
J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

Published for SISSA by Springer

Received: August 19, 2014

Revised: November 17, 2014

Accepted: November 22, 2014

Published: December 4, 2014

h → Zγ in the complex two Higgs doublet model

Duarte Fontes,a J.C. Romãoa and João P. Silvaa,b,1
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the effect of the current measurements on the four versions of this model. We show that a

measurement of the h → Zγ rate at a level consistent with the SM can be used to place
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Keywords: Higgs Physics, Beyond Standard Model

ArXiv ePrint: 1408.2534

1Corresponding author.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP12(2014)043

mailto:duartefontes@tecnico.ulisboa.pt
mailto:jorge.romao@tecnico.ulisboa.pt
mailto:jpsilva@cftp.ist.utl.pt
http://arxiv.org/abs/1408.2534
http://dx.doi.org/10.1007/JHEP12(2014)043


J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

Contents

1 Introduction 2

2 The complex two Higgs doublet model 3

3 Simulation procedure and results 6

3.1 Type I model 7

3.2 Type II model 10

3.3 Lepton specific model 11

3.4 Flipped model 12

4 Wrong sign h1bb̄ couplings in Type II C2HDM 13

5 Constraints from EDM 16

6 Conclusions 18

A Production and decay rates 19

A.1 Lagrangian 19

A.2 Tree level production and decay 19

B Amplitudes for h → γγ 20

B.1 Fermion loop 20

B.2 Gauge boson loops 21

B.3 Charged Higgs loops 21

B.4 Renormalization and gauge invariance 22

C Amplitudes for h → Zγ 22

C.1 Fermion Loop 22

C.2 Gauge boson loops 22

C.3 Charged Higgs loops 23

C.4 Renormalization and gauge invariance 23

D Widths for loop decays 25

D.1 h→ γγ 26

D.2 h→ Zγ 26

E Relation between the Passarino-Veltman functions and other loop
functions 27

E.1 The integrals for h→ γγ 27

E.2 The integrals for h→ Zγ 27

F Production and decay involving gluons 28

– 1 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

1 Introduction

The ATLAS [1] and CMS [2] experiments at LHC have detected a particle with properties

closely resembling those of the SM Higgs, in the decay channels γγ, ZZ∗,WW ∗, and τ+τ−,

with errors of order 20%. Decays into bb̄ are only detected at LHC and the Tevatron in

connection with the associated V h production mechanism, with errors of order 50% [3, 4].

Up-to-date LHC results can be found in refs. [5, 6].

The discovery of pp→ h→ γγ can be seen as the poster child of quantum field theory:

the dominating production through gluon-gluon fusion occurs at one loop; and so does the

decay into γγ. Recently, ATLAS [7] and CMS [8] have reported on the search for another

loop-decay, h → Zγ, finding upper bounds of order ten times the SM expectation at the

95% confidence level. This is expected to be the next interesting channel to be measured

in the upcoming LHC run.

As the newfound particle is further probed, there are two interesting questions that

will be considered: i) is the new particle purely scalar, or does it have some pseudoscalar

component?; ii) how many scalars are there? On the first issue, we know from the existence

of h→ V V that h cannot be purely pseudoscalar (henceforth, V =W,Z). There are some

experimental bounds on the likelihood that the 125GeV particle is a pure pseudoscalar [9,

10], but we are interested here in the possibility that the 125GeV state is a mixture of

scalar and pseudo-scalar components. On the second issue, although there have been some

experimental fluctuations, there is currently no sign of another scalar. However, the limits

are rather loose and the possibility remains that there are further scalar, including charged,

that have evaded detection because its couplings are not too large. For example, in two

Higgs doublet models, the fact that the observed scalar has couplings to two vector bosons

in line with SM expectations forces the couplings of the heavier scalar to two vector bosons

to be small.

The main objectives of this article are two-pronged. Firstly, we discuss the produc-

tion and decays of a spin zero state which is a mixture of scalar and pseudoscalar, with

special emphasis on a detailed discussion h→ Zγ. The details are contained in the appen-

dices. Secondly, we analyze the current bounds on the complex two Higgs doublet model

(C2HDM), where the lightest Higgs is in general a mixture of scalar and pseudoscalar.

The article is organized as follows. In section 2 we summarize the C2HDM and intro-

duce our notation. In section 3 we discuss, in turn, current constraints and future reach on

the four types of flavour couplings (Type I, Type II, Lepton Specific, and Flipped). As far

as we know, this is the first update on the first two types, and the first discussion of the

Lepton Specific and Flipped models to use the latest Run 1 data from LHC. In particular,

we also discuss the effect of future experiments, and what might be learned from h → Zγ

at LHC’s Run 2. In section 4, we discuss the possibility that the scalar component of

the h1bb̄ coupling has a sign opposite to the SM. We relate this with the situation in the

real 2HDM, which has received recent interest. In section 5, we comment briefly on the

constraints from electric dipole moments. Finally, we draw our conclusions in section 6.

For completeness we collect in the appendices all the expressions needed for the pro-

duction and decay of a Higgs boson which has a mixture of scalar and pseudo-scalar com-
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ponents; this includes the neutral scalars of the most general 2HDM. In particular, the

expressions for the one loop decays are given in a form that can be useful for other models

with a more general Higgs boson sector than the SM. We also compare our results with

those that can be found in the literature.

2 The complex two Higgs doublet model

We consider a model with two Higgs doublets, φ1 and φ2, with the Z2 symmetry φ1 →
φ1, φ2 → −φ2 violated softly. The Higgs potential can be written as [11]

VH = m2
11|φ1|2 +m2

22|φ2|2 −m2
12 φ

†
1φ2 − (m2

12)
∗ φ†2φ1

+
λ1
2
|φ1|4 +

λ2
2
|φ2|4 + λ3|φ1|2|φ2|2 + λ4 (φ

†
1φ2) (φ

†
2φ1)

+
λ5
2
(φ†1φ2)

2 +
λ∗5
2
(φ†2φ1)

2. (2.1)

Hermiticity implies that all couplings are real, except m2
12 and λ5. If arg(λ5) 6= 2arg(m2

12),

then the phases cannot be removed. This is known as the complex two Higgs doublet model

(C2HDM), and has been studies extensively in1 refs. [12–20]. If arg(λ5) = 2 arg(m2
12), then

we can choose a basis where m2
12 and λ5 become real and, if the vacuum expectation values

(vev) of φ1 and φ2 are also real, we talk about the real 2HDM. Henceforth, it is implicit

that the C2HDM and the real 2HDM have a softly broken Z2 symmetry.

With a suitable basis choice, we can take the vevs real:

〈φ1〉 = v1/
√
2, 〈φ2〉 = v2/

√
2, (2.2)

and write the scalar doublets as

φ1 =

(

ϕ+
1

1√
2
(v1 + η1 + iχ1)

)

, φ2 =

(

ϕ+
2

1√
2
(v2 + η2 + iχ2)

)

. (2.3)

With this convention, v =
√

v21 + v22 = (
√
2Gµ)

−1/2 = 246GeV, and the stationarity

conditions become

−2m2
11 = −Re

(

m2
12

) v2
v1

+ λ1 v
2
1 + λ345 v

2
2,

−2m2
22 = −Re

(

m2
12

) v1
v2

+ λ2 v
2
2 + λ345 v

2
1,

2 Im
(

m2
12

)

= v1v2 Im (λ5) , (2.4)

where λ345 = λ3 + λ4 +Re (λ5).

We can now transform the fields into the Higgs basis by [21, 22]

(

H1

H2

)

=

(

cβ sβ
−sβ cβ

)(

φ1
φ2

)

, (2.5)

1Our notation differs from theirs, and agrees with [11], in that 2m2
11 = −m2

11(theirs), 2m2
22 =

−m2
22(theirs), and 2m2

12 = m2
12(theirs).
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where tanβ = v2/v1, cβ = cosβ, and sβ = sinβ. The Higgs basis was introduced [21, 22]

such that the second Higgs does not get a vev:

H1 =

(

G+

1√
2
(v +H0 + iG0)

)

, H2 =

(

H+

1√
2
(R2 + iI2)

)

. (2.6)

In this basis, G+ and G0 are massless and, in the unitary gauge, will become the longi-

tudinal components of W+ and Z0, respectively. There remains a charged pair H± with

mass mH± .

In the usual notation for the C2HDM, η3 = I2, and the three neutral components mix

into the neutral mass eigenstates through






h1
h2
h3






= R







η1
η2
η3






. (2.7)

The orthogonal matrix R diagonalizes the neutral mass matrix

(

M2
)

ij
=

∂2VH
∂ηi ∂ηj

, (2.8)

through

RM2RT = diag
(

m2
1,m

2
2,m

2
3

)

, (2.9)

where m1 ≤ m2 ≤ m3 are the masses of the neutral Higgs particles. The matrix R can be

parametrized as [14]

R =







c1c2 s1c2 s2
−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3
−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3






(2.10)

where si = sinαi and ci = cosαi (i = 1, 2, 3). Without loss of generality, the angles may

be restricted to [14]

− π/2 < α1 ≤ π/2, −π/2 < α2 ≤ π/2, 0 ≤ α3 ≤ π/2. (2.11)

The relation between the Higgs basis and the mass basis is






η1
η2
η3






= RH







H0

R2

I2






=







cβ −sβ 0

sβ cβ 0

0 0 1













H0

R2

I2






. (2.12)

Thus






h1
h2
h3






= R







η1
η2
η3






= RRH







H0

R2

I2






. (2.13)

The computation of the bounds from the oblique radiative corrections in eqs. (388) and

(393) of ref. [11] requires the matrix T = RT
HR

T in eq. (381) of ref. [11].
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Given an arbitrary relative phase, the Higgs potential in eq. (2.1) has 9 independent

parameters. We follow ref. [15], and trade these for v and for the 8 input parameters β,

mH± , α1, α2, α3, m1, m2, and Re(m2
12). With this choice, m3 is given by

m2
3 =

m2
1R13(R12 tanβ −R11) +m2

2 R23(R22 tanβ −R21)

R33(R31 −R32 tanβ)
. (2.14)

Of course, we are only interested in those cases where m2
3 > 0, and, due to our mass

ordering, m2
3 > m2

2 > m2
1. This places constraints on the relevant parameter space.

The Higgs potential in eq. (2.1) can be reconstructed through

v2 λ1 = − 1

cos2 β

[

−m2
1 c

2
1c

2
2 −m2

2(c3s1 + c1s2s3)
2 −m2

3 (c1c3s2 − s1s3)
2 + µ2 sin2 β

]

,

v2 λ2 = − 1

sin2 β

[

−m2
1 s

2
1c

2
2 −m2

2 (c1c3 − s1s2s3)
2 −m2

3 (c3s1s2 + c1s3)
2 + µ2 cos2 β

]

,

v2 λ3 =
1

sinβ cosβ

[(

m2
1 c

2
2 +m2

2 (s
2
2s

2
3 − c23) +m2

3 (s
2
2c

2
3 − s23)

)

c1s1

+(m2
3 −m2

2)(c
2
1 − s21)s2c3s3

]

− µ2 + 2m2
H± ,

v2 λ4 = m2
1 s

2
2 + (m2

2 s
2
3 +m2

3 c
2
3)c

2
2 + µ2 − 2m2

H± ,

v2Re(λ5) = −m2
1 s

2
2 − (m2

2 s
2
3 +m2

3 c
2
3)c

2
2 + µ2,

v2 Im(λ5) =
2

sinβ
c2
[

(−m2
1 +m2

2 s
2
3 +m2

3 c
2
3)c1s2 + (m2

2 −m2
3)s1s3c3

]

, (2.15)

where

µ2 =
v2

v1 v2
Re(m2

12). (2.16)

We have checked that, using eq. (2.14), we reproduce the results in eq. (B.1) of ref. [19].

To compute the decays of the lightest Higgs we need the couplings h1V V (V =W,Z),

h1H
+H−, and h1f̄f for some fermion f . These can be obtained from the Higgs potential,

the covariant derivatives, and the Yukawa potential, respectively. As shown in ref. [20], the

h1V V and h1H
+H− can be written, respectively, as in eqs. (A.3) and (A.2), with

C = cβR11 + sβR12 = cos (α2) cos (α1 − β), (2.17)

and

− λ = cβ
[

s2βλ145 + c2βλ3
]

R11 + sβ
[

c2βλ245 + s2βλ3
]

R12 + sβcβ Im(λ5)R13, (2.18)

where λ145 = λ1 − λ4 − Re(λ5) and λ245 = λ2 − λ4 − Re(λ5). In order to preclude flavour

changing interactions with the neutral Higgs, each fermion sector must couple to only one

Higgs. In the usual notation, up-type quarks couple to φ2, so there are four possibilities

according to the couplings of down-type quarks and charged leptons. In Type I (Type II)

both couple to φ2 (φ1). In Lepton Specific (Flipped), down-type quarks couple to φ2 (φ1),

while charged leptons couple to φ1 (φ2). The result can be written as in eq. (A.1), with

the coefficients a+ ibγ5 given in table 1.

Looking back at eqs. (2.7) and (2.10), we realize that |s2| measures the pseudoscalar

component of the lightest neutral scalar, h1. Indeed, when s2 = 0, the pseudoscalar η3

– 5 –
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Type I Type II Lepton Flipped

Specific

Up R12

sβ
− icβ

R13

sβ
γ5

R12

sβ
− icβ

R13

sβ
γ5

R12

sβ
− icβ

R13

sβ
γ5

R12

sβ
− icβ

R13

sβ
γ5

Down R12

sβ
+ icβ

R13

sβ
γ5

R11

cβ
− isβ

R13

cβ
γ5

R12

sβ
+ icβ

R13

sβ
γ5

R11

cβ
− isβ

R13

cβ
γ5

Leptons R12

sβ
+ icβ

R13

sβ
γ5

R11

cβ
− isβ

R13

cβ
γ5

R11

cβ
− isβ

R13

cβ
γ5

R12

sβ
+ icβ

R13

sβ
γ5

Table 1. Couplings of the fermions to the lightest scalar, h1, in the form a+ ibγ5 of eq. (A.1).

does not contribute to h1, while, when c2 = 0 only the pseudoscalar η3 contributes to h1.

That is,

|s2| = 0 =⇒ h1 is a pure scalar, (2.19)

|s2| = 1 =⇒ h1 is a pure pseudoscalar. (2.20)

This is confirmed by the form of the various couplings. In fact, the h1V V coupling C in

eq. (2.17) vanishes when |s2| = 1, in agreement with the absence of a pseudoscalar coupling

with a vector boson/anti-boson pair. Similarly, when |s2| = 1 the only term in λ which

survives is the term proportional to Im(λ5) in eq. (2.18). This is consistent with the fact

that a pseudoscalar can only couple to H+H− if there is explicit CP violation in the Higgs

potential. Finally, when s2 = 0, all b coefficients in table 1 (multiplying iγ5) vanish, and h1
couples to fermions as a pure scalar. Similarly, when |s2| = 1, all a coefficients in table 1

vanish, and h1 couples to fermions as a pure pseudoscalar.

3 Simulation procedure and results

For our fit procedure, we generate points in parameter space with m1 = 125GeV, the

angles α1,2,3 within the intervals of eq. (2.11), 1 ≤ tanβ ≤ 30, m1 ≤ m2 ≤ 900GeV,

−(900GeV)2 ≤ m2
12 ≤ (900GeV)2, and 340GeV ≤ mH± ≤ 900GeV (Type II and Flipped),

or 100GeV ≤ mH± ≤ 900GeV (Type I and Lepton Specific).

The ranges for mH± and tanβ where chosen to comply with the constraints from

Z → bb̄, b→ sγ, and other B-Physics results. The constraints are basically the same in the

complex and real 2HDM because the charged Higgs couplings to fermions coincide — see,

for example, appendix C of [19]. In Type II and Flipped, Z → bb̄ implies tanβ & 1 while

b → sγ excludes values of mH± below 360GeV, at the 95% confidence level, with only a

very mild dependence on tanβ [23–26]. In Type I and Lepton Specific, tanβ & 1 still holds,

but mH± can be as low as ∼ 90GeV, even after the LHC results on pp→ tt̄ with decay into

H+b̄ [27, 28]. The ranges we have chosen formH± and tanβ conform to rather conservative

bounds from these and other B-Physics experiments, and, for comparison purposes, were

taken to coincide with the constraints in refs. [29, 30], in the CP conservative limit.

Given a set of input parameters, m2
3 is obtained from eq. (2.14). With our conventions,

one should only take points where m2
3 > m2

2. Then, we derive the parameters of the

scalar potential from eqs. (2.15), and maintain those points which provide a bounded from

– 6 –
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channel ATLAS CMS

µγγ 1.57+0.33
−0.28 1.13± 0.24

µWW 1.00+0.32
−0.29 0.83± 0.21

µZZ 1.44+0.40
−0.35 1.00± 0.29

µτ+τ− 1.4+0.5
−0.4 0.91± 0.27

µbb̄ 0.2+0.7
−0.6 0.93± 0.49

Table 2. Experimental results presented by ATLAS and CMS at ICHEP2014.

below solution [31], conforming to perturbative unitarity [32–34], and the oblique radiative

parameters S, T, U [35, 36]. After implementing this algorithm, we have a collection of

possible C2HDM data points.

We generate the rates for all channels, including all production mechanisms. We use

the expressions in the appendices, and utilize HIGLU [37] at NNLO for gg → h (gluon

fusion), SusHi [38] at NNLO for bb̄→ h, and ref. [39] for V h (associated production), tt̄h,

and V V → h (vector boson fusion). The expressions for the decay rates are obtained in the

appendices. In particular, h → Zγ is explained in great detail in C and D.2, for a generic

scalar/pseudoscalar mixed state h. Finally, we compute the ratio of rates

µf =
σ2HDM(pp→ h)

σSM(pp→ h)

Γ2HDM[h→ f ]

ΓSM[h→ f ]

ΓSM[h→ all]

Γ2HDM[h→ all]
, (3.1)

where σ is the cross section for Higgs production, Γ[h → f ] is the decay width into the

final state f , and Γ[h → all] is h’s total width. The ratios µf can then be compared

with those quoted by the experimental collaborations. For definiteness, our discussions

will be based on the ATLAS [40] and CMS [41] results presented in the plenary talks at

ICHEP2014, which we summarize in table 2. Notice that the errors are still important;

combining ATLAS and CMS would lead to errors of order 20% in V V , γγ, and slightly

larger in τ+τ−. On the other hand, the errors on bb̄, which is only detected in associated

production, are of order 50%. In particular, ATLAS excludes the SM µγγ = 1 (µZZ = 1)

at 2-σ (1-σ), while CMS is within 1-σ of the SM on all channels.

We note that the ranges we adopt already evade current effects of heavy scalars and

LHC bounds. The reason is easy to understand. On the one hand, LHC bounds place the

h1V V coupling close to the alignment limit. This implies that h2V V and h3V V are heavily

suppressed, and rather light h2 and h3 are possible which are virtually undetected in V V

final states. On the other hand, the LHC bounds on h2,3 → γγ are very weak because the

corresponding branching ratio decreases very steeply due to the opening of new channels,

as the scalar mass increases.

3.1 Type I model

To study the effect of current experimental bounds on the pseudoscalar content of the

125GeV Higgs, we follow ref. [20] and study three sets of points: points where the h1 is

mainly scalar, with |s2| < 0.1 (in green/light-grey in the simulation figures to be shown

– 7 –
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Figure 1. Left panel: results in the µZZ - µγγ plane (left panel) and in the µτ+τ− - µγγ plane

(right panel) for the Type I C2HDM. The points in green/light-grey, blue/black, and red/dark-grey

correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85, respectively.

below); points where the h1 is mainly pseudoscalar, with |s2| > 0.85 (in red/dark-grey in

the simulation figures to be shown below); points where the h1 is a almost even mix of

scalar and pseudoscalar, with 0.45 < |s2| < 0.55 (in blue/black in the simulation figures to

be shown below).

To compare with current experiments, all figures in this article will be drawn for

processes at 8TeV, except were noted otherwise. The exceptions are figures drawn at

14TeV, designed to foresee future experimental reaches. Nevertheless, we have checked

that there are very small differences between 8TeV and 14TeV, for the figures that interest

us. As explained in [30], this is due to the fact that the ratio between the dominant and

sub-dominant gluon fusion production mechanisms (which, in the two Higgs doublet model,

can be relevant with both top and bottom quarks in the loop) remains very similar as one

changes from 8TeV to 14TeV in our HIGLU simulations.

Our results for µZZ versus µγγ are shown in the left panel of figure 1. This can

be compared with figure 1 of ref. [20]. We get qualitatively the same results, meaning

that |s2| > 0.85 is excluded by CMS at 1-σ. Also, larger values of µγγ are obtained

with 0.45 < |s2| < 0.55 than with |s2| < 0.1. Thus, a putative future result of, for

example, µγγ = 1.3 ± 0.1 (consistent with the current ATLAS bound) would imply that

the Higgs found at LHC has comparable scalar and pseudoscalar components. Notice from

the left panel of figure 1 that this would be consistent with µZZ ∼ 0.9 but less so with

µZZ ∼ 1.

On the right panel of figure 1, we show our results in the µγγ −µτ+τ− plane. This can

be compared with figure 2 of ref. [20] which shows µbb̄ considering, as we correct below,

all production channels. There is qualitative agreement, but there are subtle differences,

because we are using the latest version of HIGLU [37], and, eventually, different PDF’s

and energy scales. The difference is apparent when plotting µτ+τ− as a function of tanβ.

As shown in ref. [30], µτ+τ− is very sensitive to the production rates (and, thus, should be

interpreted with care), while µγγ and µZγ are not. With this caution, we find that values

– 8 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

Figure 2. Left panel: results in the µbb̄(V h) - µγγ plane (left panel) and in the µZγ - µγγ plane

(right panel) for the Type I C2HDM. The points in green/light-grey, blue/black, and red/dark-grey

correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85, respectively.

as large as µτ+τ− ∼ 2 are allowed. If one requires µγγ ∼ 1, then µτ+τ− lies roughly between

0.4 and 1.4.

In ref. [20], µbb̄ was calculated using all production channels. Here we use exclusively

the V h production mechanism that allows detection at LHC. Our results are shown on

the left panel of figure 2. In the Type I model, µbb̄(V h) . 1.1 for all values of |s2|, and
µbb̄(V h) . 0.35 for |s2| > 0.85. Thus, we learn that CMS excludes again |s2| > 0.85 at

1-σ (recall that even the SM ZZ and γγ are outside ATLAS’ 1-σ intervals), and a good

measurement of µbb̄(V h) will be useful in ruling out large pseudoscalar components.

Now we turn to one of the main motivations for this work. The right panel of figure 2

shows our results in the µγγ − µZγ plane. We notice that large pseudoscalar components

(large |s2|) imply small values for µZγ . There are two points to stress. First, there is a

strong correlation between µZγ and µγγ , even when all values of s2 are taken into account.

Second, that correlation is partly connected with s2. This can be seen in the blue/black

regions of figures 3, where we see that large values of µZγ and µγγ are only possible around

s2 ∼ 0 and h1 with a large scalar component. In contrast, a large pseudoscalar component

implies very small values for both µZγ and µγγ . As a result, a value of µZγ ∼ 1 would

be very efficient in ruling out a large pseudoscalar component. Figures 3 also show in

red/dark-grey (cyan/light-grey) the allowed regions if we assume that the measurements of

µV V at 14TeV will center around unity with a 20% (5%) error. The V V constraint implies

that µγγ and µZγ are expected to lie close to their SM value in the C2HDM and that |α2|
should lie below 50 degrees. A similar analysis of the impact of V V , shows that α3 can

take any value and that |α1| should be larger than about 60 degrees.
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Figure 3. Figures of µZγ (µγγ) on the left (right) panel, as a function of s2. The points in

red/dark-grey (cyan/light-grey) where chosen to obey µV V = 1 within 20% (5%). These figures

have been drawn for 14TeV.

Figure 4. Left panel: results in the µZZ - µγγ plane (left panel) and in the µτ+τ− - µγγ plane

(right panel) for the Type II C2HDM. The points in green/light-grey, blue/black, and red/dark-grey

correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85, respectively.

3.2 Type II model

The results obtained in Type II for µZZ versus µγγ are shown in the left panel of figure 4.

In this model, values as large as µγγ ∼ 2.5 and µZZ ∼ 3 are allowed for small values of

s2. In contrast, |s2| > 0.85 forces both to be smaller than 0.8. This means that even

the high central values quoted by ATLAS are consistent with a Type II C2HDM where

h1 has a dominant scalar component. In fact, one can find s2 < 0.1 but also a few

0.45 < |s2| < 0.55 points within the ATLAS and CMS 1-σ bounds. As occurred in Type

I, both experiments exclude a large pseudoscalar component (|s2| > 0.85) at more than

1-σ. However, in contrast to Type I, here the largest values of µγγ occur for s2 < 0.1

and not for 0.45 < |s2| < 0.55. That is, in Type I a large value (µγγ ∼ 1.2) favors

a comparable scalar/pseudoscalar mix, while in Type II a large value (here, µγγ ≥ 1.2)

favors a pure scalar.
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Figure 5. Left panel: type II results in the µZγ - µγγ plane. The points in green/light-grey,

blue/black, and red/dark-grey correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85,

respectively. Right panel: type II predictions in the µZγ - s2 plane. The points in red/dark-grey

(cyan/light-grey) where chosen to obey µV V = 1 within 20% (5%). This figure has been draw at

14TeV.

Curiously, the situation is the reverse when one considers µτ+τ− , which we show on

the right panel of figure 4. For example, for µγγ ∼ 1, a value of µτ+τ− ∼ 1.3 favors

an even scalar/pseudoscalar mix over the pure scalar solution. In contrast, |s2| is less

easily constrained from µbb̄(V h), although µbb̄(V h) & 0.4 rules out |s2| > 0.85. Looking

at the various channels, both CMS and ATLAS rule out |s2| > 0.85 by more than 2-σ in

Type II C2HDM. Better measurements of γγ, τ+τ−, and bb̄(V h) will be instrumental in

determining s2.

Next, we consider the simulations for Zγ, shown in on the left panel of figure 5. Large

values for µZγ are possible for small |s2|. Comparing with the right panel of figure 2 we see

that in Type II much larger values of µZγ (and of µγγ) are allowed, but that there is still a

strong correlation between the two which, again, is partly due to s2. This is shown on the

right panel of figure 5, where we see that large values of µZγ require large values of µV V

and correspond to an almost pure scalar. Measurements of µV V within 20% of unity, force

µZγ ∼ 1 and require |α2| . 50 degrees. This puts a further bound on a large pseudoscalar

component.

3.3 Lepton specific model

In this case, the results for µZZ and µbb̄(V h) versus µγγ are very similar to those presented

on the left panels of figures 1 and 2 for Type I, respectively. The same holds for µZγ , shown

on the right panel of figure 2. Minute differences are as follows. Close to µγγ ∼ 1, one can

get slightly larger values for µZZ , up to approximately 1.1. Conversely, µγγ . 1.1 here,

while µγγ . 1.3 in Type I. Here, as in Type I, |s2| > 0.85 forces µbb̄(V h) < 0.3. Thus, a good

measurement of µbb̄(V h) will be instrumental in ruling out large pseudoscalar components.

As expected, the situation for µτ+τ− differs, as shown in figure 6. A large pseudoscalar

component (|s2| > 0.85) forces µτ+τ− > 1.2 when µγγ > 0.1. These values are ruled out by

– 11 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

Figure 6. Lepton Specific simulations in the µτ+τ− - µγγ plane. The points in green/light-grey,

blue/black, and red/dark-grey correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85,

respectively.

Figure 7. Left panel: flipped model results in the µτ+τ− - µγγ plane. The points in green/light-

grey, blue/black, and red/dark-grey correspond to |s2| < 0.1, 0.45 < |s2| < 0.55, and |s2| > 0.85,

respectively. Right panel: same as left, except that all values for s2 are included as blue/black

points. Also shown as red/dark-grey (cyan/light-grey) are those points which obey µV V = 1 within

20% (5%).

CMS at 1-σ. ATLAS, on the other hand, is barely consistent with these values for µτ+τ− ,

but rules out this model (and the SM) in µγγ at 1-σ.

3.4 Flipped model

The results for µγγ , µZZ , µbb̄(V h), and µZγ in this model, are similar to those for Type II.

Slight differences are as follows. Here µγγ (µZZ , µγγ ) can only be as large as 2.2 (2.5, 2.4),

while one could achieve 2.5 (2.9, 2.8) in Type II. The situation for µbb̄(V h) is virtually the

same. In particular, |s2| > 0.85 is ruled out at 1-σ by both ATLAS and CMS.

The situation is very different for µτ+τ− , as shown on the left panel of figure 7. Notice

that one can find points as large as µτ+τ− = 7.5 for reasonable values of µγγ ∼ 1.
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As mentioned in ref. [30], constraints on µV V have a very strong impact on predictions

in Type II and Flipped models, which have a simple trigonometric interpretation. One

might wonder whether large values for µτ+τ− are consistent with µV V . This is shown on

the right panel of figure 7: the red/dark-grey (cyan/light-grey) are those points which obey

µV V = 1 within 20% (5%). We see that large values of µτ+τ− are still allowed. Thus, µτ+τ−

will have an enormous impact in probing the Flipped C2HDM.

4 Wrong sign h1bb̄ couplings in Type II C2HDM

Recently there has been great interest in probing the wrong sign hbb̄ couplings, in the

context of the real 2HDM [29, 30, 42–44]. Here we discuss for the first time this issue in

the context of the Type II C2HDM.

In the Type II real 2HDM the coupling of h1 = h with the down-type quarks and

the charged leptons may be written as mfkD/v, where mf is the mass of the appropriate

fermion, and

kD = − sinα

cosβ
. (4.1)

Here, α is the angle mixing the two CP even scalar components into a light scalar h and

a heavy scalar H. Thus, sinα negative (positive) corresponds to the (opposite of the) SM

sign for kD in Type II. Given the experimental lower bound on tanβ, the coupling to the

up-type quarks in Type I and Type II, as well as the coupling to the down-type quarks

in Type I cannot have the wrong sign. The regions of Type II with right and wrong sign

are disjoint in that the current measurements of µV V force sin (β − α) ∼ +1 when kD > 0

and sin (β + α) ∼ +1 when kD < 0 (dubbed, the wrong-sign solution). To be precise and

independent of the phase conventions leading to the usual choices for the ranges of α, one

should talk about CkD > 0 as the right sign solution and CkD < 0 as the wrong sign

solution, where C = sin (β − α) is the hV V couplings in the real 2HDM, divided by the

hSMV V coupling in the SM.2

The situation is rather different in the C2HDM because, according to eq. (A.1), there

are two couplings of h1 with the fermions: the scalar-like coupling a, and the pseudoscalar-

like coupling b. We follow the spirit of refs. [20, 29] and assume that experiments have

obtained the SM values for µZZ , µγγ , and µτ+τ− within 20%. Denoting by sgn(C) the sign

of C, we show in figure 8 a simulation in the sgn(C) sin (α1 − π/2)-tanβ plane. This reduces

to the well known sinα-tanβ plane of the real 2HDM, with the usual angle conventions,

when we take the limit |s2| → 0 and |s3| → 0. In cyan/light-grey we show the points which

pass µV V = 1.0 ± 0.2; in blue/black the points that also satisfy |s2|, |s3| < 0.1; and in

red/dark-grey the points that satisfy |s2|, |s3| < 0.05. The left panel of figure 8 should

be compared with the right panel, obtained in the real 2HDM. The left leg of that panel

corresponds to sin (β − α) ∼ 1 and the right sign solution, while the right leg corresponds

to sin (β + α) ∼ 1 and the wrong sign solution. We see that, for generic s2 and s3, the

two regions are continuously connected. In contrast, when |s2|, |s3| < 0.05, we tend to the

disjoint solutions of the real 2HDM, as we should.

2Rui Santos, private communication.
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Figure 8. On the left (right) panel, we show the results of the simulation of Type II C2HDM (real

2HDM) on the sgn(C) sin (α1 − π/2)-tanβ (sinα-tanβ) plane. On the left panel, in cyan/light-

grey we show all points obeying µV V = 1.0± 0.2; in blue/black the points that satisfy in addition

|s2|, |s3| < 0.1; and in red/dark-grey the points that satisfy |s2|, |s3| < 0.05.

Figure 9. Results of the simulation of Type II C2HDM on the sgn(C) aD-sgn(C) bD plane of scalar-

pseudoscalar couplings of h1bb̄. On the left panel (right panel) we assume that the measurements

come from current data at 8TeV (prospective data at 14TeV) and are made within 20% (5%) of

the SM. Constraints from µV V are in cyan/light-grey, from µγγ are in red/dark-grey, and from

µτ+τ− are in blue/black.

The constraints on the sgn(C) aD-sgn(C) bD plane are shown on the left panel of fig-

ure 9. We see that sgn(C) aD can have both signs (as it could in the CP conserving limit,

where aD = kD), and so can sgn(C) bD. Moreover, these different regions are continu-

ously connected. In the C2HDM there is still a very large region of either negative sign

permitted. The situation will be altered if future measurements fix µV V , µγγ , and µτ+τ−

to within 5% of the SM, as shown on the right panel of figure 9. In that case, there will

be almost no region with sgn(C) aD < 0. This is consistent with the disappearance of

the negative kD region in the real Type II 2HDM when the measurements reach the 5%

level [29]. However, in the C2HDM some points with sgn(C) aD ∼ −0.4 are allowed, if one

also has a large pseudoscalar coupling sgn(C) bD ∼ −0.8.
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Figure 10. Results of the simulation of Type II C2HDM on the sgn(C) aU -sgn(C) bU plane of

scalar-pseudoscalar couplings of h1tt̄. On the left panel (right panel) we assume that the measure-

ments come from current data at 8TeV (prospective data at 14TeV) and are made within 20%

(5%) of the SM. Constraints from µV V are in cyan/light-grey, from µγγ are in red/dark-grey, and

from µτ+τ− are in blue/black.

In the real 2HDM, the lower bound tanβ > 1 implies that the coupling of htt̄ must

be positive. In the C2HDM, it is still true that the scalar like coupling sgn(C) aU must

be positive, but the pseudoscalar like sgn(C) bU can have either sign. This is illustrated in

figure 10, for measurements within 20% (left panel) and 5% (right panel) of the SM. Notice

that µγγ forces the figure into the outer rim, and that adding µτ+τ− forces sgn(C) aU ∼ 1

and |bU | . 0.2. This shows that the line of blue/black points which one guesses on the

right panel of figure 9 corresponds to sgn(C) aU ∼ 1.

A final point of interest concerns the effect on delayed decoupling. In the real 2HDM,

wrong sign solutions exist only with kD ∼ −1. In fact, as explained in [30], a rather

simple trigonometric explanation justifies that a 20% bound on µV V implies an even better

determination of sin2 (β − α) for a given tanβ.3 As pointed out in ref. [29], this solution

exists if and only if the charged Higgs loop gives a contribution of order 10% to h → γγ,

due to the fact that the hH+H− coupling λ — see eq. (A.2) — exhibits a non-decoupling

with the charged Higgs mass, curtailed only by the requirements of unitarity. In figure 11,

we show what happens to λ as a function of aD multiplied by the sign of C. On the left

panel of figure 11, the points in cyan/light-grey pass µV V = 1 within 20%. The points in

red/dark-grey pass this constraint and, in addition, µτ+τ− = 1 within 20%. The points in

blue/black pass the previous two constraints and, in addition, µγγ = 1 within 20%. These

simulations were made at 8TeV to allow a feeling for the current constraints. The colour

code on the right panel are: cyan/light-grey points pass µV V = 1 within 5%; red/dark-

grey points pass in addition µγγ = 1 within 5%; blue/black points pass the previous two

constraints and, in addition, µγγ = 1 within 5%. These prospective simulations have been

drawn at 14TeV.

3For example, for tanβ = 10, a 20% bound around µV V ∼ 1 implies a determination of sin2 (β − α) to

better than 0.5%.
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Figure 11. Results of the simulation of Type II C2HDM on the sign(C) aD-λ plane. On the left

panel (right panel) we assume that the measurements come from current data at 8TeV (prospective

data at 14TeV) and are made within 20% (5%) of the SM. Constraints from µV V are in cyan/light-

grey; adding constraints from µτ+τ− (µγγ at 5%) only the points in red/dar-grey survive; adding

constraints from µγγ (µτ+τ− at 5%) only the points in blue/black, survive.

From the left panel of figure 11, we see that in the C2HDM one can have any value

for sign(C) aD between around −1.1 and 1.05. This is different from the real 2HDM where

kD ∼ 1 and kD ∼ −1 form two disjoint solutions. The difference, of course, is due to the

fact that in the C2HDM there is a new pseudoscalar coupling bD. But there is a similarity.

Indeed, values of sign(C) aD ∼ −1 correspond to non-negligible values for λ, as seen on the

left panel of figure 11. This is the analogous of the delayed decoupling found for kD ∼ −1

solutions found in the real 2HDM. The right panel of figure 11 shows again that a putative

5% future measurement around the SM to be made at 14TeV will eliminate almost all the

sign(C) aD < 0 points.

5 Constraints from EDM

CP violation is constrained by bounds on the electric dipole moments (EDMs) of neutrons,

atoms and molecules. The recent announcement by the ACME Collaboration [45] of im-

proved bounds on the the electron EDM from their experiment with the ThO molecule

has spurred renewed interest in the subject. Several analysis of EDM constraints in the

2HDM have appeared in the last few years [46–48], including two concerning specifically

the C2HDM discussed in this article [49, 50]. Although using mainly specific choices for

most parameters, ref. [50] finds that the strongest bounds on CP violation in the type I

and Type II C2HDM come from the ThO experiment, with neutron EDM and Hg EDM

relevant only in small regions of parameter space where there are cancelling contributions

to the electron EDM.

The fact that there can be cancelling contributions from the three neutral scalars has

been pointed out in ref. [49], and a simple explanation put forth in ref. [48]. The argument

is as follows. The couplings of the scalar mass eigenstate hk is as in eq. (A.1), with h→ hk
and a+ ibγ5 → ak + ibkγ5, where ak and bk depend on the field type (up, down, charged-

lepton), and on the model (Type I, Type II, Lepton specific and Flipped). For example,
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Figure 12. Results of the simulation of Type II C2HDM on the |s2|, tanβ plane. We assume

masses consistent with figure 6 of ref. [50], which gives the electron EDM constraint, shown here in

blue/black. Points that pass all theoretical constraints are shown in cyan/light-gray, while points

that pass in addition µV V at 20% are shown in red/dar-grey.

in Type II

up: ak + ibkγ5 =
Rk2

sβ
− icβ

Rk3

sβ
γ5 ,

down: ak + ibkγ5 =
Rk1

cβ
− isβ

Rk3

cβ
γ5 . (5.1)

CP violation involving neutral scalars and the up type quarks will thus be proportional to

akbk ∼ Rk2Rk3, multiplied by some function of the mass of hk. However, the orthogonality

of R implies that
∑

k

akbk ∼
∑

k

Rk2Rk3 = 0 . (5.2)

This means that there is complete cancellation of the three contributions when the scalars

are fully degenerate. Ref. [48] shows that the same happens in the decoupling regime.

The same argument holds, of course, for the down type quarks and the charged leptons.

As a result, one cannot assume dominance of the lightest scalar [48, 50]. In the C2HDM,

CP violation in the charge Higgs interactions arises only from the CKM matrix. Charged

Higgs appear in Barr-Zee type H±W∓γ contributions to the EDM.4 Nevertheless, they

give sub-dominant contributions to the electron EDM, as shown in figure 5 of ref. [50].

In figure 12, we show the constraints from LHC and from the electron EDM for Type II.

In order to compare with figure 6 of ref. [50], we have takenmH± ∼ 420GeV,m2 ∼ 400GeV,

m3 ∼ 450GeV, and Re(m2
12) ∼ v2cβsβ . The set of points obtained after the theoretical

constraints are shown in cyan/light-gray in figure 12. In red/dar-gray, we show those points

that satisfy, in addition, µV V equal to unity, within 20%. Also shown, in blue/black, is

the electron EDM constraint obtained from figure 6 of ref. [50]. For tanβ ∼ 1.5, we see

that µV V = 1.0± 0.2 allows for |s2| ∼ 0.2, while the electron EDM favours |s2| . 0.05. We

4See, for example, figure 12 in ref. [50], and also ref. [51].
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note that this choice of masses and angles is barely allowed, and it would not pass a future

µγγ = 1.0± 0.1 measurement. We conclude that in the near future the constraints on the

C2HDM will profit from an interplay between the LHC data and the electron EDM data,

but that LHC’s Run 2 will provide very relevant new constraints. The analysis of ref. [50] is

restricted to a few mass choices. A full simulation of the EDM constraints on the C2HDM

will be interesting, but lies beyond the scope of this work, and will be pursued elsewhere.

6 Conclusions

The 125GeV particle found at LHC could have a pseudoscalar component. We discuss in

detail the decay of a mixed scalar/pseudoscalar state into Zγ, which will be probed in the

next LHC run. We consider the constraints that current experiments impose on the four

versions of the C2HDM and discuss the prospects of future bounds, including h→ Zγ. This

provides an update of Type I and Type II, and the first discussion of current constraints

on the Lepton Specific and Flipped C2HDM.

In the C2HDM, the parameter s2 measures the pseudoscalar content, with s2 = 0

(|s2| = 1) corresponding to a pure scalar (pseudoscalar). The fact that ATLAS has a rather

large central value for µγγ places strong limits on C2HDM, but it also disfavours the SM at

2-σ. But, even excluding this constraint, we find that current experiments already disfavor

a large pseudoscalar component |s2| > 0.85, at over 1-σ level in all C2HDM versions.

As for future experimental reaches, we find that in all types of C2HDM a better

measurement of µbb̄(V h) ∼ 1 will exclude large values of the pseudoscalar component s2.

Similarly, a measurement of µZγ ∼ 1 will also exclude a very large s2 component. The

Flipped C2HDM is special in that one can have µτ+τ− ∼ 7 and, thus, the τ+τ− channel

will be crucial in probing this model.

Further, we have discussed the possibility that the scalar component of the Type II

C2HDM h1qq̄ coupling (a) has a sign opposite to that in the SM. The fact that the C2HDM

also has a pseudoscalar component of the h1qq̄ coupling (b) gives more room for differences

than are possible within the Type II real 2HDM. We found that the up quark coupling

sgn(C) bU can have either sign, while sgn(C) aU must be positive. If future experiments

yield µV V , µγγ , and µτ+τ− within 5% of the SM, then sgn(C) bU can still have either

sign, but sgn(C) aU = 1 to very high precision, corresponding to the limit s1c2 = sβ .

In contrast, current experiments allow for either sign of both sgn(C) aD and sgn(C) bD,

covering a rather large region. However, if future experiments yield µV V , µγγ , and µτ+τ−

within 5% of the SM, then the region in the sgn(C) aD-sgn(C) bD plane reduces to a line,

with most points concentrated around sgn(C) aD ∼ 1. Still, there are a few points with

sgn(C) aD ∼ −0.4, as long as sgn(C) bD ∼ −0.8 is rather large. Finally we have discussed

briefly the possible constraints on this model coming from the EDMs and their interplay

with the future LHC’s Run 2 data.

– 18 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

A Production and decay rates

A.1 Lagrangian

The appendices contains the production and decay rates for a scalar particle with both

scalar and pseudo-scalar components. We assume that the SM particles except the Higgs

follow the usual lagrangian, that there are H± particles with the usual gauge-kinetic La-

grangian, and that the new scalar/pseudoscalar particle h has the following interactions:

LY = −
(√

2Gµ

)

1
2
mf ψ̄ (a+ ibγ5)ψ h, (A.1)

LhH+H− = λ v hH+H−, (A.2)

LhV V = C

[

gmWW
+
µ W

µ− +
g

2cW
mZZµZ

µ

]

h, (A.3)

where a, b, and C are real, cW = cos θW , and θW is the Weinberg angle. In the limit,

a = C = 1, and b = λ = 0, we obtain the SM.

We use the notation for the covariant derivatives contained in Romão and Silva [52],

with all etas positive, which coincides with the convention in [53]. Some relevant vertices

are

hψ̄ψ → −i g mf

2mW
(a+ ibγ5) ,

hH+H− → i λ v ,

hW+µW−ν → i g mW C gµν ,

hZµZν → i
g mZ

cos(θW )
C gµν ,

H+H−Aµ → −ie (p+ − p−)
µ ,

H+H−Zµ → −ig cos(2θW )

2 cos(θW )
(p+ − p−)

µ ,

H+H−AµAν → 2i e2gµν ,

H+H−ZµAν → ieg
cos(2θW )

cos(θW )
gµν . (A.4)

These couplings were checked for the 2HDM with FeynRules [54] with the conventions of

Romão and Silva [52] for positive ηs.

A.2 Tree level production and decay

In this article, we use

τ = 4m2/m2
h, (A.5)

where m is the mass of the relevant particle while mh = 125GeV. This is the notation

of [53]. In [20, 55, 56] the notation is τ(theirs) = τ−1.

The decays into fermions are given by

Γ(h→ ff̄) = Nc

Gµm
2
f

4
√
2π

mh

[

a2β3f + b2βf
]

, (A.6)
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where Nc = 3 (Nc = 1) for quarks (leptons) and βf =
√

1− 4m2
f/m

2
h =

√
1− τ . The

decays into two vector bosons are given by

Γ(h→ V (∗)V (∗)) = C2 ΓSM(h→ V (∗)V (∗)), (A.7)

and the partial decay widths in the SM-Higgs case in the two-, three- and four-body

approximations, ΓSM(h→ V (∗)V (∗)), can be found in section I.2.2 of ref. [55].

For the vector boson fusion (VBF) and associated (VH) productions, we find

σVBF

σSMVBF

=
σVH

σSMVH

= C2, (A.8)

while, for the bb̄ production,
σ(bb̄→ h)

σSM(bb̄→ h)
= a2 + b2. (A.9)

We point out that the expressions shown here hold for any model with the effective La-

grangians of eqs. (A.1)–(A.3). Also, there is no interference between the scalar a couplings

and the pseudoscalar b couplings in eqs. (A.6) or (A.9).

B Amplitudes for h → γγ

B.1 Fermion loop

The relevant interaction for the fermion loop is in (A.1). The one-loop amplitude reads

Mγγ
F ≡ (q1 · q2 ǫ1 · ǫ2 − q1 · ǫ2 q2 · ǫ1) cγγF + ǫµναβ q

µ
1 q

ν
2 ǫ

α
1 ǫ

β
2 d

γγ
F , (B.1)

where

cγγF = −
e2Q2

fg

mW

4am2
f

m2
h

1

16π2
[(

4m2
f −m2

h

)

C0(0, 0,m
2
h,m

2
f ,m

2
f ,m

2
f ) + 2

]

,

dγγF = 4
e2Q2

fg

mW

1

16π2
bm2

f C0(0, 0,m
2
h,m

2
f ,m

2
f ,m

2
f ) , (B.2)

where C0 is one of the Passarino-Veltman [57] scalar loop integrals. Their relation with

other expressions for the one loop integrals is explained in appendix E. Note that the

definition of the amplitude in eq. (B.1) is the same as in ref. [53], but differs by an irrelevant

global sign from the definition in refs. [20, 55].

To make contact with the more conventional notation we define

cγγF ≡ e2g

mW

1

16π2
Xγγ

F , dγγF ≡ e2g

mW

1

16π2
Y γγ
F , τf ≡

4m2
f

m2
h

. (B.3)

We then get

Xγγ
F = −

4aQ2
f m

2
f

m2
h

[(

4m2
f −m2

h

)

C0(0, 0,m
2
h,m

2
f ,m

2
f ,m

2
f ) + 2

]

,

Y γγ
F = 4bQ2

f m
2
f C0(0, 0,m

2
h,m

2
f ,m

2
f ,m

2
f ) , (B.4)
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for each fermion f . Finally, using

C0(0, 0,m
2
h,m

2
f ,m

2
f ,m

2
f ) = −τff(τf )

2m2
f

, (B.5)

where f(τ) is the function defined in the Higgs Hunter’s Guide [53],

f(τ) =











[

sin−1
(

√

1/τ
)]2

, if τ ≥ 1 ,

−1
4

[

ln

(

1 +
√
1− τ

1−
√
1− τ

)

− iπ

]2

, if τ < 1 ,
(B.6)

we obtain (summing over all fermions)

Xγγ
F = −

∑

f

Nf
c 2aQ

2
f τf [1 + (1− τf )f(τf )] ,

Y γγ
F = −

∑

f

Nf
c 2bQ

2
f τff(τf ) . (B.7)

B.2 Gauge boson loops

As the only modification introduced by the new Lagrangian is a multiplicative constant C,

we can use the SM result (C = 1 in the SM). Using the same notation as in eq. (B.3), we

get [53],

Xγγ
W = C

[

2 + 3τW + 3τW (2− τW )f(τW )
]

, (B.8)

and, of course, Y γγ
W = 0.

B.3 Charged Higgs loops

We get for the three diagrams contributing to this process,

Mγγ
H = (q1 · q2 ǫ1 · ǫ2 − q1 · ǫ2 q2 · ǫ1) cγγH , (B.9)

where

cγγH = − 4e2λv

m2
h16π

2

[

2m2
H±C0(0, 0,m

2
h,m

2
H± ,m

2
H± ,m

2
H±) + 1

]

. (B.10)

In the notation of eq. (B.3) we get

Xγγ
H =− 4λmW v

gm2
h

[

2m2
H±C0(0, 0,m

2
h,m

2
H± ,m

2
H± ,m

2
H±) + 1

]

=− λv2

2m2
H±

τ±
[

1− τ±f(τ±)
]

. (B.11)

Note that this is in agreement with eq. (2.17) of ref. [53], despite the apparent sign dif-

ference, because our definition of the coupling, in eq. (A.2), also differs in sign from their

eq. (2.15). So we are in complete agreement with ref. [53]. With respect to ref. [20], if

we compare with their eqs. (A.8) and (A.4), again we differ by a global sign and we are,

therefore, in agreement. The same holds for ref. [55].
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B.4 Renormalization and gauge invariance

As is well known, the loop contributions to h → γγ should be finite and gauge invariant.

This is not achieved on a diagram by diagram basis, but, rather, this should be true after

adding all the diagrams. With the help of FeynCalc [58], we have explicitly verified this.

C Amplitudes for h → Zγ

C.1 Fermion Loop

With the kinematics h(p) → Z(q2)γ(q1), the fermion loop yields an expression similar to

the one for h→ γγ:

MZγ
F = (q1 · q2 ǫ1 · ǫ2 − q1 · ǫ2 q2 · ǫ1) cZγ + ǫµναβ q

µ
1 q

ν
2 ǫ

α
1 ǫ

β
2 d

Zγ . (C.1)

Again, defining

cZγ ≡ e2g

mW

1

16π2
XZγ

F , dZγ ≡ e2g

mW

1

16π2
Y Zγ
F , (C.2)

we get (summing over all the fermions)

XZγ
F = −

∑

f

Nf
c

4a gfV Qf m
2
f

sW cW

[

2m2
Z

(m2
h −m2

Z)
2

[

B0(m
2
h,m

2
f ,m

2
f )−B0(m

2
Z ,m

2
f ,m

2
f )
]

+
1

m2
h −m2

Z

[

(

4m2
f −m2

h +m2
Z

)

C0(m
2
Z , 0,m

2
h,m

2
f ,m

2
f ,m

2
f ) + 2

]

]

, (C.3)

Y Zγ
F =

∑

f

Nf
c

4b gfV Qf m
2
f

sW cW
C0(m

2
Z , 0,m

2
h,m

2
f ,m

2
f ,m

2
f ) . (C.4)

C.2 Gauge boson loops

As the only modification introduced by the new Lagrangian is a multiplicative constant C,

we can use the SM result (C = 1 in the SM). Using the same notation as in eq. (B.3), we

get

XZγ
W =

C

tan θW
IW , (C.5)

where

IW =
1

(m2
h −m2

Z)
2

[

m2
h(1− tan2 θW )− 2m2

W (−5 + tan2 θW )
]

m2
Z∆B0

+
1

m2
h −m2

Z

[

m2
h(1− tan2 θW )− 2m2

W (−5 + tan2 θW )

+ 2m2
W

[

(−5 + tan2 θW )(m2
h − 2M2

W )− 2m2
Z(−3 + tan2 θW )

]

C0

]

, (C.6)

with

∆B0 = B0(m
2
h,m

2
W ,m

2
W )−B0(m

2
Z ,m

2
W ,m

2
W ),

C0 = C0(m
2
Z , 0,m

2
h,m

2
W ,m

2
W ,m

2
W ) , (C.7)

and, of course, Y Zγ
W = 0.

– 22 –



J
H
E
P
1
2
(
2
0
1
4
)
0
4
3

C.3 Charged Higgs loops

There are three diagram contributions to this process. Adding them, we get

MZγ
H± = (q1 · q2 ǫ1 · ǫ2 − q1 · ǫ2 q2 · ǫ1) cZγ

H± . (C.8)

Defining, as before,

cZγ
H± =

e2g

mW

1

16π2
XZγ

H± , (C.9)

we get

XZγ
H± = − 1

tan θW

λv2(1− tan2 θW )

m2
h −m2

Z

[

m2
Z

m2
h −m2

Z

(

B0(m
2
h,m

2
±,m

2
±)−B0(m

2
Z ,m

2
±,m

2
±)
)

+
(

2m2
±C0(m

2
Z , 0,m

2
h, ,m

2
±,m

2
±,m

2
±) + 1

)

]

. (C.10)

These results agree with refs. [53, 55], except for an irrelevant global sign. See section E.2

for details.

C.4 Renormalization and gauge invariance

It is known that a counterterm in needed in order to get a finite result for this process [59].

This happens despite the fact that there is no tree level coupling hZγ. But, as explained in

ref. [59], the existence of the coupling hZZ and the renormalization of the mixing Zγ leads

to a counterterm. In that work, the authors were mainly concerned with the divergent

part and did not write the full counterterm. With our conventions here5 we should write

instead of their eq. (2.16):

T νν
Zγ = −2

eg2 cos θWMW

16π2
(1 + tan2 θW ) gµνB0(0,M

2
W ,M

2
W ) , (C.11)

where

B0(0,M
2
W ,M

2
W ) = ∆ǫ − ln

M2
W

µ2
, ∆ǫ =

2

ǫ
− γ + ln 4π , (C.12)

γ is the Euler constant, and µ is the parameter introduced in dimensional regularization to

correct for the fact that the electric charge is no longer dimensionless in d 6= 4. Apart from

a global minus sign, the divergent part is precisely equal to eq. (2.16) of ref. [59]. But there

is an important point here concerning the finite parts. If we do not take the counterterm

as in eq. (C.11), we will not be able to cancel the dependence on the scale µ when we sum

all the irreducible diagrams. We have checked this by evaluating all the reducible diagrams

and showing that these sum to the counterterm, that is

∑

reducible

= −2
eg2 cos θWMW

16π2
(1 + tan2 θW )gµνB0(0,M

2
W ,M

2
W ) ≡ T νν

Zγ . (C.13)

So, in the end, we get a finite result that does not depend on the scale µ.

5Our Feynman rules differ from ref. [59], see ref. [52], and there is a global sign difference.
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q1

q2

hh

Z Z

γγ

++
h

Z

Z

γ

h

Z

Z

γ

+ +

G0

h

Z

γ

+

G0

h

Z

γ

= finite

Figure 13. Classes of one loop diagrams contributing to h→ Zγ.

h

Z

Z

γ

+

q1

h

Z

Z

γ

= 0

Figure 14. Sum of diagrams which vanish for a photon on mass shell.

Sometimes it is stated that to get the correct finite result for the on-shell hZγ three-

point function all we have to do is to add to the irreducible diagrams the sum of the

reducible diagrams, ignoring the counterterms. For completeness, we include here an ex-

planation of this statement. To be precise, one should add all relevant one loop diagrams,

including reducible, irreducible and counterterms, as shown in figure 13.

The last two diagrams in figure 13, which involve the Goldstone boson G0, vanish.

One may keep either of them in or exclude it at will. Moreover, the fact that we are using

the on mass shell renormalization, means that the third and fourth diagrams in figure 13

add to zero, as shown diagrammatically in figure 14.

Thus, we are left with the first two diagrams in figure 13. We will now show that

adding the first and third diagram in figure 13 yields the same result (as explained above,

the fifth and sixth diagrams vanish and, thus, are optional). To understand this, we have to

realize that the counterterm δZhZγ on the second diagram of figure 13 and the counterterm

δZZγ in the photon leg on the fourth diagram of figure 13 are related. To show this, we

start with the relevant part of the Lagrangian

L =
1

8

(

v2 + 2vh+ h2
) [

g2W 3
µW

3µ
µ + g′2BµB

µ − 2gg′W 3
µB

µ
]

+ · · · (C.14)
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h

Z

Z

γ

+
h

Z

γ

= 0

Figure 15. Diagrammatic form of evaluating the fourth diagram in figure 13 via eq. (C.19).

and perform the shifts

g → g + δg, g′ → g′ + δg′ . (C.15)

After using g′ = g tan θW and

W 3
µ = Zµ cos θW +Aµ sin θW , Bµ = −Zµ sin θW +Aµ cos θW , (C.16)

we get

[

g2W 3
µW

3µ
µ +g′2BµB

µ − 2gg′W 3
µB

µ
]

→ g2

cos2 θW
ZµZ

µ + 2gZµZ
µ(δg + δg′ tan2 θW ) + 2gZµA

µ(δg tan θW − δg′). (C.17)

As the mixing term in ZµA
µ is already first order in the corrections, we do not need to

perform the shifts in v and h to get, finally,

δZZγ =
1

2
v δZhZγ . (C.18)

Let us now evaluate the diagram with the counterterm in figure 14. We have, for

on-shell photon (q21 = 0),

i
g

cos θW
MZ

−i
−M2

Z

i δZZγ = −i g

MW
δZZγ = −iδZhZγ , (C.19)

where we have used eq. (C.18) and MW = 1
2 g v. We obtain the result in figure 15.

Having established that the calculation can be performed exclusively with the first

and second diagrams in figure 13, and combining figures 14 and 15, we obtain the result in

figure 16, which we were seeking. That is: as often stated, one can add all reducible and

irreducible diagrams, ignoring the counterterms.

D Widths for loop decays

The total width is given by

Γ =
1

8π

|~q1|
m2

h

|M |2 . (D.1)
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h

Z

γ

+
h

Z

Z

γ

= finite

Figure 16. Diagrammatic form of evaluating the fourth diagram in figure 13 via eq. (C.19).

D.1 h → γγ

In this case, |~q1| = mh/2, and

|M |2 =

(

eg

16π2mW

)2
[

|Xγγ
F +Xγγ

W +Xγγ
H |2 (q1 · q1gµν − q1µq2ν)

(

q1 · q1gµ′ν′ − q1µ′q2ν′
)

(−gµµ′

)(−gνν′)
+|Y γγ

F |2 ǫµναβqµ1 qν2 ǫµ′ν′α′β′qµ
′

1 q
ν′

2 (−gαα′

)(−gββ′

)
]

=

(

eg

16π2mW

)2 m4
h

2

(

|Xγγ
F +Xγγ

W +Xγγ
H |2 + |Y γγ

F |2
)

. (D.2)

Putting everything together, and including the factor 1/2 for identical particles, we get the

final result

Γ(h→ γγ) =
GFα

2m3
h

128
√
2π3

(

|Xγγ
F +Xγγ

W +Xγγ
H |2 + |Y γγ

F |2
)

. (D.3)

D.2 h → Zγ

Now, we have |~q1| = (m2
h −m2

Z)/(2mh), and

|M |2 =

(

eg

16π2mW

)2
[

|XZγ
F +XZγ

W +XZγ
H |2 (q1 · q1gµν − q1µq2ν)

(

q1 · q1gµ′ν′ − q1µ′q2ν′
)

(−gµµ′

)

(

−gνν′ + qν2q
ν′
2

m2
Z

)

+|Y Zγ
F |2ǫµναβqµ1 qν2 ǫµ′ν′α′β′qµ

′

1 q
ν′

2 (−gαα′

)

(

−gββ′

+
qβ2 q

β′

2

m2
Z

)]

=

(

eg

16π2mW

)2 (m2
h −m2

Z)
2

2

(

|XZγ
F +XZγ

W +XZγ
H |2 + |Y Zγ

F |2
)

, (D.4)

and, for the final width,

Γ(h→ Zγ) =
GFα

2m3
h

64
√
2π3

(

1− m2
Z

m2
h

)3
(

|XZγ
F +XZγ

W +XZγ
H |2 + |Y Zγ

F |2
)

. (D.5)
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E Relation between the Passarino-Veltman functions and other loop

functions

When we compute the one-loop diagrams, as we did, using FeynCalc [58], the result is

naturally presented in terms of the well-known Passarino-Veltman integrals [57]. These

are in general complicated functions of the external momenta and masses and usually only

possible to be expressed in terms of very complicated functions. Normally it is better to

evaluate them numerically and for that there is the package LoopTools [60, 61]. However

for special situations, like zero external momenta or equal masses in the loops, these loop

integrals have simpler forms and can be expressed in terms of simple functions. This is

the case for the loops studied here and we present in this appendix the relations of these

Passarino-Veltman integrals with other representations found in the literature.

E.1 The integrals for h → γγ

In this decay, all results can be expressed in terms of the Passarino-Veltman integral

C0(0, 0,m
2
h,m

2,m2,m2), where m is the mass of the particle running in the loop. We

have already given in eq. (B.5) the relation with the function f(τ) defined in the Higgs

Hunter’s Guide [53],

C0(0, 0,m
2
h,m

2,m2,m2) = −τf(τ)
2m2

, τ =
4m2

m2
h

, (E.1)

where f(τ) is defined in eq. (B.6).

E.2 The integrals for h → Zγ

In the Higgs Hunter’s Guide [53], a different set of integrals, I1(a, b) and I2(a, b) were

introduced. They are defined as follows:

I1(a, b) =
ab

2(a− b)
+

a2b2

2(a− b)2

[

f(a)− f(b)
]

+
a2b

(a− b)2

[

g(a)− g(b)
]

, (E.2)

I2(a, b) = − ab

2(a− b)

[

f(a)− f(b)
]

, (E.3)

where f(τ) was defined in eq. (B.6), and g(τ) is given by

g(τ) =











√
τ − 1 sin−1

(

√

1/τ
)

, if τ ≥ 1 ,

1
2

√
1− τ

[

ln

(

1 +
√
1− τ

1−
√
1− τ

)

− iπ

]

, if τ < 1 .
(E.4)

Comparing their results with our results and those of ref. [59], we get

I1(τ, λ) = 4J2(βZ , βH), I2(τ, λ) = J1(βZ , βH) , (E.5)

where

τ =
4m2

m2
h

, λ =
4m2

m2
Z

, βZ =
m2

Z

m2
, βH =

m2
H

m2
, (E.6)
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and m is any mass running in the loops. Again, we have numerically checked that these

relations hold for any value of the arguments.

To compare our results in terms of the Passarino-Veltman functions with those of

ref. [53], we notice that

C0(m
2
Z , 0,m

2
h,m

2,m2,m2) = − 1

m2
I2(τ, λ) , (E.7)

∆B0 = −m
2
h −m2

Z

m2
Z

− (m2
h −m2

Z)
2

2m2m2
Z

I1(τ, λ) + 2
m2

h −m2
Z

m2
Z

I2(τ, λ) . (E.8)

We have checked these equations numerically with the help of the package LoopTools

[60, 61].

Using these relations, one can check that our eqs. (C.3), (C.6) and (C.10) agree with

eqs. (C.12), (C.13) and (C.14) of ref. [53] up to an overall sign. We notice that our coupling

to the charged Higgs translate into their notation

λv → −Rh
H± . (E.9)

There is no equivalent result to our eq. (C.4) in ref. [53], but we are in agreement with

ref. [55] up to global signs. However we warn the reader that the definitions of I1, I2 and

g(τ) in eqs. (2.55) and (2.56) of ref. [55] are not consistent.

F Production and decay involving gluons

Relating with the expression for the γγ decay, we find

Γ(h→ gg) =
GFα

2
Sm

3
h

64
√
2π3

(

|Xgg
F |2 + |Y gg

F |2
)

, (F.1)

where

Xgg
F = −

∑

q

2aq τq [1 + (1− τq)f(τq)] ,

Y gg
F = −

∑

q

2bq τqf(τq) , (F.2)

and the sums run only over quarks q.

Similarly,

σ(gg → h) =
Gµα

2
s

512
√
2π

(

|Xgg
F |2 + |Y gg

F |2
)

. (F.3)

These are dominated by the triangle with top quark in the loop, and, depending on tanβ,

also by the triangle with bottom quark in the loop. Thus, we can use

σ(gg → h)

σSM(gg → h)
=

|atA1/2(τt) + abA1/2(τb)|2 + |btAA
1/2(τt) + bbA

A
1/2(τb)|2

|A1/2(τt) +A1/2(τb)|2
, (F.4)

where

A1/2(τq) = = 2τq [1 + (1− τq)f(τq)] ,

AA
1/2(τq) = 2τqf(τq) . (F.5)
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