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Abstract— Preview control and fixed-lag smoothing allow an anti-
causal component in the controller/estimator. Time domain variational
analysis is used in a reduction to an open loop differential game, leading
to a complete, necessary and sufficient characterization of suboptimal
values and an explicit state space design, in terms of a parameterized
(non-standard) algebraic matrix Riccati equation in a general continuous
time linear system setting. The solution offers insight into the appropriate
structure of the associated Hamiltonian, where the state and co-state are
not the usual state of the original dynamic system and that of its adjoint.
Rather, the state and co-state are selected to capture the respective lumped
effects of initial data and future input selection in the allied game.

I. INTRODUCTION

Preview tracking and fixed-lag smoothing are extensions of stan-
dard full-information and filtering problems, with relaxed causality
constraints (preview availability). Numerous control and estimation
problems fall into the category of problems with information preview.
In some tracking problems, e.g., those arising in robotics [1] and
vehicle suspension control [2], previewed commands or disturbances
may be available. Such problems are referred to as preview tracking.
Similarly, in many communication systems, even interactive ones, a
small amount of delay or latency can be tolerated. Some delay is often
permissible in speech coding [3], multirate filter banks design [4],
multi-target tracking of a maneuvering target [5], etc. Such problems
can be formulated as estimation problems with a constant preview
window and they are referred to as fixed-lag smoothing.

The H2 (LQ) theory of the preview tracking and estimation
(smoothing) is currently well developed, see e.g. [2], [6], [7]. Ap-
parently, the first mention of the preview tracking in the H∞ (game-
theoretic) context appeared in [8]. Yet in this paper, only unmeasured
disturbances were included into the game. Thus, preview tracking is
actually treated in [8] in the H2, rather than in the H∞ setting. The
same approach was also adopted in [9].

In the pure H∞ setting preview problems are considerably less
studied. H∞ control and estimation with preview proved to be a
challenge already in the current, continuous-time setting, and even
more so, in discrete-time and in sampled-data systems (stated as
Open Problem 51, in [10]). Indeed, most of the existing results
resort to strictly sufficient conditions, system restrictions, iterative
approximations and dimension increase. For example, the solution
of the continuous-time H∞ preview tracking, in [11], is derived in
terms of the standard H∞ algebraic Riccati equation (ARE), that is
associated with the tracking problem without preview. That equation,
however, might not admit a stabilizing solution under some perfor-
mance levels γ, for which the preview problem is solvable. In other
words, the solvability condition in [11] is only sufficient. For some
other (discrete-time) examples see the discussion in the companion
paper [12]. To the best of our knowledge, the only complete solution
of H∞ preview problems is the solution of the continuous-time H∞
fixed-lag smoothing problem in [13]. The approach in [13] is based on
J-spectral factorization arguments (and a transformation introduced

in [14]) and the solution there is formulated in terms of a modified
H∞ ARE, the Hamiltonian matrix associated with which is similar
to that associated with the filtering H∞ ARE.

The purpose of this, and of two companion papers [12], [15], is
to solve H∞ preview control and estimation problems in the current,
continuous-time, the discrete-time, and the sampled-data settings.
For notational simplicity, the exposition is made in a time invariant
setting. Our results and the variational arguments, however, readily
extend to time varying systems, which is a main advantage over
transform domain methods, as those in [13]. Due to space limitations,
we present here only control solutions. Smoothing results follow by
applying standard duality arguments. The corresponding formulae are
included to the full versions of these papers.

Linear systems with a single, pure, input lag are well recognized
as the simplest among the various classes of distributed parameter
systems. Custom design methods aim to exploit and match that
simplicity. The Smith predictor, which reduces stabilization to an
equivalent problem with no delay, is an early example. From the
technical perspective of an adaptation of the variational / game
theoretic analysis methods used here, the difficulty in the preview
setting, is twofold. One issue is borne out by the mere fact that, with
the presence of delay, this is a distributed parameter system. The
complete state, including a relevant disturbance history, is embedded
in the Hilbert space M2

.
= R

n × L2[−h, 0], as explained below,
leading to infinite dimensionality. Following the example of earlier
game theoretic solutions of H∞ problems in systems with control
delay (see the review [16]), this issue is addressed by a reduction to
a non-distributed differential game and the utilization of an interplay
between a distributed parameters model and the original system. The
second difficulty, which is new in the current setting, concerns the
utilization of Hamilton-Jacobi characterization of optimal solutions
of the underlying game, and the derivation of a Riccati equation,
thereof. Specifically, here the initial state of the standard Hamiltonian
depends, both on initial data and on future values of the disturbance.
The key solution step is a change of state, whereby the new
Hamiltonian state reflects only initial data contributions, and the co-
state — only future disturbance effects. This leads to a complete
(necessary and sufficient) non-standard ARE solution, in a general
linear system. Our solution is then stated in terms of a combination
of one H2 and one, parameterized H∞ ARE’s.

II. MAIN RESULT: COMPLETE INFORMATION PREVIEW CONTROL

The preview problem concerns a time invariant1 system:

ẋ(t) = Ax(t) +B1w(t− h) +B2u(t)

z(t) = Cx(t) +D1w(t− h) +D2u(t)
(1)

1The restriction to time invariant systems is made for simplicity; all
arguments and results in this paper readily generalize to time varying systems.



u(t) = −R2
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D
′
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Xγe

Aκh)
´

x(t)+D′2D1w(t−h)+B′2

Z h
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`
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κ
r
E
′
κ +eA′

κ
h
Xγe

Aκ(h−r)
Bτ (r)

´

w(t−h+r)dr
”

. (4)

with the usual interpretation of x ∈ R
n, w, u and z as the

state, exogenous input (here, representing disturbances and tracking
reference), control and controlled output. We assume that

(A1): the pair (A,B2) is stabilizable;
(A2): the realization [A,B2, C,D2] has no invariant zeros on the

imaginary axis and is left invertible.

Note that (A2) guarantees that D′2D2 is nonsingular.
The complete state (in the sense of Poincaré) at the time t

comprises the pair2 (x(t), w̆t) ∈M2. Given initial data (x(0), w̆0) ∈
M2 and an exogenous input w ∈ L2, an admissible control is u ∈ L2

for which x ∈ L2. The set of admissible controls is non-empty,
by assumption (A1). Complete information feedback controllers in
(1) comprise admissible feedback control policies that determine the
control value at a time t in terms of past and current values of
(x(t), w̆t). The delay in w reflects thus the ability to preview the
disturbance/reference.

The notation “γ0” will be used for the infimal attainable induced
L2 norm of the closed loop mapping Twz : w 7→ z, here, under
complete information feedback. The definition of γ0 presumes zero
initial data or, equivalently, processes starting at t0 = −∞.

In preparation for the statement of our main result, in Theorem 1
below, we introduce some notations. First, denote R2

.
= (D′2D2)

−1

and define the following LQ-type control ARE

XκA+A′Xκ+C′C−(XκB2+C
′
D2)R2(B

′
2Xκ+D′2C) = 0, (2)

which, by assumptions (A1) and (A2), admits a stabilizing solution
Xκ ≥ 0. For future reference we denote

Aκ

.
= A−B2R2(B

′
2Xκ +D

′
2C),

Eκ

.
= B

′
1Xκ +D

′
1C −D

′
1D2R2(B

′
2Xκ +D

′
2C),

Gc(t)
.
=

Z t

0

e
Aκr

B2R2B
′
2e

A′

κ
r
dr,

Bτ (t)
.
= B1 −B2R2D

′
2D1 −Gc(t)E

′
κ,

and note that Aκ is Hurwitz. To simplify the exposition, in the sequel
we will simply write Gc and Bτ instead of Gc(h) and Bτ (h) (i.e.,
when t = h). For γ > ‖D′1

`

I − D2R2D
′
2

´

‖ we shall also use the
notations

Γγ
.
= γ

2
I −D

′
1

`

I −D2R2D
′
2

´

D1,

Aγ
.
= Aκ +BτΓ

−1
γ Eκ,

Rγ
.
= e

Aκh
B2R2B

′
2 e

A′

κ
h −BτΓ

−1
γ B

′
τ .

Our main result is then formulated as follows (see Section III for the
proof):

Theorem 1: The following two statements are equivalent

1) γ > γ0 in the complete information preview control problem
2) ‖D1

`

I −D2R2D
′
2

´

‖ < γ and the ARE

XγAγ +A
′
γXγ −XγRγXγ +E

′
κΓ

−1
γ Eκ = 0 (3)

admits a stabilizing solution Xγ ≥ 0 (so that Aγ − RγXγ is
Hurwitz).

Furthermore, if γ > γ0, then one stabilizing, strictly γ-suboptimal
feedback control is given by equation (4) at the top of this page.

2The notation w̆t ∈ L2[−h, 0] stands for the relevant, finite window history
of an L2,loc trajectory w at the time t: w̆t(r) = w(t + r), r ∈ [−h,0].

Remark 2.1: The sign-indefinite ARE (3) in Theorem 1 is different
from the standard H∞ control ARE (with the stabilizing solution
X̃γ ) which arises in the solution of the preview-free H∞ problem.
It can be shown (by inverting the change of variables (27) in the
proof of Theorem 1, below) that, when both exist, X̃γ and Xγ

are related by X̃γ = Xκ + Xγ(I − GcXγ )−1 or, equivalently, by
Xγ = (X̃γ −Xκ)

`

I +Gc(X̃γ −Xκ)
´−1

. In particular, I −GcXγ

is non-singular iff I +Gc(X̃γ −Xκ) is non-singular. Thus, in those
cases where the ARE for X̃γ does posses a stabilizing solution X̃γ ,
the characterization of the parameter γ as a suboptimal value is in
terms of the conditions that I +Gc(X̃γ −Xκ) be non-singular and
that the self adjoint matrix (X̃γ −Xκ)(I +Gc(X̃γ −Xκ))−1 ≥ 0.
This statement, however, lacks the authority of a complete param-
eterization in the sense that its starting point is a strictly sufficient
condition.

Comparing with the previously available solution of [11], the result
of Theorem 1 has two advantages.

1) Theorem 1 offers conditions that are both necessary and
sufficient. In comparison, a solution in terms of the standard
H∞ ARE rather than (3) (as in [11]) offers only a sufficient
condition, as it rules out some values of γ > γ0, for which a
stabilizing solution of the standard ARE does not exist, but a
solution based on (3) does.

2) Since the matrix Aκ is Hurwitz, the control law (4) involves
exponentials of strictly stable matrices, which are well posed
as h → ∞. This is an improvement over the control law in
[11], which involves the exponential of a Hamiltonian matrix,
half of which eigenvalues are strictly positive.

Note also that we do not impose any simplifying assumptions on the
parameters of the system (1).

III. THE PROOF

Throughout the rest of the paper we use the following simplifying
assumption:

(A3): D′2
ˆ

C D1 D2

˜

=
ˆ

0 0 I
˜

,

which means that ‖z‖2L2
= ‖Cx + D1w‖

2
L2

+ ‖u‖2L2
. This con-

siderably reduces the complexity of required algebraic manipulations
in the proof of Theorem 1. By standard procedure, (A3) is imposed
without loss of generality, via the change of variables:

u(t) → (D′2D2)
−1/2

u(t)− (D′2D2)
−1
D
′
2

`

Cx(t) +D1w(t− h)
´

.

To maintain the nomenclature of Theorem 1, we nonetheless continue
to use the notations of Section II, even when (A3) enables further
simplifications.

A. Game theoretic analysis: necessity

Following an established practice [17]–[21], the proof of Theo-
rem 1 is focused on the differential game

max
w

n

min
u
‖z‖2L2

− γ
2‖w‖2L2

o

(5)

where the maximization is over w ∈ L2 and then over admissible
u ∈ L2. The difference between the current version of (4), and that
considered in earlier contexts, is in the data for the game, which here
comprises the complete initial data (x(0), w̆0) ∈M2. Thus, while the
analysis traces the basic steps introduced early on, our focus will be
on the special features, entailed by this data structure.



The basic fact upon which the analysis of (4) hinges is the
straightforward, indefinite (Krein space) variant of the projection
theorem. We state it here for future reference to its notations and
terms.

Theorem 2: Let U and V be Hilbert spaces with bounded linear
operators J : V 7→ V and S : U 7→ V . Suppose J = J ′ and
S′JS > εI for some ε > 0. Then, given any v ∈ V there exists a
unique solution to the optimization problem

min
u∈U

‖Su − v‖2J = min
u∈U

〈(Su − v), J(Su − v)〉 (6)

This solution is defined by the data, by a bounded linear operator,
u∗ = (S′JS)−1S′Jv. Equivalently, u∗ is completely characterized
by the equality S′J(Su∗ − v) = 0, or the fact that ∀u ∈ U ,
〈Su, J(Su∗ − v)〉 = 0.

1) The optimal u: Given w ∈ L2 and the initial data (x(0), w̆0) ∈
M2, the optimization of u in (4) is a classic inhomogeneous LQ
optimal control problem. For completeness, and in order to set the
conceptual framework for the subsequent optimization in w, we
briefly review its solution.

Let K be a stabilizing state feedback gain, as discussed above, so
that the substitution u = −Kx + ũ, ũ ∈ L2, provides an explicit
and complete parameterization of admissible controls. Assumptions
(A1) and (A2) are invariant under this substitution so they remain
valid in the system [A−B2K,B2, C −D2K,D2]. We now appeal
to Theorem 2 with the following definitions: The role of “u” is
taken ũ ∈ U = L2; the operator S : ũ 7→ z : L2 7→ L2 is
the input-output (I/O) mapping in [A − B2K,B2, C − D2K,D2]
(with the zero initial state); let z̃ ∈ L2 = V be the response3 in
[A−B2K,B1dh, C −D2K,D1dh] to the selected w ∈ L2 and the
initial data (x(0), w̆0) ∈M2; the role of “v” is taken by −z̃; finally,
set J = I . The operator S′S is uniformly positive, by assumption
(A2) (actually, S′S ≥ I , by (A3)), whereby a unique optimal ũ,
denoted ũ# (hence a unique optimal u#) exists, and is completely
characterized by the relation S′(Sũ#+ z̃) = S′z# = 0, where z# =
Sũ# + z̃ is the response of (1) with prescribe initial data, w, and the
optimal control. For future reference we denote by x#(x(0), w̆0, w),
u#(x(0), w̆0, w) and z#(x(0), w̆0, w) the bounded linear operators
from M2×L2 to L2, which are defined by the solution of the optimal
control problem.

An explicit realization of the condition S′z# = 0 is in terms of
the anti-causal system

ṗ = −(A−B2K)′p− (C −D2K)′z#
, (7a)

0 = B
′
2p+D

′
2z

#
. (7b)

Substituting (7b) into (7a), terms in K are eliminated, showing that
the arbitrary selection of K has no impact on the optimization.
Leaving K has the advantage of maintaining the boundedness of
the (anti-causal) mapping z# 7→ p, hence of a linear operator
p#(x(0), w̆0, w). Using (A3), the optimal control is then of the form

u
# = −B′2p

#
. (8)

This leads to the following Hamilton-Jacobi system, whose unique
L2 solution is the solution of the optimal control problem

»

ẋ

ṗ

–

=

»

A −B2B
′
2

−C′C −A′

– »

x

p

–

−

»

−B1

C′D1

–

dhw. (9)

In the homogeneous case, where w vanishes throughout, the state and
co-state of the L2 solution are related via p = Xκx, where Xκ ≥ 0

3Hereafter dh stands for the h-delay operator: dhφ(t) = φ(t− h).

is the stabilizing solution of the ARE (2). One common and very
useful observation concerning the inhomogeneous case is obtained
by integrating d

dt
〈x, p〉 under optimal control. Invoking (8) and the

two equations in (9), for mutual cancellation of most terms, this leads
to

‖z#‖2L2[t0,t1] = −〈x, p〉
˛

˛

t1

t0
+

˙

dhw,B
′
1p

# +D
′
1z

#¸

L2[t0,t1]
. (10)

A trick facilitating an explicit solution of the inhomogeneous (9)
is based on a change of variables ζ = p − Xκx. Invoking (2), it
transforms (9) into a cascade of an anti-causal anti-stable system, in
ζ, followed by a stable, causal system, in x:

»

ẋ

ζ̇

–

=

»

Aκ −B2B
′
2

0 −A′κ

– »

x

ζ

–

+

»

B1

−E′κ

–

dhw. (11)

This formulation makes transparent the boundedness of the mapping
from the data (x(0), w̆0) ∈ M2 and w ∈ L2 to the combined state
in (11) (equiv., in (9)) and the decay to zero of the combined state,
as t→∞.

Yet another consequence of (11) is that the mapping w 7→ (x, ζ)
is strictly proper. In particular, with the zero initial data, if w(t)
is selected as a sinusoidal over a compact support, increasing its
frequency indefinitely will result with ‖z#(0, 0, w)‖L2

≈ ‖D1w‖L2
.

This establishes, in the current setting, the fact that γ0 ≥ ‖D1‖ =
σmax{D1}, which is a basic observation in the standard H∞
problem4. Using the notations of Section II, Γγ > 0 for γ > γ0.

2) The solution over [0, h]: The selection - and optimization – of
w comes into effect only over the positive ray [h,∞). Therefore,
there is an obvious interest in the evolution along the initial interval
[0, h], and its contribution to the total value of (4). The analysis begins
by highlighting the distinction between the contribution of initial data
and that of the selected w. Indeed, along that interval

ζ(t) = e
A′

κ
(h−t)

ζ(h) +

Z h

t

e
A′

κ
(r−t)

E
′
κw(r − h)dr (12)

with the boundary condition ζ(h) =
R ∞

0
eA′

κ
rE′κw(r)dr. Conse-

quently, by direct computation

x(t) = e
Aκt

x(0)−Gc(t)e
A′

κ
(h−t)

ζ(h)

+

Z t

0

e
Aκ(t−r)(B1 −Gc(r)E

′
κ)w(r − h)dr

−Gc(t)

Z h

t

e
A′

κ
(r−t)

E
′
κw(r − h)dr, (13)

where Gc(t) is the Gramian defined in Ssection II. In particular

x(h) = ξ(h)−Gcζ(h), (14)

where

ξ(h)
.
= e

Aκh
x(0) +

Z h

0

e
Aκ(h−r)

Bτ (r)w(r − h)dr (15)

captures the effect of initial data, and ζ(h) captures the contribution
of the selection of w.

3) The optimal w: The computation of an optimal w in (4) is
performed as part of the proof of necessity, in Theorem 1. That is,
here we assume that γ > γ0. This assumption means that there exists
ε > 0 and an admissible, complete information control policy, subject
to which the following equality holds for all w ∈ L2 and with the
zero initial data

γ
2‖w‖2L2

− ‖z‖2L2
≥ ε‖w‖2L2

. (16)

4We feel the need for this sketch of the proof since this bound does not
extend from the standard to the preview problem in discrete time systems.



Jγ = 〈ξ(h), ζ(h)〉+ 〈x(0), Xκx(0)〉+ 2
D

x(0),

Z h

0

e
A′

κ
r
E
′
κw(r − h)dr

E

+ 2

Z h

0

D

w(r − h), Eκ

Z r

0

e
Aκ(r−s)(B1 −Gc(s)E

′
κ)w(s− h)ds

E

dr +

Z h

0

˙

w(r − h), D′1D1w(r − h)
¸

dr. (26)

This inequality can only be sharpened if the closed loop response z
is replaced by the optimal response z#(0, 0, w). That is

γ
2‖w‖2L2

− ‖z#(0, 0, w)‖2L2
≥ ε‖w‖2L2

. (17)

We use this fact to appeal, once again, to Theorem 2. Here we
identify w ∈ L2 with the optimization variable “u ∈ U”; the space
V will be identified with L2 × L2, containing pairs (w, z#); the
operator Sw = (w, z#(0, 0, w)) accounts for the contribution of w to
such pairs; we identify “−v” with (0, z#(x(0), w̆0, 0)), which is the
contribution of the initial data; finally, we set J = diag{γ2I,−I}.
Under these definitions, (17) means that S′JS ≥ εI , satisfying
the condition of Theorem 2. The conclusion is that there is a
unique optimal w∗(x(0), w̆0), in (4). For later use we introduce
the notations x∗(x(0), w̆0) = x#(x(0), w̆0, w

∗), u∗(x(0), w̆0) =
u#(x(0), w̆0, w

∗) and p∗(x(0), w̆0) = p#(x(0), w̆0, w
∗), and note

that w∗, x∗, u∗, z∗ and p∗ are all bounded linear operators from
M2 to L2. By Theorem 2, w∗ is completely characterized by the
condition S′J(Sw∗ − v) = S′J(w∗, z∗) = 0. Our next task is to
derive an explicit interpretation of this condition.

The computation of S′ is cumbersome, and we avoid the need
to do so, using a trick from [17], [22]. Let u = −Kx be a
stabilizing feedback control, as above. Define a bounded operator
S̃w = (w, z̃), where z̃ is the response to w and the zero initial data
in [A − B2K,B1dh, C − D2K,D1dh], and, in these notations, let
δz = z#(0, 0, w)−z̃. We return for a moment to the discussion of the
optimization in u, using the fact that z∗ = z#(x(0), w̆0, w

∗) is the
LQ optimal output, given w∗ and the initial data. By Theorem 2, this
implies that z∗ is orthogonal in L2 to the response of [A,B2, C,D2]
to any admissible control and the zero initial state. One such response
is δz, hence 〈δz, z∗〉L2

= 0. Now we can interpret S′J(w∗, z∗) = 0
as follows: for any w ∈ L2

〈Sw, J(w∗, z∗)〉L2×L2
= 0 = 〈S̃w, J(w∗, z∗)〉L2×L2

.

That is, the unique optimal w∗ is completely characterized by the
condition S̃′J(w∗, z∗) = 0. The explicit realization of this condition
is in terms of an anti-causal system whose state equation is identical
to, and thus coincides with, that in (7):

ṗ = −(A−B2K)′p− (C −D2K)′z∗ (18a)

0 = B
′
1p+D

′
1z
∗ − γ

2
dhw

∗
, t > h. (18b)

In particular, since (18a) coincides with (7a), the equality (7b)
remains satisfied, and (A−B2K)′ and (C−D2K)′ can be replaced
by A′ and C′, in the state equation.

One observation, based on (10) and (18b), provides an expression
for the component of the value of the game due to the evolution over
[h,∞)

‖z∗‖2L2[h,∞) − γ
2‖w∗‖2L2

= 〈x(h), p(h)〉. (19)

In closing §III-A.1 we verified that the matrix Γγ is positive
definite, hence invertible, when γ > γ0. Thus, (18b) and (A3) imply
that

dhw
∗ = Γ

−1
γ (D′1Cx+B

′
1p) = Γ

−1
γ (Eκx+B

′
1ζ), (20)

which should hold for all t > h. Over the ray [h,∞), the solution
of (4) is therefore characterized by the unique L2 solution of a
homogeneous Hamilton-Jacobi system of a standard form

»

ẋ

ṗ

–

=

»

Ãγ B1ΓγB
′
1 −B2B

′
2

−C′∆γC −Ã′γ

– »

x

p

–

, (21)

where Ãγ
.
= A+B1Γ

−1
γ D′1C and ∆γ

.
= I +D1Γ

−1
γ D′1.

Returning to the familiar, standard case, when h = 0 (i.e, with
no preview), the initial state x(0) = x(h) in (1) can be arbitrarily
assigned. In particular, each x(0) ∈ R

n is associated with a unique
p(0) ∈ R

n, so that the ensuing solution of (21) is in L2. The linear
dependence of p(0) on x(0) leads to the existence of a matrix X̃γ ,
such that p = X̃γx. It is a simple procedure then to show that X̃γ

is a stabilizing, self adjoint solution of the associated ARE

X̃γÃγ + Ã
′
γX̃γ + C

′
∆γC + X̃γ(B1ΓγB

′
1 −B2B

′
2)X̃γ = 0. (22)

Moreover, (19) then means that the optimal value of the game is
〈x(0), X̃γx(0)〉. Since w = 0 is one viable option in the search
for an optimal w, the conclusion is then that the optimal value of
(4) is non-negative, meaning that X̃γ ≥ 0. Thus, the existence of a
positive semidefinite, stabilizing solution of (22) becomes a necessary
condition for the sub optimality of γ.

This chain of arguments fails in the preview problem, at two
critical points. First, as seen in (14), x(h) is determined by both
the initial data and the optimization of w. There is therefore no a
priori assurance that any x(h) ∈ R

n is an initial state in an L2

solution of (21). Second, even if a stabilizing solution of (22) does
exist, then 〈x(h), X̃γx(h)〉 is only one component of the optimal
value of the game, and the positivity requirement applies only when
the contribution of the evolution along [0, h] is included. The ARE
(22) must therefore be replaced by an alternative equation in a
characterization of γ > γ0. In preparation, computing the optimal
value of the game and deducing a positivity condition in that context,
is our next task.

4) The optimal value of (4): Our starting point remains (10) and
the fact that (18a) must be satisfied for t > h. Setting t0 = 0 and
letting t1 →∞ in (10), we have

Jγ
.
= ‖z∗‖2L2

− γ
2‖w∗‖2L2

= 〈x(0), p(0)〉+ 〈dhw̆0, B
′
1p
∗ +D

′
1z
∗〉L2[0,h]. (23)

An explicit expression for (23) is computed, using the derivations of
§III-A.2. To begin with,

〈x(0), p(0)〉 =
D

x(0), Xκx(0) + e
A′

κ
h
ζ(h)

+

Z h

0

e
A′

κ
r
E
′
κw(r − h)dr

E

. (24)

Next, in analogy to the derivation of (20), one obtains

〈dhw̆0, B
′
1p+D

′
1z〉L2[0,h]

= 〈dhw̆0, Eκx+B
′
1ζ +D

′
1D1dhw̆0〉L2[0,h]. (25)

Using the explicit expressions for ζ and x, in (12) and (13), and also
the definition of ξ(h), in (15), the combined expression for the cost
is now computed as shown in eqn. (26) at the top of this page.



One basic fact revealed by this equality is that the contribution of
w∗ to Jγ is captured by the single term 〈ξ(h), ζ(h)〉. In particular,
if (x(0), w̆0) determine ξ(h) = 0, then the contribution of w∗ to
the game’s value is zero. That is, then the game’s optimal value is
also achieved with w ≡ 0, hence ζ(h) = 0, x(h) = 0, u#(t) = 0
for t > h, and finally, x#(t) = 0 for t > h. The uniqueness of the
optimal solution of (4) thus implies that, indeed, if ξ(h) = 0 then
w∗ ≡ 0, ζ(h) = 0, and that u∗(t) = 0 and x∗(t) = 0, for t > h.

Obviously, the collection of all possible quintuples
(ξ(h), ζ(h), x∗, w∗, u∗) form a linear manifold, parameterized
by the initial data. The observation above thus demonstrates that
ζ(h), w∗, and the restrictions of x∗ and u∗ to [h,∞), depend
linearly on ξ(h). In particular, there exists a matrix Xγ such that
ζ(h) = Xγξ(h).

Should the optimization procedure be re initiated at any time t > 0,
with the initial data (x∗(t), w∗t ), it is clear that the solution over
[t,∞) must coincide with the solution of the original problem. In
particular, the relation ζ(t+ h) = Xγξ(t+ h) should prevail for all
t > 0, where ξ(t+ h) is defined by (x∗(t), w∗t ), as in (15).

5) An ARE for Xγ : Solutions of LQ optimization problems,
including both traditional optimal control, H∞ and LQ differential
game problems, are characterized by Hamilton Jacobi systems. As-
sociated Riccati equations are used to characterize L2 solutions, as
well as optimal feedback gains. The common situation is that where
the state and co-state equations of the Hamilton Jacobi system are
derived directly from the state equation of the original system, and
that of its adjoint, as is the case in (9) and in (21). In the current
problem, however, we have already noted the limited value of (21)
and the associated ARE (22). Here we look for an alternative, where
the roles of the state and co-state are played by the trajectories of ξ
and ζ. The rationale is that the state of the Hamilton Jacobi system
typically captures the contribution of past inputs / initial data, whereas
the co-state captures the contributions of future inputs, which have
been shown to be the respective roles of ξ and ζ.

The transformation from the state and co-state of (21) to the desired
state and co-state is via

»

ξ

ζ

–

=

»

I Gc

0 I

– »

I 0
−Xκ I

– »

x

p

–

. (27)

It is a somewhat laborious but straightforward algebra that transforms
(21) into the following, equivalent system

»

ξ̇

ζ̇

–

=

»

Aγ −Rγ

−E′κΓ
−1
γ Eκ −A′γ

– »

ξ

ζ

–

, (28)

where, again, the definitions of Section II are used. The fact that
the ARE (3) is satisfied by the matrix Xγ in the relation ζ = Xγξ,
readily follows from equating ζ̇ = Xγ ξ̇ in the two equations, in
(28). Since the evolution of ξ is generated by AX

.
= Aγ − RγXγ ,

we conclude that AX is stable. To see that Xγ is self adjoint we
rewrite (3) as a Lyapunov equation with a stable “A” matrix and a
self adjoint free term

XγAX +A
′
XXγ +X

′
γRγXγ +E

′
κΓ

−1
γ Eκ = 0. (29)

To see that Xγ is actually positive semidefinite, we consider (4) with
w̆0 = 0. Then the expression (26) for the optimal value reduces
to

˙

x(0),
`

Xκ + eA′

κXγe
Aκ

´

x(0)
¸

. Since, as noted earlier, the
search for w∗ includes the option w ≡ 0, we know that the optimal
value of the game is bounded below by ‖w#(x(0), 0, 0)‖2L2

=

〈x(0), Xκx(0)〉. This necessitates
˙

x(0), eA′

κXγe
Aκx(0)

¸

≥ 0 for
all x(0), hence Xγ ≥ 0.

The proof of necessity in Theorem 1 is complete.

B. Restatement in an abstract model

As in other delay systems, an equivalent realization, without delay,
is in terms of a model for the M2 evolution of the complete state
f(t) = (x(t), w̆t) ∈ M2. Such models have been documented
extensively (see [23] and references therein), and have been used
in the solution of H∞ problems of delay systems (see, e.g., [24],
[25] and the review [16]). We shall therefore be content with a
brief review of the appropriate model and solution, for the preview
problem. Details of technical aspects of treating a distributed system
with unbounded input and output coefficients can be found in the
references cited right above.

The abstract model is of the form

ḟ = Af + B1w + B2u,

z = Cf +D2u,
(30)

where A is an infinitesimal generator of a c0-semigroup over M2,
defined by

A(η, φ) =
`

Aη +B1φ(−h), d
dθ
φ(θ)

´

,

D(A) =



(η, φ) ∈M2, φ(θ) =

Z 0

θ

ψ(σ)dσ, ψ ∈ L2[−h, 0]

ff

.

The other coefficients in (30) are defined via

B1w = (0, δ0(·))w, B2u = (B2u, 0),

C(η, φ) = Cη +D1φ(−h), D2u = D2u,

where δ0(·) is Dirac’s delta function, centered at θ = 0.
The advantage in this formulation is that (30) involves no delay,

whereby the well known and relatively simple formalism of the
Riccati equation based, state space solution of the standard H∞
problem applies [22], [26]. For completeness we restate here the
complete information result.

Theorem 3: The following two statements are equivalent.

1) γ > γ0 in (30)
2) There exists a bounded, positive semidefinite operator X over

M2 such that it is a weak solution of the operator Riccati
equation

XA+A′X + X
`

1
γ2 B1B

′
1 − B2B

′
2

´

X + C′C = 0 (31)

and the generator AX = A + ( 1
γ2 B1B

′
1 − B2B

′
2)X gives rise

to a uniformly exponentially stable c0-semigroup over M2.

That solution of (31) is completely characterized by the fact that
the optimal value of the game (4) is given by the quadratic form
〈(x(0), w̆0),X (x(0), w̆0)〉M2

. Furthermore, assume that indeed, γ >
γ0 and X is as above. Then

u(t) = −B′2X (x(t), w̆t) (32)

is a stabilizing, strictly γ-suboptimal control policy.
It is worth stressing that, by the structure of B2, the control law in

(32) depends only upon the first (Rn) “row” block of X . This fact
will be exploited in the derivation of the control law (4).

C. The proof of sufficiency

In this section it is assumed that Γγ > 0 and that a stabilizing
solution Xγ ≥ 0 exists in the ARE (3). Our goal is to establish the
fact that γ > γ0 and that (4) is a stabilizing, strictly γ-suboptimal
control policy. The proof utilizes the interplay between (1) and the
abstract model (30).

Specifically, let X be defined as the self adjoint operator
over M2, that serves as the kernel for the quadratic form (26)
(we leave out the obvious details). Thus, the value of (26) is



〈(x(0), w̆0),X (x(0), w̆0)〉, for any (x(0), w̆0) ∈ M2. We intend to
show that X is the sought positive semidefinite, stabilizing solution
of the operator Riccati equation (31), and appeal to Theorem 3. Since
similar arguments were made in the articles cited earlier on LQ and
H∞ solutions in systems with control delay, we shall be content with
a brief outline.

Indeed, let Xγ be the assumed solution of (3), fix initial data
(x(0), w̆0) ∈ M2, let ξ(h) be defined by (15), let ξ(t) =
eAX(t−h)ξ(h), ζ(t) = Xγξ(t), x(t) = ξ(t) + Gcζ(t) and p(t) =
Xκx(t)+ζ(t), for t ≥ h. Define ζ(t) and x(t), t ∈ [0, h], as in (12)
and (13), respectively, and p(t) = Xκx(t) + ζ(t), over that interval,
as well. Finally, let w and u be defined by the feedback formulae
(20) and (8). Backtracking our computations heretofore, it follows
that x, w and u are L2 trajectories, satisfying (1). Moreover, with
these selections, the associated value of ‖z‖2

L2
− γ2‖w‖2L2

is given
by (26), meaning that it is equal to 〈(x(0), w̆0),X (x(0), w̆0)〉M2

,
albeit, so far, without any claim to optimality. Deriving the explicit
form of X from (26) (with ζ(h) = Xγξ(h)), it is a matter of
straightforward computation to verify that the combined equalities
(20) and (8) are equivalent to w(t) = 1

γ2 B
′
1X (x(t), w̆t) and

u(t) = −B′2X (x(t), w̆t). Therefore, the trajectory f(t) = (x(t), w̆t)
is generated by AX . Let SX (t) be the associated c0 semigroup
over M2. That is, SX (t) is defined by the relation (x(t), w̆t) =
SX (t)(x(0), w̆0), where x and w are the trajectories defined above.
Thus

〈f(0),Xf(0)〉 = ‖z‖2
L2
− γ

2‖w‖2L2

=

Z ∞

0

˙

SX (t)f(0),
`

C′C + X (B2B
′
2 −

1
γ2 B1B

′
1)X

´

× SX (t)f(0)
¸

dt. (33)

This last equation is equivalent to the fact that X is a weak solution
of (31). The fact that X is a stabilizing solution then follows
directly from the fact that Xγ is a stabilizing solution of (3) and the
subsequent exponential decay of all the defined trajectories, relative
to ‖(x(0), w̆0)‖M2

. The fact that X is self adjoint follows from its
definition, in (26), and the fact that Xγ = X ′

γ ≥ 0.
We still need to establish that X ≥ 0. Indeed, consider now (30)

with w(t) = 0, t > 0, under the feedback policy (32). In analogy
to the cited distributed parameters references, an integration by parts
argument, extended to (30), yields

〈f(0),Xf(0)〉 = 〈f(t),Xf(t)〉+‖z‖2
L2[0,t)+γ

2‖w4‖2L2[0,t) (34)

for any t ∈ (0,∞), where w4 = 1
γ2 B

′
1Xf . Since w ≡ 0, for

t > h we have w̆t = 0 and 〈f(t),Xf(t)〉M2
=

˙

x(t),
`

Xκ +

eA′

κ
hXγe

Aκh
´

x(t)
¸

Rn
≥ 0. In particular, then the right hand side

of (34) comprises three non negative terms. Thus, the left hand side
is non negative, for any selection of f(0) ∈ M2, and X must be
positive semidefinite, as claimed.

Having established these properties of X , the conclusion in The-
orem 3 is that, indeed, γ > γ0 and (32) is a stabilizing, strictly
γ-suboptimal feedback. Again, it is straightforward to verify that this
feedback is equivalent to (4), in (1).

The proof of Theorem 1 is complete.
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