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H∞ SLIDING MODE CONTROL FOR MARKOV JUMP
SYSTEMS WITH INTERVAL TIME-VARYING DELAYS
AND GENERAL TRANSITION PROBABILITIES

Lingchun Li, Guangming Zhang, Meiying Ou and Yujie Wang

This paper is devoted to design H∞ sliding mode controller for continuous-time Markov
jump systems with interval time-varying delays and general transition probabilities. An inte-
gral sliding surface is constructed and its reachability is guaranteed via a sliding mode control
law. Meanwhile, a linearisation strategy is applied to treat the nonlinearity induced by gen-
eral transition probabilities. Using a separation method based on Finsler lemma to eliminate
the coupling among Lyapunov variables and controller parameters, sufficient conditions for
asymptotically stochastic stability of sliding mode dynamics are formulated in terms of linear
matrix inequalities. Finally, a single-link robot arm system is simulated to demonstrate the
effectiveness of the proposed method.
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1. INTRODUCTION

Markov jump systems (MJSs) is a special class of hybrid systems modeled by differential
equations and a finite-state Markov process. Due to its ability to model practical systems
with random jumps, wide-spread applications of MJSs have been made in fault-tolerant
control systems [1], networked control systems [2] and solar energy systems [3]. Regard
this topic, many interesting theoretical results about the analysis and synthesis of the
stability for MJSs can be found in [4, 5, 6, 7, 8]. However, the obtained results are based
on the hypothesis that all transition probabilities (TPs) are completely known, which
renders it hard to be employed to engineering problems because of the existence of partly
unknown TPs in practice. Via a robust methodology, the uncertain TPs with norm
bounded and partly known TPs are handled, please see in [9, 10, 11, 12, 13, 14, 15, 16]
and the references therein. To mention a few, [11] derives the non-fragile finite-time H∞
control of continuous-time MJSs with uncertain TPs. H∞ filtering and finite-time H∞
control of MJSs with partially unknown TPs are presented in [14, 15], respectively.

On the other hand, sliding mode control (SMC), as a particular type of variable
structure control, has attracted significant research attention in past decades. Owing to
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its favorable features, such as fast response, easy realization, insensitivity to variation in
plant parameters and complete rejection of external perturbations, SMC can be seen as
an effective robust control method for nonlinear dynamic systems, please see [17, 18, 19]
and the references therein. Specifically, [17] studies the robust H∞ control problem of
nonlinear stochastic systems via a sliding mode control method. In [18], considering
MJSs with actuator degradation, a SMC based on an adaptive scheme to estimate the
fault factor is developed. For uncertain nonlinear systems, [19] designs the robust finite-
time sliding mode controller via a set of linear matrix inequalities (LMIs). It is noted that
the time delay is not taken into account in most above works, which could degrade system
performance and even cause system instability [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].
To cope with this, [30] addresses the problem of robust H∞ SMC for uncertain neutral-
type MJSs with time-varying delays. [31, 32] investigates the SMC problem for Markov
jump time-delay systems. [33] studies the issue of event-triggered SMC for discrete-
time switched systems with time-varying network communication delay. However, TPs
in these results are required to be completely known, which is hard to be obtained
in practical systems. Once they are uncertain or unknown, the proposed approaches
in [30, 31, 33, 32] will lose the effectiveness to handle the nonlinearities induced by
unknown TPs. Apart from this, the method based on Jensen inequality to deal with the
time delay in these works still can be improved to reduce design conservativeness.

Stimulated by the above mentioned points,the delay-dependent H∞ SMC for MJSs
is investigated with general TPs assumed as known, uncertain with known lower and
upper bounds, and completely unknown. At first, an integral sliding surface is proposed.
Then, the property of TP matrix is used to overcome the nonlinearity incurred by
uncertain and unknown TPs. With the help of Finsler lemma, the coupling between
Lyapunov variable and controller gain is eliminated. In the specified sliding surface,
conditions of the stochastic stability of the closed-loop system is obtained in the form
of LMIs. Furthermore, a synthesized SMC law is derived to guarantee the existence
of the composite sliding motion. Finally, a single-link robot arm system is provided to
demonstrate the validity of the established results.

The rest of the paper is divided into several parts. The problem statement and some
preliminaries are arranged in section 2. Then, the stability analysis and the design of
H∞ sliding mode controller with complete known TPs and general TPs are discussed
in Section 3, respectively. Section 4 shows the simulation result with a single-link robot
arm system. Section 5 is a summary of the whole paper.

Notation: Throughout the paper Rn denotes the n-dimensional Euclidean space and
Rn×m denotes n×m real matrices. The notation R > 0 (< 0) stands for R is symmetric
and positive ( negative ) definite. (·)T indicates the transpose of a vector or matrix (·).
The asterisk ∗ represent entries which are identifiable from symmetry. γ(> 0) implies the
level of disturbance attenuation. E{·} means the mathematical expectation operator.

For any square matrices A and B, define diag{A,B} =
[

A 0
0 B

]
. Moreover, for any

square matrix M ∈ Rn×n, we define He(M) = MT +M . The notation I stands for the
identity matrix.
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2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following continuous-time MJSs described as

ẋ(t) = A(rt)x(t) +Ad(rt)x(t− d(t)) +B(rt)u(t) + E(rt)ω(t)

z(t) = C(rt)x(t) +D(rt)u(t) + F (rt)ω(t)

x(t) = ψ(t), t ∈ [−h2, 0], r(0) = r0,

(1)

where x(t) ∈ Rn is the state vector of the system; u(t) ∈ Rm is control input; z(t) ∈ Rp is
regulated output; ω(t) ∈ Rq is the mismatched disturbance input which is unknown but
bounded so that ‖ω(t)‖ ≤ ω̄; d(t) is a time-varying delay satisfying 0 ≤ h1 ≤ d(t) ≤ h2

and ḋ(t) ≤ µ < ∞, meanwhile h12 = h2 − h1. In (1), ψ(t) is vector-valued initial
continuous function defined on the interval [−h2, 0] and r0 ∈ S is the initial conditions
of the continuous state and the mode. A(rt), Ad(rt), B(rt), E(rt), C(rt), D(rt), and
F (rt) are matrix functions of the random jumping process {rt}. rt is continuous-time
Markov process taking values in a finite space L = {1, 2, . . . , N} and satisfies

Pr{rt+h = j|rt = i} =

{
πijh+ o(h), i 6= j

1 + πiih+ o(h), i = j

where h > 0, πij > 0 for i 6= j and πii = −
s∑

j=1,j 6=i
πij for each mode i, lim

h→0
o(h)/h = 0.

Considering the fact that TPs may be known, uncertain with known lower and up-
per bounds and unknown [14], the incomplete TP matrix with five operation modes is
presented below 

π11 ? π13 π14 α15

π21 ? ? π24 π25

? π32 π33 π34 ?
π41 ? α43 π44 π45

? ? α53 π54 ?

 ,
where αij (α ≤ α ≤ α) represents the uncertain TPs with known lower and upper
bounds, ‘?’ denotes the completely unknown elements. Furthermore, Lk is used to
denote the set of known and uncertain TPs in ith row, while Luk represents the set of
unknown ones as following:{

Lk = j|πij is known and uncertain,
Luk = j|πij is unknown.

For rt = i ∈ L, the system matrices of the ith mode are simplified as Ai, Adi, Bi, Ei,
Ci, Di and Fi with appropriate dimensions.

Definition 2.1. System (1) satisfies the required H∞ performance index γ if the in-
equality

E
{∫ ∞

0

zT (t)z(t) dt

}
≤ γ2E

{∫ ∞
0

ωT (t)ω(t) dt

}
holds for zero initial condition.
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Definition 2.2. System (1) is said to be stochastically stable if, for any finite ψ(t) ∈ Rn
defined on [−τ, 0], and r0∈ S the following condition is satisfied

lim
t→∞

E

{∫ t

0

xT (t)x(t) dt|ψ, r0

}
<∞.

Lemma 2.3. (C. Zhang et al. [27]) For a diagonal matrix G = diag{R2, 3R2} with

R2 > 0 and any matrix S1, −
∫ t−h1

t−h2
ẋT (s)R2ẋ(s) ds can be upper bounded as:

−
∫ t−h1

t−h2

ẋT (s)R2ẋ(s) ds

≤− 1

h12
ξTt

[
E1
E2

]T ([ G S1

∗ G

]
+

[
h2−d(t)
h12

T1 0

0 d(t)−h1

h12
T2

])[
E1
E2

]
ξt

(2)

where

ξt = [xT (t), xT (t− d(t)), xT (t− h1), xT (t− h2),
1

d(t)− h1

∫ t−h1

t−d(t)

x(s)T ds,

1

h2 − d(t)

∫ t−d(t)

t−h2

x(s)T ds, ẋT (s), ωT (t), zT (t)]T ,

ei = [0n(i−1)n, I, 0n(10−i)n]T , i = 1, 2, . . . , 9,

E1 = col{−e2 + e3, e1 + e2 + e3 − 2e5},
E2 = col{e2 − e4, e2 + e4 − 2e6},
T1 = G − S1G−1ST1 ,

T2 = G − ST1 G−1S1.

P r o o f . The proposed inequalities can be obtained by following the similar idea in [27]
with non-zero low bound. The details are omitted here. �

Remark 2.4. Different from the proposed inequalities to deal with time-varying delays
in [27], the corresponding inequality (2) is obtained in Lemma 2.3 with non-zero low
bound.

Remark 2.5. Compared with the Wirtinger-based inequality [28] and reciprocally con-
vex lemma [29], the proposed inequality (2) could provide a closer estimated value of∫ t−h1

t−h2
ẋT (s)R2ẋ(s) ds but without requiring any extra decision variable.

Lemma 2.6. (R. Skelton et al. [34]) Letting v ∈ Rn, P = PT ∈ Rn×n and H ∈ Rm×n,
such that rank(H) = r < n, the following statements are equivalent:
(a) vTPv < 0, for all v 6= 0, Hv = 0;

(b) ∃X ∈ Rn×m such that P +He(XH) < 0.

Lemma 2.7. (M. C. D Oliveira [35]) Let Q = QT ∈ Rn×n and B ∈ Rm×n be given
matrices, one can get the following equivalent statements:
(a) MTQM < 0, and BM = 0;

(b) ∃S ∈ Rn×m such that Q+He(SB) < 0.
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3. MAIN RESULTS

3.1. Sliding surface design

First of all, construct a sliding surface functional as follows:

si(t) = Gix(t)−
∫ t

0

Gi[(Ai +BiKi)x(t) +A dix(t− d(t))] dt, (3)

where Gi ∈ Rm×n and Ki ∈ Rm×n are constant matrices.

According to the so-called equivalent control principle of SMC theory, when the
system trajectories reach onto the sliding surface, it follows that si(t) = 0 and ṡi(t) = 0.
Therefore, the equivalent control ueq(t) is derived as

ueq(t) = Kix(t)− (GiBi)
−1GiEiω(t). (4)

Substituting (4) into system (1), the sliding mode dynamic system is established as:

ẋ(t) = (Ai +BiKi)x(t) +Adix(t− d(t))

z(t) = (Ci +DiKi)x(t) + (Fi −Di(GiBi)
−1GiEi)ω(t).

(5)

3.2. Robustly stochastic stability analysis

Now, we proceed to the first task which analyzes the robustly stochastic stability of
the sliding motion described by (5) with completely known TPs, and derive a sufficient
condition in terms of the LMIs.

Theorem 3.1. For given scalars τ1i, τ2i, τ3i, τ4i and γ > 0, if there exist symmetric
matrices Pi, Q1i, Q1, Q2, Q3, R1, R2 > 0 and matrices Hi, Mi, Si, Ni, Wi, with
appropriate dimensions, satisfying the following LMIs:

case 1: d(t) = h1

−γ2 0 0 0 0 0 0 0 Γ19 0 0 0
∗ Γ22 Γ23 Γ24 Γ25 Γ26 ATdiM

T
i ATdiH

T
i 0 Γ210 Γ211 0

∗ ∗ Γ33 Γ34 6aR2 Γ36 0 R1 0 Γ310 Γ311 0
∗ ∗ ∗ Γ44 Γ45 6bR2 0 0 0 0 0 0
∗ ∗ ∗ ∗ −12aR2 −4S14 0 0 0 −2S13 −2S14 0
∗ ∗ ∗ ∗ ∗ −12bR2 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77 Γ78 0 0 0 Γ712

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88 Γ89 0 0 Γ812

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 Γ912

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −3R2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ1212



< 0,

(6)
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case 2: d(t) = h2

−γ2 0 0 0 0 0 0 0 Γ19 0 0 0
∗ Γ22 Γ23 Γ24 Γ25 Γ26 ATdiM

T
i ATdiH

T
i 0 Γ′210 Γ′211 0

∗ ∗ Γ33 Γ34 6aR2 Γ36 0 R1 0 0 0 0
∗ ∗ ∗ Γ44 Γ45 6bR2 0 0 0 Γ′410 Γ′411 0
∗ ∗ ∗ ∗ −12aR2 −4S14 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −12bR2 0 0 0 −2ST12 −2ST14 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77 Γ78 0 0 0 Γ712

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88 Γ89 0 0 Γ812

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 Γ912

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −3R2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ1212



< 0,

(7)

ΣSj=1πijQ1j −Q3 ≤ 0, (8)

where
Γ19 = FTi − ETi ((GiBi)

−1Gi)
TDT

i , Γ22 = −(1 − µ)Q1i − 4aR2 + ST11 + ST12 − ST13 −
ST14 +S11−S13− 4bR2 +S12−S14 +He(HiAdi), Γ23 = −2aR2−ST11−ST12−ST13−ST14,
Γ24 = −S11+S13−2bR2+S12−S14, Γ25 = 6aR2+2ST13+2ST14, Γ26 = −2S12+2S14+6bR2,
Γ210 = −S11 + S13, Γ′210 = ST11 + ST12, Γ211 = −S12 + S14, Γ′211 = ST13 + ST14, Γ33 =
−Q1 −R1 − 4aR2, Γ34 = S11 + S13 − S12 − S14, Γ36 = 2S12 + 2S14, Γ310 = S11 + S13,
Γ311 = S12 +S14, Γ44 = −Q2− 4bR2, Γ45 = −2ST13 + 2ST14, Γ′410 = −ST11 +ST12, Γ′411 =
−ST13 +ST14, Γ77 = h2

1R1 +h2
12R2 +He(−Mi), Γ78 = PTi −HT

i +MiAi+ τ1iBiNi, Γ712 =
−τ1iBiWi+MiBi, Γ88 = ΣSj=1πijPj +Q1i+Q1 +Q2−R1 +h2Q3 +He(HiAi−τ2iBiNi),
Γ89 = CTi + τ3iN

T
i D

T
i , Γ812 = −τ2iBiWi − HiBi + τ4iN

T
i , Γ912 = −τ3iDiWi + Di,

Γ1212 = −τ4iWi.

Then system (1) with the controller (4) is stochastically stable with completely known
TPs and satisfies the prescribed H∞ performance index γ. Moreover, controller gain
matrix Ki can be calculated as Ki = W−1

i Ni and the matrix Gi = BTi .

P r o o f . Consider the following Lyapunov–Krasovskii functional candidate:

V (x(t), i) =

7∑
n=1

Vn(x(t), i), (9)

where
V1(x(t), i) = xT (t)Pix(t), (10)

V2(x(t), i) =

∫ t

t−d(t)

xT (s)Q1ix(s) ds, (11)

V3(x(t), i) =

∫ t

t−h1

xT (s)Q1x(s) ds, (12)
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V4(x(t), i) =

∫ t

t−h2

xT (s)Q2x(s) ds, (13)

V5(x(t), i) = h1

∫ 0

−h1

∫ t

t+β

ẋT (s)R1ẋ(s) dsdβ, (14)

V6(x(t), i) = h12

∫ −h1

−h2

∫ t

t+β

ẋT (s)R2ẋ(s) dsdβ, (15)

V7(x(t), i) =

∫ 0

−d(t)

∫ t

t+β

xT (s)Q3x(s) dsdβ. (16)

Calculating the derivative of V (x(t), i) gives

V̇1(x(t), i) = 2xT (t)Piẋ(t) + xT (t)ΣSj=1πijPjx(t), (17)

V̇2(x(t), i) ≤ xT (t)Q1ix(t)− (1− µ)xT (t− d(t))Q1ix(t− d(t))

+

∫ t

t−d(t)

xT (s)ΣSj=1πijQ1jx(s) ds, (18)

V̇3(x(t), i) = xT (t)Q1x(t)− xT (t− h1)Q1x(t− h1), (19)

V̇4(x(t), i) = xT (t)Q2x(t)− xT (t− h2)Q2x(t− h2), (20)

V̇5(x(t), i) = h2
1ẋ
T (t)R1ẋ(t)− h1

∫ t

t−h1

ẋT (s)R1ẋ(s) ds, (21)

V̇6(x(t), i) = h2
12ẋ

T (t)R2ẋ(t)− h12

∫ t−h1

t−h2

ẋT (s)R2ẋ(s) ds, (22)

V̇7(x(t), i) ≤ h2x
T (t)Q3x(t)−

∫ t

t−d(t)

xT (t)Q3x(t) ds. (23)

Utilizing the Jensen inequality in (21) produces

V̇5(x(t), i) ≤ h2
1ẋ
T (t)R1ẋ(t)−xT (t)R1x(t)−xT (t−h1)R1x(t−h1) + 2xT (t)R1x(t−h1).

(24)

To deal with −h12

∫ t−h1

t−h2
ẋT (s)R2ẋ(s) ds in (22), applying Lemma 2.3 one can get

− h12

∫ t−h1

t−h2

ẋT (s)R2ẋ(s) ds

≤− ξTt
[
E1
E2

]T
×

([
G S1

∗ G

]
+

[
h2−d(t)
h12

T1 0

0 d(t)−h1

h12
T2

])
×
[
E1
E2

]
ξt

= −ξTt
[
E1
E2

]T
×
[
aG S1

∗ bG

]
×
[
E1
E2

]
ξt

+ ξTt

(
h2 − d(t)

h12
E1TS1G−1S1E1 +

d(t)− h1

h12
E2TS1G−1S1E2

)
ξt

(25)
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where a = 2h2−h1−d(t)
h12

and b = h2−2h1+d(t)
h12

.

Firstly, to ensure the required H∞ performance of system (5), one needs V̇ (x(t), i) +
z(t)T z(t)− γ2ω(t)Tω(t) < 0, which can be guaranteed by

ξTt (Φ +
h2 − d(t)

h12
E1TS1G−1S1E1 +

d(t)− h1

h12
E2TS1G−1S1E2)ξt < 0, (26)∫ t

t−d(t)

x(s)T (ΣSj=1πijQ1j −Q3)x(s) ds ≤ 0, (27)

where

Φ =



Φ11 0 R1 0 0 0 Φ17 0 CTi
∗ Φ22 Φ23 Φ24 Φ25 Φ26 0 0 0
∗ ∗ Φ33 Φ34 6aR2 Φ36 0 0 0
∗ ∗ ∗ Φ44 Φ45 6bR2 0 0 0
∗ ∗ ∗ ∗ −12aR2 −4S14 0 0 0
∗ ∗ ∗ ∗ ∗ −12bR2 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2 FT

i

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


,

Φ11 = ΣSj=1πijPj +Q1i +Q1 +Q2−R1 + h2Q3, Φ17 = Pi, Φ22 = −(1−µ)Q1i− 4aR2 +

ST11 +ST12−ST13−ST14 +S11−S13−4bR2 +S12−S14, Φ23 = −2aR2−ST11−ST12−ST13−ST14,
Φ24 = −S11+S13−2bR2+S12−S14, Φ25 = 6aR2+2ST13+2ST14, Φ26 = −2S12+2S14+6bR2,
Φ33 = −Q1 − R1 − 4aR2, Φ34 = S11 + S13 − S12 − S14, Φ36 = 2S12 + 2S14, Φ44 =
−Q2 − 4bR2, Φ45 = −2ST13 + 2ST14, Φ77 = h2

1R1 + h2
12R2.

Then, (27) is equivalent to condition in (8). Since 0 ≤ h1 ≤ d(t) ≤ h2, two cases are
discussed as below to ensure the negative definiteness of (26).

Case I: If d(t) = h1, a = 2, b = 1, (26) is equivalent to

ξTt (Φ + E1TS1G−1S1E1)ξt < 0. (28)

Adopting Lemma 2.6 to (28), one has

Φ + E1TS1G−1S1E1 +He(XH)︸ ︷︷ ︸
Ω

< 0, (29)

where X = [HT
i 0 0 0 0 0 MT

i 0 0]T , H = [Ai Adi 0 0 0 0 − I Ei 0],

Ω =



Ψ11 HiAdi R1 0 0 0 Ψ17 HiEi Ψ19 0 0
∗ Ψ22 Ψ23 Ψ24 Ψ25 Ψ26 ATdiM

T
i 0 0 Ψ210 Ψ211

∗ ∗ Ψ33 Ψ34 6aR2 Ψ36 0 0 0 Ψ310 Ψ311

∗ ∗ ∗ Ψ44 Ψ45 6bR2 0 0 0 0 0
∗ ∗ ∗ ∗ −12aR2 −4S14 0 0 0 −2S13 −2S14

∗ ∗ ∗ ∗ ∗ −12bR2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ77 MiEi 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2 FT

i
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −3R2


,
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Ψ11 = ΣSj=1πijPj +Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi), Ψ17 = Pi −Hi +ATi M
T
i ,

Ψ19 = CTi , Ψ22 = −(1−µ)Q1i−4aR2 +ST11 +ST12−ST13−ST14 +S11−S13−4bR2 +S12−
S14 + He(HiAdi), Ψ23 = −2aR2 − ST11 − ST12 − ST13 − ST14, Ψ24 = −S11 + S13 − 2bR2 +
S12 − S14,Ψ25 = 6aR2 + 2ST13 + 2ST14,Ψ26 = −2S12 + 2S14 + 6bR2,Ψ210 = −S11 + S13,
Ψ211 = −S12 + S14, Ψ33 = −Q1 − R1 − 4aR2, Ψ34 = S11 + S13 − S12 − S14, Ψ36 =
2S12+2S14, Ψ310 = S11+S13, Ψ311 = S12+S14, Ψ44 = −Q2−4bR2, Ψ45 = −2ST13+2ST14,
Ψ77 = h2

1R1 + h2
12R2 +He(−Mi), Ψ89 = FTi .

Secondly, by pre and post multiplying with inverse matrix Λ, Ω is rewritten as

[
I11∗11

∆

]T [
Ξ 011×1

∗ 0

] [
I11∗11

∆

]
< 0 (30)

where ∆ = [Ki 01×10],

Λ =



0 0 0 0 0 0 0 I 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I



Ξ =



Ψ
′

11 HiAdi R1 0 0 0 Ψ
′

17 0 Ψ
′

19 0 0
∗ Ψ22 Ψ23 Ψ24 Ψ25 Ψ26 ATdiM

T
i 0 0 Ψ210 Ψ211

∗ ∗ Ψ33 Ψ34 6aR2 Ψ36 0 0 0 Ψ310 Ψ311

∗ ∗ ∗ Ψ44 Ψ45 6bR2 0 0 0 0 0
∗ ∗ ∗ ∗ −12aR2 −4S14 0 0 0 −2S13 −2S14

∗ ∗ ∗ ∗ ∗ −12bR2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ψ77 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2 Ψ
′

89 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −R2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −3R2


,

Ψ
′

11 = ΣSj=1πijPj +Q1i +Q1 +Q2−R1 +h2Q3 +He(HiAi +HiBiKi), Ψ
′

17 = Pi−Hi +

ATi M
T
i + (BiKi)

TMT
i , Ψ

′

19 = CTi + (DiKi)
T , Ψ

′

89 = FT
i
− ETi ((GiBi)

−1Gi)
TDT

i .

Let Ni = KiWi and apply Lemma 2.7 to (30), Pi is separated from Bi and Ki as
following
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[
Ξ 011×1

∗ 0

]
+He




06×1

τ1iBiWi −MiBi
τ2iBiWi −HiBi
τ3iBiWi −Di

02×1

τ4iWi




07×1

KT
i

03×1

−I


T

 < 0, (31)

which is equivalent to condition in (6).
Case II: If d(t) = h2, a = 1, b = 2, (26) is equivalent to

ξTt (Φ + E2TS1G−1S1E2)ξt < 0. (32)

Taking a similar way, (7) can be obtained, which completes the proof. �

Remark 3.2. Unlike the free-weighting matrix approach and Wirtinger inequality, more
accurate estimations for the cross terms are achieved in Theorem 3.1 by Lemma 2.3 with-
out ignoring any useful terms. Therefore, the proposed Theorem 3.1 has potential to
reduce the conservatism considerably.

Remark 3.3. To make the conditions in Theorem 3.1 in the framework of LMIs, a
constructive strategy is developed to handle PiBiKi as PiBiKi = PiBiW

−1
i = (PiBi −

BiWi)W
−1
i Ni + BiNi. With this separated structure and Lemma 2.7, Pi is separated

from Bi and Ki. It is worth noting that there is no need to pre- and post-multiply an
inverse matrix and three sets of slack variables without specific structures are introduced.

In the following theorem, Theorem 3.1 is extended to derive a H∞ sliding mode
controller with general TPs assumed to be known, uncertain with known lower and
upper bounds and unknown for (5).

Theorem 3.4. For given scalars τ1i, τ2i, τ3i, τ4i and γ > 0, if there exist symmetric ma-
trices Pi, Q1i, Q1, Q2, Q3, R1, R2 > 0 and matrices Hi, Mi, Si, Ni, Wi with appropriate
dimensions satisfying the following LMIs, then system (5) is stochastically stable with
general TPs.

For i ∈ Lk 
(6) |Γ88=Γk

88
< 0,

(7) |Γ88=Γk
88
< 0,

Σj∈Lk
π̄ijQ1j +

(
−πii − Σj∈Lk

πij
)
Q1l −Q3 < 0.

(33)

For i ∈ Luk 
(6) |Γ88=Γuk

88
< 0,

(7) |Γ88=Γuk
88
< 0,

Σj∈Lk
π̄ijQ1j − Σj∈Lk

πijQ1i −Q3 < 0,
Pl ≤ Pi,
Q1l ≤ Q1i.

(34)
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where
Γk88 = Q1i+Q1+Q2−R1+h2Q3+He(HiAi−τ2iBiNi)+Σj∈Lk

π̄ijPj+
(
−πii − Σj∈Lk

πij
)
Pl,

Γuk88 = Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈Lk
π̄ijPj − Σj∈Lk

πijPi.

P r o o f . Considering the fact that πij ≤ πij ≤ π̄ij , the following equalities can be
obtained respectively

Γk88 ≥ Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi)
+ Σj∈Lk

πijPj + (−πii − Σj∈Lk
πij)Pl (35)

Γuk88 ≥ Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi)
+ Σj∈Lk

πijPj − Σj∈Lk
πijPi (36)

Case I: i ∈ Lk. According to the property of ΣNj=1πij = 0, Σl∈Luk
πij = −πii −

Σj∈Lk
πij which also leads to

Σl∈Luk
πij

−πii−Σj∈Lk
πij

= 1. Taking these facts into (35) leads to

Γk88 ≥ Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi)
+ Σj∈Lk

πijPj + (−πii − Σj∈Lk
πij)Pl

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈Lk
πijPj

+
Σl∈Luk

πij
−πii − Σj∈Lk

πij
(−πii − Σj∈Lk

πij)Pl

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈Lk
πijPj + Σl∈Luk

πijPl

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈LπijPj . (37)

Case II: i ∈ Luk. From Σl∈Luk,l 6=iπil > 0, multiplying the left and right side of
Pl ≤ Pi by Σl∈Luk,l 6=iπil gives

Σl∈Luk,l 6=iπilPl ≤ Σl∈Luk,l 6=iπilPi. (38)

Substituting (38) to (36), it results in

Γk88 ≥ Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈Lk
πijPj

− Σj∈Lk
πijPi + Σl∈Luk,l 6=iπilPl − Σl∈Luk,l 6=iπiPi

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈Lk
πijPj

+ Σl∈Luk,l 6=iπilPl − (Σj∈Lk
πij + Σl∈Luk,l 6=iπil)Pi

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈L,j 6=i(πijPj + πiiPi)

= Q1i +Q1 +Q2 −R1 + h2Q3 +He(HiAi − τ2iBiNi) + Σj∈LπijPj (39)

Therefore, whether i ∈ Lk or i ∈ Luk, (37) and (39) can guarantee (6) and (7) holds.
Finally, along the similar lines as (33) - (39) to dispose general TPs in (8), the system

(5) with general TPs is stable if (33) and (34) hold. This completes the proof. �

Remark 3.5. In [30] and [32], TPs are treated as known which could lead to conser-
vatism when all TPs are uncertain with known bounds or unknown. To fill up this
deficiency, Theorem 3.4 derives a H∞ sliding mode controller with incomplete TPs as-
sumed to be known, uncertain with known lower and upper bounds and unknown.
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3.3. SMC law design scheme

In this section, we will design a sliding mode control law, by which the trajectories
of sliding mode dynamic system (5) can be driven onto the designed sliding surface
s(t, i) = 0 and satisfies the prescribed H∞ performance index γ.

Theorem 3.6. With the constant matrixes Ki mentioned in Theorem 3.1 and the in-
tegral sliding surface given by (3), the trajectory of the closed-loop system (5) can be
driven onto the sliding surface s(t, i) = 0 with H∞ performance index γ by the following
controller:

u(t, i) = Kix(t)− ‖ (GiBi)
−1GiEi ‖ ω̄sign(si(t))−

1

2
‖ δ ‖ si(t) (40)

where

δ =

{
Σj∈Lk

π̄ij(GjBj)
−1 +

(
−πii − Σj∈Lk

πij
)

(GlBl)
−1, i ∈ Lk

Σj∈Lk
π̄ij(GjBj)

−1 − Σj∈Lk
πij(GiBi)

−1, i ∈ Luk.
(41)

P r o o f . Choose the following Lyapunov functional candidate as:

Vo(t) =
1

2
si(t)

T (GiBi)
−1si(t). (42)

Computing the derivative of Vo(t) with ṡi(t) yields

˙Vo(t) = si(t)
T (GiBi)

−1Gi[Biu(t)−BiKix(t) +Eiω(t)] +
1

2
si(t)

TΣSj=1πij(GjBj)
−1si(t).

(43)
Taking the SMC controller u(t, i) = Kix(t)− ρisign(si(t)) into (43) gives

V̇o(t) = si(t)
T [ρisign(si(t))+(GiBi)

−1GiEiω(t)]+
1

2
si(t)

TΣSj=1πij(GjBj)
−1si(t). (44)

To meet V̇o(t) < 0, one needs to ensure following terms from (44)

si(t)
T [ρisign(si(t)) + (GiBi)

−1GiEiω(t)] +
1

2
si(t)

TΣSj=1πij(GjBj)
−1si(t) < 0. (45)

Resorting to norm calculation, the left hand side of (45) is scaled as

ρi|si(t)|+ ‖si(t)T ‖‖(GiBi)−1GiEi‖‖ω(t)‖

+
1

2
‖si(t)T ‖‖ΣSj=1πij(GjBj)

−1‖‖si(t)‖ < 0. (46)

Applying the fact that |si(t)| ≥‖ si(t) ‖, (46) holds if ρi satisfies

ρi ≤ −‖(GiBi)−1GiEi‖‖ω(t)‖+
1

2
‖ΣSj=1πij(GjBj)

−1‖‖si(t)‖. (47)

Since πij is incomplete, along the similar line as Theorem 3.4 to handle general TPs,
two cases are discussed as below
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Case I (i ∈ Lk):

Σj∈Lπij(GjBj)
−1 ≤ Σj∈Lk

π̄ij(GjBj)
−1 +

(
−πii − Σj∈Lk

πij
)

(GlBl)
−1. (48)

Case II (i ∈ Luk):{
Σj∈Lπij(GjBj)

−1 ≤ Σj∈Lk
π̄ij(GjBj)

−1 − Σj∈Lk
πij(GiBi)

−1

(GlBl)
−1 ≤ (GiBi)

−1.
(49)

Substituting (48) and (49) into (47), ρi should meet

ρi ≤ −‖(GiBi)−1GiEi‖‖ω(t)‖+
1

2
‖δ‖‖si(t)‖. (50)

Taking ρi = −‖(GiBi)−1GiEi‖ω̄+ 1
2‖δ‖‖si(t)‖ into u(t, i) = Kix(t)−ρisign(si(t)) leads

to the condition in (41). This means that the system trajectories can reach onto the
predefined switching surface. �

Remark 3.7. It is worth noting that the sliding mode controller could render the chat-

tering problem. To avoid this phenomenon, ρisign(si(t)) is substituted by ρi
si(t)

‖si(t)‖+ι ,

(ι > 0) in the simulation part.

4. NUMERICAL EXAMPLE

Example 4.1. Considered a single-link robot arm system with a time delay borrowed
from [12], the validity of the proposed method is illustrated. The time-delay model with
uncertainties is given as follow.

d2θ(t)

dt2
= −MgL

J
sin(θ(t))− D(t)

J

dθ(t)

dt
− D(t)

Jd

dθ(t− d(t))

dt
+

1

J
u(t) +

L

J
ω(t) (51)

where θ(t), u(t), ω(t) represent the arm’s angle position, the control input and the exter-
nal disturbance, respectively. M denotes the mass of the payload, while J is the inertia
moment. The symbol g is the acceleration gravity, L is the arm length and D(t) denotes
the uncertain coefficient of viscous friction. The parameters of g, L and D(t) are 9.81, 2
and 0.5, respectively. The parameters M and J have three different modes. As follows,
a linearized system model is given for (51).

ẋ(t) =

([
0 1

−gL − D(t)
J(rt)

])
x(t) +

([
0 1

−gL − D(t)
Jd(rt)

])
x(t− d(t))

+

[
0
1

J(rt)

]
u(t) +

[
0
L

J(rt)

]
w(t)

z(t) =
[

1 1
]
x(t) + u(t) + ω(t)

(52)
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where x(t) =
[
xT1 (t) xT2 (t)

]
, rt = {1, 2, 3}. M(rt), J(rt) depends on the jump modes

and M(1) = J(1) = 0.2,M(2) = J(2) = 0.25,M(3) = J(3) = 0.4.
The incomplete transition probability matrix is given as −1.1 0.7 0.4

0.4 ? α23

α31 1.9 ?

 (53)

where α23 satisfies 0.35 ≤ α23 ≤ 0.38 and α31 satisfies 0.18 ≤ α31 ≤ 0.21, and ?
represents the completely unknown TPs.

Our aim here is to verify the effectiveness of the proposed theoretical results in the

previous sections. For initialization, the state vector is given x0 =
[

0 0
]T

. Other
parameters are selected as follows τ1i = τ2i = τ3i = τ4i = 1, h1 = 0.05, h2 = 0.70.
ω(t) = 0.5sin(0.5t) for 5 ≤ t ≤ 7(otherwise, ω(t) = 0) such that ω̄ = 0.5.

Solving the proposed synthesis conditions in Theorem 3.4 yields

K1 =
[

0.4811 0.6706
]
,K2 =

[
0.2407 0.4880

]
,K3 =

[
0.3627 0.4237

]
With the aid of the switching surface function in (3), the sliding mode controller

designed in (40) is obtained. Further, to reduce chattering in the control signals, the
signum function sign(s(t)) is replaced by si

‖si‖+ι . Applying the proposed sliding mode

controller, the response curves of system states, sliding mode surface and control input
are shown in Figures 1 – 3, respectively.

It is seen that system state trajectories are stochastically stable in Figure 1 and
Figure 2, the curve denotes the integral sliding mode surface function si(t) with the
possible mode evolution. The variation of the mode-dependent sliding mode control
input is depicted in Figure 3. In summary, these figures have shown the validity of the
proposed sliding mode control approach.
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Fig. 1. Corresponding trajectories of system state.
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Fig. 2. Trajectory of the sliding surface.
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Fig. 3. Applied control input.

5. CONCLUSIONS

In this paper, H∞ SMC for MJSs with interval time-varying delay and general TPs is
discussed. Firstly, a sliding surface functional is constructed. Then, with the help of
Finsler lemma and a relaxed inequality, a delay-dependent robust stability criterion has
been established by LMI technique, which guarantees the sliding mode dynamic system
to be robustly stochastically stable. Furthermore, a SMC law has been synthesized to
ensure the stability of the closed-loop system. Finally, a single-link robot arm system
has been provided to demonstrate the effectiveness of the obtained results.



H∞ SMC for MJSs with delays and general TPs 149

ACKNOWLEDGEMENT

The authors would like to thank the editor, the associate editor and the reviewers for their valu-
able comments and suggestions to improve the quality of this paper. This work was supported
in part by the National Natural Science Foundation of China (Grant No.11605019), in part
by the Key Research and Development Project of Jiangsu Province (Grant No.BE2017164),
in part by the Natural Science Foundation of Anhui Provincial Universities of China (Grant
No.KJ2015B03 and KJ2016B06).

(Received November 10, 2017)

R E F E R E N C E S

[1] M. Liu, P. Shi, L. Zhang and X. Zhao: Fault-tolerant control for nonlinear
Markovian jump systems via proportional and derivative sliding mode observer tech-
nique. IEEE Transa. Circuits Systems I: Regular Papers 58 (2011), 2755–2764.
DOI:10.1109/tcsi.2011.2157734

[2] Y. Shi and B. Yu: Output feedback stabilization of networked control systems with
random delays modeled by Markov chains. IEEE Trans. Automat. Control 54 (2009),
1668–1674. DOI:10.1109/tac.2009.2020638

[3] D. D. Sworder and R. O. Rogers: An LQ-solution to a control problem associated with
a solar thermal central receiver. EEE Trans. Automat. Control 28 (1983), 971–978.
DOI:10.1109/tac.1983.1103151

[4] P. Shi and F. Li: A survey on Markovian jump systems: Modeling and design. Int. J.
Control Automat. Systems 13 (2015), 1–16. DOI:10.1007/s12555-014-0576-4

[5] F. Li, P. Shi, C. C. Lim, and L. Wu: Fault detection filtering for nonhomogeneous
Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2018),
131–141. DOI:10.1109/tfuzz.2016.2641022

[6] D. P. De Farias, J. C. Geromel, J. B. R. Do Val, and O. L. V. Costa: Output feedback
control of Markov jump linear systems in continuous-time. IEEE Trans. Automat. Control
45 (2000), 944–949. DOI:10.1109/9.855557

[7] M. Shen, S. Yan, G. Zhang, and J. H. Park: Finite-time H∞ static output control of
Markov jump systems with an auxiliary approach. Appl. Math. Comput. 273 (2016),
553–561. DOI:10.1016/j.amc.2015.10.038

[8] F. Li, P. Shi, C. C. Lim, and L. Wu: Fault detection filtering for nonhomogeneous
Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2016),
131–144. DOI:10.1109/tfuzz.2016.2641022

[9] J. Xiong, J. Lam, and H. Gao: On robust stabilization of Markovian jump
systems with uncertain switching probabilities. Automatica 41 (2005), 897–903.
DOI:10.1016/j.automatica.2004.12.001

[10] Y. Kao, J. Xie, and C. Wang: Stabilisation of mode-dependent singular Markovian jump
systems with generally uncertain transition rates. Applied Mathematics and Computation
245 (2014), 243–254. DOI:10.1016/j.amc.2014.06.064

[11] Y. Zhang, Y. Shi and P. Shi: Robust and non-fragile finite-time H∞ control for un-
certain Markovian jump nonlinear systems. Appl. Math. Comput. 279 (2016), 125–138.
DOI:10.1016/j.amc.2016.01.012

http://dx.doi.org/10.1109/tcsi.2011.2157734
http://dx.doi.org/10.1109/tac.2009.2020638
http://dx.doi.org/10.1109/tac.1983.1103151
http://dx.doi.org/10.1007/s12555-014-0576-4
http://dx.doi.org/10.1109/tfuzz.2016.2641022
http://dx.doi.org/10.1109/9.855557
http://dx.doi.org/10.1016/j.amc.2015.10.038
http://dx.doi.org/10.1109/tfuzz.2016.2641022
http://dx.doi.org/10.1016/j.automatica.2004.12.001
http://dx.doi.org/10.1016/j.amc.2014.06.064
http://dx.doi.org/10.1016/j.amc.2016.01.012


150 L.C. LI, G.M. ZHANG, M.Y. OU AND Y.J. WANG

[12] H. Wu and K. Cai: Mode-independent robust stabilization for uncertain Markovian jump
nonlinear systems via fuzzy control. IEEE Trans. Syst., Man, Cybern.-Part B: Cybern.
36 (2006), 509–519. DOI:10.1109/tsmcb.2005.862486

[13] L. Zhang and E. K. Boukas: Stability and stabilization of Markovian jump linear sys-
tems with partly unknown transition probabilities. Automatica 45 (2009), 463–468.
DOI:10.1016/j.automatica.2008.08.010

[14] L. Li, M. Shen, G. Zhang, and S. Yan: H∞ control of Markov jump systems with time-
varying delay and incomplete transition probabilities. Appl. Math. Comput. 301 (2017),
95–106. DOI:10.1016/j.amc.2016.12.027

[15] L. Li and Q. Zhang: Finite-time H∞ control for singular Markovian jump systems with
partly unknown transition rates. Appl. Math. Modell. 40 (2016), 302–314.

[16] M. Shen, G. Zhang, Y. Yuan, and L. Mei: Non-fragile sampled data H∞ filtering
of general continuous Markov jump linear systems. Kybernetika 50 (2014), 580–595.
DOI:10.14736/kyb-2014-4-0580

[17] Y. Niu, W. Ho, and X. Wang: Robust H∞ control for nonlinear stochastic sys-
tems: a sliding-mode approach. IEEE Trans. Automat. Control 53 (2008), 1695–1701.
DOI:10.1109/tac.2008.929376

[18] B, Chen, Y. Niu, and Y. Zou: Adaptive sliding mode control for stochastic Marko-
vian jumping systems with actuator degradation. Automatica 49 (2013), 1748–1754.
DOI:10.1016/j.automatica.2013.02.014

[19] S. Mobayen and F. Tchier: A new LMI-based robust finite-time sliding mode control
strategy for a class of uncertain nonlinear systems. Kybernetika 51 (2015), 1035–1048.
DOI:10.14736/kyb-2015-6-1035

[20] P. Park: A delay-dependent stability criterion for systems with uncertain time-invariant
delays. IEEE Trans. Automat. Control 44 (1999), 876–877. DOI:10.1109/9.754838

[21] E. Fridman and U. Shaked: A descriptor system approach to H∞ control of linear time-
delay systems. Automatica 47 (2002), 253–270. DOI:10.1109/9.983353

[22] L. Wang, Y. Xie, Z. Wei, and J Peng: Stability analysis and absolute synchronization of a
three-unit delayed neural network. Kybernetika 51 (2015), 800–813. DOI:10.14736/kyb-
2015-5-0800

[23] A. Benabdallah: A separation principle for the stabilization of a class of time delay
nonlinear systems. Kybernetika 51 (2015), 99–111. DOI:10.14736/kyb-2015-1-0099

[24] R. Joice Nirmala and K. Balachandran: Relative controllability of nonlinear fractional
delay integrodifferential systems with multiple delays in control. Kybernetika 53 (2017),
161–178. DOI:10.14736/kyb-2017-1-0161

[25] Z. Ma, Y. Sun, and H. Shi: Finite-time outer synchronization between two complex
dynamical networks with time delay and noise perturbation. Kybernetika 52 (2016),
607–628. DOI:10.14736/kyb-2016-4-0607

[26] L. Ma, M. Xu, R. Jia, and H Ye: Exponential H∞ filter design for stochastic Markovian
jump systems with both discrete and distributed time-varying delays. Kybernetika 50
(2014), 491–511. DOI:10.14736/kyb-2014-4-0491

[27] C. Zhang, Y. He and L. Jiang: Stability analysis of systems with time-varying
delay via relaxed integral inequalities. Systems Control Lett. 92 (2016), 52–61.
DOI:10.1016/j.sysconle.2016.03.002

http://dx.doi.org/10.1109/tsmcb.2005.862486
http://dx.doi.org/10.1016/j.automatica.2008.08.010
http://dx.doi.org/10.1016/j.amc.2016.12.027
http://dx.doi.org/10.14736/kyb-2014-4-0580
http://dx.doi.org/10.1109/tac.2008.929376
http://dx.doi.org/10.1016/j.automatica.2013.02.014
http://dx.doi.org/10.14736/kyb-2015-6-1035
http://dx.doi.org/10.1109/9.754838
http://dx.doi.org/10.1109/9.983353
http://dx.doi.org/10.14736/kyb-2015-5-0800
http://dx.doi.org/10.14736/kyb-2015-5-0800
http://dx.doi.org/10.14736/kyb-2015-1-0099
http://dx.doi.org/10.14736/kyb-2017-1-0161
http://dx.doi.org/10.14736/kyb-2016-4-0607
http://dx.doi.org/10.14736/kyb-2014-4-0491
http://dx.doi.org/10.1016/j.sysconle.2016.03.002


H∞ SMC for MJSs with delays and general TPs 151

[28] A. Seuret and F. Gouaisbaut: Wirtinger-based integral inequality: application to time-
delay systems. Automatica 49 (2013), 2860–2866. DOI:10.1016/j.automatica.2013.05.030

[29] P. Park, J. Ko, and C. Jeong: Reciprocally convex approach to stabil-
ity of systems with time-varying delays. Kybernetika 47 (2011), 235–238.
DOI:10.1016/j.automatica.2010.10.014

[30] Y. Kao, C. Wang, J. Xie, H. R. Karimi, and W. Li: H∞ sliding mode control for uncertain
neutral-type stochastic systems with Markovian jumping parameters. Inform. Sci. 304
(2015), 200–211.

[31] L. Wu, X. Su, and P. Shi: Sliding mode control with bounded L2 gain performance
of Markovian jump singular time-delay systems. Automatica 48 (2012), 1929–1933.
DOI:10.1016/j.automatica.2012.05.064

[32] L. Ma, C. Wang, S. Ding, and L. Dong: Integral sliding mode control for stochastic
Markovian jump system with time-varying delay. Neurocomputing 179 (2016), 118–125.
DOI:10.1016/j.neucom.2015.11.071

[33] X. Su, X. Liu, P. Shi, and Y. Song: Sliding mode control of hybrid switched
systems via an event-triggered mechanism. Automatica 90 (2018), 294–303.
DOI:10.1016/j.automatica.2017.12.033

[34] R. Skelton, T. Iwazaki, and K. Grigoriadis: A United Algebric Approach to Linear Control
Design. Taylor and Francis Series in Systems and Control, 1998. DOI:10.1002/rnc.694

[35] M. C. D Oliveira: A robust version of the elimination lemma. In: 16th Triennial World
Congress (2005), Prague, pp. 310–314. DOI:10.3182/20050703-6-cz-1902.00996

Lingchun Li, College of Electrical Engineering and Control Science, Nanjing Tech Uni-
versity, Nanjing, 211816, P.R. China; College of Electronics and Electrical Engineering,
Chuzhou University, Chuzhou, 239000. P.R. China.

e-mail: lilingchun1985@126.com

Guangming Zhang, College of Electrical Engineering and Control Science, Nanjing Tech
University, Nanjing, 211816. P.R. China.

e-mail: zhgmnjtech@163.com

Meiying Ou, College of Electronics and Electrical Engineering, Chuzhou University,
Chuzhou, 239000. P.R. China.

e-mail: oumeiying@163.com

Yujie Wang, College of Electronics and Electrical Engineering, Chuzhou University,
Chuzhou, 239000. P.R. China.

e-mail: wangyujie82@163.com

http://dx.doi.org/10.1016/j.automatica.2013.05.030
http://dx.doi.org/10.1016/j.automatica.2010.10.014
http://dx.doi.org/10.1016/j.automatica.2012.05.064
http://dx.doi.org/10.1016/j.neucom.2015.11.071
http://dx.doi.org/10.1016/j.automatica.2017.12.033
http://dx.doi.org/10.1002/rnc.694
http://dx.doi.org/10.3182/20050703-6-cz-1902.00996

