H-Ti (Hydrogen-Titanium)

H. Okamoto

A partial Ti-H phase diagram at 1 atm pressure in [Massalski2] was adopted from [87San]. Partly based on [87San], [91Fuk] proposed a Ti-H phase diagram for wider composition and temperature ranges under a high H pressure (≤ 30 MPa). The invariant reaction existing at 447 °C in a *P-T-X* diagram was speculated to be due to the L $\leftrightarrow \delta + L(H_2)$ reaction. Figure 1 is redrawn essentially from [91Fuk], but the $(\alpha Ti)/(\alpha Ti) + (\beta Ti)$ boundary is according to [87San] because the opening angle of (βTi) + (αTi) two-phase field at 0 at.% H in the phase diagram of [87San] is thermodynamically more plausible. Figure 1 is expected not to

differ much from a diagram at 1 atm because the pressure is not very high.

Ti-H crystal structure data (Table 1) are accepted from [87San].

Cited References

- 87San: A. San-Martin and F.D. Manchester, Bull. Alloy Phase Diagrams, 8(1), 30-42 (1987).
- 91Fuk: Y. Fukai, Nippon Kinzoku Gakkai-shi, 55(1), 17-21 (1991) in Japanese.

Table 1 Ti-H Crystal Structure Data

Phase	Composition, at.% H	Pearson symbol	Space group	Strukturbericht designation	Prototype
(6Ti)	0 to 50	cI2	Im3m		w
(aTi)	0 to 8.5	hP2	P63/mmc	A3	Mg
δ	50 to 66.7	cF12	$Fm\overline{3}m$	<i>C</i> 1	CaF ₂
ε	60 to 66.7	<i>tI</i> 6	I4/mmm	L'2 _b	ThH ₂

