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IV. CONCLUSION

In this note, an algorithm is provided for testing the diagnosability
of discrete-event systems. Compared to the existing testing method in
[4], our algorithm does not require the construction of a diagnoser for
the system. The complexity of our algorithm is of fourth order in the
number of states of the system and linear in the number of failure types
of the system, whereas the complexity of the testing method in [4] is
exponential in the number of states of the system and doubly exponen-
tial in the number of failure types of the system.
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and Positive-Real Control for Linear
Neutral Delay Systems

Shengyuan Xu, James Lam, and Chengwu Yang

Abstract—This note is concerned with the and positive-real control
problems for linear neutral delay systems. The purpose of control is
the design of a memoryless state feedback controller which stabilizes the
neutral delay system and reduces the norm of the closed-loop transfer
function from the disturbance to the controlled output to a prescribed level,
while the purpose of positive-real control is to design a memoryless state
feedback controller such that the resulting closed-loop system is stable and
the closed-loop transfer function is extended strictly positive real. Sufficient
conditions for the existence of the desired controllers are given in terms of
a linear matrix inequality (LMI). When this LMI is feasible, the expected
memoryless state feedback controllers can be easily constructed via convex
optimization.

Index Terms— control, linear matrix inequality, memoryless state
feedback, neutral delay systems, positive-real control.

I. INTRODUCTION

Since the late 1980s, theH1 control problem has attracted much
attention due to its both practical and theoretical importance. Various
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approaches have been developed and a great number of results for con-
tinuous systems as well as discrete systems have been reported in the
literature; see, for instance, [4], [18]. Very recently, interest has been
focused onH1 control problem for delay systems. Leeet al. [7] gen-
eralized theH1 results for continuous systems to systems with state
delay, which was further extended to systems with both state and input
delays in [3] and [9], respectively. In the context of discrete systems
with state delay, similar results can be found in [12] and references
therein.

On the other hand, since the introduction of the notion of positive
realness, many researchers have considered the positive-real control
problem for linear time-invariant systems [1], [15]. The objective is to
design controllers such that the resulting closed-loop system is stable
and the closed-loop transfer function is positive real. It has been shown
in [13] that a solution to this problem involves solving a pair of Riccati
inequalities. These results have been extended to uncertain linear sys-
tems with time-invariant uncertainty in [11] and [16], respectively. It is
worth noting that some positive realness results have also been gener-
alized to time-delay systems [8].

Recently, much attention has been focused on the study of the theory
of neutral delay systems and some issues, such as stability and stabi-
lization, related to such systems have been studied [5], [10], [14]. To
date, however, very little attention has been drawn to the problem of
H1 control, as well as positive-real control, for linear neutral delay
systems, these are more complex and still open.

In this note, we deal with theH1 control and positive-real control
problems for linear neutral delay systems. The size of the delays ap-
pearing in the state and derivative of the state may not be identical. The
H1 control problem we address is to design a memoryless state feed-
back controller such that the resulting closed-loop system is asymp-
totically stable while the closed-loop transfer function from the dis-
turbance to the controlled output meets a prescribedH1-norm bound
constraint. In terms of a linear matrix inequality, a sufficient condition
for the existence ofH1 state feedback controllers is presented. Then,
based on the relationship between bounded realness and positive real-
ness and the results onH1 control, we obtain a sufficient condition
for extended strictly positive realness(ESPR) for neutral delay sys-
tems. The condition for the solvability of positive-real control problem
is also given in terms of a linear matrix inequality.

Notation: Throughout this note, for symmetric matricesX andY ,
the notationX � Y (respectively,X > Y ) means that the ma-
trix X � Y is positive semi-definite (respectively, positive definite).
I is the identity matrix with appropriate dimension. The superscript
“T ” and “�” represent the transpose and the complex conjugate trans-
pose.kxk is the Euclidean norm of the vectorx. For a given stable
transfer function matrixG(s), itsH1 norm is given bykG(s)k1 =

sup
!2

�max[G(j!)], where�max represents the maximum singular
value of a matrix.�(A) denotes spectral radius of a matrixA.L2[0; 1)

stands for the space of square integrable functions on[0; 1). Matrices,
if not explicitly stated, are assumed to have compatible dimensions.

II. M AIN RESULTS

Consider the following linear neutral delay system:

_x(t) =Ax(t) + Ahx(t� h) +Ad _x(t� d)

+Bu(t) +E!(t) (1)

z(t) =Cx(t) +D!(t) (2)

x(t0 + �) =�(�) 8 � 2 [�l; 0] (3)

0018–9286/01$10.00 © 2001 IEEE
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where
x(t) 2 n state;
u(t) 2 m control input;
!(t) 2 q disturbance input which belongs

to L2[0; 1);
z(t) 2 s controlled output;
A, Ah, Ad, B, E, C andD known real constant matrices

with appropriate dimensions;
d > 0, h > 0 constant time-delays,d may not

be equal toh;
l = maxfh; dg and�(�) continuously differentiable ini-

tial function on[�l; 0].
Now consider the following memoryless linear state feedback con-

troller:

u(t) = Fx(t); F 2 m�n
: (4)

The resulting closed-loop system from (1)–(4) can then be written as

_x(t) =Acx(t) + Ahx(t� h) + Ad _x(t� d) + E!(t) (5)

z(t) =Cx(t) +D!(t) (6)

whereAc = A + BF , and the closed-loop transfer function matrix
Gz!(s) from the disturbance!(t) to the controlled outputz(t) is given
by

Gz!(s) =C s I � Ade
�sd � Ac + Ahe

�sh
�1

E +D:

(7)

We first consider theH1 control problem. The purpose is to deter-
mine the state feedback controller (4) such that the following require-
ments are met:

R2) the closed-loop system is asymptotically stable when!(t) =
0;

R3) theH1 norm of the closed-loop transfer functionGz!(s) sat-
isfies the constraint

kGz!(s)k1 <  (8)

where > 0 is a prescribed scalar.
To solve theH1 control problem formulated above, we first give a

sufficient condition for the asymptotic stability of linear neutral delay
systems.

Lemma 1: Consider the neutral delay system (1) withu(t) � 0 and
!(t) � 0, that is

_x(t) =Ax(t) + Ahx(t� h) +Ad _x(t� d) (9)

xt =x(t0 + �) = �(�) 8 � 2 [�l; 0]: (10)

If there exist matricesP > 0,Q > 0, andS > 0 such that

PA + A
T
P +Q+ S + (Q+ S + PA)AdW

�1

� AT
d (Q+ S + PA)T + PAhS

�1
A
T
hP < 0 (11)

W = Q�A
T
d (Q+ S)Ad > 0 (12)

then the system (9) and (10) is asymptotically stable.
Proof: Define a difference operator as

(�) = �(0)�Ad�(�d): (13)

From (12), it is easy to show that

A
T
dQAd �Q < 0:

Thus, the operator is stable.
Now, we introduce the following Lyapunov functional candidate for

the system (9) and (10):

V (xt) = (x(t)� Adx(t� d))TP (x(t)�Adx(t� d))

+
t

t�d

x(� )TQx(�)d� +
t

t�h

x(�)TSx(�)d� (14)

wherext = x(t + �), � 2 [�l; 0]. It can be shown that there exist
scalarsc1 > 0 andc2 > 0 such that the following holds:

c1k (�)k2 � V (�) � c2 sup
�2[�l; 0]

k�(�)k2: (15)

DifferentiatingV (xt) along the solution of (9) and (10) results in
_V (xt) = 2(x(t)�Adx(t� d))TP (Ax(t) + Ahx(t� h))

+ x(t)T (Q+ S)x(t)� x(t� d)TQx(t� d)

� x(t� h)TSx(t� h)

= (x(t)� Adx(t� d))T (PA +A
T
P +Q+ S)

� (x(t)�Adx(t� d))� x(t� d)TWx(t� d)

+ 2(x(t)� Adx(t� d))T (Q+ S + PA)Adx(t� d)

+ 2(x(t)� Adx(t� d))TPAhx(t� h)

� x(t� h)TSx(t� h):

Noting the definition of the operator, this equality can be rewritten
as

_V (xt) = (xt)
T (PA+ A

T
P +Q+ S) (xt)� x(t� d)T

�Wx(t� d) + 2 (xt)
T (Q+ S + PA)Adx(t� d)

+ 2 (xt)
T
PAhx(t� h)� x(t� h)TSx(t� h):

By considering (12), it follows that:
_V (xt) = (xt)

T (PA +A
T
P +Q+ S + (Q+ S + PA)

� AdW
�1
A
T
d (Q+ S + PA)T

+ PAhS
�1
A
T
hP ) (xt)

� [x(t� d)T � (xt)
T (Q+ S + PA)AdW

�1]W

� [x(t� d)�W
�1
A
T
d (Q+ S + PA)T (xt)]

� [x(t� h)T � (xt)
T
PAhS

�1]S

� [x(t� h)� S
�1
A
T
hP (xt)]:

This equality, together with (11), implies that there exists a scalarc > 0
such that

_V (xt) � �ck (xt)k
2
:

Finally, noting the stability of the operator and the above inequality
and (15), the desired result follows immediately from [6, Th. 7.1].

Remark 1: Lemma 1 provides a delay-independent stability condi-
tion for the neutral delay system (9) and (10), it is worth noting that,
for anyd > 0 andh > 0, Lemma 1 is always applicable. However, [5,
Th. 1, p. 93] is only applicable to the case whend = h. In this sense,
our stability result extends that of [5] and is more general.

The following result will play an important role in solving theH1
control problem in this section.

Theorem 1: Consider the neutral delay system (1)–(3) withu(t) �
0, that is

_x(t) =Ax(t) +Ahx(t� h) + Ad _x(t� d) +E!(t) (16)

z(t) =Cx(t) +D!(t) (17)

x(t0 + �) =�(�) 8 � 2 [�l; 0]: (18)

If there exist matricesP > 0, Q > 0, andS > 0 such that

PA + A
T
P + C

T
C +Q+ S + (PE + C

T
D)

� V �1(PE + C
T
D)T + PAhS

�1
A
T
hP

+MAdW
�1
A
T
dM

T
< 0 (19)

with

V = 
2
I �D

T
D > 0 (20)

W =Q�A
T
d [C

T (I +DV
�1
D

T )C +Q+ S]Ad > 0 (21)

M =C
T (I +DV

�1
D

T )C +Q+ S + P (A+ EV
�1
D

T
C)

(22)
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then the system (16)–(18) is asymptotically stable, and

C[s(I � Ade
�ds)� (A+ Ahe

�hs)]�1E +D
1

< :

For the proof of Theorem 1, the following two lemmas will be used.
Lemma 2: If there exist matricesP > 0, Q > 0, andS > 0 such

that

PA +A
T
P + C

T
C +Q+ S + 

�2
PEE

T
P + PAhS

�1
A
T
hP

+ (CT
C +Q+ S + PA)AdW

�1

� AT
d (C

T
C +Q+ S + PA)T < 0 (23)

W = Q�A
T
d (C

T
C +Q+ S)Ad > 0 (24)

then system (9) is asymptotically stable, and

C[s(I � Ade
�ds)� (A+Ahe

�hs)]�1
E

1

< :

Proof: Let

S1 = S + C
T
C:

From (23), it can be deduced that

PA +A
T
P +Q+ S1 + (Q+ S1 + PA)

� AdW
�1
A
T
d (Q+ S1 + PA)T + PAhS

�1
1 A

T
hP < 0:

By Lemma 1, this inequality, together with (24), implies the asymptotic
stability of the neutral delay system (9). Next, we will show that the
H1-norm bound constraint is satisfied. To this end, we set

	(j!) = I � Ade
�j!d

:

From (24), we have

A
T
dQAd �Q < 0:

Therefore,�(Ad) < 1. This implies that for all! 2 , 	(j!) is
invertible.

Now, through some routine algebraic manipulations, we obtain

C
T
C +Q+ S

= 	(j!)��[	(j!)�(CT
C +Q+ S)	(j!)]	(j!)�1

= 	(j!)��(S+ C
T
C +W )	(j!)�1+X(j!)+X(j!)�

(25)

for all ! 2 , where

X(j!) = �e�j!d(CT
C +Q+ S)Ad	(j!)

�1
:

Then, (23) can be rewritten as

PA + A
T
P + 

�2
PEE

T
P + PAhS

�1
A
T
hP +X(j!)

+X(j!)�+	(j!)��(S+ C
T
C +W )	(j!)�1

+ (CT
C +Q+ S + PA)AdW

�1

� AT
d (C

T
C +Q+ S + PA)T < 0: (26)

Define

Y (j!) = e
�j!d(CT

C +Q+ S + PA)Ad	(j!)
�1
;

Z(j!) = e
�j!h

PAh	(j!)
�1
:

Recalling that for any matricesK1,K2 andK3 of appropriate dimen-
sions withK2 > 0

K
�

1K3 +K
�

3K1 � K
�

1K2K1 +K
�

3K
�1
2 K3:

Therefore

Y (j!) + Y (j!)�

� (CT
C +Q+ S + PA)AdW

�1
A
T
d

� (CT
C +Q+ S + PA)T +	(j!)��W	(j!)�1 (27)

and

Z(j!) + Z(j!)� � PAhS
�1
A
T
hP +	(j!)��S	(j!)�1

: (28)

From (26)–(28), it follows that for all! 2 :

PA +A
T
P + 

�2
PEE

T
P +X(j!)+X(j!)�+ Y (j!)

+ Y (j!)� + Z(j!) + Z(j!)� +	(j!)��CT
C	(j!)�1

< 0:

(29)

Observing that

P (A+Ahe
�j!h)	(j!)�1

= PA + e
�j!d

P AAd + e
�j!(h�d)

Ah 	(j!)�1

= PA +X(j!)+ Y (j!) + Z(j!):

Substituting this equality into (29) yields

P (A+ Ahe
�j!h)	(j!)�1+	(j!)��(AT +A

T
h e

j!h)P

+ 
�2
PEE

T
P +	(j!)��CT

C	(j!)�1
< 0:

That is

P [j!I � (A+Ahe
�j!h)	(j!)�1]

+ [j!I � (A+ Ahe
�j!h)	(j!)�1]�P

� 
�2
PEE

T
P �	(j!)��CT

C	(j!)�1
> 0: (30)

Let �(j!) = j!I � (A + Ahe
�j!h)	(j!)�1, then for all! 2 ,

�(j!) is invertible since the neutral delay system (9) is stable.
Premultiplying (30) byET�(j!)�� and postmultiplying (30) by

�(j!)�1E give

E
T�(j!)��PE +E

T
P�(j!)�1

E

� 
�2
E
T�(j!)��PEET

P�(j!)�1
E

�E
T�(j!)��	(j!)��CT

C	(j!)�1�(j!)�1
E > 0:

In completing the squares in this inequality, it follows that, for all! 2
,


2
I � 

�2[ET�(j!)��PE � 
2
I][ET

P�(j!)�1
E� 

2
I]

� E
T�(j!)��	(j!)��CT

C	(j!)�1�(j!)�1
E > 0:

Thus, for all! 2

E
T�(j!)��	(j!)��CT

C	(j!)�1�(j!)�1
E < 

2
I: (31)

Finally, by noting that

	(j!)�1�(j!)�1 = [j!(I �Ade
�j!d)� (A+ Ahe

�j!h)]�1

and using (31), we conclude thatkC[s(I � Ade
�ds) � (A +

Ahe
�hs)]�1Ek1 <  holds.

Lemma 3: LetH > 0, 	(s) = I � Ade
�ds

�(s) = [ET (�s	(�s)T � (A+ Ahe
sh)T )�1 I ]

�
P S

ST H

(s	(s)� (A+ Ahe
�sh))�1E

I
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and

�̂(s) = ÊT
�s	(�s)T � (Â+ Ahe

sh)T
�1

I

�
P̂ 0

0 I

s	(s)� (Â+Ahe
�sh)

�1

Ê

I

where

Â = A �EH
�1
S
T
; Ê = EH

�(1=2)
; P̂ = P � SH

�1
S
T
:

Then,�(j!) > 0 if and only if �̂(j!) > 0.
Proof: The proof follows the same idea as in [17, Lemma 13.18]

and is thus omitted.
Proof of Theorem 1:The asymptotic stability of the neutral delay

system (9) can be inferred from (19) and Lemma 1. To show theH1
norm bound constraint is satisfied, we rewrite (19) as

P (A+ EV
�1
D

T
C) + (A+EV

�1
D

T
C)TP

+ C
T (I +DV

�1
D

T )C +Q+ S + PEV
�1
E
T
P

+ PAhS
�1
A
T
hP +MAdW

�1
A
T
dM

T
< 0:

Applying Lemma 2 to this inequality yields

Ĉ[j!(I � Ade
�j!d)� (Â+ Ahe

�j!h)]�1
Ê

T

� (Ĉ[j!(I � Ade
�j!d)� (Â+Ahe

�j!h)]�1
Ê) < 1 (32)

where

Â =A+ EV
�1
D

T
C;

Ĉ =(I +DV
�1
D

T )1=2C;

Ê =EV
�(1=2)

:

By Lemma 3, it is easy to show that (32) is equivalent to

C[j!(I � Ade
�j!d)�(A+ Ahe

�j!h)]�1
E +D

T

� C[j!(I �Ade
�j!d)�(A+ Ahe

�j!h)]�1
E +D < 

2
I:

This completes the proof.
In the case whenAd = 0, from Theorem 1, we have the following

result.
Corollary 1: Consider the following delay system:

_x(t) =Ax(t) + Ahx(t� h) +E!(t) (33)

z(t) =Cx(t) +D!(t) (34)

x(t0 + �) =�(�) 8 � 2 [�h; 0]: (35)

If there exist matricesP > 0 andS > 0 such that

PA +A
T
P + C

T
C + (PE + C

T
D)V �1(PE + C

T
D)T

+ PAhS
�1
A
T
hP + S < 0 (36)

with

V = 
2
I �D

T
D > 0

then the system (33)–(35) is asymptotically stable when!(t) � 0, and
theH1 norm of the transfer function satisfies

C[sI �A �Ahe
�hs]�1

E +D
1

< :

Remark 2: It is easy to see that Corollary 1 is the same as [7, Th. 1]
whenD = 0, thus Theorem 1 here can be viewed as an extension of
the existing results onH1 disturbance attenuation for delay systems
to neutral delay systems.

Now we are in a position to give a solution to theH1 control
problem specified above.

Theorem 2: Suppose that there exist matricesX > 0, Y , Q > 0,
S > 0 satisfying the LMI, as shown in (37) at the bottom of the page,
where

L = [E(I +D
T
V
�1
D)ET +Q+ S +XC

T
V
�1
DE

T

+XA
T + Y

T
B
T ]AT

d

H = [XAT
h XCT + EDT ]

J =diag(S; V )

V = 
2
I �DD

T
> 0

then the memoryless state feedback controller

u(t) = Y X
�1
x(t); (38)

stabilizes system (1)–(3) and guarantees that theH1 norm bound of
the closed-loop transfer function constraint has a prescribed level >

0.
Proof: Applying the controller (38) to the neutral delay system

(1)–(3), we obtain the resulting closed-loop system in the form of (5)
and (6) with

Ac = A+BYX
�1
:

By Schur complement, (37) implies

XA
T
c + AcX + EE

T +Q+ S + (XCT + ED
T )

� V
�1(XCT + ED

T )T +XA
T
hS
�1
AhX

+M1A
T
dW

�1
1 AdM

T
1 < 0 (39)

where

M1 =E(I +D
T
V
�1
D)ET +Q+ S +X(AT

c + C
T
V
�1
DE

T )

W1 =Q� Ad[E(I +D
T
V
�1
D)ET +Q+ S]AT

d > 0:

Using Theorem 1, we have that the following neutral delay system:

_x1(t) =A
T
c x1(t) + A

T
hx(t� h) +A

T
d _x(t� d) + C

T
!1(t) (40)

z1(t) =E
T
x1(t) +D

T
!1(t) (41)

is asymptotically stable when!1(t) � 0, and

E
T [s(I �A

T
d e
�sd)� (AT

c + A
T
h e
�sh)]�1

C
T +D

T

1

< 

(42)

where the statex1(t) 2 n, the disturbance input!1(t) 2
s, and

the controlled outputz(t) 2
q. It is easy to see that the system

XAT +AX + Y TBT +BY + EET +Q+ S L H

LT Ad E I +DTV �1D ET +Q+ S AT
d �Q 0

HT 0 �J

< 0 (37)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 8, AUGUST 2001 1325

XAT +AX + Y TBT +BY +Q+ S L H

LT Ad Q+ S +EU�1ET AT

d �Q 0

HT 0 �J

< 0 (46)

(40) and (41) is asymptotically stable and (42) holds, if and only if
the closed-loop system (5) and (6) is asymptotically stable and

C[s(I � Ade
�sd)� (Ac +Ahe

�sh)]�1E +D
1

< 

holds. This completes the proof.
By considering the connections between bounded realness and pos-

itive realness, next we shall consider the positive-real control problem
for the linear neutral delay system (1)–(3). we first introduce the fol-
lowing concepts of bounded realness and positive realness.

Definition 1 [1]: A transfer functionG(s) is bounded real if all
elements ofG(s) are analytic forRe(s) � 0 andkG(s)k1 < 1.

Definition 2 [13]: A system [or its transfer functionG(s)] is said to
be extended strictly positive real (ESPR) ifG(s) is analytic inRe(s) �
0 and satisfiesG(j!) + G(j!)� > 0 for ! 2 [0; 1].

The problem to be addressed is to determine the state feedback con-
troller (4) such that the resulting closed-loop system (5) and (6) is stable
and the transfer functionGz!(s) is ESPR. To solve this problem, we
first give the relationship between bounded realness and positive real-
ness stated in the following lemma.

Lemma 4: LetG(s) be a square transfer function withdet(G(s)+
I) 6= 0 for Re(s) � 0, andG(j1) + G(�j1)T > 0. Then the
bounded realness ofH(s) = (G(s) � I)(G(s) + I)�1 implies that
G(s) is ESPR.

Proof: By the definitions of bounded realness and ESPR, the de-
sired result follows immediately.

The following result will play an important role in solving the posi-
tive-real control problem.

Theorem 3: Consider the neutral delay system (16)–(18). If there
exist matricesP > 0, Q > 0 andS > 0 such that the following
matrix inequalities hold:

PA +A
T
P +Q+ S + (PE � C

T )U�1(PE � C
T )T

+ PAhS
�1
A
T

hP + [PA+Q+ S � (PE � C
T )U�1C]

� AdW
�1
A
T

d [PA +Q+ S � (PE � C
T )U�1C]T

< 0 (43)

U = D +D
T
> 0 (44)

W = Q� A
T

d (Q+ S + C
T
U
�1
C)Ad > 0 (45)

then, system (16)–(18) is asymptotically stable and ESPR.
Proof: The proof can be carried out by using Theorem 1 and

Lemma 4.
Remark 3: In the case whenAd = 0, that is, the neutral delay

system (16)–(18) reduces to a usual delay system. It is easy to see that
Theorem 3 coincides with [8, Th. 1]. Moreover, if bothAd = 0 and
Ah = 0, the neutral delay system (16)–(18) becomes a system without
any delays, then we can see that Theorem 3 corresponds to the result
of positive realness for usual state-space systems with delay-free (see,
e.g., [13]). In view of this, Theorem 3 can be regarded as an extension
of the existing results on positive realness for systems with or without
delays.

Now we are in a position to present our result on positive-real control
problem for neutral delay systems.

Theorem 4: Consider the linear neutral delay system (1)–(3). If
there exist matricesX > 0,Q > 0, S > 0 and a matrixY , satisfying
the LMI shown in (46) at the top of the page, where

U =D +D
T
> 0

L = [XAT + Y
T
B
T +Q+ S � (XCT �E)U�1ET ]AT

d

H = [XAT

h XCT �E ]

J =diag(S; U)

then the memoryless state feedback controller

u(t) = Y X
�1
x(t) (47)

will be such that the resulting closed-loop system is asymptotically
stable and ESPR.

Proof: Following a similar line as in the proof of Theorem 2 and
using Theorem 4, the desired result follows immediately.

Remark 4: Theorems 2 and 4 provide sufficient conditions for solv-
ability of the problems ofH1 and positive-real control for neutral
delay systems, respectively. It is worth pointing out that the LMI (37)
in Theorem 2 and the LMI (46) in Theorem 4 can be solved efficiently,
and no tuning of parameters is required [2].

III. CONCLUSION

In this note, we have studied theH1 and positive-real control
problem for linear-neutral delay systems. Based on the LMI approach,
sufficient conditions for the solvability of these two problems have
been presented. Our results onH1 control and positive-real control
for neutral delay systems encompass earlier ones for delay systems.
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A Note on Uniform Observability

Bernard Delyon

Abstract—We prove in this note that the classical inequality
+ relating the variance of the Kalman filter estimate,

the observability matrix, and the controllability matrix is not true. This
inequality is the cornerstone of the asymptotic stability theory of the
Kalman filter for time-varying systems. We provide another inequality of
the same type.

Index Terms—Kalman filter, time-varying, uniform observability.

I. INTRODUCTION

We consider the following system:

_xt =Atxt + vt

_yt =Ctxt + wt

E
vsv

T

t vsw
T

t

wsv
T

t wsw
T

t

=
Qt Rt

RT

t St
�(t� s):

with an initial value with Gaussian distributionx0 � N (x̂0; P0). The
corresponding Kalman filter is

_̂xt =Atx̂t + PtC
T

t +Rt S
�1

t ( _yt � Ctx̂t)

_Pt =AtPt + PtA
T

t +Qt

� PtC
T

t +Rt S
�1

t CtPt +R
T

t :

The matrix Pt is the variance of the estimation error̂xt � xt.
BoundingPt is, for obvious reasons, an important issue. In [2, p.
359], R. E. Kalman considers the case whereRt = 0 and states the
following lemma (we setWt = CT

t S
�1

t Ct).
Lemma 1 (CaseRt = 0): Let Pt; Ot; Ct be the solutions to

_Pt =AtPt + PtA
T

t +Qt � PtWtPt P0 = P
T

0 � 0

_Ot =�OtAt �A
T

t Ot +Wt O0 = 0

_Ct =AtCt + CtA
T

t +Qt C0 = 0
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then

Pt � O
�1
t + Ct

as soon asO�1
t exists.

This lemma is more explicitly stated and “proved” in [1, p. 234, 243].
The flaw in the proof is apparent in the last correlation inequality at the
end of [1, p. 234].

We show here in Section II that this lemma is untrue and prove in
Section III the following modified version of it.

Lemma 2 (CaseRt = 0): LetAt; Qt; Wt be arbitrary square ma-
trices with same dimensions, piecewise continuous w.r.t.t, such thatQt

andWt are symmetric andWt is nonnegative for allt. LetPt; Ot; Dt

be the solutions to
_Pt =AtPt + PtA

T

t +Qt � PtWtPt P0 = P
T

0 � 0

_Ot =�OtAt � A
T

t Ot +Wt O0 = 0 (1)

_Dt =�DtAt �A
T

t Dt +OtQtOt D0 = 0 (2)

then

Pt � O
�1
t +O�1

t DtO
�1
t (3)

as soon asO�1
t exists. Furthermore, one has

Ot �
t

0

e
2�(t�s)kWsk ds � = sup

0�s�t
kAsk

Dt �
t

0

e
2�(t�s)kOsk

2kQskds:

Some classical comments, which are shared by both lemmas, are in
order.

2) The important point here is that the bound is independent ofP0.
This allows indeed to get bounds forPt; t � 0, by considering
the system on a finite-time interval(t� �; t):
Pt remains bounded if for allt the solutions to (1) and (2)

over(t� �; t) with initial conditionOt�� = Dt�� = 0 satisfy
kO�1

t + O�1
t DtO

�1
t k < C.

3) A bound onDt is easily obtained assuming boundedness ofAt

and integrability ofkWtk+kQtk over finite intervals. The main
condition is the invertibility ofOt.

4) The caseRt 6= 0 is actually covered via simple changes inAt

andQt.
5) SinceP�1

t satisfies
_P�1
t = �P�1

t At �A
T

t P
�1
t +Wt � P

�1
t QtP

�1
t

another application of this theorem leads to a lower bound onPt
based on the invertibility of the controllability matrixCt.

6) The solution to the equation forP�1
t with initial valueP�1

0 = 0
is smaller thanOt; this implies that in the limitP0 ! 1, one
hasPt � O�1

t . This is why the termO�1
t cannot be avoided.

II. COUNTEREXAMPLE

This example is made withAt = 0. Consider

Pt =
1 0

0
1

t+ 1

Qt =
1 1

1 1

Wt =
1 t+ 1

t+ 1 (t+ 1)2 + 1

then we have

PtWtPt =
1 1

1 1 + (t+ 1)�2
= Qt � _Pt:
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