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Abstract

Conditions are given on a lattice polytope P of dimension m or its associated
affine semigroup ring which imply inequalities for the h∗-vector (h∗

0, h
∗
1, . . . , h

∗
m) of

P of the form h∗
i ≥ h∗

d−i for 1 ≤ i ≤ ⌊d/2⌋ and h∗
⌊d/2⌋ ≥ h∗

⌊d/2⌋+1 ≥ · · · ≥ h∗
d, where

h∗
i = 0 for d < i ≤ m. Two applications to order polytopes of posets and stable

polytopes of perfect graphs are included.

1 Introduction

Let P be an m-dimensional convex polytope in RN having vertices with integer coor-
dinates. It is a fundamental result due to Ehrhart [5, 6] that the function i(P, r) =
#(rP ∩ ZN), counting integer points in the r-fold dilate of P , is a polynomial in r of
degree m, called the Ehrhart polynomial of P . Thus one can write

∑

r≥0

i(P, r) tr =
h∗

0 + h∗
1t + · · ·+ h∗

mtm

(1 − t)m+1
(1)

for certain integers h∗
i . Following Stanley [21] we call (h∗

0, h
∗
1, . . . , h

∗
m) the h∗-vector of P

and denote it by h∗(P ). It is known that i(P, r) is the Hilbert function of a semistandard
graded Cohen-Macaulay normal domain RP called the semigroup ring of P ; see [3, Chapter
6] and [9, Chapter X]. In particular the integers h∗

i are nonnegative. Recall that a sequence
(a0, a1, . . . , an) of real numbers is said to be unimodal if a0 ≤ · · · ≤ aj ≥ · · · ≥ an holds
for some 0 ≤ j ≤ n. Although h∗-vectors are not always unimodal, various results
and conjectures concerning the unimodality of h∗(P ) have appeared in the literature
[8, 9, 19, 20]. For instance it would follow from [8, Conjecture 1.5] and [19, Conjecture 4a]
that h∗(P ) is unimodal if the semigroup ring RP is standard and Gorenstein. Moreover,

the electronic journal of combinatorics 11(2) (2004), #R6 1



it was conjectured by Hibi [9, p. 111] that h∗(P ) is unimodal whenever it is symmetric,
meaning that h∗

i = h∗
m−i for 0 ≤ i ≤ m.

General conditions on an integer polytope P , inspired by the work of V. Reiner and
V. Welker on order polytopes of graded posets [15], which guarantee that h∗(P ) is uni-
modal were given in [1]. More precisely it was shown in [1] that if the pulling triangulation
∆τ of P with respect to an ordering τ = (v1, v2, . . . , vp) of the vertices of P is unimodu-
lar (see Section 2 for basic definitions on triangulations) and for some n any facet of P
contains exactly n− 1 elements of {v1, v2, . . . , vn} then h∗(P ) is equal to the h-vector [24,
Section 8.3] of a simplicial d-dimensional polytope, where d = m−n+1, and hence that it
is unimodal and satisfies h∗

i = h∗
d−i for 0 ≤ i ≤ d by McMullen’s g-theorem. The simplex

with vertices {v1, v2, . . . , vn} is called a special simplex for P in [1]. If v1, v2, . . . , vn are
any n vertices of P which are affinely independent we call their convex hull a semispecial

simplex for P if any facet of P contains at least n − 1 elements of {v1, v2, . . . , vn}. It is
the main goal of this paper to prove the following more general statement.

Theorem 1.1 Let P be an m-dimensional integer polytope with h∗-vector (h∗
0, h

∗
1, . . . , h

∗
m).

If τ = (v1, v2, . . . , vp) is a linear ordering of the vertices of P such that

(i) the pulling triangulation ∆τ of P is unimodular,

(ii) {v1, v2, . . . , vn} is the vertex set of a semispecial simplex for P

and d = m − n + 1, then h∗
i ≥ h∗

d−i for 0 ≤ i ≤ ⌊d/2⌋, h∗
⌊d/2⌋ ≥ h∗

⌊d/2⌋+1 ≥ · · · ≥ h∗
d and

h∗
i = 0 for d < i ≤ m.

The next corollary follows essentially from the case n = 1 of Theorem 1.1.

Corollary 1.2 Let P be an m-dimensional integer polytope with h∗-vector (h∗
0, h

∗
1, . . . , h

∗
m).

If P has a unimodular pulling triangulation then h∗
i ≥ h∗

m−i for 1 ≤ i ≤ ⌊m/2⌋ and

h∗
⌊m/2⌋ ≥ h∗

⌊m/2⌋+1 ≥ · · · ≥ h∗
m.

Pulling triangulations are specific examples of regular triangulations, so it is natural
to ask for inequalities satisfied by h∗(P ) under the existence of a regular unimodular
triangulation of P . I am grateful to Takayuki Hibi [10] for informing me that the following
statement was also proved by himself and Richard Stanley in 1999 (unpublished) by
essentially the same argument as the one given in Section 2.

Theorem 1.3 Let P be an m-dimensional integer polytope with h∗-vector (h∗
0, h

∗
1, . . . , h

∗
m).

If P has a regular unimodular triangulation then h∗
i ≥ h∗

m−i+1 for 1 ≤ i ≤ ⌊(m + 1)/2⌋,

h∗
⌊(m+1)/2⌋ ≥ · · · ≥ h∗

m−1 ≥ h∗
m

and

h∗
i ≤

(

h∗
1 + i − 1

i

)

for 0 ≤ i ≤ m. In particular, if h∗(P ) is symmetric and P has a regular unimodular

triangulation then h∗(P ) is unimodal.
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It was observed in [9, Example 36.4] that the last inequality in Theorem 1.3 does not hold
for some integer polytopes. An example of a 0/1 polytope P with no regular unimodular
triangulations such that RP is standard was given in [13].

This paper is structured as follows. Section 2 includes the necessary definitions and
background on convex polytopes and their triangulations and h∗-vectors as well as the
proof of Theorem 1.3. The notion of triangulation of a polytope P we will use does not
require that all vertices of the triangulation are necessarily vertices of P unless the contrary
is explicitly stated. In Section 3 we introduce the concept of a semispecial simplex for P
and prove a slight generalization of Theorem 1.1 (see Corollary 3.4). Specifically we drop
the assumption that all vertices of a (special or) semispecial simplex and the elements of
the sequence τ which appears in Theorem 1.1 are vertices of P . Our proofs are based on a
result of Kalai and Stanley (Lemma 2.2) on the h-vector of a Cohen-Macaulay subcomplex
of the boundary complex of a simplicial polytope. Sections 4 and 5 include applications of
Theorem 1.1 to order polytopes of (not necessarily graded) posets and to stable polytopes
of perfect graphs, respectively. In Section 6 we state an analogue of Theorem 1.1 in the
context of the affine semigroup ring of P .

2 Triangulations and h∗-vectors

Before proving Theorem 1.3 we review some basic definitions and background on simplicial
complexes and convex polytopes. For undefined terminology and more information on
these topics we refer the reader to [7, 9, 22, 23, 24]. A polytopal complex F [24, Section
8.1] is a finite, nonempty collection of convex polytopes in RN such that (i) any face of a
polytope in F is also in F and (ii) the intersection of any two polytopes in F is a (possibly
empty) face of both. The elements of F are its faces and those of dimension 0 are its
vertices. The dimension of F is the maximum dimension of a face. The complex F is
pure if all maximal (with respect to inclusion) faces of F have the same dimension. The
collection F(P ) of all faces of a polytope P is a pure polytopal complex, called the face

complex of P , as is the collection F(∂P ) of proper faces of P , called the boundary complex.
The complex F is a (geometric) simplicial comlpex if all faces of F are simplices. Two
simplicial complexes ∆ and ∆′ are said to be combinatorially equivalent if there exists
a bijection ρ between the sets of faces of ∆ and ∆′ such that ρ and its inverse preserve
inclusion. The h-vector h(∆) = (h0, h1, . . . , hd) of a simplicial complex ∆ of dimension
d − 1 is defined by the formula

d
∑

i=0

fi−1(x − 1)d−i =
d

∑

i=0

hix
d−i (2)

where fi is the number of i-dimensional faces of ∆ for 0 ≤ i ≤ d − 1 and f−1 = 1. We
say that ∆ is a triangulation of a polytopal complex F if the union of the faces of ∆ is
equal to the union of the faces of F and every face of ∆ is contained in a face of F . In
particular we do not require that all vetrices of ∆ are vertices of F . A triangulation of the
face complex F(P ) of a convex polytope P ⊆ RN is called a triangulation of P . Such a
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triangulation is regular if the faces of ∆ are the projections, under the map RN+1 → RN

which forgets the last coordinate, of the lower faces of a convex polytope Q ⊆ RN+1,
meaning those faces of Q which are visible from any point in RN+1 with sufficiently large
negative last coordinate. A convex polytope P ⊆ RN is called an integer polytope if all
vertices of P have integer coordinates. A triangulation ∆ of such a polytope P is called
unimodular if all vertices of ∆ have integer coordinates and the vertex set of any maximal
simplex of ∆ is a basis of the affine integer lattice A∩ZN , where A is the affine span of P
in RN . In the special case of pulling triangulations (which we discuss in the sequel) the
following lemma appeared as [16, Corollary 2.5].

Lemma 2.1 ([2]) If P is an integer polytope and ∆ is any unimodular triangulation of

P then h∗(P ) = h(∆).

A convex polytope P is said to be simplicial if all its proper faces are simplices, so
that F(∂P ) is a simplicial complex. The next lemma is a consequence of [21, Lemma 2.2]
and the note following that lemma in [21]. The inequalities hi ≥ hd−i were first proved
by Kalai [11].

Lemma 2.2 ([11, 21]) If ∆ is a Cohen-Macaulay subcomplex of the boundary complex

of a d-dimensional simplicial polytope and h(∆) = (h0, h1, . . . , hd) then hi ≥ hd−i for

0 ≤ i ≤ ⌊d/2⌋ and h⌊d/2⌋ ≥ h⌊d/2⌋+1 ≥ · · · ≥ hd.

Given a polytope Q and a sequence τ = (v1, v2, . . . , vp) of points containing the vertices
of Q we can construct a simplicial polytope Q′ of the same dimension as Q obtained from
Q by a sequence of pullings with respect to τ . More specifically let pullv(P ) be the
convex hull of the set of vertices of P and the point obtained by moving v beyond the
hyperplanes supporting exactly those facets of P which contain v (see [24, Section 3.1])
if v lies on the boundary of P and let pullv(P ) = P otherwise. We define Q′ = Qp where
Qi = pullvi

(Qi−1) for 1 ≤ i ≤ p and Q0 = Q. If τ is a linear ordering of the vertices of
Q then Q′ is the polytope obtained from Q by pulling the vertices of Q in the order τ [7,
p. 80] [12, Section 2.5]. In this case the vertices of Q′ can be labeled as v′

1, v
′
2, . . . , v

′
p so

that if vi1, vi2 , . . . , vij are the vertices of a (j − 1)-dimensional simplex which is a face of
Q then v′

i1
, v′

i2
, . . . , v′

ij
are the vertices of a (j − 1)-dimensional simplex which is a face of

Q′.

Proof of Theorem 1.3. Let ∆ be a regular unimodular triangulation of P . Being regular,
∆ is combinatorially isomorphic to the complex of lower faces of an (m + 1)-dimensional
polytope Q and we may assume that Q has as many vertices as ∆. Pulling the vertices of
Q in an arbitrary order produces an (m+1)-dimensional simplicial polytope Q′ such that
∆ is combinatorially isomorphic to a subcomplex ∆′ of the boundary complex of Q′. Then
h(∆) = h(∆′) and h∗(P ) = h(∆) by Lemma 2.1. Moreover ∆′ is topologically a ball, being
homeomorphic to ∆, and hence Cohen-Macaulay. Lemma 2.2 implies that h(∆′) = h∗(P )
satisfies h∗

⌊(m+1)/2⌋ ≥ · · · ≥ h∗
m ≥ h∗

m+1 = 0 and h∗
i ≥ h∗

m−i+1 for 1 ≤ i ≤ ⌊(m + 1)/2⌋.

Let (h0, h1, . . . , hm+1) be the h-vector of the boundary complex of Q′. The h-vector of ∆′

satisfies h∗
i ≤ hi for 0 ≤ i ≤ m by [21, Theorem 2.1]. Moreover h∗

1 = h1 = n − m − 1,
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where n is the number of vertices of ∆, ∆′, Q or Q′ and the last inequality in the theorem
follows from the Upper Bound Theorem hi ≤

(

h1+i−1
i

)

for simplicial polytopes [24, Lemma
8.26]. The last statement in the theorem should be clear. ✷

We conclude this section with the background on pulling triangulations of polytopal
complexes needed for the proof of Theorem 1.1. For any polytopal complex F and set
of points σ in RN we denote by F\σ the subcomplex of faces of F which do not contain
any of the points in σ and write F \v for F\σ if σ consists of a single point v. Given a
sequence τ = (v1, v2, . . . , vp) of points containing the vertices of F we define the reverse

lexicographic triangulation or pulling triangulation ∆(F) = ∆τ (F) with respect to τ [16]
[23, Chapter 8] as follows. We have ∆(F) = {v} if F consists of a single vertex v and

∆(F) = ∆(F \v1) ∪
⋃

F

{conv({v1} ∪ G) : G ∈ ∆(F(F ))}

otherwise, where the union runs over the facets F not containing v1 of the maximal
faces of F which contain v1. The triangulations ∆(F \v1) and ∆(F(F )) are defined
with respect to (v2, . . . , vp) by induction. Equivalently, for i0 > i1 > · · · > it the set
{vi0 , vi1, . . . , vit} is the vertex set of a maximal simplex of ∆τ (F) if there exists a maximal
flag F0 ⊂ F1 ⊂ · · · ⊂ Ft of faces of F such that vij is the first element of τ in Fj for all
j and vij is not in Fj−1 for j ≥ 1. If F is the boundary complex of a polytope Q then
∆τ (F) is combinatorially isomorphic to the boundary complex of the simplicial polytope
Q′ obtained from Q by a sequence of pullings with respect to τ .

3 Semispecial simplices

Throughout this section P denotes an m-dimensional convex polytope in RN . We call an
(n − 1)-dimensional simplex Σ a special simplex for P if each facet of P contains exactly
n − 1 vertices of Σ. This definition is less restrictive than the one given originally in [1]
since we do not require that all vertices of Σ are vertices of P . We call Σ a semispecial

simplex if each facet of P contains at least n−1 vertices of Σ. Thus a semispecial simplex
for P is special if and only if it is not contained in the boundary of P . Two examples are
shown in Figure 1.

v

v v

2

21

v
1

Figure 1: A special simplex for a triangle and a semispecial simplex for a square piramid.
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Remark 3.1 Any set σ of n points in RN having the property that any facet of P contains
at least n− 1 elements of σ must be affinely independent and hence it is the vertex set of
a semispecial (n − 1)-simplex for P . Indeed, if v ∈ σ were in the affine span of σ\v then
the affine span of any facet of P would have to contain v, which is impossible.

If V is any linear subspace of RN then the quotient polytope P/V ⊆ RN/ V is the image
of P under the canonical surjection RN → RN/ V . This is a convex polytope in RN/ V
linearly isomorphic to the image π(P ) of P under any linear surjection π : RN → RN−dimV

with kernel V . Recall that the simplicial join ∆1∗∆2 of two geometric simplicial complexes
∆1 and ∆2 in RN is defined if no two line segments, each joining a point in a face of ∆1 to
a point in a face of ∆2, intersect in their relative interiors. In this case the maximal faces
of ∆1 ∗∆2 are the simplices of the form conv(F1∪F2), where F1 and F2 are maximal faces
of ∆1 and ∆2, respectively. The simplicial join satisfies h(∆1 ∗∆2, x) = h(∆1, x) h(∆2, x),
where h(∆, x) =

∑d
i=0 hix

d−i if h(∆) = (h0, h1, . . . , hd). In particular h(∆1 ∗∆2) = h(∆2)
if ∆1 is a simplex.

Lemma 3.2 If P has a triangulation of the form Σ ∗ ∆ for some (n − 1)-simplex Σ
and simplicial complex ∆ then ∆ is combinatorially isomorphic to a triangulation of a

pure (m − n)-dimensional shellable subcomplex of the boundary complex of a polytope of

dimension m − n + 1.

Proof. Let V be the linear (n− 1)-dimensional subspace of RN parallel to the affine span
of Σ and let Q be the corresponding (m − n + 1)-dimensional quotient polytope P/V .
If v is the point which is the image of Σ under the canonical surjection RN → RN/ V
then Q inherits a triangulation of the form v ∗ Γ for some simplicial complex Γ which is
combinatorially isomorphic to ∆ and triangulates a subcomplex of the boundary complex
F(∂Q). If Σ is not contained in the boundary of P then v is an interior point of Q and
Γ triangulates F(∂Q), which is pure and shellable [24, Section 8.2]. Otherwise v lies on
the boundary of Q and Γ triangulates the subcomplex of F(∂Q) consisting of all faces of
Q which do not contain v. This is the complex of faces of Q which are not visible from a
point beyond the hyperplanes supporting exactly those facets of Q which contain v and
hence is pure (m − n)-dimensional and shellable (see Lemma 8.10 and Theorem 8.12 in
[24]). ✷

Lemma 3.3 Suppose that P = conv{v1, v2, . . . , vp}. Let Σ = conv{v1, v2, . . . , vn} and ∆
be the pulling triangulation of F(P )\ {v1, v2, . . . , vn} with respect to (vn+1, . . . , vp). If Σ
is a semispecial (n − 1)-simplex for P and τ = (v1, v2, . . . , vp) then

(i) the pulling triangulation ∆τ of P is combinatorially isomorphic to the simplicial

join Σ ∗ ∆ and

(ii) ∆ is combinatorially isomorphic to a Cohen-Macaulay subcomplex of the boundary

complex of a simplicial polytope of dimension m − n + 1.
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Proof. Part (i) can be proved exactly as part (i) of [1, Lemma 3.4], where Σ is assumed
to be a special simplex for P . Lemma 3.2 implies that ∆ is combinatorially isomorphic
to a triangulation Γ of a pure (m− n)-dimensional shellable subcomplex of the boundary
complex of a convex polytope Q of dimension m − n + 1. Clearly Γ is homeomorphic
to a ball or a sphere and hence Cohen-Macaulay. Let the isomorphism between ∆ and
Γ be induced by the map vi → v′

i for n + 1 ≤ i ≤ p and let Q′ be the simplicial
(m − n + 1)-dimensional polytope obtained from Q by any sequence of pullings starting
with (v′

n+1, . . . , v
′
p). Since ∆ is a pulling triangulation with respect to (vn+1, . . . , vp), Γ is

combinatorially isomorphic to a subcomplex of the boundary complex of Q′. This proves
part (ii). ✷

Let h∗(P ) = (h∗
0, h

∗
1, . . . , h

∗
m) be the h∗-vector of P . Theorem 1.1 is a special case of

the following corollary.

Corollary 3.4 Suppose that P = conv{v1, v2, . . . , vp} and vi ∈ Z
N for 1 ≤ i ≤ p. Let

d = m−n+1 and τ = (v1, v2, . . . , vp). If the pulling triangulation ∆τ of P is unimodular

and Σ = conv{v1, v2, . . . , vn} is a semispecial (n − 1)-simplex for P then h∗
i ≥ h∗

d−i for

0 ≤ i ≤ ⌊d/2⌋,
h∗
⌊d/2⌋ ≥ h∗

⌊d/2⌋+1 ≥ · · · ≥ h∗
d

and h∗
i = 0 for d < i ≤ m. Moreover h∗

d = 0 if Σ is not special.

Proof. Let ∆ denote the pulling triangulation of F(P )\ {v1, v2, . . . , vn} with respect to
(vn+1, . . . , vp). Lemma 2.1 guarantees that h∗(P ) = h(∆τ ). Then part (i) of Lemma 3.3
implies that h(∆τ ) = h(Σ ∗ ∆) = h(∆) and the result follows from part (ii) of the same
lemma and Lemma 2.2. If Σ is not special then ∆ is homeomorphic to a (d−1)-dimensional
ball and hence h∗

d = 0. ✷

Proof of Corollary 1.2. It follows from the case n = 1 of Corollary 3.4 since a singleton
{v1} is always a semispecial 0-dimensional simplex for P . ✷

Observe that if all vertices of the triangulation in the statement of Corollary 1.2 are
vertices of P then {v1} is not special and hence h∗

m = 0. It was proved by F. Santos
(unpublished) and Ohsugi and Hibi [14] that if P is a 0/1 polytope, meaning that its
vertices are 0/1 vectors, defined by the system of inequalities

bi ≤
∑N

j=1 aijxj ≤ bi + εi, 1 ≤ i ≤ q

0 ≤ xj ≤ 1, 1 ≤ j ≤ N

(3)

for some integers aij , bi and εi with εi = 0 or 1 then all pulling triangulations of P are
unimodular. In view of Corollary 1.2 and the remark after its proof we get the following
corollary.

Corollary 3.5 If P is an m-dimensional 0/1 polytope in RN defined by (3) and h∗(P ) =
(h∗

0, h
∗
1, . . . , h

∗
m) then h∗

i ≥ h∗
m−i for 0 ≤ i ≤ ⌊m/2⌋ and h∗

⌊m/2⌋ ≥ h∗
⌊m/2⌋+1 ≥ · · · ≥ h∗

m = 0.
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4 Order polytopes and Eulerian polynomials

Let Ω be a poset (short for partially ordered set) on the ground set [N ] := {1, 2, . . . , N}
(see [17, Chapter 3] for an introduction to the theory of partially ordered sets). We will
denote the partial order of Ω by ≤Ω. Recall that an (order) ideal of Ω is a subset I ⊆ Ω
for which a <Ω b and b ∈ I imply that a ∈ I and that b covers a in Ω if a <Ω b but
a <Ω c <Ω b holds for no c ∈ Ω. Let L(Ω) be the set of linear extensions of Ω, meaning
the set of permutations w = (w1, w2, . . . , wN) of [N ] for which wi <Ω wj implies i < j.
The Ω-Eulerian polynomial is defined as

W (Ω, t) =
∑

w∈L(Ω)

tdes(w)

where
des(w) = # {i ∈ [N − 1] : wi > wi+1}

is the number of descents of w. Let Ω0 be the poset obtained from Ω by adjoining a
minimum element 0̂ = 0. We define the ideal height of Ω to be the largest length e of a
chain I0 ⊂ I1 ⊂ · · · ⊂ Ie of nonempty ideals of Ω0 such that for 1 ≤ i ≤ e and for any
a ∈ Ii−1 the set of elements covering a in Ω is a nonempty subset of Ii. Figure 2 shows
the Hasse diagram of a poset Ω of ideal height 3. Observe that the cardinality of the
shortest maximal chain in Ω in this example is equal to 4. The poset Ω is naturally labeled

if the identity permutation (1, 2, . . . , N) is a linear extension. The following theorem is
the main result of this section.

Figure 2: A poset of ideal height 3 with 8 elements.

Theorem 4.1 Let Ω be a naturally labeled poset on [N ]. If e is the ideal height of Ω,

W (Ω, t) = q0 +q1t+ · · ·+qN tN is the Ω-Eulerian polynomial and d = N −e then qi ≥ qd−i

for 1 ≤ i ≤ ⌊d/2⌋, q⌊d/2⌋ ≥ q⌊d/2⌋+1 ≥ · · · ≥ qd and qi = 0 for d < i ≤ N .

To prove this statement we will apply Theorem 1.1 to the order polytope of Ω. Let
Ω̂ be the poset obtained from Ω0 by adjoining a maximum element 1̂ = N + 1. The
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order polytope [18] of Ω, denoted O(Ω), is the intersection of the hyperplanes x0 = 1 and
xN+1 = 0 in RN+2 with the cone defined by the inequalities xi ≥ xj for i, j ∈ Ω̂ with
i <Ω̂ j. The vertices of O(Ω) are the characteristic vectors of the nonempty ideals of Ω0

[18, Corollary 1.3] so, in particular, O(Ω) is an N -dimensional integer polytope. Moreover
the facets of O(Ω) are defined exactly by the equalities of the form xi = xj when j covers

i in Ω̂ (see [18, Theorem 1.2] for a complete description of the facial structure of O(Ω))
and the coefficients of the Ω-Eulerian polynomial

W (Ω, t) = q0 + q1t + · · ·+ qN tN

are the entries of the h∗-vector (h∗
0, h

∗
1, . . . , h

∗
N) of O(Ω) [17, Section 4.5], that it qi = h∗

i

for all i.

Proof of Theorem 4.1. Let P be the order polytope of Ω. It was shown by Ohsugi and
Hibi [14, Example 1.3 (b)] that all pulling triangulations (with integer vertices) of order
polytopes are unimodular. Moreover it follows easily from the description of the facets of
P that if I0 ⊂ I1 ⊂ · · · ⊂ Ie is a chain of nonempty ideals of Ω0 as in the definition of the
ideal height for Ω then the characteristic vectors of the Ii are the vertices of a semispecial
e-dimensional simplex for P . The result follows from Theorem 1.1. ✷

We close this section with a different characterization of ideal height. For a ∈ Ω0 let Ca

denote the set of sequences (a0, a1, . . . , al) in Ω̂ such that a0 = 0̂, al = a and for 1 ≤ i ≤ l
either ai covers ai−1 in Ω̂ or ai−1 covers ai. For each α = (a0, a1, . . . , al) ∈ Ca let e(α)
denote the number of indices 1 ≤ i ≤ l for which ai covers ai−1 and ai <Ω̂ 1̂ and let e(a)
denote the minimum value of e(α) when α ranges over all sequences in Ca.

Proposition 4.2 The ideal height of Ω is equal to the maximum value of e(a) for a ∈ Ω.

Proof. Let f denote the maximum value of e(a) for a ∈ Ω and e denote the ideal height
of Ω. Let a be any maximal element of Ω, let α = (a0, a1, . . . , al) ∈ Ca and let I0 ⊂ I1 ⊂
· · · ⊂ Ie be a chain of nonempty ideals of Ω0 as in the definition of ideal height. Observe
that (i) a /∈ Ie−1, (ii) if aj ∈ Ω and aj /∈ Ii then aj−1 /∈ Ii−1 and aj−1 ∈ Ii is possible
only when aj covers aj−1 and (iii) if aj = 1̂ then aj−1 /∈ Ie−1. Since a0 ∈ I0 there must be
at least e indices j for which aj covers aj−1 in Ω0. This shows that e(a) ≥ e and hence
f ≥ e.

For the other inequality let Ii denote the set of elements a ∈ Ω0 with e(a) ≤ i for
0 ≤ i ≤ f . Observe that e(0̂) = 0 and that if b covers a in Ω0 then e(a) ≤ e(b) ≤ e(a)+ 1.
It follows that I0 ⊂ I1 ⊂ · · · ⊂ If is a chain of nonempty ideals of Ω0. We will show
that this chain satisfies the condition in the definition of ideal height, whence f ≤ e. Let
1 ≤ i ≤ f and a ∈ Ii−1. Any element b in Ω covering a satisfies e(b) ≤ e(a) + 1 ≤ i and
hence b ∈ Ii. On the other hand if a were a maximal element of Ω and b is any element
of Ω, which we may assume to be maximal, with e(b) = f then the sequence of coverings
(b, 1̂, a) in Ω̂ shows that e(b) = e(a), contradicting the hypothesis that e(a) ≤ i − 1 < f .
Hence a is covered by at least one element of Ω, which is necessarily in Ii. This completes
the proof. ✷
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5 Stable polytopes of perfect graphs

We consider simple (with no loops or multiple edges) graphs G on the finite set of nodes
[N ] := {1, 2, . . . , N}. For W ⊆ [N ] we denote by ρ(W ) the 0/1 vector

∑

i∈W ei ∈ R
N ,

where ei is the ith unit coordinate vector in RN , and call W a stable set for G if no two
elements of W are joined by an edge in G. The stable polytope of G, introduced in [4]
and denoted by P (G), is the convex hull of all vectors ρ(W ), where W is a stable set
for G. Observe that the empty set and all singleton subsets of [N ] are stable and hence
P (G) has dimension N . The chromatic number of G is the least number r of colors that
can be assigned to the vertices of G, one color to each vertex, so that no two adjacent
vertices of G are assigned the same color. The graph G is called complete if any two of
its vertices are connected by an edge and perfect if for any induced subgraph H of G
the chromatic number of H is equal to the number of vertices of the largest complete
subgraph of H . We call G semipure if there exists a positive integer j such that all
maximal complete subgraphs of G have either j−1 or j vertices. Thus if G is perfect and
semipure with chromatic number r then all maximal complete subgraphs of G have either
r−1 or r vertices. The following theorem applies in particular to all bipartite graphs and
all perfect graphs of chromatic number three with no isolated vertices.

Theorem 5.1 If G is a semipure perfect graph with N vertices and chromatic number r
and d = N − r +1 then the h∗-vector (h∗

0, h
∗
1, . . . , h

∗
N) of the stable polytope P (G) satisfies

h∗
i ≥ h∗

d−i for 1 ≤ i ≤ ⌊d/2⌋, h∗
⌊d/2⌋ ≥ h∗

⌊d/2⌋+1 ≥ · · · ≥ h∗
d−1 and h∗

i = 0 for d ≤ i ≤ N .

Proof. It was proved in [14] that all pulling triangulations of stable polytopes of perfect
graphs are unimodular. In view of Theorem 1.1 and the last statement in Corollary 3.4
it suffices to prove that there exists a semispecial (r − 1)-simplex for P (G) with integer
vertices which is not special. Consider a coloring of G with colors 1, 2, . . . , r and for
1 ≤ i ≤ r let Wi be the set of vertices of G colored with i, so that Wi is a stable set for
G. We claim that Σ = conv{ρ(Wi) : 1 ≤ i ≤ r} is such a simplex for P (G). Since G is
perfect, by [4, Theorem 3.1] a facet of P (G) is defined by a linear equality of the form
xi = 0 or

∑

j∈U xj = 1 for some vertex set U of a maximal complete subgraph of G. A
facet of the first form contains exactly r − 1 of the points ρ(Wi) since the sets Wi form a
partition of [N ]. Since G is also semipure, a facet of the second form contains either r−1
or r points ρ(Wi), where the second case occurs, and the claim follows from Remark 3.1.
✷

6 Affine semigroup rings and ideals

Let P be an m-dimensional integer polytope in RN and K be a field. We denote by RP

the subalgebra of the algebra K[x1, . . . , xN , x−1
1 , . . . , x−1

N , t] of Laurant polynomials over K
generated by the monomials xαtr for positive integers r and α ∈ ZN such that α/r ∈ P .
The algebra RP can be graded by letting xαtr have degree r. With this grading RP is
a semistandard graded Cohen-Macaulay normal domain, called the semigroup ring of P ,
whose Hilbert series is the Ehrhart series (1) of P . See [3, Chapter 6] for background on
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semigroup rings. Let P̃ = {(1, x) : x ∈ P} be the lift of P in the hyperplane x0 = 1 in
RN+1 and denote by CP the cone in RN+1 generated by P̃ and by EP the semigroup of
integer points in CP . Let L be the linear span of CP in RN+1 and A be a set of integer
linear forms in RN+1, one for each facet of P , defining the cone CP as the set of points
x ∈ L satisfying g(x) ≥ 0 for all g ∈ A. For G ⊆ A let EG be the semigroup of elements α
of EP satisfying g(α) > 0 for g ∈ G and IG be the ideal of RP generated by the monomials
xα with α ∈ EG (observe that the variable t has been replaced by x0). We say that EG

has a unique minimal element β if β +EP = EG or, equivalently, if IG is generated by the
monomial xβ as an ideal of RP . The proof of the following lemma is similar to that of [1,
Corollary 4.1].

Lemma 6.1 If G ⊆ A and v1 + v2 + · · · + vn is the unique minimal element of EG for

some integer points v1, v2, . . . , vn in P̃ then {v1, v2, . . . , vn} is the vertex set of a semispecial

(n − 1)-simplex for P̃ .

Proof. Let β = v1 + v2 + · · · + vn and observe that v1, v2, . . . , vn are necessarily distinct.
Let F be a facet of P̃ with corresponding linear form f ∈ A. If f is not in G then there
exists a v ∈ EG with f(v) = 0 and, by the minimality of β, f(β) = 0. Hence f(vi) = 0,
meaning that vi ∈ F , for all 1 ≤ i ≤ n. Suppose that f ∈ G, so that f(β) > 0. We
need to show that at most one of v1, v2, . . . , vn satisfies f(vi) > 0. Clearly at least one
of them has this property. Assume that at least two of v1, v2, . . . , vn satisfy f(vi) > 0,
say vj is one of them, and let f(β) = b and f(vj) = c, so that 1 ≤ c < b. Since F
is a facet of P̃ there exists a point x in the affine span of P̃ , which we may assume to
have rational coordinates, satisfying f(x) < 0 and g(x) > 0 for all g ∈ A other than f .
By replacing x with a suitable positive integer multiple we find an integer point α in L
satisfying f(α) < 0 and g(α) > 0 for all g ∈ A other than f . Letting a = f(α), we may
choose a nonnegative integer t so that 0 < a + b + tc < b. Then γ = α + β + tvj is in EG

and satisfies f(γ) < f(β), which contradicts the minimality of β. ✷

Recall that RP is standard if it is generated by its homogeneous elements of degree
one or, equivalently, if EP is generated as a semigroup by the integer points in P̃ . Clearly
this holds if P has a unimodular triangulation. In the case G = A assumption (ii) in
the following corollary is equivalent to the statement that the ring RP is Gorenstein [3,
Corollary 6.3.8].

Corollary 6.2 If

(i) all pulling triangulations of P with integer vertices are unimodular and

(ii) IG is generated by one element as an ideal of RP

then the conclusion of Corollary 3.4 holds where, in the statement of the corollary, n is

the x0-coordinate of the unique minimal element of EG and the equality h∗
d = 0 holds if

G  A.
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Proof. Let β be the unique minimal element of EG, whose existence is guaranteed by (ii).
Assumption (i) implies that RP is standard and hence β = v1 + v2 + · · · + vn for some
integer points v1, v2, . . . , vn in P̃ , which are the vertices of a semispecial (n−1)-simplex for
P̃ by Lemma 6.1. Because of (i) any sequence (v1, v2, . . . , vp) of integer points containing
the vertices of P̃ satisfies the assumptions of Corollary 3.4. The result follows from this
corollary observing that β has x0-coordinate equal to n. ✷
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