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Abstract—This paper proposes a voltage controller design
method for dc–ac converters supplying power to a microgrid,
which is also connected to the power grid. This converter is meant
to operate in conjunction with a small power generating unit.
The design of the output voltage controller is based on and
repetitive control techniques. This leads to a very low harmonic
distortion of the output voltage, even in the presence of nonlinear
loads and/or grid distortions. The output voltage controller
contains an infinite-dimensional internal model, which enables it
to reject all periodic disturbances which have the same period as
the grid voltage, and whose highest frequency components are up
to approximately 1.5 kHz.

Index Terms—DC–AC power converter, control, microgrid,
repetitive control, total harmonic distortion (THD), voltage con-
trol.

I. INTRODUCTION

FOR ECONOMIC, technical and environmental reasons,
there is today a trend toward the use of small power gen-

erating units connected to the low-voltage distribution system
in addition to the traditional large generators connected to the
high-voltage transmission system [1]. Not only is there a change
of scale but also a change of technology. Large generators are
almost exclusively 50/60 Hz synchronous machines. Distributed
power generators include variable speed (variable frequency)
sources, high speed (high frequency) sources and direct energy
conversion sources that produce dc. For example, wind-turbines
are most effective if free to generate at variable frequency and so
they require conversion from ac (variable frequency) to dc to ac
(50/60 Hz) [2]; small gas-turbines with direct drive generators
operate at high frequency and also require ac to dc to ac conver-
sion [3]; photo-voltaic arrays require dc–ac conversion [4]. In all
of these cases the same basic inverter (dc to ac converter) will be
used and needs to be controlled to provide high-quality supply
waveforms to consumers.

There are several operating regimes possible for distributed
generation. One such is the microgrid in which the intention is
that local consumers are largely supplied by local generation
but that shortfalls or surpluses are exchanged through a connec-
tion to the public electricity supply system [5], [6]. The use of
a microgrid opens up the possibility of making the distributed
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Fig. 1. Single-phase representation of the system to be controlled. The
local loads are represented by a single linear load in parallel with a
harmonic distortion current source. The PWM block is designed such that if
ju(t)j < V =2 (no saturation), then the average of u over a switching
period is the control input u.

generator responsible for local power quality in a way that is not
possible with conventional generators [7].

Many of the loads connected to a distribution system or
microgrid are nonlinear and create harmonically distorted cur-
rent. The most common example is a linear load in series
with a diode and with a dc-side capacitor. Many of the loads
are also single-phase and so considerable zero-sequence and
negative-sequence current components are expected. Because
the grid has relatively high impedance at harmonic frequen-
cies, the current distortion results in voltage distortion on the
supply to adjacent customers. Allowing the converter in a
generating unit to control the voltage of the microgrid will
allow better power quality to be achieved. Fig. 1 shows the
system to be controlled. The microgrid loads contain both
linear and distorting elements. In Fig. 1, the loads have been
lumped together into one linear load and a current sink which
generates the harmonic components of the load current. The
converter consists of a four-wire, three-phase inverter (IGBT
bridge), an LC filter (to attenuate the switching frequency
voltage components) and the controller. The microgrid can
be supplied solely by the local generator, or solely by the
grid, or by both in combination, or the local generator can
both supply the microgrid and export power. Two isolators,

and are provided to facilitate this and a grid interface
inductor is provided to allow separation of the (sinusoidal)
microgrid voltage and the (possibly distorted) grid voltage
and also to facilitate the control of the real and reactive power
exchange between the microgrid and the grid.

There are several aspects to the control of such a system.
1) DC-link balancing [8], [9]: to provide a neutral line, on

which the voltage is balanced w.r.t. the two terminals of
the dc link, even when the three-phase system is not bal-
anced and there is a large zero-sequence current compo-
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TABLE I
PARAMETERS OF THE SYSTEM

nent. A balanced dc link enables the voltage control of
the three-phase converter to be decoupled into the voltage
control of three single-phase converters.

2) Microgrid voltage control: to maintain a clean and
balanced microgrid voltage in the presence of nonlinear
loads and/or grid distortions. A small THD is a major
objective of the voltage controller.

3) Power control: to regulate the (active and reactive) power
exchange between the microgrid and the grid by gen-
erating a suitable reference voltage for the voltage con-
troller [10].

4) Connection, disconnection and protection of the micro-
grid [11].

5) Discrete-time implementation of the controller using a
digital signal processor.

This paper concentrates on one of these items only: microgrid
voltage control. It is assumed that an outer control loop regu-
lates the power exchange between the microgrid and the grid
by developing appropriate reference voltages in terms of mag-
nitude and phase shift with respect to the grid. These reference
voltages for the three phases of the microgrid voltage are sinu-
soidal. It is then the task of the voltage controller to track ac-
curately these reference voltages (so that the resulting THD is
small). This controller will be subject to disturbances which in-
clude nonsinusoidal currents, changes in load current, changes
and distortions in the grid voltage, and changes in the dc-link
voltage.

Several control options exist. Conventional PI regulators can
be used and have been widely reported in inverter control. In
a rotating (dq) reference frame these regulators will seek to
keep the dq voltage components at their dc reference values
and suppress distortion that appears as higher frequency terms.
These controllers can work well on balanced systems, but
are not good at correcting unbalanced disturbance currents
which are a common feature of distribution systems (and thus
are not good at controlling single-phase converters). Such
controllers are commonly employed for balanced three-phase
motor loads. Regulators in a stationary reference frame can
operate on a phase-by-phase basis and will have reasonable
success at maintaining balanced voltages. The difficulty comes
in designing a regulator with the correct gain against frequency
characteristic to regulate the fundamental frequency and reject
higher harmonic disturbances. PI regulators with their pole
(infinite gain) at zero-frequency are not best suited to this task.

A controller is required that has high gain at the fundamental
and all harmonic frequencies of interest. Repetitive control
[12]–[15] is such a control technique. In this paper, we design
the voltage controller based on the repetitive control theory
developed in [12], leading to a very low harmonic distortion of
the microgrid voltage even in the presence of nonlinear loads
and/or grid distortions.

II. SYSTEM MODELING

The three-phase power system consists of the converter (in-
cluding the IGBT bridge and LC filters), the local consumers,
the grid interface inductor and the (external) power grid. Due
to the presence of a balanced dc link (see [8], [9]), we may re-
gard this system as three independent single-phase systems, as
shown in Fig. 1, and hence there is no need to study here the
three-phase behavior of the system. This assumption may be in-
accurate, with coupling between the phases present in some con-
sumers, but this coupling will not have any significant influence
on the controller [10]. The filter inductor and other inductors in
the system include two parasitic resistances: a series resistor to
model winding resistance and a parallel resistor to model core
losses. The resistance values we found from curve fitting ex-
perimental impedance data over the frequency range 50 Hz to
2 kHz.

The pulse-width-modulation (PWM) block is designed such
that for , the local average of the bridge output
voltage equals . This makes it possible to model the PWM
block and the inverter with an average voltage approach. The
PWM and inverter model is thus a simple saturated unity gain,
where the saturation models the limit of the available dc-link
voltage with respect to the neutral line . The nominal
active power in one phase of the load is 10 kW.

Our control objective is to maintain the microgrid voltage
as close as possible to the given sinusoidal reference

voltage , so that the THD of is small. The two isolators
and appearing in Fig. 1 are needed in the start-up and

shut-down procedures of the converter, which will not be
discussed in this paper, but some of it is discussed in [10].
In this paper, the switches are considered to be closed. The
parameters of the system are shown in Table I. The switching
frequency of the IGBT bridge is 10 kHz.

We take the state variables as the currents of the three in-
ductors and the voltage of the capacitor ( , since
is closed). The external input variables (disturbances and refer-
ences) are and and the control input is . Thus

The state equations of the plant are

(1)

where you have the first equation shown at the bottom of the
next page. The output signals from the plant are the tracking



WEISS et al.: REPETITIVE CONTROL 221

error and the current , so that .

The output equations are

(2)

where you have the second equation shown at the bottom of the
page. The corresponding plant transfer function is

(3)

where we have used the compact notation now standard in con-
trol theory [16], [17], i.e., .

III. CONTROLLER DESIGN

We will follow the control-based design procedure for
repetitive controllers proposed in [12], which uses additional
measurement information from the plant. The block diagram of
the control system is shown in Fig. 2. The three external sig-
nals (the components of ) are assumed to be periodic, with a
fundamental frequency of 50 Hz. The controller consists of an
internal model and a stabilizing compensator . The stabi-
lizing compensator assures the exponential stability of the entire
system and this implies that the error will converge to a small
steady-state error, according to the theory in [12].

plant

stabilizing
compensator

internal model

p

i

e

w

i

V

W

V

u

Fig. 2. Repetitive control system used for voltage tracking. Here, w is the
disturbance and e is the tracking error. The plant is the average model of the
system from Fig. 1.

As in [12], the internal model is obtained from a low-pass
filter with transfer function with

rad/sec, cascaded with a delay element with
transfer function , where is slightly less than the
fundamental period msec

ms (4)

A realization of is
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After closing a positive unity feedback around this cascade con-
nection, as shown in Fig. 2, we obtain the internal model

(5)

has an infinite sequence of pairs of conjugate poles of which
about the first 30 are very close to the imaginary axis, around
integer multiples of , and the later ones are
further to the left (see Appendix A for more details). The choice
of is based on a compromise: for too low, only a few poles
of the internal model will be close to the imaginary axis, leading
to poor tracking and disturbance rejection at higher frequencies.
For too high, the system is difficult to be stabilized (a stabi-
lizing compensator may not exist, or it may need unreasonably
high bandwidth).

According to [12], the closed-loop system in Fig. 2 is ex-
ponentially stable if the finite-dimensional closed-loop system
from Fig. 3 is stable and its transfer function from to , de-
noted , satisfies . The intuitive explanation for
this is that in the control system of Fig. 2 a delay line is con-
nected from the output to the input appearing in Fig. 3. To
make this interconnected system stable, by the small gain the-
orem, it is sufficient to make the gain from to less than 1 at
all frequencies.

Thus, we have to design (the transfer function of the sta-
bilizing compensator) such that the above two conditions are
satisfied. Moreover, we want to minimize , where

. Indeed, we know from
([12] Section V) that a small value for will result
in a small steady-state error.

We formulate a standard problem for the control system
shown in Fig. 3, where and, in terms of Laplace
transforms

Fig. 3. Formulation of the H control problem. This block diagram
represents an auxiliary problem and it is not equivalent to the one shown in
Fig. 2. The extended plant ~P consists of the original plant P together with the
filters W and W and the constant gains � and �.

Here, and are nonzero parameters whose choice gives us
more freedom in the design. The small parameter is introduced
to satisfy a rank condition needed to make the problem
solvable and

is a weighting function whose value at infinity,
, is also needed for a rank condition. The problem

formulation here is a slight improvement over the one in [12],
where was a constant. The fact that is frequency-de-
pendent allows us to choose it as a high-pass filter. This has the
effect of reducing the controller gains at high frequencies. The
extended plant can be represented (see Appendix B) as (6)
shown at the bottom of the page.

Using the -analysis and synthesis toolbox from MATLAB™
(the routine hinfsyn), we can find a controller which nearly
minimizes the -norm of the transfer matrix from to

. However, this is not our final objective.

(6)
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We denote the central sub-optimal controller for a given
-norm of by

(note that its feedthrough matrix is equal to 0). After some ma-
nipulations (see Appendices C and D), we obtain the realiza-
tions of and , respectively, as (7) and (8), shown at the
bottom of the page. It is worth noting that (6)–(8) are valid for
the general case, regardless of the dimension of the measure-
ment vector, which here is the scalar , and for any and .

Using the parameters shown in Table I, a nearly optimal con-
troller, for which the Bode plots are shown in Fig. 4, was ob-
tained for

(the latter two were determined via an extensive search to mini-
mize while keeping ). The Bode plots show
that this controller is not realistic, because it has a very large
bandwidth. Normally, the high-frequency poles can be reduced
using various controller/model reduction techniques, which is a
topic of wide interest. Here, we use a different approach from
that used in [18], [8], [9] to decrease the controller bandwidth:
we do not minimize the -norm of but find a sub-
optimal controller such that (which is
larger than the minimal value 17.37). Such a controller (ob-
tained using the hinfsyn routine in MATLAB is (9), shown at
the bottom of the page. It is easy to check that is
satisfied for this . The pole with the highest frequency cre-
ates a peak of the controller Bode plots at

rad/sec, as can be seen in Fig. 5. This is well below
half of the switching frequency rad/s,
which is the same as the sampling frequency of the processor
used to implement the controller. We used this as the stabi-
lizing compensator in Fig. 2, for the simulations presented in
the next section. We have also done simulations with the dis-
cretized controller (at the sampling frequency indicated above)
and the results were very close to those for the continuous-time
controller.
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Fig. 4. Bode plots of a nearly optimal controller C for the H problem
corresponding to Fig. 3. Note that it has a very large bandwidth, which is not
realistic, given the switching frequency of 10 kHz. (a): Bode plots oc C . (b)
Bode plots oc C .
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Fig. 5. Bode plots of the more realistic suboptimal controllerC from (9). (a):
Bode plots oc C , (b) Bode plots oc C .

The loop gain of the control system Fig. 2 is the transfer func-
tion from back to . It is clear that

where is the plant transfer function from to from (3)
and is the internal model from (5). Hence

The Nyquist plot of for is shown in Fig. 6.
We see that it is a complicated curve which does not encircle
the critical point . The phase margin is about 40 and the
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Fig. 6. Nyquist plot of �L(j!), where L is the loop gain (from u to u in
Fig. 2), shown for ! � 0. For ! � 0, we obtain the complex conjugate curve,
of course.

gain margin is about 4.49 dB. Hence, the system has very good
robustness w.r.t. to parameter uncertainties.

IV. SIMULATION RESULTS

The simulations were done using Simulink in the MATLAB
environment (similar results were obtained also in PSCAD).
The solver used in the simulations was ode23tb (stiff/TR-BDF2)
with variable steps. The maximal step size was 1 s and the rel-
ative tolerance was .

The phase of the grid voltage was assumed to be 0 and the
power control loop was open, so that the voltage reference signal
was V. Thus, in steady state and if the grid was
undistorted, there was no power exchange between the micro-
grid and the grid. We have also run simulations with the power
control loop working (see [10]), but here we omit those, since
we do not want to burden this paper with the presentation of a
power controller. From the point of view of voltage tracking, the
results are similar, since the power control loop is much slower.
As mentioned before, the voltage control of the three-phase con-
verter has been decoupled into the voltage control of three in-
dependent single-phase converters. The neutral-leg controller
(used for dc link balancing [8], [9]) will maintain a balanced
neutral line even if the loads on the microgrid are not balanced.
Hence, there is no need for simulations to show the three-phase
behavior in this paper (but see [10], [11]).

A. Nominal Responses

Two simulations were conducted to assess the steady-state
tracking performance of the system with the nominal load, with
no disturbance current and an undistorted grid. The nominal
load is shown in Fig. 1, with the values of the components as
in Table I. The first simulation was conducted with the PWM
block and the inverter modeled as a simple saturated unity gain
with saturation levels of V, as described in
Section II. The output voltage and the tracking error, shown in
Fig. 7(a), demonstrate that the tracking error reduces to very
small values after approximately five mains cycles. The steady-
state error, which is about 0.15 V(peak), is shown in Fig. 8(b).
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Fig. 7. Output voltage V and the tracking error e, without a current disturbance (i = 0) and with the nominal load. (a) With the PWM block and the inverter
modeled as a simple saturation. (b) With a detailed (not average) model of the PWM block and the inverter (f = 10 kHz). (c) The steady-state tracking error
simulated with a detailed model of the PWM block and the inverter. The white line shows the steady-state tracking error simulated with the PWM block and the
inverter modeled as a unity gain with saturation, i.e., without switching noise.

The second simulation used a detailed inverter model including
a PWM block, switching at 10 kHz. The response is shown in
Fig. 7(b). The results are similar but there is switching noise
present that increases the steady-state tracking error which now
has ripples of approximately 7 V(peak), as shown in Fig. 7(c).
The controller is unable to suppress the switching noise, because
it can only update the input to the pulse-width modulator once
per carrier cycle. The THD of the output voltage is
around 1.37%, almost all due to the switching noise, as Fig. 7(c)
shows.

We mention that the curves in Fig. 7(a) and (b) do not show
the actual start-up process of an inverter with the nominal load,
because the power controller is not present to ensure that the
power changes smoothly from zero to the desired value. These
curves only show the behavior of the voltage controller.

Fig. 8(b) shows the results of subjecting the plant to a dis-
turbance current shown in Fig. 8(a), which has the typical
shape of the distortion caused by a capacitive rectifier. The peaks
of are about half the nominal load current. As can be seen,
the system has a good capability to reject such a disturbance.
Indeed, the output current of the converter has a THD of
16.38%, but the THD of the microgrid voltage is only 0.16%.

If we use a detailed model of the PWM block and the inverter,
then the THD of increases slightly to 16.45%, while the THD
of the microgrid voltage becomes 1.39%.

B. Response to Load Changes

Simulations were done when the load is a pure resistor of
50 , which absorbs about 10% of the load power used in the
previous subsection. The PWM block and the inverter were still
modeled as a saturation. The output voltage is shown in Fig. 9(a)
and the tracking errors, with and without the disturbance cur-
rent shown in Fig. 8(a), are shown in Fig. 9(b). No performance
degradation can be observed from these figures (with respect to
the nominal load).

A more involved simulation explored the transient responses
when the load is changed from the nominal load to a pure re-
sistor of 50 . The tracking error and the current are shown
in Fig. 10. The load is changed at s (when the load
current is close to 0 so that the resulting spikes are small). The
system reaches the steady state within fpur mains cycles and
the dynamic error is less than 1.5 V. The response of the reverse
process (changing the load from 50 to the nominal load) is
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Fig. 8. Steady-state error for the nominal load with and without disturbance
current (the PWM block and the inverter are modeled as a simple unity gain with
saturation). (a) The disturbance current i . (b) The steady-state tracking error.

shown in Fig. 11. The system reaches the steady state within
five mains cycles and the dynamic error is about than 1.5 V. In
both simulations involving a change in the load, we took .

C. Response to Grid Distortions

A typical grid voltage is flattened at its peaks. Here, a grid
voltage of , as
shown in Fig. 12(a), is used as an example. The tracking error
decays rapidly, as shown in Fig. 12(b) and in the steady state it
becomes very small (with ripples of about 7 V due to the effect
of the PWM block). Although the external grid is extremely dis-
torted, the microgrid is very clean, with a THD of about 1.20%,
mostly due to the switching noise. In this simulation, the distur-
bance is set to 0 and the load is the nominal load.

Another simulation was done when there was a shallow sag
in the grid. The sag is % from 0.4 s to 0.6 s, as shown in
Fig. 13(a). The tracking error is shown in Fig. 13(b). The max-
imal dynamic error is less than 6 V (peak) and the microgrid
reaches the steady state within five mains cycles. In this simu-
lation, and the PWM block and the inverter are modeled
as a saturation.

 

Fig. 9. Output voltage and the tracking error for a purely resistive load of 50

with and without the disturbance current shown in Fig. 8(a) (the PWM block and
the inverter are modeled as a simple saturation). (a) The output voltage and the
error (i = 0). (b) The steady-state tracking error.

V. CONCLUSION

A control structure has been proposed for a dc–ac power con-
verter connected to a microgrid with local loads and a public
grid interface. The controller uses repetitive control on a per-
phase basis in order to reject harmonic disturbances from non-
linear loads or the public grid. An design method has been
used to ensure that the controller performs effectively with a
range of local load impedances. The system has been modeled
and tested in Simulink and Matlab. The converter model in-
cludes a realistic switching frequency filter and a full model of
the inverter PWM process. Our results have shown that, apart
from the switching noise, the tracking of voltage references is
accurate to within 0.15 V (for references of amplitude 325 V).
The switching noise can have ripples of about 7 V, but there is
nothing the controller can do to suppress this (high frequency)
noise. If the load changes, the repetitive control loop converges
(to a new limit cycle) and the tracking error becomes very small
within approximately five mains cycles.

APPENDIX A
POLES OF THE INTERNAL MODEL

The poles of the internal model from (5) are the solutions
of the transcendental equation
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Fig. 10. Transient response when the load is changed at t = 0:301 s from the
nominal load (as in Fig. 1) to a resistor of 50 
. There is no disturbance current
and the PWM block and the inverter are modeled as a unity gain with saturation.
(a) The tracking error voltage. (b) The load current.

which has infinitely many roots . Substitute
, then i.e.,

(10)

We will need the Lambert W function, whose history and proper-
ties are beautifully presented in [19]. This is a multi-valued an-
alytic function, with infinitely many branches denoted

. The function may be defined for as the
(unique) solution of

(11)

where is the principal branch of the logarithm. Note that (11)
implies that if then , which is the basic
equation satisfied by all the branches . For is
the only positive solution of . The (11) can be thought
of as a fixed-point equation for the function

For and large , the iterations defined by
converge fast to . The approximation formula

(4.11) given in [19] can be written as .
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Fig. 11. Transient response when the load is changed at t = 0:301 s from
a resistor of 50 
 to the nominal load (as in Fig. 1). There is no disturbance
current and the PWM block and the inverter are modeled as a unity gain with
saturation. (a) The tracking error voltage. (b) The load current.

Since for large real is a better initial approximation of
than 1, we shall use the approximation

(12)

Now we return to the poles of . We see from (10) that

so that

(13)

Since is large (in our design, ), can be
well approximated by (12), i.e.,

Now from (13)
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Fig. 12. Effect of a distorted public grid: the grid voltages and the tracking
error. In this simulation, we have used a detailed model of the PWM block
and the inverter. The switching noise is visible in the plot of the error. (a) The
steady-state grid voltages. (b) The transient tracking error.

so that

(14)

(15)

The last approximation holds because if
then we may approximate by the identity function. These
approximated poles and the true poles are shown in Fig. 14
for , and we have checked that the approximation is
very good even for . Ideally, we would like to have

. At least, we want this to be approximately true
for small . In order to make , according to
(15), we need to satisfy . Solving this
equation, we obtain

(16)

The solution with a minus sign is not reasonable, since it would
lead to and then many of the approximations used
earlier would break down. The reasonable solution corresponds
to the plus sign in (16) and then a good approximation of ,
when is large, is

as in (4). This coincides with the recommendation in ([12], Sec-
tion II). However, when is not so large, should be chosen
according to (16) with the plus sign.

APPENDIX B
REALIZATION OF

Here we derive (6), the realization of the extended plant. We
have from Fig. 3

If we combine the above equations, then we obtain (6).

APPENDIX C
REALIZATION OF

Here we derive (7). Assume in Fig. 3 and ,
then , where satisfies

Substitute into (1), then

and from (2)
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Fig. 13. Effect of a shallow sag of �10% in the grid voltage from t = 0:4 s to t = 0:6 s. (a) The (external) grid voltage. (b) The microgrid voltage. (c) The
transient tracking error.

Furthermore

Hence, the transfer matrix from to is the first equation at the
bottom of the page.

APPENDIX D
REALIZATION OF

Here we derive (8). Assume in Fig. 3 and , then

and , where

so that . Hence, the transfer matrix
from to is the second equation at the bottom of the page.
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Fig. 14. Poles s of the internal model M for jkj � 31. Note that the
horizontal scale is much smaller than the vertical scale, so that these poles
are actually almost on the imaginary axis. Here, the approximation formulae
(14)–(15) were used.
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