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Abstract

In this paper, the H∞ sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete

time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model and the

system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that

the asymptotic stability as well as the H∞ performance requirement of the error dynamics can be guaranteed in the

presence of nonlinearities, time-delay and external disturbances. Firstly, a discrete-time discontinuous switched term is

proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov-Krasovskii functional

based on the idea of “delay-fractioning” and introducing some appropriate free-weighting matrices, a sufficient condition

is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving

a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design

scheme.
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I. Introduction

During the past decades, the sliding mode control (SMC) theory has proven to be an effective tool for coping

with the model uncertainties and nonlinearities by taking advantage of the concepts of sliding mode surface

design and equivalent control. A variety of SMC approaches have been developed in the literature with respect

to various types of systems, see e.g. [11,13,20,21,25,34,37–39]. Comparing to the large amount of publications

on SMC problems for continuous-time systems, the reported results for corresponding discrete-time systems

have been relatively few. In the context of SMC for discrete-time systems, the quasi-sliding mode concept

has been proposed in [11] and the discrete-time sliding mode reaching condition has been thoroughly studied

based on a reaching law approach. Such a reaching condition has recently been shown in [18, 38, 39] to be a

popular and convenient way of addressing the SMC problems for a class of discrete-time systems.

It is well known that system states are not always available due mainly to the limit of physical conditions or

expense for measuring in reality. Therefore, the state estimation problem has received a great deal of research

attention [42]. In recent years, the sliding mode observer (SMO) theory has been successfully applied to a

wide range of areas such as induction motor drives, n-degree-of-freedom mechanical systems and single-link
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flexible joint robot systems [12,17,28,40]. When designing sliding mode observers, a suitable nonlinear output

injection is usually introduced to guarantee finite time convergence and induce a sliding motion. Most research

on SMO design has been carried out along this line, see e.g. [1,6,7,12,14–17,24,26–30,35,40]. To be specific,

by constructing an appropriate SMO, the fault reconstruction and estimation problems have been extensively

studied in [7, 14, 27, 30, 40] for uncertain systems. It should be pointed out that almost all results mentioned

above have been concerned with continuous-time systems, and the relevant results for discrete-time systems

have been very few despite the fact that nowadays digitalized control systems are inherently discrete-time

ones.

In reality, time-delays and nonlinearities are inevitably encountered in various industrial systems. The

occurrence of time-delays and nonlinearities would cause great degradation of the system performance. Ac-

cordingly, the SMO problem for nonlinear and/or time-delay systems has gained considerable research interest

and a variety of important results have been published in the literature, see [24, 27, 29, 30, 40]. To mention a

few, in [24], an H∞ SMO problem has been investigated for uncertain nonlinear Lipschitz-type systems with

fault and disturbances and a sufficient condition has been given such that the H∞ performance requirement is

satisfied. By using Taylor series expansion and employing a nonlinear transformation, the discrete-time model

has been derived in [29,30] from its continuous-time counterpart and then the discrete-time sliding mode state

estimation problems have been addressed for uncertain nonlinear systems. Unfortunately, to the best of the

authors’ knowledge, very few results have been available so far for the SMO problem of discrete-time systems

with time-delays.

In recent years, various delay-dependant approaches have been proposed in the literature in order to re-

duce the conservatism caused by the time-delays when analyzing the stability of time-delay systems. Such

approaches can be classified into four categories, i.e, bounding technique [19], descriptor system approach [9],

slack matrix variables [36] and delay-fractioning approach [23]. Generally speaking, the objective of investigat-

ing of the delay-dependent stability condition involves two aspects: 1) (conservatism) development of delay-

dependent criteria to provide a maximal allowable delay; 2) (complexity) development of delay-dependent

criteria by using as few decision variables as possible while guaranteeing the same maximal allowable delay.

When comparing between different approaches, both the conservatism and complexity serve as the criteria. In

fact, there does exist a tradeoff between the conservatism and the computational complexity. In other words,

it’s hard to find a globally best approach that is least conservative yet with least computational burden.

Compared with the bounding technique [19], descriptor system approach [9], slack matrix variables [36], the

delay-fractioning approach adopted in this paper is most efficient in reducing the conservatism caused by the

time-delays at the cost of introducing more computational complexity especially when the number of fractions

goes up. From a practical point of view, however, it is not difficult to handle the computational complexity

issue nowadays because of the rapid development of computing techniques. Therefore, we choose to use the

delay-fractioning approach which is arguably the up-to-date delay-dependence analysis method [23]. The main

purpose of this paper is to establish a unified framework for discrete time-delay systems by using the SMO

scheme based on delay-fractioning approach.

Motivated by the above discussion, in this paper, we aim to deal with the H∞ SMO design problem for

a class of uncertain nonlinear discrete-time systems with time-delays. Firstly, a new nonlinear SMO is pre-

sented to estimate the unmeasured states where a discontinuous switched term is introduced to account for

the sliding mode strategy. Secondly, a linear discrete-time switching function is constructed to describe the

sliding mode surface, and a discontinuous switched term is synthesized to drive the state trajectories of the

error dynamics system onto the band of pre-specified sliding mode surface. Moreover, by constructing a new
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Lyapunov-Krasovskii functional associated with the delay-fractioning idea and introducing some appropriate

free-weighting matrices, a sufficient condition is presented to ensure the asymptotic stability as well as the H∞

performance of the overall error dynamics by means of the feasibility of a certain semidefinite programming

problem with an equality constraint. Then, a minimization problem is presented to solve the original noncon-

vex problem. Finally, an illustrative example is used to show the effectiveness of the proposed discrete-time

H∞ SMO design scheme.

The main contribution of this paper lies primarily in two aspects: 1) a new design scheme of the discrete-time

H∞ SMO design is presented for nonlinear discrete-time systems with time-delay and external disturbances;

2) the delay-fractioning approach is applied, for the first time, to design the SMO with hope to reduce the

possible conservatism caused by the time-delays. To the best of authors’ knowledge, the discrete-time SMO

design problem for nonlinear systems with time-delays has never been investigated in the literature. Our

research represents the one of the very first attempts in dealing with SMO problems for time-delay nonlinear

systems, where our aim is to present easy-to-verify conditions by taking advantage of the delay-fractioning

approach with hope to reduce the conservatism caused by the time-delay. The rest of this paper is organized

as follows. Section II briefly introduces the problem under consideration and presents a new discrete-time

SMO scheme. The reachability analysis is firstly conducted and the discontinuous switched term is synthesized

in Section III. Then, in the same section, the asymptotic stability as well as H∞ performance of the error

dynamics are given and, moreover, a minimization algorithm is presented to address the non-convex problem.

An illustrative example is given in Section IV and the paper is concluded in Section V.

Notations. The notations in this paper are quite standard except where otherwise stated. The superscript

“T” stands for matrix transposition; R
n (Rn×m) denote, respectively, the n-dimensional Euclidean space,

the set of all n × m matrices ; the notation P > 0 (P ≥ 0) means that matrix P is real symmetric and

positive definite (positive semi-definite); l2[0,∞) is the space of square summable vectors; I and 0 represent

the identity matrix and a zero matrix with appropriate dimension, respectively; diag{· · · } stands for a block-

diagonal matrix, col{· · · } denotes a vector column with blocks given by the vectors in {· · · }; ‖·‖ denotes the

Euclidean norm of a vector and its induced norm of a matrix. In symmetric block matrices or long matrix

expressions, we use a star “∗” to represent a term that is induced by symmetry. Matrices, if their dimensions

are not explicitly stated, are assumed to be compatible for algebraic operations.

II. Problem Formulation and Preliminaries

In this paper, we consider the following nonlinear discrete time-delay system:





x̄(k + 1) = f̄(x̄(k)) + ḡ(x̄(k − d)) + B̄h(k) + D̄ω(k)

ȳ(k) = C̄x̄(k)

x̄(k) = φ(k), ∀k ∈ [−d, 0]

(1)

where x̄(k) ∈ R
n is the state vector, ȳ(k) ∈ R

p is the measurement output, h(k) ∈ R
q denotes the unknown

input that is bounded in terms of Euclidean norm, ω(k) : R+ → R
r ∈ l2[0,∞) represents the exogenous

disturbances, f̄(·) ∈ R
n and ḡ(·) ∈ R

n are known nonlinear functions. d denotes the known state delay which

can always be described by d = τm with τ and m are integers. The parameters B̄ ∈ R
n×q, C̄ ∈ R

p×n (p < n)

and D̄ ∈ R
n×r are known real matrices, B̄ and C̄ are assumed to be full rank, and φ(k) is a given initial

condition.
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The nonlinear functions f̄(·) and ḡ(·) are assumed to satisfy f̄(0) = 0, ḡ(0) = 0 and

∥∥f̄(x̄(k) + η(k)) − f̄(x̄(k)) − Āη(k)
∥∥ ≤ ε1 ‖η(k)‖ (2)

∥∥ḡ(x̄(k − d) + η(k)) − ḡ(x̄(k − d))− Ādη(k)
∥∥ ≤ ε2 ‖η(k)‖ (3)

where Ā ∈ R
n×n and Ād ∈ R

n×n are known constant matrices, η(k) ∈ R
n is a vector, and ε1 and ε2 are known

positive scalars.

Remark 1: The nonlinear descriptions in (2) and (3) have been extensively applied (see e.g. [31, 32,41]) to

quantify the maximum possible derivations from a linear model with (Ā, Ād). Such nonlinear descriptions,

though similar to the commonly used Lipschitz conditions on the nonlinear functions f̄(·) and ḡ(·), give clearer

engineering insight from the mathematical modeling viewpoint.

Assumption 1: rank(C̄B̄)=rank(B̄).

Based on Assumption 1, we have the following easily accessible result.

Proposition 1: It follows from Assumption 1 that there exists a transformation such that

(Ā, Ād, B̄, C̄, D̄, f̄ , ḡ, ε1, ε2)

can be transformed into the following structure:
([

A11 A12

A21 A22

]
,

[
Ad11 Ad12

Ad21 Ad22

]
,

[
B1

0

]
,
[
C1 0

]
,

[
D1

D2

]
, f, g,

[
ǫ11

ǫ12

]
,

[
ǫ21

ǫ22

])
(4)

where A11 ∈ R
p×p, Ad11 ∈ R

p×p, B1 ∈ R
p×q, D1 ∈ R

p×r, C1 ∈ R
p×p with C1 being nonsingular and B1 being

of full column rank. Moreover, the nonlinear functions f(·) and g(·) correspond to f̄(·) and ḡ(·), and the

positive scalars ǫij (i, j = 1, 2) correspond to the scalars ε1 and ε2.

Remark 2: As pointed out in [7, 40], Assumption 1 is a constraint on the input matrix and implies that

rank(B̄)≤rank(C̄).

From Proposition 1, system (1) has the following form:





x1(k + 1) = f1(x(k)) + g1(x(k − d)) +B1h(k) +D1ω(k)

x2(k + 1) = f2(x(k)) + g2(x(k − d)) +D2ω(k)

y(k) = C1x1(k)

(5)

where x(k) = col(x1(k), x2(k)) with x1(k) ∈ R
p, f1(x(k)) and g1(x(k − d)) are the first p components of

f(x(k)) and g(x(k − d)), f2(x(k)) and g2(x(k− d)) are the last n− p components of f(x(k)) and g(x(k − d)).

It is not difficult to verify from (2)-(3) that fi(x(k)) and gi(x(k−d)) satisfy fi(0) = 0 and gi(0) = 0 (i = 1, 2),

respectively, and

∥∥∥fi(x(k) + β(k)) − fi(x(k))−
[
Ai1 Ai2

]
β(k)

∥∥∥ ≤ ǫ1i ‖β(k)‖ (6)
∥∥∥gi(x(k − d) + β(k))− gi(x(k − d))−

[
Adi1 Adi2

]
β(k)

∥∥∥ ≤ ǫ2i ‖β(k)‖ , i = 1, 2 (7)

In this paper, the SMO under consideration is of the following structure




x̂1(k + 1) = f1(x̂(k)) + g1(x̂(k − d)) + L1[y(k)− ŷ(k)] +B1v(k)

x̂2(k + 1) = f2(x̂(k)) + g2(x̂(k − d)) + L2[y(k)− ŷ(k)]

ŷ(k) = C1x̂1(k)

(8)
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where x̂(k) = col(x̂1(k), x̂2(k)) with x̂1(k) ∈ R
p, L1 and L2 are the observer gains to be designed later.

Moreover, the discontinuous switched term v(k) is introduced to reject the effect of system unknown input

h(k) and also drive the trajectories of the estimation error onto the specified sliding surface. Noting that

x1(k) is observable due to the non-singularity of C1, we only need to estimate x2(k). Unfortunately, in the

nonlinearities f(·) and g(·), x1(k) and x2(k) are tightly coupled and we are unable to separate x2(k) from

x(k). As such, for mathematical convenience, we use x̂1(k) as an auxiliary variable to facilitate the estimate

of x2(k).

Letting the error state be e(k) = x(k)− x̂(k), it follows from (5) and (8) that





e1(k + 1) = f1(x(k)) − f1(x̂(k)) + g1(x(k − d))− g1(x̂(k − d))

− L1[y(k)− ŷ(k)] +B1(h(k) − v(k)) +D1ω(k)

e2(k + 1) = f2(x(k)) − f2(x̂(k)) + g2(x(k − d))− g2(x̂(k − d))

− L2[y(k)− ŷ(k)] +D2ω(k)

(9)

where e1(k) and e2(k) are the first p and the last n− p components of e(k).

For notational convenience, set

l(k) = f(x(k))− f(x̂(k)) −Ae(k) (10)

m(k − d) = g(x(k − d))− g(x̂(k − d))−Ade(k − d) (11)

where

A =

[
A11 A12

A21 A22

]
, Ad =

[
Ad11 Ad12

Ad21 Ad22

]
.

Then, taking (10) and (11) into account yields





e1(k + 1) = (A11 − L1C1)e1(k) +A12e2(k) +Ad11e1(k − d) +Ad12e2(k − d)

+ [l1(k) +m1(k − d)] +B1(h(k) − v(k)) +D1ω(k)

e2(k + 1) = (A21 − L2C1)e1(k) +A22e2(k) +Ad21e1(k − d) +Ad22e2(k − d)

+ [l2(k) +m2(k − d)] +D2ω(k)

(12)

where l1(k) and m1(k − d) are the first p components of l(k) and m(k − d), and l2(k) and m2(k − d) are the

last n− p components of l(k) and m(k − d), respectively.

The purpose of this paper is to design a discrete-time SMO of form (8) for the nonlinear discrete time-delay

system (5). More specifically, we are interested in looking for the observer gains L1 and L2 so as to synthesize

the discontinuous switched term v(k) such that the following requirements are simultaneously satisfied:

(Q1) The error system (12) is globally driven onto the pre-specified sliding mode surface and, in subsequent

time, the sliding motion is asymptotically stable.

(Q2) For a given scalar γ > 0 with ω(k) 6= 0, the error signal e(k) satisfies

∞∑

k=0

‖e(k)‖2 ≤ γ2
∞∑

k=0

‖ω(k)‖2 (13)

under the zero initial condition.

Before proceeding further, we introduce the following lemmas that will be frequently used in the proofs of

our main results.
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Lemma 1: For any real vectors a, b and matrix P > 0 of appropriate dimensions, the following inequality

holds

aT b+ bTa ≤ aTPa+ bTP−1b. (14)

Lemma 2: (Schur Complement) Given constant matrices Q1, Q2 and Q3 where Q1 = QT
1 and Q2 = QT

2 > 0.

Then, Q1 +QT
3 Q

−1
2 Q3 < 0 if and only if

[
Q1 QT

3

∗ −Q2

]
< 0 or

[
−Q2 Q3

∗ Q1

]
< 0. (15)

III. Design of the SMO

In this section, we aim to establish a unified framework to solve the addressed H∞ SMO design problem in

the simultaneous presence of nonlinearities, time-delay and disturbances. A design scheme of the discontinuous

switched term is firstly proposed to guarantee the reachability of the specified sliding surface. Then, a sufficient

condition is derived such that the asymptotic stability as well as the H∞ performance requirement of the error

dynamics can be guaranteed.

A. Reachability Analysis

Let us first synthesize the discontinuous switched term v(k) in (8) such that the reachability of the specified

sliding surface is ensured. To begin with, we define the switching function in the space of estimation error as

s(k) = Ge1(k), (16)

where G is a constant matrix to be designed such that GB1 is nonsingular and GD1 = 0. By considering the

discrete-time reaching condition given in [11], we only need to show that the following inequalities hold:

{
∆s(k) = s(k + 1)− s(k) ≤ −κUsgn[s(k)]− κV s(k) if s(k) > 0

∆s(k) = s(k + 1)− s(k) ≥ −κUsgn[s(k)]− κV s(k) if s(k) < 0
(17)

where κ denotes the sampling period, U = diag{µ1, µ2, · · · , µq} ∈ R
q×q, V = diag{ν1, ν2, · · · , νq} ∈ R

q×q, and

µi > 0, νi > 0 are properly chosen constants satisfying 0 < 1− κνi < 1 (i = 1, 2, · · · , q).

Notice that the unknown input h(k) is bounded in terms of Euclidean norm, and let ∆e(k) := G[(A11 −

L1C1)]e1(k) +GA12e2(k) +GAd11e1(k − d) +GAd12e2(k − d) +G[l1(k) +m1(k − d)] and ∆h(k) := GB1h(k),

then there exist δie(k), δ
i

e(k), δ
i
h(k), and δ

i

h(k) (i = 1, 2, · · · , q) satisfying

δie(k) ≤ δie(k) ≤ δ
i

e(k), δih(k) ≤ δih(k) ≤ δ
i

h(k) (18)

where δie(k) and δih(k) are the ith elements in ∆e(k) and ∆h(k), respectively. It should be pointed out that the

assumptions on the upper and lower bounds of ∆e(k) and ∆h(k) are standard for dealing with discrete-time

sliding mode problems, see e.g. [11, 18, 39]. In addition, the bounds of ∆e(k) and ∆h(k) are allowed to be

time-varying.
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By defining

∆̂e(k) =
[
δ̂1e(k) δ̂2e(k) · · · δ̂

q
e(k)

]T
, δ̂ie(k) =

δ
i

e(k) + δie(k)

2
,

∆̃e(k) = diag

{
δ̃1e(k), δ̃

2
e (k), · · · , δ̃

q
e(k)

}
, δ̃ie(k) =

δ
i

e(k)− δie(k)

2
,

∆̂h(k) =
[
δ̂1h(k) δ̂2h(k) · · · δ̂

q
h(k)

]T
, δ̂ih(k) =

δ
i

h(k) + δih(k)

2
,

∆̃h(k) = diag

{
δ̃1h(k), δ̃

2
h(k), · · · , δ̃

q
h(k)

}
, δ̃ih(k) =

δ
i

h(k)− δih(k)

2
, (19)

we are in a position to present the design technique of the discontinuous switched term v(k).

Theorem 1: Assume that the switching function (16) is given with G satisfying the nonsingularity of GB1

and GD1 = 0. If the discontinuous switched term v(k) is given by

v(k) = (GB1)
−1(κUsgn[s(k)] + κV s(k)− s(k)

+(∆̂e(k) + ∆̃e(k)sgn[s(k)]) + (∆̂h(k) + ∆̃h(k)sgn[s(k)])), (20)

then the discrete-time sliding mode reaching condition of the error system (12) with specified sliding mode

surface (16) is satisfied.

Proof: Taking (12), (16) and (20) into consideration, we have

∆s(k) = s(k + 1)− s(k)

= G[(A11 − L1C1)]e1(k) +GA12e2(k) +GAd11e1(k − d) +GAd12e2(k − d)

+G[l1(k) +m1(k − d)] +GB1(h(k) − v(k))− s(k)

= −κUsgn[s(k)]− κV s(k) + ∆e(k)− (∆̂e(k) + ∆̃e(k)sgn[s(k)])

+∆h(k)− (∆̂h(k) + ∆̃h(k)sgn[s(k)]). (21)

It follows from (19) that (17) holds and then the discrete-time sliding mode reaching condition is satisfied.

The proof is now complete.

B. Performance analysis of the sliding motion

It is noted that the ideal quasi-sliding mode satisfies

s(k + 1) = s(k) = 0. (22)

Then, when the error trajectories of the system (12) enter into the sliding surface, the equivalent discontinuous

switched term veq(k) can be obtained from (12), (16) and (22) as follows:

veq(k) = (GB1)
−1G(A11 − L1C1)e1(k) + (GB1)

−1GA12e2(k) + (GB1)
−1GAd11e1(k − d)

+(GB1)
−1GAd12e2(k − d) + (GB1)

−1G[l1(k) +m1(k − d)] + h(k). (23)

Substituting (23) as v(k) into (12), we obtain the error dynamics in the specified sliding surface s(k) = 0

as follows:

e1(k + 1) =

6∑

i=1

Ai(k), (24)
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where

A1(k) = (A11 − L1C1)e1(k) +A12e2(k) +Ad11e1(k − d) +Ad12e2(k − d) +D1ω(k),

A2(k) = −B1(GB1)
−1G(A11 − L1C1)e1(k),

A3(k) = −B1(GB1)
−1GA12e2(k),

A4(k) = −B1(GB1)
−1GAd11e1(k − d),

A5(k) = −B1(GB1)
−1GAd12e2(k − d),

A6(k) = (I −B1(GB1)
−1G)[l1(k) +m1(k − d)].

In the following, a sufficient condition will be established such that the overall error dynamics composed of

(24) and the second equation of (12) is asymptotically stable with H∞ disturbance attenuation level γ in the

specified sliding surface (16).

Theorem 2: Let the reachability condition be satisfied. Consider the nonlinear time-delay system (5), the

SMO (8) and the sliding surface (16). For the given scalars αi ∈ (0, 1) (i = 1, 2) and γ > 0, assume that there

exist matrices Pi > 0, Qi > 0, Ri > 0, Yi, Mi = MT
i ≥ 0 (i = 1, 2), X, Z and positive scalars λ1, λ2, λ3

satisfying

P1 ≤ λ1I, (25)

P2 ≤ λ3I, (26)

BT
1 P1D1 = 0, (27)[

−λ2I P1B1

∗ −BT
1 P1B1

]
≤ 0, (28)

Φ =




M1 +M2 X Z

∗ α1P1 0

∗ ∗ α2P2


 ≥ 0, (29)

Ψ =




Ψ11 ϑΣT
1 νΣT

2 Ψ14

∗ −P1 0 0

∗ ∗ −P2 0

∗ ∗ ∗ Ψ44



< 0, (30)

where

Ψ11 = Ω1 +ΩT
1 +Ω2 +Ω3 +Ω4 +Ω5,

Σ1 =
[
P1A11 − Y1C1 0p×(m−1)p P1Ad11 P1A12 0p×(m−1)(n−p) P1Ad12 P1D1

]
,

Σ2 =
[
P2A21 − Y2C1 0(n−p)×(m−1)p P2Ad21 P2A22 0(n−p)×(m−1)(n−p) P2Ad22 P2D2

]
,

Ψ14 =
[
ϑΞT

2 (P1A11 − Y1C1)
TB1 ϑΞT

3A
T
12P1B1 ϑΞT

4A
T
d11P1B1 ϑΞT

5 A
T
d12P1B1

]
,

Ψ44 = diag{−BT
1 P1B1,−BT

1 P1B1,−BT
1 P1B1,−BT

1 P1B1},

ϑ =
√

6(1 + 2α1τ), ν =
√

2(1 + 2α2τ),

Ω1 =
[
X Z

] [ Ip×p −Ip×p 0p×((m+1)n−2p+r)

0(n−p)×(m+1)p I(n−p)×(n−p) −I(n−p)×(n−p) 0(n−p)×((m−1)(n−p)+r)

]
,

Ω2 = τ(M1 +M2),

Ω3 = W T
RRWR,



FINAL VERSION OF RNC-11-0008 9

Ω4 =

5∑

i=2

ΞT
i ΘiΞi,

Ω5 = ΞT
2 Ξ2 + ΞT

3 Ξ3 − γ2ΞT
7 Ξ7,

Ξ2 =
[
Ip×p 0p×(mn+n−p+r)

]
,

Ξ3 =
[
0(n−p)×(m+1)p I(n−p)×(n−p) 0(n−p)×(m(n−p)+r)

]
,

Ξ4 =
[
0p×mp Ip×p 0p×((m+1)(n−p)+r)

]
,

Ξ5 =
[
0(n−p)×(mn+p) I(n−p)×(n−p) 0(n−p)×r

]
,

Ξ7 =
[
0r×(m+1)n Ir×r

]
,

WR =




Imp×mp 0mp×(m(n−p)+n+r)

0mp×p Imp×mp 0mp×((m+1)(n−p)+r)

0m(n−p)×(m+1)p Im(n−p)×m(n−p) 0m(n−p)×(n−p+r)

0m(n−p)×(mp+n) Im(n−p)×m(n−p) 0m(n−p)×r



,

R = diag{R1,−R1, R2,−R2},

Θ2 = (2α1τ − 1)P1 + 24ǫ211(1 + 2α1τ)(λ1 + λ2)I +Q1 + 4(1 + 2α2τ)λ3ǫ
2
12I,

Θ3 = (2α2τ − 1)P2 + 24ǫ211(1 + 2α1τ)(λ1 + λ2)I +Q2 + 4(1 + 2α2τ)λ3ǫ
2
12I,

Θ4 = 24ǫ221(1 + 2α1τ)(λ1 + λ2)I −Q1 + 4(1 + 2α2τ)λ3ǫ
2
22I,

Θ5 = 24ǫ221(1 + 2α1τ)(λ1 + λ2)I −Q2 + 4(1 + 2α2τ)λ3ǫ
2
22I. (31)

By choosing G = BT
1 P1, the overall error dynamics is asymptotically stable with H∞ disturbance attenuation

level γ in the specified sliding surface (16). Moreover, the observer gains are given by L1 = P−1
1 Y1 and

L2 = P−1
2 Y2.

Proof: Please see the Appendix.

Remark 3: In the derivation of Theorem 2, we apply the “delay-fractioning” approach and construct a more

general Lyapunov-Krasovskii functional for addressing the discrete-time H∞ SMO problem. Specifically, the

so-called “weighting” scalar parameters αi ∈ (0, 1) (i = 1, 2) are introduced to fit both the delay-fractioning

idea and the sliding mode approach, and its value can be determined a priori to facilitate the design of the

SMO scheme. It is possible to conduct a linear search for the αi (i = 1, 2) to help enhance the solvability of

(25)-(30) in Theorem 2.

C. Computational Algorithm

Notice that there exists a matrix equation constraint (i.e. BT
1 P1D1 = 0) in Theorem 2, which can be

equivalently converted into

trace[(BT
1 P1D1)

TBT
1 P1D1] = 0.

Based on the algorithm presented in [20], by introducing (BT
1 P1D1)

TBT
1 P1D1 ≤ µI with µ > 0 being a

sufficiently small scalar, it follows from Lemma 2 that

[
−µI DT

1 P1B1

∗ −I

]
≤ 0. (32)
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Hence, the H∞ SMO problem is now transformed to an equivalent problem of finding a global solution of the

following minimization problem

min µ

subject to (25)-(26), (28)-(30) and (32). (33)

Remark 4: The minimization problem (33) is a convex optimization one that can be easily solved by using

standard numerical software. If the solution of the minimization problem (33) equals zero, the sufficient

conditions in Theorem 2 are satisfied and then the asymptotic stability as well as the H∞ performance of

the error dynamics can be guaranteed. In the implementation, we can always enhance the feasibility of

the addressed minimization problem by 1) increasing the disturbance attenuation level γ; 2) decreasing the

“weighting” scalar parameters αi (i = 1, 2); and 3) removing some terms in the Lyapunov-Krasovskii functional

(37) at the expense of introducing some possible conservatism.

IV. An Illustrative Example

In this section, we aim to demonstrate the effectiveness and applicability of the proposed scheme. Following

[8, 33], we consider the SMO problem for an F-404 aircraft engine system, where the nominal system matrix

Ac is given as follows

Ac =




−1.4600 0 2.4280

0.1643 −0.4000 −0.3788

0.3107 0 −2.2300


 .

As analyzed in [33], virtually all aircraft engine systems are in some way disturbed by external forces. The

disturbances may assume a myriad of forms, such as wind gusts, gravity gradients, structural vibrations,

and may enter the systems in many different ways. These perturbations generally degrade the performance

of the system and, in some cases, may jeopardize the outcome of the engineering task. By doing so, the

accurate fatigue life can be computed in a more reliable way and the engine design could be changed early

and inexpensively if necessary. As in [10], let the motion of the F-404 aircraft engine be determined by the

system of differential equations derived from the basic aerodynamics.

Therefore, when modeling the aircraft engine system, the time delay, linearization errors (nonlinear distur-

bances) and the external disturbances should all be taken into account. After discretization, we obtain the

following nonlinear discrete time-delay system:




x11(k + 1) = 0.2504x11(k) + 0.3919x2(k) + 0.015 sin(x11(k) + x2(k))− 0.02x11(k − 4)

− 0.02x2(k − 4) + 0.01 sin(x11(k − 4)) − 0.1 sin(0.05k) + 0.025ω(k)

x12(k + 1) = 0.057x11(k) + 0.6188x12(k)− 0.0616x2(k) + 0.013 sin(0.8x12(k)) + 0.04x11(k − 4)

− 0.106x12(k − 4) + 0.01 sin(x12(k − 4))− 0.15 sin(0.05k) − 0.03ω(k)

x2(k + 1) = 0.0502x11(k) + 0.1262x2(k) + 0.016 sin(x12(k) + x2(k))− 0.068x11(k − 4)

+ 0.10x12(k − 4)− 0.034x2(k − 4) + 0.011 sin(x2(k − 4))− 0.013ω(k)

y11(k) = 0.34x11(k) + 0.15x12(k)

y12(k) = 0.23x11(k)− 0.1x12(k)

(34)

where x1(k) =
[
x11(k) x12(k)

]T
and y(k) =

[
y11(k) y12(k)

]T
.
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Considering the system (5), we have the system parameters as follows:

A11 =

[
0.2504 0

0.0570 0.6188

]
, A12 =

[
0.3919

−0.0616

]
, Ad11 =

[
−0.02 0

0.04 −0.106

]
, Ad12 =

[
−0.02

0

]
,

A21 =
[
0.0502 0

]
, A22 =

[
0.1262

]
, Ad21 =

[
−0.068 0.10

]
, Ad22 =

[
−0.034

]
,

B1 =

[
−0.10

−0.15

]
, D1 =

[
0.025

−0.03

]
, C1 =

[
0.34 0.15

0.23 −0.1

]
, D2 =

[
−0.013

]
,

and h(k) = sin(0.05k), d = 4, ǫ11 = ǫ12 = 0.018, ǫ21 = ǫ22 = 0.012.

Our aim is to design a discrete-time SMO in the form of (8) such that the error dynamics is asymptotically

stable with a guaranteed H∞ noise attenuation level. By setting γ = 0.15, α1 = 0.002, α2 = 0.0035, m = 1,

and solving the minimization problem (33) in the Matlab environment, we obtain µ = 7.6291 × 10−7 (hence

the equality constraint is considered to be achieved) and

P1 =

[
2.1356 0.1461

0.1461 1.8246

]
, P2 = 13.3573,

Y1 =

[
1.0966 0.7400

3.9956 5.2949

]
, Y2 =

[
0.9846 1.4546

]
.

Then, the observer gains are given by

L1 =

[
0.3656 0.5480

2.1606 −2.9459

]
, L2 =

[
0.0737 0.1089

]
,

and the designed SMO for the nonlinear discrete time-delay system (34) is given by





x̂11(k + 1) = 0.2504x̂11(k) + 0.3919x̂2(k) + 0.015 sin(x̂11(k) + x̂2(k))− 0.02x̂11(k − 4)

− 0.02x̂2(k − 4) + 0.01 sin(x̂11(k − 4)) +E1L1[y(k)− ŷ(k)] − 0.1v(k)

x̂12(k + 1) = 0.057x̂11(k) + 0.6188x̂12(k)− 0.0616x̂2(k) + 0.013 sin(0.8x̂12(k)) + 0.04x̂11(k − 4)

− 0.106x̂12(k − 4) + 0.01 sin(x̂12(k − 4)) + E2L1[y(k)− ŷ(k)]− 0.15v(k)

x̂2(k + 1) = 0.0502x̂11(k) + 0.1262x̂2(k) + 0.016 sin(x̂12(k) + x̂2(k))− 0.068x̂11(k − 4)

+ 0.10x̂12(k − 4)− 0.034x̂2(k − 4) + 0.011 sin(x̂2(k − 4)) + L2[y(k)− ŷ(k)]

ŷ(k) = C1x̂1(k)

(35)

with x̂1(k) =
[
x̂11(k) x̂12(k)

]T
, E1 =

[
1 0

]
, E2 =

[
0 1

]
and v(k) is calculated by (20).

For the simulation purpose, the external disturbance ω(k) is described by

ω(k) =





4.8, 10 ≤ k ≤ 30

− 1.05, 35 ≤ k ≤ 60

0, else

(36)

The simulation results are given in Figs. 1-8. Among them, Figs. 1-3 (Figs. 4-6 with small scale) show

the actual states (solid line) and their estimations (dashed line) by taking κ = 1.2 and µj = νj = 0.01

(j = 1, 2), which confirm that the system states are well estimated by the proposed discrete-time H∞ SMO

method. The response of error dynamics is shown in Fig. 7. The response of sliding surface is shown in Fig. 8.
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From the simulation results, it can be seen that the presented scheme effectively estimates the system states

and attenuates the effect of all time-delay, nonlinearities and external disturbances. Moreover, the discrete

time quasi-sliding mode is well achieved in finite time. Under the zero-initial condition, the l2 norms of the

estimation error e(k) and the exogenous disturbance ω(k) are computed, respectively, as 1.3750 and 22.6386.

Accordingly, the actual l2-gain from the exogenous disturbance to the estimation error can be obtained as

0.0607, which is significantly lower than the given performance level γ = 0.15. Therefore, the H∞ performance

constraint (13) is well achieved.

V. Conclusions

In this paper, we have made an attempt to investigate the discrete-time H∞ SMO design problem for a

class of nonlinear systems with time-delay. A new discrete-time SMO with a discontinuous switched term has

been presented and the reachability analysis has been conducted. Moreover, by constructing a new Lyapunov-

Krasovskii functional associated with delay-fractioning idea, a sufficient condition has been given such that

the error dynamics is asymptotically stable and the estimation error satisfies the specified H∞ performance

requirement. A computational algorithm has been presented to make sure that the proposed scheme can be

easily checked by using the standard numerical software. Finally, the effectiveness and applicability of the

developed discrete-time H∞ SMO scheme have been demonstrated by an illustrative example. One of the

future research topics would be the extension of the main results obtained in this paper to networked control

systems [2–5].

Appendix

Proof of Theorem 2:

We first establish the asymptotic stability of the overall error dynamics with ω(k) = 0. Based on the

delay-fractioning idea, we choose the following Lyapunov-Krasovskii functional candidate:

V (k) =
4∑

i=1

Vi(k), (37)

where

V1(k) = eT1 (k)P1e1(k),

V2(k) =

k−1∑

l=k−d

eT1 (l)Q1e1(l) +

k−1∑

l=k−τ

ΓT
1 (l)R1Γ1(l) +

−1∑

j=−τ

k−1∑

l=k+j

ηT1 (l)α1P1η1(l),

V3(k) = eT2 (k)P2e2(k),

V4(k) =

k−1∑

l=k−d

eT2 (l)Q2e2(l) +

k−1∑

l=k−τ

ΓT
2 (l)R2Γ2(l) +

−1∑

j=−τ

k−1∑

l=k+j

ηT2 (l)α2P2η2(l),

ηi(l) = ei(l + 1)− ei(l),

Γi(l) = col{ei(l), ei(l − τ), . . . , ei(l − (m− 1)τ)}, (i = 1, 2)

with P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0 being matrices to be determined. By calculating the

difference of V (k) along the trajectory of overall error dynamics, we have

∆V (k) =

4∑

i=1

∆Vi(k), (38)
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where

∆V1(k) = eT1 (k + 1)P1e1(k + 1)− eT1 (k)P1e1(k)

≤ 6
6∑

i=1

A
T
i (k)P1Ai(k)− eT1 (k)P1e1(k), (39)

with

A
T
2 (k)P1A2(k) = eT1 (k)(A11 − L1C1)

TGT (GB1)
−1G(A11 − L1C1)e1(k),

A
T
3 (k)P1A3(k) = eT2 (k)A

T
12G

T (GB1)
−1GA12e2(k),

A
T
4 (k)P1A4(k) = eT1 (k − d)AT

d11G
T (GB1)

−1GAd11e1(k − d),

A
T
5 (k)P1A5(k) = eT2 (k − d)AT

d12G
T (GB1)

−1GAd12e2(k − d).

It follows from (2)-(3) and (10)-(11) that

lT1 (k)l1(k) ≤ ǫ211[e
T
1 (k)e1(k) + eT2 (k)e2(k)], (40)

mT
1 (k − d)m1(k − d) ≤ ǫ221[e

T
1 (k − d)e1(k − d) + eT2 (k − d)e2(k − d)], (41)

where ǫ11 and ǫ21 are known constants.

Noting that G = BT
1 P1, together with conditions (25), (28), (40) and (41), we obtain

A
T
6 (k)P1A6(k) = [l1(k) +m1(k − d)]T (I −B1 (GB1)

−1)TP1

×(I −B1 (GB1)
−1)[l1(k) +m1(k − d)]

≤ 2[l1(k) +m1(k − d)]TP1[l1(k) +m1(k − d)]

+2[l1(k) +m1(k − d)]TGT (GB1)
−1G[l1(k) +m1(k − d)]

≤ 4(λ1 + λ2)l
T
1 (k)l1(k) + 4(λ1 + λ2)m

T
1 (k − d)m1(k − d)

≤ 4(λ1 + λ2)ǫ
2
11[e

T
1 (k)e1(k) + eT2 (k)e2(k)]

+4(λ1 + λ2)ǫ
2
21[e

T
1 (k − d)e1(k − d) + eT2 (k − d)e2(k − d)]. (42)

On the other hand, we have

∆V2(k) = eT1 (k)Q1e1(k)− eT1 (k − d)Q1e1(k − d) + ΓT
1 (k)R1Γ1(k)− ΓT

1 (k − τ)R1Γ1(k − τ)

+α1τη
T
1 (k)P1η1(k)− α1

k−1∑

l=k−τ

ηT1 (l)P1η1(l). (43)

Considering η1(l) = e1(l + 1)− e1(l) and using Lemma 1, we obtain

α1τη
T
1 (k)P1η1(k) ≤ 2α1τ [e

T
1 (k + 1)P1e1(k + 1) + eT1 (k)P1e1(k)]. (44)

Hence, it follows from (39) and (42)-(44) that

∆V1(k) + ∆V2(k) ≤ (1 + 2α1τ)e
T
1 (k + 1)P1e1(k + 1) + (2α1τ − 1)eT1 (k)P1e1(k)

+eT1 (k)Q1e1(k)− eT1 (k − d)Q1e1(k − d) + ΓT
1 (k)R1Γ1(k)

−ΓT
1 (k − τ)R1Γ1(k − τ)− α1

k−1∑

l=k−τ

ηT1 (l)P1η1(l)

≤ 6(1 + 2α1τ)ξ̂
T (k)[Ξ̂T

1 P1Ξ̂1 + Ξ̂T
2 (A11 − L1C1)

TGT (GB1)
−1G(A11 − L1C1)Ξ̂2

+Ξ̂T
3A

T
12G

T (GB1)
−1GA12Ξ̂3 + Ξ̂T

4A
T
d11G

T (GB1)
−1GAd11Ξ̂4

+Ξ̂T
5A

T
d12G

T (GB1)
−1GAd12Ξ̂5 + 4ǫ211(λ1 + λ2)(Ξ̂

T
2 Ξ̂2 + Ξ̂T

3 Ξ̂3)
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+4ǫ221(λ1 + λ2)(Ξ̂
T
4 Ξ̂4 + Ξ̂T

5 Ξ̂5)]ξ̂(k) + (2α1τ − 1)ξ̂T (k)Ξ̂T
2 P1Ξ̂2ξ̂(k)

+eT1 (k)Q1e1(k)− eT1 (k − d)Q1e1(k − d) + ΓT
1 (k)R1Γ1(k)

−ΓT
1 (k − τ)R1Γ1(k − τ)− α1

k−1∑

l=k−τ

ηT1 (l)P1η1(l), (45)

where

ξ̂(k) =
[
ΓT
1 (k) eT1 (k − d) ΓT

2 (k) eT2 (k − d)
]T

,

Ξ̂1 =
[
A11 − L1C1 0p×(m−1)p Ad11 A12 0p×(m−1)(n−p) Ad12

]
,

Ξ̂2 =
[
Ip×p 0p×(mn+n−p)

]
,

Ξ̂3 =
[
0(n−p)×(m+1)p I(n−p)×(n−p) 0(n−p)×m(n−p)

]
,

Ξ̂4 =
[
0p×mp Ip×p 0p×(m+1)(n−p)

]
,

Ξ̂5 =
[
0(n−p)×(mn+p) I(n−p)×(n−p)

]
.

Similarly, it can be obtained that

∆V3(k) = eT2 (k + 1)P2e2(k + 1)− eT2 (k)P2e2(k)

≤ 2ξ̂T (k)Ξ̂T
6 P2Ξ̂6ξ̂(k) + 2[l2(k) +m2(k − d)]TP2[l2(k) +m2(k − d)] − eT2 (k)P2e2(k)

≤ 2ξ̂T (k)Ξ̂T
6 P2Ξ̂6ξ̂(k) + 4λ3[l

T
2 (k)l2(k) +mT

2 (k − d)m2(k − d)] − eT2 (k)P2e2(k)

≤ 2ξ̂T (k)Ξ̂T
6 P2Ξ̂6ξ̂(k) + 4λ3[ǫ

2
12(e

T
1 (k)e1(k) + eT2 (k)e2(k)) + ǫ222(e

T
1 (k − d)e1(k − d)

+eT2 (k − d)e2(k − d))]− eT2 (k)P2e2(k)

= 2ξ̂T (k)[Ξ̂T
6 P2Ξ̂6 + 2λ3ǫ

2
12(Ξ̂

T
2 Ξ̂2 + Ξ̂T

3 Ξ̂3) + 2λ3ǫ
2
22(Ξ̂

T
4 Ξ̂4 + Ξ̂T

5 Ξ̂5)−
1

2
Ξ̂T
3 P2Ξ̂3]ξ̂(k), (46)

where

Ξ̂6 =
[
A21 − L2C1 0p×(m−1)p Ad21 A22 0p×(m−1)(n−p) Ad22

]
,

and

∆V4(k) = eT2 (k)Q2e2(k)− eT2 (k − d)Q2e2(k − d) + ΓT
2 (k)R2Γ2(k)− ΓT

2 (k − τ)R2Γ2(k − τ)

+α2τη
T
2 (k)P2η2(k)− α2

k−1∑

l=k−τ

ηT2 (l)P2η2(l). (47)

Therefore, it can be derived that

∆V3(k) + ∆V4(k) ≤ (1 + 2α2τ)e
T
2 (k + 1)P2e2(k + 1) + (2α2τ − 1)eT2 (k)P2e2(k)

+eT2 (k)Q2e2(k)− eT2 (k − d)Q2e2(k − d) + ΓT
2 (k)R2Γ2(k)

−ΓT
2 (k − τ)R2Γ2(k − τ)− α2

k−1∑

l=k−τ

ηT2 (l)P2η2(l)

≤ ξ̂T (k)[2(1 + 2α2τ)Ξ̂
T
6 P2Ξ̂6 + 4(1 + 2α2τ)λ3ǫ

2
12(Ξ̂

T
2 Ξ̂2 + Ξ̂T

3 Ξ̂3)

+4(1 + 2α2τ)λ3ǫ
2
22(Ξ̂

T
4 Ξ̂4 + Ξ̂T

5 Ξ̂5) + (2α2τ − 1)Ξ̂T
3 P2Ξ̂3]ξ̂(k)

+eT2 (k)Q2e2(k)− eT2 (k − d)Q2e2(k − d) + ΓT
2 (k)R2Γ2(k)

−ΓT
2 (k − τ)R2Γ2(k − τ)− α2

k−1∑

l=k−τ

ηT2 (l)P2η2(l). (48)
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According to the definition of ηi(l) (i = 1, 2), for any matrices X̂ , Ẑ with appropriate dimensions, the

following equations always hold:

0 = 2ξ̂T (k)X̂

[
e1(k)− e1(k − τ)−

k−1∑

l=k−τ

η1(l)

]
, (49)

0 = 2ξ̂T (k)Ẑ

[
e2(k)− e2(k − τ)−

k−1∑

l=k−τ

η2(l)

]
. (50)

Furthermore, for any appropriately dimensioned matrices M̂i = M̂T
i ≥ 0 (i = 1, 2), the following equations

are true:

0 =

k−1∑

l=k−τ

ξ̂T (k)M̂iξ̂(k)−

k−1∑

l=k−τ

ξ̂T (k)M̂iξ̂(k)

= τ ξ̂T (k)M̂iξ̂(k)−

k−1∑

l=k−τ

ξ̂T (k)M̂i ξ̂(k). (51)

Then, substituting (45) and (48)-(51) into (40) yields

∆V (k) ≤ 6(1 + 2α1τ)ξ̂
T (k)[Ξ̂T

1 P1Ξ̂1 + Ξ̂T
2 (A11 − L1C1)

TGT (GB1)
−1G(A11 − L1C1)Ξ̂2

+Ξ̂T
3A

T
12G

T (GB1)
−1GA12Ξ̂3 + Ξ̂T

4 A
T
d11G

T (GB1)
−1GAd11Ξ̂4

+Ξ̂T
5A

T
d12G

T (GB1)
−1GAd12Ξ̂5 + 4ǫ211(λ1 + λ2)(Ξ̂

T
2 Ξ̂2 + Ξ̂T

3 Ξ̂3)

+4ǫ221(λ1 + λ2)(Ξ̂
T
4 Ξ̂4 + Ξ̂T

5 Ξ̂5)]ξ̂(k) + (2α1τ − 1)ξ̂T (k)Ξ̂T
2 P1Ξ̂2ξ̂(k)

+eT1 (k)Q1e1(k)− eT1 (k − d)Q1e1(k − d) + ΓT
1 (k)R1Γ1(k)− ΓT

1 (k − τ)R1Γ1(k − τ)

+ξ̂T (k)[2(1 + 2α2τ)Ξ̂
T
6 P2Ξ̂6 + 4(1 + 2α2τ)λ3ǫ

2
12(Ξ̂

T
2 Ξ̂2 + Ξ̂T

3 Ξ̂3)

+4(1 + 2α2τ)λ3ǫ
2
22(Ξ̂

T
4 Ξ̂4 + Ξ̂T

5 Ξ̂5) + (2α2τ − 1)Ξ̂T
3 P2Ξ̂3]ξ̂(k)

+eT2 (k)Q2e2(k)− eT2 (k − d)Q2e2(k − d) + ΓT
2 (k)R2Γ2(k)− ΓT

2 (k − τ)R2Γ2(k − τ)

+ξ̂T (k)(Ω̂1 + Ω̂T
1 + Ω̂2)ξ̂(k) −

k−1∑

l=k−τ

ςT (k, l)Φ̂ς(k, l),

≤ ξ̂T (k)[Ω̂1 + Ω̂T
1 + Ω̂2 + Ω̂3 + Ω̂4 + 6(1 + 2α1τ)Ξ̂

T
1 P1Ξ̂1

+6(1 + 2α1τ)Ξ̂
T
2 (A11 − L1C1)

TGT (GB1)
−1G(A11 − L1C1)Ξ̂2

+6(1 + 2α1τ)Ξ̂
T
3 A

T
12G

T (GB1)
−1GA12Ξ̂3 + 6(1 + 2α1τ)Ξ̂

T
4 A

T
d11G

T (GB1)
−1GAd11Ξ̂4

+6(1 + 2α1τ)Ξ̂
T
5 A

T
d12G

T (GB1)
−1GAd12Ξ̂5 + 2(1 + 2α2τ)Ξ̂

T
6 P2Ξ̂6]ξ̂(k)

:= ξ̂T (k)Ψ̂ξ̂(k), (52)

where

ς(k, l) =
[
ξ̂T (k) ηT1 (l) ηT2 (l)

]T
,

Ω̂1 =
[
X̂ Ẑ

] [ Ip×p −Ip×p 0p×((m+1)n−2p)

0(n−p)×(m+1)p I(n−p)×(n−p) −I(n−p)×(n−p) 0(n−p)×(m−1)(n−p)

]
,

Ω̂2 = τ(M̂1 + M̂2), Ω̂3 = Ŵ T
RRŴR, Ω̂4 =

5∑

i=2

Ξ̂T
i ΘiΞ̂i,
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ŴR =




Imp×mp 0mp×(m(n−p)+n)

0mp×p Imp×mp 0mp×((m+1)(n−p))

0m(n−p)×(m+1)p Im(n−p)×m(n−p) 0m(n−p)×(n−p)

0m(n−p)×(mp+n) Im(n−p)×m(n−p)



,

Φ̂ =




M̂1 + M̂2 X̂ Ẑ

∗ α1P1 0

∗ ∗ α2P2


 ,

and R, Θ2, Θ3, Θ4, Θ5 are defined in (31). It is not difficult to see from (30) that Ψ̂ < 0 where Ψ̂ is defined in

(52). Then, it follows from the Lyapunov stability theorem that the overall error dynamics is asymptotically

stable in the specified sliding surface (16).

In order to deal with the H∞ performance of the overall error dynamics with ω(k) 6= 0, we introduce the

following index:

J(n) =
n∑

k=0

[
eT (k)e(k) − γ2ωT (k)ω(k)

]
,

where n is a nonnegative integer. Obviously, our aim is to show J(n) < 0 (n → ∞) under the zero-initial

condition. Along the same line of the above proof of the stability, it is easy to obtain

J(n) =

n∑

k=0

[eT (k)e(k) − γ2ωT (k)ω(k) + ∆V (k)]− V (n+ 1)

≤

n∑

k=0

[ξT (k)Λξ(k)],

where

ξ(k) =
[
ξ̂T (k) ωT (k)

]T
,

Λ = Ω1 +ΩT
1 +Ω2 +Ω3 +Ω4 +Ω5 + 6(1 + 2α1τ)Ξ

T
1 P1Ξ1

+6(1 + 2α1τ)Ξ
T
2 (A11 − L1C1)

TGT (GB1)
−1G(A11 − L1C1)Ξ2

+6(1 + 2α1τ)Ξ
T
3 A

T
12G

T (GB1)
−1GA12Ξ3 + 6(1 + 2α1τ)Ξ

T
4 A

T
d11G

T (GB1)
−1GAd11Ξ4

+6(1 + 2α1τ)Ξ
T
5 A

T
d12G

T (GB1)
−1GAd12Ξ5 + 2(1 + 2α2τ)Ξ

T
6 P2Ξ6,

Ξ1 =
[
A11 − L1C1 0p×(m−1)p Ad11 A12 0p×(m−1)(n−p) Ad12 D1

]
,

Ξ6 =
[
A21 − L2C1 0p×(m−1)p Ad21 A22 0p×(m−1)(n−p) Ad22 D2

]
,

with Ωi (i = 1, . . . , 5) and Ξj (j = 2, . . . , 5) are defined in (31).

According to Lemma 2, Λ < 0 is equivalent to

Λ̄ =




Λ̄11 ϑΞT
1 P1 νΞT

6 P2 Λ̄14

∗ −P1 0 0

∗ ∗ −P2 0

∗ ∗ ∗ Λ̄44



< 0
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where

Λ̄11 = Ω1 +ΩT
1 +Ω2 +Ω3 +Ω4 +Ω5,

Λ̄14 =
[
ϑΞT

2 (A11 − L1C1)
TGT ϑΞT

3A
T
12G

T ϑΞT
4A

T
d11G

T ϑΞT
5A

T
d12G

T
]
,

Λ̄44 = diag{−BT
1 P1B1,−BT

1 P1B1,−BT
1 P1B1,−BT

1 P1B1},

ϑ =
√

6(1 + 2α1τ), ν =
√

2(1 + 2α2τ).

By setting Li = P−1
i Yi (i = 1, 2), condition (30) (i.e. Ψ < 0) implies Λ̄ < 0 and therefore we have J(n) < 0.

Letting n → ∞, we obtain

∞∑

k=0

‖e(k)‖2 ≤ γ2
∞∑

k=0

‖ω(k)‖2 ,

which completes the proof of Theorem 2.
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Fig. 1. The trajectories of x11(k) and x̂11(k) with normal scale
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Fig. 2. The trajectories of x12(k) and x̂12(k) with normal scale
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Fig. 3. The trajectories of x2(k) and x̂2(k) with normal scale

25 30 35 40
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

No. of samples, k

 

 
Actual x

11
(k)

Estimated x
11

(k)

Fig. 4. The trajectories of x11(k) and x̂11(k) with small scale
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Fig. 5. The trajectories of x12(k) and x̂12(k) with small scale
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Fig. 6. The trajectories of x2(k) and x̂2(k) with small scale
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Fig. 7. The trajectory of error e(k)
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Fig. 8. The sliding surface s(k)


