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Abstract

We show that the Ehrhart h-vector of an integer Gorenstein polytope with a regular unimodular triangu-
lation satisfies McMullen’s g-theorem; in particular, it is unimodal. This result generalizes a recent theorem
of Athanasiadis (conjectured by Stanley) for compressed polytopes. It is derived from a more general theo-
rem on Gorenstein affine normal monoids M: one can factor K[M] (K a field) by a “long” regular sequence
in such a way that the quotient is still a normal affine monoid algebra. This technique reduces all questions
about the Ehrhart h-vector of P to the Ehrhart h-vector of a Gorenstein polytope Q with exactly one interior
lattice point, provided each lattice point in a multiple cP , c ∈ N, can be written as the sum of c lattice points
in P . (Up to a translation, the polytope Q belongs to the class of reflexive polytopes considered in con-
nection with mirror symmetry.) If P has a regular unimodular triangulation, then it follows readily that the
Ehrhart h-vector of P coincides with the combinatorial h-vector of the boundary complex of a simplicial
polytope, and the g-theorem applies.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Lattice polytope; h-Vector; Ehrhart function; Gorenstein ring; Affine monoid; Unimodality; Triangulation;
Initial ideal

1. Introduction

Let P ⊆ R
n−1 be an integral convex polytope and consider the Ehrhart function given

by E(P,m) = |{z ∈ Z
n−1: z

m
∈ P }| for m > 0 and E(P,0) = 1. It is well known that

E(P,m) is a polynomial in m of degree dim(P ) and the corresponding Ehrhart series EP (t) =∑
m∈N

E(P,m)tm is a rational function

EP (t) = h0 + h1t + · · · + hdtd

(1 − t)dim(P )+1
.
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We call h(P ) = (h0, . . . , hd) (where hd �= 0) the (Ehrhart) h-vector of P . This vector was inten-
sively studied in the last decades (e.g. see [5] or [12]). In particular, the following questions are
of interest:

(i) For which polytopes is h(P ) symmetric, i.e. hi = hd−i for all i?
(ii) For which polytopes is h(P ) unimodal, i.e. there exists a natural number t such that h0 �

h1 � · · · � ht � ht+1 � · · · � hd?

Let us sketch Stanley’s approach to Ehrhart functions via commutative algebra. The results
we are referring to can be found in [5] or [12]. The Ehrhart function of P can be interpreted as
the Hilbert function of an affine monoid algebra K[E(P )] (with coefficients from an arbitrary
field K) and where the monoid E(P ) is defined as follows: one considers the cone C(P ) gener-
ated by P × {1} in R

n, and sets E(P ) = C(P ) ∩ Z
n. The monomial in K[E(P )] corresponding

to the lattice point x is denoted by Xx where X represents a family of n indeterminates. The
algebra K[E(P )] is graded in such a way that the degree of Xx (or of x) is the last coordinate
of x, and so the Hilbert function of K[E(P )] coincides with the Ehrhart function of P . Since P

is integral, K[E(P )] is a finite module over its subalgebra generated by the degree 1 elements.
However, in general K[E(P )] is not generated by its degree 1 elements. If it is, then we say

that P is integrally closed, and simplify our notation by setting K[P ] = K[E(P )]. Evidently P is
integrally closed if and only if E(P ) is generated by the integer points in P ×{1}, or, equivalently,
every integer point in cP , c ∈ N, can be written as the sum of c integer points in P . Our choice
of terminology coincides with that in [3]. A unimodular triangulation of P is a triangulation
into simplices conv(s0, . . . , sr ) such that s0, . . . , sr ∈ Z

n−1 and s1 − s0, . . . , sr − s0 generate a
direct summand of Z

n−1. If dimP � 3, P need not have a unimodular triangulation. However, if
a unimodular triangulation of P exists, then P is integrally closed; this follows easily from the
fact that a unimodular simplex is integrally closed.

The monoid E(P ) is always normal: an element x of the subgroup of Z
n generated by

E(P ) such that kx ∈ E(P ) for some k ∈ N, k � 1, belongs itself to E(P ). By a theorem of
Hochster, K[E(P )] is a Cohen–Macaulay algebra. It follows that hi � 0 for all i = 1, . . . , d . Us-
ing Stanley’s Hilbert series characterization of the Gorenstein rings among the Cohen–Macaulay
domains, one sees that h(P ) is symmetric if and only if K[E(P )] is a Gorenstein ring. In terms
of the monoid E(P ), the Gorenstein property has a simple interpretation: it holds if and only if
E(P ) ∩ intC(P ) is of the form y + E(P ) for some y ∈ E(P ). This follows from the description
of the canonical modules of normal affine monoid algebras by Danilov and Stanley.

It was conjectured by Stanley that question (ii) has a positive answer for the Birkhoff poly-
tope P , whose points are the real doubly stochastic n × n matrices and for which E(P ) encodes
the magic squares. This long standing conjecture was recently proved by Athanasiadis [1].
(That P is integrally closed and K[P ] is Gorenstein in this case is easy to see.)

Questions (i) and (ii) can be asked similarly for the combinatorial h-vector h(Δ(Q)) of the
boundary complex Δ(Q) of a simplicial polytope Q (derived from the f -vector of Δ(Q)), and
both have a positive answer. The Dehn–Sommerville equations express the symmetry, while
unimodality follows from McMullen’s famous g-theorem (proved by Stanley [11]): the vector
(1, h1 − h0, . . . , h�d/2� − h�d/2�−1) is an M-sequence, i.e. it represents the Hilbert function of a
graded artinian K-algebra that is generated by its degree 1 elements. In particular, its entries are
nonnegative, and so the h-vector is unimodal.

Athanasiadis proved Stanley’s conjecture for the Birkhoff polytope P by showing that there
exists a simplicial polytope P ′ with h(Δ(P ′)) = h(P ). More generally, his theorem applies to
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compressed polytopes, i.e. integer polytopes all of whose pulling triangulations are unimodular.
(The Birkhoff polytope is compressed [10,12].) In this note we generalize Athanasiadis’ theorem
as follows:

Theorem 1. Let P be an integral polytope such that P has a regular unimodular triangula-
tion and K[P ] is Gorenstein. Then the h-vector of P satisfies the inequalities 1 = h0 � h1 �
· · · � h�d/2�. More precisely, the vector (1, h1 − h0, . . . , h�d/2� − h�d/2�−1) is an M-sequence.

The regular triangulations are obtained as subdivisions of P into the domains of linearity of
a piecewise affine, concave and continuous function on P , provided this subdivision is really a
triangulation. They can also be defined by weight vectors (wx : x ∈ P ∩ Z

n−1) in the following
way (with the same proviso): one takes the convex hull Q of the halflines {(x, z): x ∈ P ∩ Z

n−1,
z � wx} ⊆ R

n and projects the “bottom” of Q onto P . (See [3] or [14] for a discussion of regular
subdivisions and triangulations.)

Our strategy of proof (whose last step is Lemma 9 in Section 3) is to consider the algebra
K[M] of a normal affine monoid M for which K[M] is Gorenstein. (An affine monoid is a
finitely generated submonoid of a group Z

n.) We relate the Hilbert series of K[M] to that of a
simpler affine monoid algebra K[N ] which we get by factoring out a suitable regular sequence
of K[M]. In the situation of an algebra K[P ] for an integrally closed polytope P , the regular
sequence is of degree 1, and we obtain an integrally closed and, up to a translation, reflexive
polytope such that h(P ) = h(Q). (However, note that Mustaţǎ and Payne [9] have given an
example of a reflexive polytope which is not integrally closed and has a nonunimodal h-vector.)
If P has even a regular unimodular triangulation, we can find a simplicial polytope P ′ such that
the combinatorial h-vector h(Δ(P ′)) of the boundary complex of P ′ coincides with h(P ). Then
it only remains to apply the g-theorem to P ′.

Without the condition on regularity of the triangulation we can only find a simplicial sphere S

such that h(P ) = h(S). If the g-theorem can be generalized from polytopes to simplicial spheres,
then our theorem holds for all polytopes with a unimodular triangulation.

As a side effect we show that the toric ideal of a Gorenstein polytope with a square-free initial
ideal has also a Gorenstein square-free initial ideal.

For notions and results related to commutative algebra we refer to Bruns–Herzog [5] and
Stanley [12]. For details on convex geometry we refer to the books of Bruns and Gubeladze [3]
(in preparation) and Ziegler [15].

2. Gorenstein monoid algebras

We fix a field K for the rest of the paper. Let C be a pointed rational cone in R
n, i.e. a cone

generated by finitely many integral vectors that does not contain a full line. Such a cone is the
irredundant intersection cn(M) = ⋂s

i=1 H+
σi

of rational half-spaces. Here σi is a linear form with
rational coefficients and H+

σi
= {x: σi(x) � 0} is the positive closed halfspace associated with σi .

The hyperplane on which σi vanishes is denoted by Hσi
. Note that for H+

σi
the form σi is unique

up to a nonnegative factor. There is a unique multiple with coprime integral coefficients, and we
call this choice of σi , i = 1, . . . , s, the support forms of C. The extreme integral generators of C

are the shortest integer vectors in the edges of C.
Let M ⊆ Z

n be a positive affine monoid, i.e. an affine monoid whose only invertible element
is 0. Then the cone cn(M) generated by M is pointed and the map

σ :M → Z
s , a 
→ (

σ1(a), . . . , σs(a)
)
,
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is injective. It is called the standard embedding of M . It can be extended to the subgroup gp(M)

of Z
n generated by M , and we denote the extension also by σ .

Lemma 2. Let M ⊆ Z
n be a positive normal affine monoid with gp(M) = Z

n and R = K[M].
Let σ1, . . . , σs be the support forms and σ : Zn → Z

s the standard embedding of M . Moreover,
let int(M) = M ∩ int(cn(M)). Then:

(i) The Z
n-graded canonical module ωR is the ideal of R generated by all Xz for z ∈ int(M).

(ii) R is Gorenstein if and only if there exists a (necessarily unique) y ∈ int(M) such that
int(M) = y + M , and therefore ωR = (Xy).

(iii) R is Gorenstein if and only if there exists a (necessarily unique) y ∈ int(M) such that σ(y) =
(1, . . . ,1).

Proof. (i) and (ii) are well-known results of Stanley and Danilov. A proof can be found in [5].
(iii) Assume that R is Gorenstein. By (ii) there exists y ∈ int(M) such that ωR = (Xy). We

have that σi(y) > 0 for i = 1, . . . , s since y ∈ int(M). Fix i and choose z ∈ int(M) with σi(z) = 1.
Such an element z can be found for the following reason. There exists an element z′ ∈ M such
that σi(z

′) = 0 and σj (z
′) > 0 for j �= i. Furthermore there exists z′′ ∈ Z

n such that σi(z
′′) = 1

by the choice of σi . For r � 0 the element z = rz′ + z′′ ∈ int(M) will do the job.
Now z−y ∈ M and thus σi(z−y) � 0. Hence σi(y) � 1 and therefore σi(y) = 1. This shows

that σ(y) = (1, . . . ,1).
Conversely, if there exists y ∈ int(M) such that σ(y) = (1, . . . ,1) then it is easy to see that

int(M) = y + M .
In each case the uniqueness of y follows from the positivity of M . �
Let M ⊆ Z

n be a positive affine monoid. It is well known that M has only finitely many
irreducible elements which form the unique minimal system of generators of M . We call the
collection of these elements the Hilbert basis of M , denoted Hilb(M). The following is our main
result for monoid algebras.

Theorem 3. Let M ⊆ Z
n be a positive normal affine monoid and assume that R = K[M] is

Gorenstein. Let y1, . . . , ym ∈ Hilb(M) such that ωR = (Xy1+···+ym) is the Z
n-graded canonical

module of R. Then:

(i) Xy1 − Xy2, . . . ,Xym−1 − Xym is a regular sequence for R.
(ii) S = R/(Xy1 − Xy2, . . . ,Xym−1 − Xym) is isomorphic to a Gorenstein normal affine monoid

algebra K[N ].
(iii) The canonical module ωS is generated by the residue class of Xy1 .

The reader should note that in general the elements y1, . . . , ym are not uniquely determined;
in fact, even their number m may not be unique. It is so, however, in the situation of Theorem 1.

We isolate the geometric parts of the proof in two lemmas for which the following notation
is useful: for a point x in a rational cone C with support forms σ1, . . . , σs we denote by σ>(x)

the set of indices i such that σi(x) > 0. Let Fi denote the facet of C on which σi vanishes. Then
i ∈ σ>(x) if and only if x /∈ Fi .
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Fig. 1. The construction of Γ .

Recall that a rational cone D ⊆ R
n is called unimodular if it is simplicial (i.e. spanned by a

linearly independent set of vectors) and its extreme integral generators form a subset of a basis
of Z

n. A unimodular triangulation of a rational cone is a triangulation into unimodular subcones.

Lemma 4. Let C ⊆ R
n be a pointed rational cone with support forms σ1, . . . , σs and let

y1, . . . , ym ∈ C ∩ Z
n such that the sets σ>(yi), i = 1, . . . ,m, form a decomposition of {1, . . . , s}

into pairwise disjoint subsets. Furthermore let Γ be the subfan of the face lattice of C consisting
of the faces

Fj1,...,jm =
m⋂

i=1

Fji
, ji ∈ σ>(yi), i = 1, . . . ,m,

of C and all their subfaces. Finally, let Σ be a triangulation of Γ into rational subcones.

(i) Then

Δ = Σ ∪
m⋃

j=1

{
cn(G,yi1, . . . , yij ): G ∈ Σ, 1 � i1 < · · · < ij � m

}

is a triangulation of C.
(ii) If σ(y1 + · · · + ym) = (1, . . . ,1) and Σ is unimodular, then Δ is unimodular.

We illustrate the construction of Γ by Fig. 1 for the case in which the polytope P is the join P

of two line segments of length 2 (suitably embedded), y1 and y2 are the two midpoints (the only
possible choice in this case), and C = cn(E(P )). The bold edges then constitute a “cross-section”
of Γ .

Proof of Lemma 4. We may assume that C has dimension n. Otherwise we replace R
n by RC

and Z
n by RC ∩ Z

n.
Let us first show that the cones of Δ are simplicial. It is enough to consider the maximal

elements of Δ. These have the form cn(G,y1, . . . , ym) for a maximal element G of Σ . Let
v1, . . . , vr be the extreme generators of G. Since G is simplicial, v1, . . . , vr are linearly indepen-
dent. Assume that

0 =
m∑

i=1

λiyi +
r∑

l=1

μlvl for λk,μl ∈ R.

Applying σ we get 0 = ∑m
k=1 λkσ (yk) + ∑r

l=1 μlσ (vl). By the definition of Γ we have
G ⊆ Fj1,...,jm for suitable j1, . . . , jm. The hypothesis on y1, . . . , ym implies that σji

(yk) = 0
for k �= i, and σji

(vk) = 0 for k = 1, . . . , r . It follows that λi = 0 for i = 1, . . . ,m, and the linear
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independence of v1, . . . , vr implies μl = 0 for l = 1, . . . , r as well. Being generated by a linearly
independent subset of R

n, cn(G,y1, . . . , ym) is simplicial.
Next we show that Δ constitutes a cover of C. Let x ∈ C and set

λi = min

{
σj (x)

σj (yi)
: j ∈ σ>(yi)

}
for i = 1, . . . ,m.

Consider

x′ = x −
m∑

i=1

λiyi . (1)

First, σi(x
′) � 0 for i = 1, . . . , s, thus x′ ∈ C. (Here we need the hypothesis on the sets σ>(yi)

in its full extent!) Second, note that there exists at least one index ji for each i = 1, . . . ,m such
that x ∈ Fji

, but yi /∈ Fji
. It follows that x′ lies in the face Fj1,...,jm of C, and so it belongs to one

of the simplicial cones G of Σ . Clearly x ∈ cn(G,y1, . . . , ym).
By definition of Δ, all faces of a cone in Δ belong to Δ, too, and it remains to show that the

intersection of two members of Δ is in Δ. Let Y1 and Y2 be subsets of {y1, . . . , ym} and G1,G2
elements of Σ . It is clearly sufficient that

cn(G1, Y1) ∩ cn(G2, Y2) = cn(G1 ∩ G2, Y1 ∩ Y2).

Suppose that x lies in the intersection of the cones. The crucial point is that both Y1 and Y2
contain the set Y ′ = {yi : λi > 0 in (1)}: we have

Y ′ = {
yi : σ>(yi) ⊆ σ>(x)

}
,

and so Y ′ ⊆ Y1, Y2. We conclude that x′ ∈ cn(G1, Y1) ∩ cn(G2, Y2) as well. But since x′ belongs
to one of the faces in Γ , one has x′ ∈ G1 ∩ G2 and x ∈ cn(G1 ∩ G2, Y1 ∩ Y2). The converse
inclusion is obvious.

It remains to show that the cones in Δ are unimodular under the hypothesis of (ii). The uni-
modularity of Σ asserts that the extreme integral generators of G are part of a basis of Z

n for
every cone C of Σ . By definition, G is contained in one of the submodules L = ⋂m

i=1 Hσji
∩ Z

n

of Z
n, which clearly is a direct summand of Z

n of rank � n − m. It is therefore enough that the
residue classes of y1, . . . , ym form a basis of Z

n/L (and, hence, rankL = n − m). But this is not
hard to see: first, the linear forms σji

vanish on L, and so induce linear forms on Z
n/L, and,

second, the matrix (σji
(yk)) is the unit matrix. �

Lemma 5. With the notation and hypothesis of Lemma 4(ii) let, in addition, V = R
n/(y1 − y2,

. . . , ym−1 − ym), and π : Rn → V denote the natural projection. Then the cones cn(π(G)) and
cn(π(G),π(y1)), G ∈ Σ , form a triangulation Δ′ of the cone π(C) ⊆ V . Moreover, Δ′ is uni-
modular (with respect to the lattice U = π(Zn)).

Proof. Evidently, the collection Δ′ of the images (i) π(cn(G)), G ∈ Σ , and (ii) π(cn(G,y1)),
G ∈ Σ , covers π(C) since all the images π(yi) coincide with π(y1). Therefore each of the cones
in the triangulation Δ of C is mapped onto one of the cones in (i) or (ii).

We have seen in the proof of Lemma 4 that y1, . . . , ym form part of a basis of Z
n. The same

holds for y1 − y2, . . . , ym−1 − ym. This implies Z
n ∩ Kerπ = (y1 − y2, . . . , ym−1 − ym) so that

π(Zn) and Z
n/(y1 − y2, . . . , ym−1 − ym) are naturally isomorphic.

Moreover, each cone in Δ′ is generated by part of a basis of U , namely the residue classes of
the extreme integral generators v1, . . . , vr of G in case (i) and, in addition, π(y1) in case (ii). In
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fact, in the proof of Lemma 4 we have shown that v1, . . . , vr , y1, . . . , ym are part of a basis of Z
n.

The same holds for v1, . . . , vr , y1 − y2, . . . , ym−1 − ym,ym, and we project onto a submodule
generated by the subsystem y1 − y2, . . . , ym−1 − ym.

The lemma follows once we have proved that π maps the union C′ of the cones cn(G) and
cn(G,y1) bijectively onto π(C). The surjectivity has already been shown above.

Choose x and x′ in C′ with π(x) = π(x′). Then x − x′ is a linear combination of the differ-
ences yi −yi+1. Therefore all the linear forms σj1 +· · ·+σjm with ji ∈ σ>(yi), i = 1, . . . ,m van-
ish on x − x′. There exist k2, . . . , km and l2, . . . , lm with ki, li ∈ σ>(yi) and σki

(x) = σli (x
′) = 0,

i = 2, . . . ,m. Applying both σj1 + σk2 + · · · + σkm and σj1 + σl2 + · · · + σlm to x − x′, one
concludes that σj1(x − x′) must be nonnegative as well as nonpositive for j1 ∈ σ>(y1). So
σj1(x − x′) = 0. Now the indices in σ>(y1) are out of the way, and continuing in the same
manner for y2, . . . , ym one concludes that σk(x − x′) = 0 for all k. But then x − x′ = 0, because
C is pointed. �
Proof of Theorem 3. We may assume that gp(M) = Z

n. Since M is normal in gp(M) = Z
n,

there exists a unimodular triangulation of cn(M) such that each cone in this triangulation is a
unimodular simplicial cone generated by elements of M . (See [3, Section 2.D] for a proof of this
well-known result.) Restricting this triangulation to Γ we obtain a unimodular triangulation Σ

of Γ .
In view of Lemma 2, the cone C = cn(M) and the elements y1, . . . , ym satisfy the hypothe-

sis of Lemma 4(ii). Therefore the triangulation Δ of Lemma 4(i) is unimodular, and Lemma 5
provides an induced unimodular triangulation of π(C) where π : Rn → V = R

n/(y1 − y2,

. . . , ym−1 − ym) is the natural projection and the lattice of reference is U = π(Zn).
Let N = π(M). Since N generates π(C) and C has a unimodular triangulation by elements

of N , it follows easily that N = U ∩ π(C). Therefore N is normal.
As an auxiliary tool we introduce a positive grading on R. Let ki = |σ>(yi)|, and set

deg
(
Xa

) =
(

k2 · · ·km

∑
i∈σ>(y1)

σi(a)

)
+ · · · +

(
k1 · · ·km−1

∑
i∈σ>(ym)

σi(a)

)

for a ∈ Z
n. The restriction of deg to gp(M) is nonnegative, and for a ∈ gp(M) one has deg(a) = 0

if and only if a = 0. It is obvious that deg extends to a positive grading of the ring R. Moreover,
all preimages of an element of N have the same degree, so that we have an induced grading on
K[N ]. Finally, the elements Xyi −Xyi+1 are all homogeneous of degree k1 · · ·km. Therefore, the
residue class ring

S = R/
(
Xy1 − Xy2, . . . ,Xym−1 − Xym

)
is graded by deg, too.

We want to show that Xy1 − Xy2, . . . ,Xym−1 − Xym is a regular R-sequence. First we prove
that Xy1, . . . ,Xym is such a sequence. This is most easily seen via the standard embedding
σ :R → K[Zs+] induced by the standard embedding σ :M → Z

s . Since K[Zs+] is a polyno-
mial ring in s variables and since the sets σ>(yi) are disjoint, the monomials σ(Xyi ) “live” in
pairwise disjoint sets of variables. So they form a K[Zs+]-sequence. Observe that K[M] is a di-
rect summand of K[Zs+] (as a K[M]-module) via σ (see [3, Section 4.D]). Thus Xy1, . . . ,Xym

is indeed a regular sequence on K[M].
Since(

Xy1 − Xy2, . . . ,Xym−1 − Xym,Xym
) = (

Xy1, . . . ,Xym
)
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it is not hard to show that Xy1 − Xy2, . . . ,Xym−1 − Xym also form a regular sequence. In fact, all
the ideals Ik−1 = (Xy1 −Xy2, . . . ,Xyk−1 −Xyk ) have height k − 1. Since R is Cohen–Macaulay,
these ideals are unmixed [5, 2.1.6], and the next element cannot be a zero-divisor modulo Ik−1.

Evidently the ideal (Xy1 − Xy2, . . . ,Xym−1 − Xym) is contained in the kernel of the natural
epimorphism R → K[N ], and in order to show that these two ideals coincide, it is enough that
the rings S and K[N ] have the same Hilbert series with respect to deg.

Recall that the maximal cones in the triangulation Δ of cn(M) and, therefore, all their inter-
sections contain y1, . . . , ym. If C1, . . . ,Ct are these maximal cones, then we see via inclusion–
exclusion that

HR(t) =
∑

1�i�t

∑
a∈gp(M)∩Ci

tdeg(Xa) −
∑

1�i<j�t

∑
a∈gp(M)∩Ci∩Cj

tdeg(Xa) ± · · · .

Let D1, . . . ,Dt be the images of C1, . . . ,Ct with respect to π . Then

HK[N ](t) =
∑

1�i�t

∑
a∈gp(N)∩Di

tdeg(Xa) −
∑

1�i<j�t

∑
a∈gp(M)∩Di∩Dj

tdeg(Xa) ± · · · .

A comparison of the elements in the unimodular simplicial cones Ci and Di yields

HK[N ](t) = (
1 − tk1···km

)m−1
HR(t).

But the right-hand side of the latter equation is exactly the Hilbert series of S, because Xy1 −Xy2,

. . . ,Xym−1 − Xym is a regular sequence of R, and each element has degree k1 · · · km. Hence
HS(t) = HK[N ](t) and therefore S ∼= K[N ]. Since S is clearly a Gorenstein ring, its isomorphic
copy K[N ] is Gorenstein, too.

It remains to compute the multi-graded canonical module of S ∼= K[N ]. Since K[N ] is Goren-
stein, we have to determine the unique lattice point q in int(N) such that int(N) = q +N because
then ωK[N ] = (Xq). By construction, q must have degree k1 · · ·km, and the residue class of y1 in
U is an interior point of cn(N) of that degree. This concludes the proof. �
Remark 6. The simplicial cone cn(y1, . . . , ym) is the core of the triangulation Δ in the sense of
[13] where related constructions have been discussed. We are grateful to V. Batyrev for bringing
this paper to our attention.

3. Gorenstein polytopes

Let P ⊆ R
n−1. We set E(P,m) = |{z ∈ Z

n−1: z
m

∈ P }| and E(P,0) = 1. In analogy to the
rational function EP (t) we define

Eint(P )(t) =
∑
m∈N

E
(
int(P ),m

)
tm and E∂(P )(t) =

∑
m∈N

E
(
∂(P ),m

)
tm.

Observe that E∂(P )(t) = EP (t) − Eint(P )(t). In our situation we have that EP (t) = HR(t)

where R = K[E(P )] and Eint(P )(t) = HωR
(t). Thus these series are rational with denominator

(1 − t)dim(P )+1. Moreover, E∂(P )(t) = EP (t) − Eint(P )(t) = HR/ωR
(t) is rational with denomi-

nator (1 − t)dim(P ). (This follows from the fact that R/ωR has Krull dimension equal to dimP .)
So it makes sense to consider the h-vectors of these series which we denote by h(int(P )) and
h(∂(P )). In the following we present variations and corollaries of Theorem 3.
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Corollary 7. Let P be an integrally closed polytope such that K[P ] is Gorenstein. Then there
exists a Gorenstein integrally closed polytope Q such that int(Q) contains a unique lattice point
and

h(P ) = h(Q) = h
(
∂(Q)

)
.

Proof. Recall that R = K[P ] is the affine monoid ring generated by the positive normal affine
monoid M = E(P ) = C ∩ Z

n where C = cn((p,1): p ∈ P). Observe that R is Z-graded with
respect to the exponent of the last indeterminate of a monomial, and we will use only this grading
for the rest of the proof. All irreducible elements of M have degree 1, because P is integrally
closed. Since R is Gorenstein, there exists a unique lattice point y ∈ M such that int(M) = y+M .
Choosing irreducible elements y1, . . . , ym ∈ M such that y = ∑m

i=1 yi we are in the situation to
apply Theorem 3.

In the proof of the theorem we have constructed the lattice U = gp(M)/(yi − yi+1: i = 1,

. . . ,m − 1) and the normal affine lattice monoid N ⊆ U such that K[N ] is Gorenstein. The
monoid N is also homogeneous with respect to the grading induced by that of M and generated
by its degree 1 elements. Thus it is polytopal by [4, Proposition 1.1.3], and K[N ] = K[Q] for
the polytope Q spanned by the degree 1 elements of N . It has also been shown that the canonical
module of K[Q] is generated by a degree 1 element, the residue class of Xy1 , which we denote
by Xp . Thus Q can have only one interior lattice point, namely p. The h-polynomial of K[P ]
and the one of K[Q] coincide since K[Q] ∼= K[P ]/(Xyi − Xyi+1, i = 1, . . . ,m − 1) and Xy1 −
Xy2, . . . ,Xym−1 − Xym is a regular sequence homogeneous of degree 1.

It follows from

E∂(Q)(t) = EQ(t) − Eint(Q)(t) = HK[Q](t) − HωK[Q](t) = HK[Q](t) − t · HK[Q](t)

that h(Q) = h(∂(Q)). For the last equality we have used the fact that ωK[Q] = (Xp) ∼=
K[Q](−1) with respect to the considered grading. This concludes the proof. �

Up to parallel translation, the Gorenstein polytopes with an interior lattice point are exactly
the reflexive polytopes used by Batyrev in the theory of mirror symmetry; see [2]. Therefore
the previous corollary reduces all questions about the h-vector of integrally closed Gorenstein
polytopes to integrally closed reflexive polytopes. However, as shown by Mustaţǎ and Payne [9],
there exist reflexive polytopes that are not integrally closed and whose h-vector is not unimodal.

If S is a simplicial sphere (or even the boundary of a simplicial polytope), then we can speak
of its combinatorial h-vector (which one can read as the h-vector of the Ehrhart series of the
geometric realization of S in the boundary of a suitable unit simplex).

Corollary 8. Let P be an integer polytope such that K[P ] is Gorenstein.

(i) If P has a unimodular triangulation, then there exists a simplicial sphere S such that h(P ) =
h(S).

(ii) If P has a regular unimodular triangulation, then there exists a simplicial polytope P ′ such
that h(P ) = h(Δ(P ′)).

Proof. Polytopes with a unimodular triangulation are integrally closed. So we can proceed as
in the proof of Corollary 7 and use the same notation. The only change is that we start with
the given (regular) unimodular triangulation Ξ of P . It induces a unimodular triangulation of
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cn((p,1): p ∈ P) from which we derive the triangulation Δ of cn((p,1): p ∈ P) as in the proof
of Theorem 3. Thus the simplicial cones in Δ have generators of degree 1, and so it induces a
unimodular triangulation Δ1 of P . The restriction of Γ to P is denoted by Γ1: the faces in Γ1

are the intersections of the faces of Γ with P . Then Γ1 is a subcomplex of ∂P , and Ξ |Γ1 is a
subcomplex of Δ1. More precisely, Δ1 = (Ξ |Γ1) ∗ δ where δ is the simplex generated by the
lattice points in P representing the irreducible elements y1, . . . , ym ∈ E(P ) in Theorem 3. For
simplicity we denote the lattice points also by y1, . . . , ym.

With the notation of the proof of Theorem 3, Δ induces a unimodular triangulation Δ′ of
cn(N) with generators of degree 1 and thus a unimodular triangulation Δ′

1 of the (integrally
closed) integer polytope Q.

Moreover, K[Q] is Gorenstein, h(P ) = h(Q) = h(∂(Q)) and int(Q) contains a unique lattice
point p. For (i) we simply choose S = ∂Q with triangulation Δ′

1|∂Q.
For (ii) we first show that the triangulation Δ1 is regular since this fact will be needed for

an application to initial ideals. For the same reason we use Sturmfels’ correspondence between
monomial initial ideals and regular triangulations of P [14, Chapter 8]. Since Ξ is a regular
unimodular triangulation of P , there exists a weight vector w = (wx : x ∈ P ∩ Z

n−1) such that
(i) Ξ is the regular subdivision of P induced by w, and (ii) the initial ideal inw(IP ) of the
toric ideal IP is the Stanley–Reisner ideal of Ξ (as an abstract simplicial complex). By adding
constants to the weights and scaling them simultaneously we can assume

1 � wx < 1 + 1

n
for all x ∈ P ∩ Z

n−1.

The toric ideal IP lives in the polynomial ring T = K[Yx : x ∈ P ∩ Z
n−1]. It is just the kernel of

the natural epimorphism φ :T → K[P ], sending Yx to the monomial X(x,1). It is generated by
binomials that are homogeneous with respect to the standard grading on T .

We define a new weight vector w′ on P ∩Z
n−1 by keeping the weight wx for x /∈ {y1, . . . , ym}

and setting w′
y = 0 for y1, . . . , ym.

Let J be the Stanley–Reisner ideal of Δ1. It is enough to show that J is contained in the
initial ideal inw′(IP ): first, J ⊆ inw′(IP ) implies J = inw′(IP ) since both residue class rings
T/J and T/ inw′(IP ) have the same Hilbert function, namely E(P,−) (we use the unimodularity
of Δ1). Second, the equality J = inw′(IP ) implies that the regular subdivision of P induced by
the weight vector w′ is exactly Δ1.

Let M ⊆ P ∩ Z
n−1 and denote the product of the indeterminates Yx , x ∈ M , by YM . Then

the ideal J is generated by all monomials YM such that conv(M) is not a face of Δ1 and is
minimal with respect to this property. In particular, YM has at most n + 1 factors (for reasons of
dimension). The crucial point is that no such M can contain a point y ∈ P \ |Γ1|, as follows from
the construction of Δ1.

Suppose first that δ = conv(M) is contained in one of the faces belonging to Γ1. Then δ is a
nonface of Ξ and therefore a nonface of Δ1 since both triangulations agree on Γ1.

Suppose second that δ is not contained in a face of Γ1. Then the barycenter of δ lies in the
interior of one of the unimodular (!) simplices in Δ1 that have one of the lattice points yi as
a vertex. Therefore the epimorphism φ :T → K[P ] maps YM to a monomial that can also be
represented as a monomial involving one of the variables Yyi

. However, this second monomial
has the same total degree and strictly smaller weight with respect to w′, as the reader may check.
So YM appears in the initial ideal.
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This concludes the proof of the regularity of Δ1. That Δ′
1 is regular, is seen in the same way.

The only difference is that the lattice points y1, . . . , ym are identified to a single one. For (ii) it
remains to apply the next lemma. �

We include a lemma on regular triangulations that we have not found in the literature.

Lemma 9. Let Q ⊆ R
n−1 be a polytope with a regular triangulation Σ . Then there exists a

simplicial polytope P ′ such that the boundary complex of P ′ is combinatorially equivalent to
Σ |∂P .

Proof. We choose a convex, piecewise affine function f :Q → R such that Σ is the subdivision
of Q into the domains of linearity of f . We can assume that f (x) > 0 for all x ∈ Q. Consider
the graph G of f in R

n. Then G is a polytopal complex whose faces project onto the faces of Σ .
We choose a point (x, z) ∈ R

n, x ∈ int(Q) and z � 0 such that (x, z) lies “below” all the
hyperplanes through the facets of G. Then we form the set C as the union of all rays emanating
from (x, z) and going through the points of G. It is not hard to check that C is in fact convex:
let a, b ∈ C and consider a point c on the line segment [a, b]; we have to show that the ray
from (x, z) through c meets G. We may assume that a, b ∈ G. Let c′ = (c1, . . . , cn) be the
projection of c in R

n along the vertical axis. By convexity of f one has f (c′) � cn+1, and, for
the same reason, the graph of f over the line segment [x, c′] ⊆ Q lies below the line segment
[(x, f (x)), (c′, f (c′)]. It follows that the line segment [(x, z), c] intersects the graph of f .

The decomposition of ∂G (as a manifold with boundary) into maximal polytopal subsets is
combinatorially equivalent to the collection of the maximal simplices in Σ |∂Q. On the other
hand, it is also combinatorially equivalent to the collection of the facets of the cone C (with
apex in (x, z)). (This requires an argument very similar to the one by which we have proved the
convexity.) Therefore we obtain the desired polytope P ′ as a cross-section of C. �

With Corollary 8(ii) the proof of Theorem 1 is complete since the g-theorem applies to
h(Δ(P ′)).

We are grateful to Ch. Haase for pointing out to us that the hypothesis of regularity cannot
be omitted in Corollary 8(ii) and for suggesting the proof of Lemma 9. The assumptions of
Corollary 8 appear at several places in algebraic combinatorics as has been discussed in [1].

Remark 10. In some special situations we can omit the assumption that P has a (regular) uni-
modular triangulation and obtain directly from Corollary 7 that the h-vector of P is unimodal.
More precisely, assume that dim(P ) � m + 4. Then dim(Q) � 5 and it follows from a result of
Hibi [8] that the h-vector of Q is unimodal.

We conclude by drawing a consequence for the toric ideal IP of P . As we have seen in the
proof of Corollary 8 its initial ideal with respect to the weight vector w′ is the Stanley–Reisner
ideal J of the simplicial complex Δ1 ∗ δ (notation as in the proof of Corollary 8). Since Δ1
is combinatorially equivalent to the boundary of a simplicial polytope, it follows that R/J is a
Gorenstein ring, and we obtain:

Corollary 11. Let P be an integer Gorenstein polytope such that the toric ideal IP has a square-
free initial ideal. Then it also has a square-free initial ideal that is the Stanley–Reisner ideal of
the join of a boundary of a simplicial polytope and a simplex, and thus defines a Gorenstein ring.
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The corollary answers a question of Conca and Welker, and the methods of this note were
originally designed for its solution. See [6, Question 6] and [7] for more details related to this
result.
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