€ CQ: Hithy) (2) >t}
+{z€0Q: nﬁ(élfk) (@) >a}] < Co? ||f

Po
Do~
This concludes the proof of Lemma 9.

Proof of Lemma 8.

We repeat the argument of harmonic majorization used several times before. We
have u(x, t) <AhYP(z,t) where h(z, ) is the Poisson integral of an L?#¢ function f and
flullar=lfl|5/5:. We set then r=1/p,, and apply Lemma 9, with of course V/?(z, t) in
place of ‘u(x, t)|’. The critical relation then becomes pg; '=1+4, and so Lemma 8 follows
from Lemma 9.

With this we have also concluded the proof of Theorem 10. By the theory of H?
spaces we know that whenever u€H?, lim, ,,u(x, f) exists almost everywhere and also
dominatedly in L? (see [25, Chapter V1], and also Theorem 9 in Section 8). Let us call this
pointwise limit f(z), (mindful of the possible ambiguities this may cause since we also called
[ the distributional limit of w(x, ¢) as t—>0).

CoROLLARY. Let u€H”, and suppose @ satisfies the conditions of Theorem 10. Assume
in addition that [repdr=1. Then lim,o(u*@,) (%) exists and equals f(x) for almost every =.

In fact write ug(z, t) =w(x, t+8). Then u=u; + (u—uy), and f=u4(-, 0)+ (f—u;s(-, 0)).
Bo fxg.=us(+, 0) %@+ (f ~uz(-, 0)) %, as e—0, us(-, 0) %@, ~>u(-, 0) everywhere; but by
Theorem 10 |[sup,.o(f —us(-, 0) ¥ @.||, <A4|ju —u;)|s—>0 as 60, and so the corollary
follows by standard arguments. (1)

(*) The fact that “u~u,;”Hn —> 0, ag 6 = 0, when u€H? is most easily proved by using the fact
that j R® (Z(j) Iu(j)(x, t)lz)p " de is a decreasing function in ¢> 0. Compare [24].
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V. Real-variable theory of H?
11. Equivalence of several definitions

The extension of the theorem of Burkholder-Gundy-Silverstein (Theorem 9 in Section
8) shows that H? arises naturally as a space of harmonic functions, free from notions of
conjugacy. Theorem 10 goes further, and suggests that the H? spaces are utterly intrinsic—
they arise as soon as we ask simple questions about regularizing distributions with
approximate identities. From this point of view the special role of the Poisson kernel
fades into the background.

In this section we shall show how to carry out much of H? theory by purely real
variable methods. By our methods H? can be treated in many ways like L?, with certain
natural changes. As a result, we can sharpen some known H? theorems, and also prove
results unattainable by earlier techniques.

We begin with an indication of our goals. Fix ¢ € § with rag(x)dx=1. We are tempted
to say that a tempered distribution f is of the class H? (0 <p < o), if the maximal function
Sup;.o ;% f(-)| belongs to LP(p,(x) =t"gp(x/t)). For this definition to be significant, the
resulting class H? would have to be independent of the given ¢ € § we started from, and if so
H? would be intrinsically defined. In fact we would also want that H” to be the same
as the H? space studied in parts II-IV. Fortunately all this turns out to be so.

The assertions just made have interesting consequences. For instance consider the
H? space defined in terms of the heat equatidn in R2*! (there p(z) = (2m)-"2e~¥). A
solution of du/ot=A,u belongs to Hpe,, (RT*") if the maximal function sup;.,|u(z, )|
belongs to LP. Then H},;(R?*") is really the same as the ordinary H”, which arises from
Laplace’s equation. More precisely the functions in both H” spaces have the same
“boundary values” on R".

All these claims are immediate from the following theorem.

THEOREM 11. Fiz O<p<oco. For any tempered distribution f, the following are
equivalent.

(A) u™(x)=sup |p,* f(x)| € L? for some g€ § satisfying [rrg(z)dr=1.
>0

(B) u*(x) = sup |g;* f(y)|€ L? for some ¢ as above.
r—-yl<t

(C) f*(x)= sup sup [d),*f(y)IE L?, where
|<t

QeAlz-y

Ll
ox*

A ={<De slfm<1+|x|>”°( S 0w

la]< No

2
)dxél}

and N, is a large number depending only on p and n.
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(D) The distribution | arises as lim,_,qu(2, t), where w€ H?,

In view of the above theorem we shall say, with a slight abuse of language, that a
tempered distribution f satisfying the conclusions (A), (B), (C) or (D) is of class H”.

Remarks 1. Condition (D) could alternately by phrased as follows: Py f(x) =
lims_, o frre 21" P,(y) f(x — y) dy exists and supj._y<; | (P, * f) ()| € L?. Many other variants

are possible.

2. We also have [lut|,~ |luz», with similar equivalences for (B) and (C), as the
proof of Theorem 11 shows.

3. The purpose of the class A in (C) is merely to fix some reasonable normalization for
approximate identities. In all that follows, the “large number” N, defining 4 in (C) may
change from one occurrence of 4 to the next. This justifies statements like “® € 4 implies
oD /ox, €A

4. Condition (C) plays an important réle in the real-variable theory for H®. For, con-
sider the simple problem of estimating [gr~f(x) p(x)dx for € S, fEH? (0<p<1). If p€A,
then of course | {raf(x) p(x) da| =|f % @(0)| < f*(0). More generally, if ¢ can be written in the
form @(x)=A d""®((x — z,)/d) with D€ A, x €R*, 4 and d>0, then | fr f(x) p(x)dx|<
A f*(y) whenever |x,— y|<d. In other words,

< N(@; %, d) min {*(y) (11.1)

jxo—vi<d

; fR" flz) p(z) dx
where

Zy—

N{g; z,, d)=min{A >0| @ can be written as g(x) =4 d_"q)( 4

N(f (l_l_lx_xol)%( Z g2l 2) dx)%'
BR® d la1< N

(11.1) holds for all f€ H?, p€ §, x,€ R",d >0. In practice, N(¢p; x,,d) is easily computed.

Roughly speaking, if ¢ is a “bump” function of “thickness” d, centered at z;, then

) with q)EA}

60!
Py @)

N(p; %y, d) is essentially fgre|p(z)| dz.

From (11.1) we obtain at once

(z) () de

1 1/p
f < N(p; 2y, d) (ﬁ f (f*(?/))pdy) . (11.2)
R” |z—xol<d

Proof of Theorem 11. The idea is straight-forward. We simply have to formalize the

plausible fact that all approximate identities are more or less alike, and that any one
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can be built up from any other. First we prove (B)=(C)=(A) =(B) and then we take care
of (D).

(B) = (C). Set wu(x,t)=¢,%f(x), assume u*€ L?, and fix a ® € 4. According to
Lemma 1 in § 7, the “tangential maximal function”
u** () =;;£|“(y, t)| (m)

also belongs to L?. We shall prove that sup;,_,i<:|®; % f(%)| < Cuw** (z) for all z€ R™.

Step 1. Assume first that ® has the form @ =y x ¢, with € 4 and 0<s<1. Then
for [z —y|<t, we have

“Dt*f(?/)‘ =hvt*(¢st*f) (y)|=IjRnWt(y_Z) u(z, st) dz

i
<f |«pt(y—z>||u<z,st)|dz<f |w,<y—z)l[( :
R”® Rr® |

-N
[ %k < —N, %%
pra—t i st) u (x)] dz < Cs Y u** (),

since € A. Thus, supj_yj<i| Dy % f(Y)| < Os™Vu** (@) if O=pxp, p€A,0<s<L.

Step 2. Suppose ®EA and O(¢) is supported in |&] <27. Then ® can be written as
O =yx @, with y€4 and s=c-27" (¢ small but independent of r). To see this, we simply
set ¢(§)=&)(§)/(f)(s§), and check that ¢(sf)=0 in support ((’I\))_C_ {|&] <2'}. Actually,
[¢(s£)| =% for |&] <27 =cfs, since @ is continuous, $(0)= frap(x)dz=1, and |sE—-0|<c
for |£] <2. So ®=yxg, as claimed. By the conclusion of step 1, we have supj;.yj<:
|®, % f(y)| <C-2" w**(z) if DE€4 and B(&) is supported in {l&] <27}

Step 3. Any ® €4 may be written in the form ® =320, D, with O,,€4, O,
supported in {|£| <27}, and C, = 0(27°""). (Simply cut up ®.) By the conclusion of step 2,
L2up [@xfy)[< Z1C,] sup [y % f(g)|< Cur* ().

Therefore, f*(z) <Cu**(z) for all x€ R", so that |jf*||,<Cllu**|, <C|ju*||,< c°. This proves
(B)=(C).

Remark. Taking ® =dg/ox; above, we obtain ||U*||,<C|u*|, where u(x, t) =@, * f(x)

and U(z, t)=t|V,u(z, ¢)|. For technical reasons, we set

t N
K t = ,t = 1+ -
wiv@@) = sup _ [uly )I(EH) (1+e[yl)
t
d U, (z) = t A —) a N
an (@) LS [V, u(y )I(e+t)( +ely|)

13 —722902 Acta mathematica 129. Imprimé le 3 Octobre 1972
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and assert that ||Uly|l, <C|ulyl], for all f€§’, with € independent of 0 <¢<1. (The proof
simply copies that of (B)=(C) above, with obvious changes). As >0, uly(z) /u*(z) and
(@) U () for all x€ R*, However, given any f€§', there is a large N >0 which

makes Uy (-), uly(-)EL®NL? for all £>0.

(Cy=(A) is trivial.

(A)=(B). We adapt an alternate proof of Corollary 2 of Theorem 9, devised by
D. Burkholder and R. Gundy. Set u(x, t) =@, * f(z), and assume w*(x) =sup,., | u(x, t)| EL.
To prove that u*(x) =supj,_y <: |u(y, t)] €EL?, we shall dominate w* by the function

M (x)= T:B(Qlf {u™( ) (0<r<p).

1M (), <C|ut|, by the maximal theorem.

Fix a large N >0 so that u)y, defined above, belongs to L? for all £ >0. We want to
prove [luiy|, < ClM(-)||, with C independent of e. Rather than compare u;y(x) with
M(x) for all z€ B, we shall restrict attention to z’s in the “good” set Goy={Uly < Buly}.
The set G,y already captures most of the bad behavior of uly, since

% » :‘N(x) 1 U* C¢ % »
J‘RLGEN(%N(VC)) dx<f "-GEN(MB ) dx <B7’ N eN(x))”dx<B‘; fR”(ueN(x)) dx
< : f (win (2))P dae
2 Jre

(by the remark) if B is large enough. Since £ >0, we know a priori that [ (udy (@) dz < oo;

hence, the above chain of inequalities shows that
j (ugy (@) da < 2 f (wen (x))? da.
R Gen

Therefore, we need only estimate uly (%) for z€ G y.
We claim that uly(x) < CM(x) for € G,y. To see this, pick (y,t)€ R} satisfying

lz—yl<t<e™, |uy,t) /(e + )Y L+ely) ¥|=}ulv(z). Since € Gy, we have

vt t)[{( +t) (Lele)) "N}QBIWJ)!{( ) (1+8Iyl)’N}

for all z satisfying |# — 2| <{. By the geometry of the situation, the two factors in braces
are roughly the same, so that ¢|V,u(z, )| < C|u(y, ¢)] for all z with |z — 2| < . Consequently,
|w(w, )| >§|u(y; ¢)] for all o in the fat set P={w€R" |w—z|<t|w—y|<#2C} In
particalar, Ju(w,§)|=>§|u(y, )| ¢t/(e+ ) (1 +ely|)™" = Luiy(z) for € P. From that key
fact, uly (z) < M(z) is easy. We simply write
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c

}B(x, 2¥) | B(z,2t) (u*(w))’ deo

M (z) =

S
| Bz, 2t)| J 5z, 2

|P|

|u(e, )] do > ¢ (F uiv () B, |/c<u’:N @)
Thus, wly (¥) < CM(x) for x€ G,y which implies that
J‘ (usn(2)Pda < Q‘j‘ (ugy (@) da
R? Gen
< C’f (M ()P da < OJ‘ (M(z)yPdx< C’f (ut(x))? du,
Gen R" R™

with ¢ independent of ¢. Letting ¢ - 0, we obtain |[u*||,<C|u*|,, which completes the
proof of (A)=(B).

To conclude the proof of Theorem 1, we prove (C)= (D)= (A). Both steps are easy,
since the Poisson kernel is “almost” in 4—it just doesn’t decrease fast enough at infinity.

(C) = (D). First of all, note that P,xf(x)=lims_, frre ™" P(y)f(x—y)dy=
limg, o P 5% f(x) always exists for (,¢)€R%}™', since lims, 5,0 |(Ps5,— Pi.5,) % f(z)| =0
by (11.2). Details are left to the reader. To estimate P,% f(-), just write P;=P; s +
Z?=1(Pt,5k_Pt,5k‘1)EZl€°=0 P§, with §,=272¢"2. For |x—y|<t, (11.1) yields

(Px D= 3 [PEx ] < 3 NPE0,2 /@) < O (o)

Thus supy—y|<: | Py % f(y)| € L?, and P, f satisfies the H? characterization of Theorem 9
Hence f satisfies (D).

(D)= (A). We manufacture & rapidly decreasing approximate identity from the Pois-
son kernel. Let ¢, ()= ({y(t) P,,(x)ds, where y is rapidly decreasing at infinity, and

f s"qp(s)ds={1 ?f k=0
1 0if k=1,2,3,....

satisfies

(See [21, p. 183] for such a p). Then ¢,€ §. To see this, note that ¢, (x)=¢ "¢, (z/f) and
that ¢, (&)= fwp(s) e~*¥1ds is automatically rapidly decreasing at infinity and smooth
outside the origin. Near the origin, we expand e~*! in powers of s|&| to obtain ¢, (&)=
s (— 14k EE [ st y(s)ds -+ O(| &y =1+ O(] £]¥) for each N >0. Therefore ¢, is also
smooth at the origin, so that ¢, €S and hence ¢,€S. Also, recall that [g»g,(z)dx=
$(0)=1. So ¢, is as required in (A). However, sup,.|@, % f(2)| =supeo | f7° ¢(s) (Py, %

f(x)) ds| < supgq | Py% f(@) §i° |w(s)| ds < O sup;sq | P, % f(z)| for all z€ R*. This proves (A).

Theorem 11 is proved. Q.E.D.
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12. Applications

Theorem 11 provides us with great flexibility in studying the Fourier analysis of H?
spaces. Instead of relying exclusively on complex methods when n=1, or conjugate
harmonic functions for general n, we can now apply the circle of ideas leading to the
Calderén-Zygmund inequality. Often, this produces simpler proofs of more precise results
than those previously known. To illustrate, we prove the analogue of the Calderén—
Zygmund inequality for H? by real-variable methods.

Let K be a tempered distribution whose Fourier transform is a bounded function
| R(&)| <B. Assume also that K is of class O™ away from the origin, and

, &K

| <Blal, al< A,

(I, is the index appearing in statement (C) of Theorem 11). Next let y be a fixed O function
of compact support which is 1 in a neighborhood of the origin. Write K, = Ky(x/M).
Finally let ¢ be another fixed O function with compact support such that fpdr=1.
Write @ (z) = e "@(z/e), and K = K, *%¢@.,. Then each K., is a C® function of compact
support; and the K, satisfy the conditions imposed on K, uniformly in ¢ and M.(%)

Levma 10. Suppose fELLYR™), then K% f=1lim, o, y_seo Kepr* [ converges in the sense
of tempered distributions, and the limit is independent of the choice of ¢ and .

This follows immediately from the fact, which the reader may easily verify, that
R, (&) converges boundedly to K(£), as e~0 and M- co.
We pass to the basic a priori inequality.

Lemma 11. Let f be a bounded C® function on R™. Then || sup| Ko ()| Il <CollF* .
(0 <p<o0), with C, independent of M.

Proof. We imitate the proof of the Calderén-Zygmund [5] inequality. Given « >0, set
Q={f*(x)>o}. The proof of the Whitney extension theorem [21] exhibits a collection
{@,} of cubes, and a family of smooth functions {p;} on R", with the properties:

(1) Q is the disjoint union of the {@,}.

(I') xa=2,p; and each ¢,>0.

(2) distance (R"—Q, Q,) ~diameter (Q;)=d,.

(2') @, is supported in the cube §; expanded by the factor ¢, say.

(1) To see this, notice first that the last assertion is evident for K. It then follows for g% K,, = Ky
by the argument in [9, § 3].
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(2") @; has “thickness” d;. That is, [[0%@,/0a%],, < Cod;'™ for each multi-index «.
Also, a;= [rrg, () dz~d}.

Denote the center of Q; by ;.

Now f=firr_q+ >,fp;. We shall replace f by the “good” function f=fXrs_o+
2,b;p,, where b; is a constant so chosen that frebi; () de = [ref(z) @;(x) dw. Here, ¢, is
analogous to Xo, and b, corresponds to the average of f over Q;, We have b=
(1/a) [ () gy (@) da.

To estimate sup, 5| Key* f(-)], we shall study | Koy % f| and | Key* (f—f)|. Let us
begin with the first term. We claim that ||f|, < Ca. For, we know from (2) that
infls;—y|<q;f* (¥) < for each j. Elementary computations with (2") and (2”) show that
N(glay; 2;,d;) = O(1),50 that |b;| =| fre(1/a;) 9;(y) f(y) dy| < Cinflo;—y) <a f*(y) < Cor. Therefore,

If(w)l<If(x)xm_n(@lwag%(x) |f(z)] Xpr_g (@) + Co % (%)

for all z€R?, which proves that ||f||., < Cx. Now we can write

e | Ke g _ClflE_ ¢
[up| K ) >y | <1222 ;‘fﬂ LE 'sz”k;fm_nlf(y)lzdywlﬂl, (12.1)

by virtue of our estimates for f. (12.1) is our basic estimate for K., % f.

We turn to the “error’” term

Ko (f—1) (@)= ;KEM* (fp;— b)) (2)- (12.2)
For fixed j,

KeM*(f‘pj'— J(pj f Kylz—o %(w)f(w)dw f Kopy(x— y)bj(pj( ) dy
=J Koy (2 — o) (o) flw) dw_f Koplx—y) [}'J %‘(w)f(w) dw] o;{y) dy
i Re a; JRre
- [ K= orp@ i@ o~ [ [2 ] Kute=noma]po)i o
R" R* LG5

1
= fR,. {Kw(w —o)- [;j fm Keu(z—y) ¢,(y) dy]} @;(w) f(0) do=1,.

Here, {—} plays the réle of {K(x—y)— K(x—z,)} from standard Calderén-Zygmund
proofs, and I, is like jQ {K(x— w) — K(x—x;)} f(w) dw. Elementary computations show
that N({ —}@,; 2;; d;) < (0d}*)/|z — 2;|"** for each fixed z€R"—Q. Therefore, by (11.1),

(7 n+1 n+1
"_*——“T;:T min f (y)<:(7d

I —” {=Yo,(0) Ho dw‘
1%l bl EEr i =

n+1°
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Putting this into (12.2) yields

=

dn+1
sup | Ko % (f =) ()| < Ca 3 mzoa u(x) for ¢ Q. (12.3)
£ 7 7

(-) is a standard Marcinkiewicz ‘“‘distance function integral”, and we apply the well-

known trick:
| p U ndr<eSa=clo]
z)da < —dx<e D di=c|Q]},
R”—Q”( ) “ Rn_lex_lenn 2 %1 I
so that u(x) <1 except on a set of measure <C|Q|. From (12.3) we obtain |{sup.| K, %
(f=N ()|>a}[<0|Q|, and then from (12.1) we find A(e)=|{sup,|Key*f(-)|>a}|<

(Clo®) §erecar (FF (1)) dy + C|{f* >a}|. Consequently,

[ e Kk il ay- o= 20
[3 0

<0f a”_ll{f*>oc}|dac+0'f oc”_lé (*(y))* dy da
0 (1}

{r¥<ay

=]

= 0f S @ydy+ Cf (r (?/))zf "% docdy
R R”

¥y
¢ f (@) dy +0 f (W) (@) dy = f ()P
R? R™ R*

as in the proof of Theorem 8. Thus, [lsup, | Key % f( )< ColIf*l,. QE.D.
Remark. Under the same conditions as Lemma 11 the proof also gives

|| sup:supe | @15 Koar 3 f(-)| [l = || supesupe | @s @ % Knex £ |, < Co| -
Notice that all the constants do not depend on M.

THEOREM 12. Let f be a distribution in H?. Then Kxf=lim, o 10 K% f exists in
the sense of distributions, and is in H”. The limit is independent of the choice of v and ¢.
Also f~Kx%f is bounded on H?,

In proving the theorem we may assume p<1, because only in this case are there any
technical difficulties in deducing the theorem from Lemma 11.

Notice that whenever fEH?, K\, f€H?. In fact @, K% f =K, 4y % (p,3¢f), and g, ¢ f
is bounded and O®. So we can apply the remark at the end of Lemma 12, and also
Theorem 11 (see Remark 2) to get || K% ]|z~ || sups|@i% Ko |l <A1,

This also shows that the mappings f—K,,%f are uniformly bounded, as mappings

on H?.
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Next, as in the argument at the end of section 10, write f=f; +(f —f5). Here u(x, t) is
the harmonic function whose boundary values are f, and f(x) =u(z, §). Then we know that
f; is H’NC® and also in IL1. Write K, %f=K % fs+ K% (f—f;). By Lemma 1,
Ko fs>Kxfs in the sense of distributions. Also by what we have just seen
| Eenlf —I)| 2 < Alf —f5ll o= 0, as 6--0. Altogether, then K,,f converges in the sense of

distributions as £é—~0, and M — oo, To finish the proof, observe that

L sup |ge Koy f? de< A |fl|%

<t<d—1

with 4 independent of §, ¢ and M. Letting ¢ > 0, and M — co, and then § - 0, gives us

via Fatou’s lemma that
lIsup g K% fllln < Al ]z

which proves that Kxf€H?, and that the mapping f—K %f is bounded on H?. Q.E.D,

Remarks. 1. The proof just given could easily be adapted to give boundedness on H?
under essentially sharp conditions on the kernel K. We in effect have to find the best
possible Ny in (11.1) and (11.2) and the definition of 4. We get this by using Theorem 10
instead of Theorem 11. Then the result can be formulated as follows: K is a tempered
distribution whose Fourier transform is a bounded function. For any «>0, we assume
that K is of the class C'*) away from the origin, where k is the greatest integer <o; and also

‘i"x(x) <Al * ™ |pl<k
ox’ 4 )

In addition, whenever K is one of the derivatives of total order k of K, we assume that

|K(z—y)— K(z)|< 4

lu—k

Y
|2

|n+nu if 2|y‘<|xl
Then f—>K%f=lim,_, ¢ 10 Koy % f is bounded on H? with o>n[p~!—1]. This refines and
extends the results given by the “Littlewood-Paley” proof in [21].

2. The theorem applies in particular to the Riesz transforms and their products, and

so in effect, it gives us a new proof of Theorem 9.

3. The methods can also be used to obtain results for H? boundedness, p<1, for
operators of the type ariging in examples 1 and 2 of §6. Let us, for instance, consider
the operator T;. Suppose 0<p,<1, 1/p,—3%=(b/n)[(}n+2)/(b+ )], witha,a’,b and 4
satisfying the relations described in § 6.
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Then T is bounded on H?, for p > p,. This statement is false for p <p,; but the case
P =p, is left open. The interest of this result is that it gives, as far as we know, the first
example of an H? inequality, p<1 for operators of the type T';. Since we believe that
this theorem is probably not the final result (when p,=1, we know that the conclusion
is valid for p =p,, using part IIT), we shall not give the proof; we point out only that it is
in the same spirit as Lemma 11, but adapts the techniques of [9], which gave the sharp
“weak-type’’ results for p,=1.
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