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1. Introduction

Let G ⊂ R3 be a smooth bounded domain with Ω = ∂G simply connected.

We are concerned with the properties of the space

H1/2(Ω; S1) = {g ∈ H1/2(Ω;R2); |g| = 1 a.e. on Ω}.

Recall (see [12]) that there are functions in H1/2(Ω; S1) which cannot be written in

the form g = e ıϕ with ϕ ∈ H1/2(Ω;R). For example, we may assume that locally,

near a point on Ω, say 0, Ω is a disc B1; then take

g(x, y) = (x, y)/(x2 + y2)1/2 on B1.(1.1)

Recall also (see [25]) that there are functions in H1/2(Ω; S1) which cannot be ap-

proximated in the H1/2-norm by functions in C∞(Ω; S1). Consider, for example,

again a function g which is the same as in (1.1) near 0.

It is therefore natural to introduce the classes

X = {g ∈ H1/2(Ω; S1); g = e ıϕ for some ϕ ∈ H1/2(Ω;R)}

and

Y = C∞(Ω; S1)
H1/2

.

Clearly, we have

X ⊂ Y ⊂ H1/2(Ω; S1).

Moreover, these inclusions are strict. Indeed, any function g ∈ H1/2(Ω; S1) which

satisfies (1.1) does not belong to Y. On the other hand, the function

g(x, y) =
{

e 2ıπ/r α

, on B1

1, on Ω\B1

with r = (x2 + y2)1/2 and 1/2 ≤ α < 1, belongs to Y, but not to X (see [12]).
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To every map g ∈ H1/2(Ω;R2) we associate a distribution T = T( g) ∈
D ′(Ω;R). When g ∈ H1/2(Ω; S1), the distribution T( g) describes the location and

the topological degree of its singularities. This is the analogue of a tool introduced

by Brezis, Coron and Lieb [19] in the framework of H1(G; S2) (see the discussion

following Lemma 2 below). In the context of H1/2(Ω; S1), the distribution T( g) and

the corresponding number L( g) (defined after Lemma 1) were originally introduced

by the authors in 1996 and these concepts were presented in various lectures.

Given g ∈ H1/2(Ω;R2) and ϕ ∈ Lip (Ω;R), consider any U ∈ H1(G;R2)

and any Φ ∈ Lip (G;R) such that

U|Ω = g and Φ|Ω = ϕ.(1.2)

Set

H = 2(Uy ∧Uz, Uz ∧Ux, Ux ∧Uy);

this H is independent of the choice of direct orthonormal bases in R3 (to compute

derivatives) and in R2 (to compute ∧-products). Next, consider

∫

G

H · ∇Φ.(1.3)

It is not difficult to show (see Section 2) that (1.3) is independent of the choice

of U and Φ; it depends only on g and ϕ. We may thus define the distribution

T( g) ∈ D ′(Ω;R) by

〈T( g), ϕ〉 =
∫

G

H · ∇Φ.

If there is no ambiguity, we will simply write T instead of T( g).

When g has a little more regularity, we may also express T in a simpler

form:

Lemma 1. — If g ∈ H1/2(Ω;R2) ∩W1,1(Ω;R2) ∩ L∞(Ω;R2), then

〈T( g), ϕ〉 =
∫

Ω

(
( g ∧ gx)ϕy − ( g ∧ gy)ϕx

)
, ∀ϕ ∈ Lip (Ω;R).

The integrand is computed pointwise in any orthonormal frame (x, y) such that (x, y, n) is

direct, where n is the outward normal to G – and the corresponding quantity is frame-invari-

ant.
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By analogy with the results of [19] and [6] we introduce, for every g ∈
H1/2(Ω;R2), the number

L( g) = 1

2π
Sup { 〈T( g), ϕ〉 ; ϕ ∈ Lip (Ω;R), |ϕ|Lip ≤ 1 }

= 1

2π
Max {...},

where |ϕ|Lip = Sup
x �=y

|ϕ(x)−ϕ( y)|/d(x, y) refers to a given metric d on Ω. There are

three (equivalent) metrics on Ω which are of interest:

dR3(x, y) = |x − y|,
dG(x, y) = the geodesic distance in Ḡ,

dΩ(x, y) = the geodesic distance in Ω.

(1.4)

When dealing with a specified metric, we will write LR3, LG or LΩ. Otherwise, we

will simply write L (note that all these L′s are equivalent). It is easy to see that

0 ≤ L( g) ≤ C‖g‖2
H1/2, ∀g ∈ H1/2(Ω;R2)(1.5)

and

|L( g)− L(h)| ≤ C‖g − h‖H1/2(‖g‖H1/2 + ‖h‖H1/2), ∀g, h ∈ H1/2(Ω;R2).(1.6)

When g takes its values into S1 and has only a finite number of singularities, there

are very simple expressions for T( g) and L( g):

Lemma 2. — If g ∈ H1/2(Ω; S1) ∩H1
loc

(
Ω\ ∪k

j=1 {aj}; S1
)

, then

T( g) = 2π

k∑

j=1

djδaj
,

where dj = deg( g, aj). Moreover L( g) is the length of the minimal connection associated to the

configuration (aj, dj) and to the specific metric on Ω (in the sense of [19]; see also [27]).

Remark 1.1. — Here, deg( g, aj) denotes the topological degree of g restricted

to any small circle around aj, positively oriented with respect to the outward nor-

mal. It is well defined using the degree theory for maps in H1/2(S1; S1) (see [17]

and [22]).
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By the definition of T( g), we see that 〈T( g), 1〉 = 0. Therefore, if g is as

in Lemma 2, then
∑

dj = 0. Thus we may write the collection of points (aj),

repeated with their multiplicity dj, as (P1, ..., Pk, N1, ..., Nk), where k = 1/2
∑ |dj|

(we exclude from this collection the points of degree 0). A point aj is counted

among the P’s if it has positive degree and among the N’s otherwise. Then L( g) =
Inf

σ

∑
d(Pj, Nσ( j)). Here, the Inf is taken over all the permutations σ of {1, ..., k}

and d is one of the metrics in (1.4).

The conclusion of Lemma 2 is reminiscent of a concept originally introduced

by Brezis, Coron and Lieb [19]. There, u is a map from G ⊂ R3 into S2 with

a finite number of singularities aj ∈ G. To such a map u, one associates a distri-

bution T(u) describing the location and the topological charge of the singular set

of u. More precisely, if u ∈ H1(G; S2), set

D = (u · uy ∧ uz, u · uz ∧ ux, u · ux ∧ uz)

and T(u) = divD.

If u is smooth except at the aj’s, it is proved in [19] that

T(u) = 4π
∑

djδaj
.

Here, dj is the topological degree of u around aj .

Using a density result of T. Rivière (see [38] and Lemma 11 in Section 2;

see also the proof of Lemma 23, Remark 5.1 and Appendix B), we will extend

Lemma 2 to general functions in H1/2(Ω; S1):

Theorem 1. — Given any g ∈ H1/2(Ω; S1), there are two sequences of points (Pi)

and (Ni) in Ω such that
∑

i

|Pi −Ni| <∞(1.7)

and

〈T( g), ϕ〉 = 2π
∑

i

(
ϕ(Pi)− ϕ(Ni)

)
, ∀ϕ ∈ Lip (Ω;R).(1.8)

In addition, for any metric d in (1.4)

L( g) = Inf
∑

i

d(Pi, Ni),

where the infimum is taken over all possible sequences (Pi), (Ni) satisfying (1.7), (1.8).

If the distribution T is a measure (of finite total mass), then

T( g) = 2π
∑

finite

djδaj

with dj ∈ Z and aj ∈ Ω.
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Remark 1.2. — There are always infinitely many representations of T( g) as

a sum satisfying (1.7)–(1.8) and such representations need not be equivalent modulo

a permutation of points. For example, a dipole δP − δQ may be represented as

δP− δQ 1
+∑

j≥1(δQ j
− δQ j+1

) for any sequence (Q j) rapidly converging to Q . The

last assertion in Theorem 1 is the H1/2-analogue of a result of Jerrard and Soner

[28, 29] (see also Hang and Lin [28]) concerning maps in W1,1(Ω; S1).

Maps in Y can be characterized in terms of the distribution T:

Theorem 2 (Rivière [38]). — Let g ∈ H1/2(Ω; S1). Then T( g) = 0 if and only if

g ∈ Y.

This result is the H1/2-counterpart of a well-known result of Bethuel [3]

characterizing the closure of smooth maps in H1(B3; S2) (see also Demengel [24]).

The implication g ∈ Y �⇒ T( g) = 0 is trivial, using e.g. (1.6). The converse

is more delicate; it uses the “dipole removing” technique of Bethuel [3] and we

refer the reader to [38]; for convenience we present in Section 4 a slightly different

proof.

As was mentioned earlier, functions in Y need not belong to X, i.e., they

need not have a lifting in H1/2(Ω;R). However, we have

Theorem 3. — For every g ∈ Y there exists ϕ ∈ H1/2(Ω;R)+W1,1(Ω;R), which

is unique (modulo 2π), such that g = e ıϕ . Conversely, if g ∈ H1/2(Ω; S1) can be written as

g = e ıϕ with ϕ ∈ H1/2 +W1,1, then g ∈ Y.

The existence will be proved in Section 3 with the help of paraproducts (in

the sense of J.-M. Bony and Y. Meyer). The heart of the matter is the estimate

‖ϕ‖H1/2+W1,1 ≤ CΩ‖e ıϕ‖H1/2(1+ ‖e ıϕ‖H1/2),(1.9)

which holds for any smooth real-valued function ϕ; here CΩ depends only on Ω.

Using Theorem 3 and the basic estimate (1.9), we will prove that, for every

g ∈ H1/2(Ω; S1), there exists ϕ ∈ H1/2(Ω;R) + BV(Ω;R) such that g = e ıϕ (see

Section 4). Of course, this ϕ is not unique. There is an interesting link between

all possible liftings of g and the minimal connection of g:

Theorem 4. — For every g ∈ H1/2(Ω; S1) we have

Inf
{
|ϕ2|BV; g = e ı(ϕ1+ϕ2);ϕ1 ∈ H1/2 and ϕ2 ∈ BV

}
= 4πLΩ( g),

where |ϕ2|BV =
∫

Ω
|Dϕ2|.



6 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

Another useful fact about the structure of H1/2(Ω; S1) is the following fac-

torization result:

Theorem 5. — We have

H1/2(Ω; S1) = (X) · (H1/2 ∩W1,1),

i.e., every g ∈ H1/2(Ω; S1) may be written as g = e ıϕh, with ϕ ∈ H1/2(Ω;R) and

h ∈ H1/2(Ω; S1) ∩W1,1(Ω; S1). Moreover we have the control

‖ϕ‖2
H1/2 + ‖h‖W1,1 ≤ CΩ‖g‖2

H1/2 .

The interplay between the Ginzburg–Landau energy and minimal connec-

tions has been first pointed out in the important work of T. Rivière [37] (see

also [34] and [38]) in the case of boundary data with a finite number of singu-

larities. We are concerned here with a general boundary condition g in H1/2.

Given g ∈ H1/2(Ω; S1), set

eε,g = eε = Min
H1

g (G;R2)
Eε(u),(1.10)

where

Eε(u) =
1

2

∫

G

|∇u|2 + 1

4ε2

∫

G

(|u|2 − 1)2

and

H1
g (G;R2) = {u ∈ H1(G;R2); u = g on Ω}.

Theorem 6. — For every g ∈ H1/2(Ω; S1) we have, as ε→ 0,

eε = πLG( g) log(1/ε)+ o(log(1/ε)).(1.11)

This result and some variants are proved in Section 5. For special g′s (namely

g′s with finite number of singularities), formula (1.11) was first proved by T. Rivière

in [37]. For a general g ∈ H1/2(Ω; S1), it was established in [12] that

eε ≤ C( g) log(1/ε)

where C( g) = C(G)‖g‖2
H1/2(Ω)

; another proof of the same inequality is given in [38].

Using Theorem 6, we may characterize the classes X and Y in terms of the

behavior of the Ginzburg–Landau energy as ε → 0. Indeed, Theorem 6 implies

that

Y = { g ∈ H1/2(Ω; S1) ; eε = o(log(1/ε)) }.
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On the other hand, it is easy to see that

X = { g ∈ H1/2(Ω; S1) ; eε = O(1) }.

Next, we present various estimates for minimizers uε in (1.10). In Section 6,

we discuss the following theorem (originally announced in [13] and subsequently

established with a simpler proof in [5]):

Theorem 7. — For every g ∈ H1/2(Ω; S1) we have

‖uε‖W1,p(G) ≤ Cp, ∀ 1 ≤ p < 3/2.(1.12)

In fact, we will prove the following slight generalization of Theorem 7:

Theorem 7′. — For every g ∈ H1/2(Ω; S1), the family (uε) is relatively compact in

W1,p for every p < 3/2.

Remark 1.3. — It is very plausible that Theorem 7 still holds when p = 3/2.

However, the conclusion fails for p > 3/2; see the discussion in Section 9.

In Section 7, we will establish stronger interior estimates:

Theorem 8. — For every g ∈ H1/2(Ω; S1), we have

‖uε‖W1,p(K) ≤ Cp,K, ∀ 1 ≤ p < 2, ∀K compact in G.(1.13)

Consequently, (uε) is relatively compact in W
1,p

loc for every p < 2.

Remark 1.4. — The conclusion of Theorem 8 fails for p = 2. Here is an

example, with G = B1, the unit ball in R3, and g(x1, x2, x3) = (x1, x2)
/√

x2
1 + x2

2.

T. Rivière [37] (see also F.H. Lin and T. Rivière [34]) has proved that in this case

uε → u = (x1, x2)
/√

x2
1 + x2

2, and clearly this u does not belong to H1
loc(G).

Finally, we have a very precise result concerning the limit of uε when g ∈ Y:

Theorem 9. — For every g ∈ Y, write (as in Theorem 3) g = e ıϕ , with ϕ ∈
H1/2 +W1,1. Then we have

uε → u∗ = e ıϕ̃ in W1,p(G) ∩ C∞(G), ∀p < 3/2,

where ϕ̃ is the harmonic extension of ϕ.
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Theorem 9 and some of its variants are presented in Section 8. In Section 9

we prove some partial results about estimates in W1,p when p = 3/2. In Section 10

we list some open problems.

Most of the results in this paper were announced in [13].

The paper is organized as follows:

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Elementary properties of the minimal connection. Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Lifting for g ∈ Y. Characterization of Y. Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4. Lifting for a general g ∈ H1/2. Optimizing the BV part of the phase. Proof of Theorems 4 and 5 . . . . . . . . . . . . . 26

4.1. The dipole construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2. Construction of a map with prescribed singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Lower bound estimates for the BV part of the phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. Minimal connection and Ginzburg–Landau energy for g ∈ H1/2. Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . 47
6. W1,p(G) compactness for p < 3/2 and g ∈ H1/2. Proof of Theorem 7′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7. Improved interior estimates. W
1,p

loc(G) compactness for p < 2 and g ∈ H1/2. Proof of Theorem 8 . . . . . . . . . . . . . . 67
8. Convergence for g ∈ Y. Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9. Further thoughts about p = 3/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.1. Jerrard–Soner revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2. W1,3/2 – estimate of the limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.3. A geometric estimate related to Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10. Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2. Elementary properties of the minimal connection. Proof of

Theorem 1

To every g ∈ H1/2(Ω;R2) we associate a distribution T( g) ∈ D ′(Ω;R) in the

following way: consider any U ∈ H1(G;R2) such that

U|Ω = g.

Given ϕ ∈ Lip (Ω;R), let Φ ∈ Lip (G;R) be such that

Φ|Ω = ϕ.

Set

H = 2(Uy ∧Uz, Uz ∧Ux, Ux ∧Uy).

Lemma 3. — The quantity
∫
G

H · ∇Φ depends only on g and ϕ.

Proof. — We first claim that
∫
G

H · ∇Φ does not depend on the choice of Φ.

Observe that, if U ∈ C∞(Ḡ;R2), then

div H = 0.
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By density, we find that

div H = 0 in D
′(G)

for any U ∈ H1(G;R2). It follows easily that
∫

G

H · ∇Ψ = 0, ∀Ψ ∈ Lip (G;R) with Ψ = 0 on Ω.

This implies the above claim.

Next, we verify that
∫
G

H · ∇Φ does not depend on the choice of U. Let V be

another choice in H1(G;R2) such that V|Ω = g. Set W = V − U ∈ H1
0. Then, with

obvious notation,
∫

G

HV · ∇Φ =
∫

G

HU · ∇Φ+
∫

G

R1 · ∇Φ+
∫

G

R2 · ∇Φ,

with R1 = (Wy ∧Uz +Uy ∧Wz, ...), R2 = (Wy ∧Wz, ...).

We complete the proof of Lemma 3 with the help of

Lemma 4. — For each U ∈ H1(G;R2) and W ∈ H1
0(G;R2) we have

∫

G

R1 · ∇Φ = 0, ∀Φ ∈ Lip (G;R).

Proof of Lemma 4. — By density, it suffices to prove the above equality for U ∈
C∞(Ḡ;R2), W ∈ C∞0 (Ḡ;R2) and Φ ∈ C∞(Ḡ;R). For such U and W, note that

Wy ∧Uz +Uy ∧Wz = (W ∧Uz)y + (Uy ∧W)z.

Therefore,
∫

G

R1 · ∇Φ = −
∫

G

[(W ∧Uz)Φxy + (Uy ∧W)Φxz + · · · ] = 0.

As a consequence of Lemma 3, the map

ϕ �−→
∫

G

H · ∇Φ

is a continuous linear functional on Lip (Ω;R). In particular, it is a distribution. Again

by Lemma 3, this distribution depends only on g ∈ H1/2(Ω;R2). We will denote

it T( g).
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Remark 2.1. — It is important to note that T has a “local” character. More

precisely, if g1, g2 ∈ H1/2(Ω;R2) are such that g1 = g2 in ω (where ω is an open subset

of Ω), then

〈T( g1), ϕ〉 = 〈T( g2), ϕ〉, ∀ϕ ∈ Lip (Ω;R), with supp ϕ ⊂ ω.

This is an easy consequence of Lemma 3 and of the fact that, if supp g ∩ supp ϕ

= ∅, then one may extend g to U ∈ H1 and ϕ to Φ ∈ Lip such that supp U ∩
supp Φ = ∅. Thus, one may define a local version of T as follows: if g ∈ H

1/2
loc (ω;R2),

set

〈T( g), ϕ〉 = 〈T(h), ϕ〉, ∀ϕ ∈ C1
0(ω;R),

where h is any map in H1/2(Ω;R2) such that h = g in a neighborhood of supp ϕ.

Remark 2.2. — Another important property is the invariance under diffeomor-

phisms. More precisely, let Ω, G, g, ϕ be as above and let ξ : Ω̃ → Ω be an orient-

ation-preserving diffeomorphism. Then

〈T( g), ϕ〉 = 〈T( g̃), ϕ̃〉,

where g̃ = g ◦ ξ and ϕ̃ = ϕ ◦ ξ . Clearly, ξ extends as an orientation-preserving diffeo-

morphism (still denoted ξ ) from a small tubular neighborhood of Ω̃ in G̃ to a tubular

neighborhood of Ω in G (as in the proof of Lemma 5 below).

We have

〈T( g), ϕ〉 =
∫

G

H · ∇Φ = 2

∫

G

Jac (Φ, U),

since

H = 2(Uy ∧Uz, Uz ∧Ux, Ux ∧Uy).

We may choose U and Φ supported in a small tubular neighborhood of Ω and set

Ũ = U ◦ ξ and Φ̃ = Φ ◦ ξ . Then, with obvious notation,

〈T( g̃), ϕ̃〉 =
∫

G̃

H̃ · ∇Φ̃ = 2

∫

G̃

Jac (Φ̃, Ũ)

= 2

∫

G

Jac (Φ, U) = 〈T( g), ϕ〉.
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Similarly, if ω is an open subset of Ω and ξ : ω̃ → ω is an orientation-preserving

diffeomorphism, then (using Remark 2.1) we have

〈T( g), ϕ〉 = 〈T( g̃), ϕ̃〉

for every g ∈ H
1/2

loc(ω;R2) and ϕ ∈ C1
0(ω;R). This is extremely useful because we can

always choose a local diffeomorphism with Ω̃ flat near a point. More precisely, let (ωi)

be a finite covering of Ω with each ωi diffeomorphic to a disc D via ξi : D→ ωi. Let

(αi) be a corresponding partition of unity. Then, ∀ϕ ∈ Lip (Ω;R),

〈T( g), ϕ〉 =
∑
〈T( g), αiϕ〉

and we may compute each term 〈T( g), αiϕ〉 in D using the fact that

〈T( g), αiϕ〉 = 〈T( g ◦ ξi), (αiϕ) ◦ ξi〉.

Here is a noticeable fact about T( g):

Lemma 5. — Let g ∈ H1/2(Ω;R2). Then there exists an L1-section F of the tangent

bundle T(Ω) such that

〈T( g), ϕ〉 =
∫

Ω

F · ∇ϕ, ∀ϕ ∈ Lip (Ω;R).

Proof of Lemma 5. — For β > 0, let

Gβ = {X ∈ G; δ(X) < β}, Ωβ = {X ∈ G; δ(X) = β},
where δ(X) = dist (X,Ω). Assuming that β is sufficiently small, say β < β0, for every

X ∈ Gβ there exists a unique point σ(X) ∈ Ω such that δ(X) = |X − σ(X)|. Let

Π : Gβ → (0, β)×Ω be the mapping defined by Π(X) = (δ(X), σ(X)). This mapping

is a C2-diffeomorphism and its inverse is given by

Π
−1(t, σ) = σ − tn(σ), ∀(t, σ) ∈ (0, β)×Ω,

where n(σ) is the outward unit normal to Ω at σ . For 0 < t < β0, let Kt denote the

mapping Π
−1(t, ·) of Ω onto Ωt.

Since n(σ) is orthogonal to Ωt = Π
−1(t,Ω) at σ− tn(σ), it follows that, for every

integrable non-negative function f in Gβ,

∫

Gβ

f =
β∫

0

dt

∫

Ωt

fdσt =
β∫

0

dt

∫

Ω

f (Kt(σ))( Jac Kt)dσ,

where dσ , dσt denote surface elements on Ω,Ωt respectively.
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We now make a special choice of U and Φ. Let

Φ(X) = ϕ(σ(X))ζ(δ(X)),

where ϕ ∈ C1(Ω;R) is the given test function and

ζ(t) =
{

1, for 0 ≤ t ≤ β0/2

0, for t ≥ β0.
.

We take U to be any H1 extension of g such that U(X) = 0 if δ(X) ≥ β0/2.

Hence

〈T( g), ϕ〉 =
∫

G

H · ∇Φ =
∫

Gβ0/2

H · ∇Φ

=
β0/2∫

0

dt

∫

Ω

H · ∇Φ(Kt(σ))( Jac Kt)dσ.

(2.1)

For every σ ∈ Ω, fix a frame Fσ = (x, y) as in Lemma 1. We already observed

that H · ∇Φ can be computed (pointwise) in any direct orthonormal frame of R3. We

choose, at any points X ∈ Gβ0/2, the special frame (Fσ(X), n(σ(X)). Then, we have,

∀t ∈ (0, β0/2),∀σ ∈ Ω,

(H · ∇Φ)(Kt(σ)) = 2(Uy ∧Uz)(Kt(σ))ϕx(σ)+ 2(Uz ∧Ux)(Kt(σ))ϕy(σ).(2.2)

We now insert (2.2) into (2.1) and obtain the conclusion of Lemma 5 with

F(σ) = F1(σ)
∂

∂x
+ F2(σ)

∂

∂y
, where

F1(σ) = 2

β0/2∫

0

(Uy ∧Uz)(Kt(σ))( Jac Kt)dt

and

F2(σ) = 2

β0/2∫

0

(Uz ∧Ux)(Kt(σ))( Jac Kt)dt.

We now turn to the

Proof of Lemma 1. — It suffices to prove that
∫

G

H · ∇Φ =
∫

Ω

[( g ∧ gx)ϕy − ( g ∧ gy)ϕx]
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when U ∈ C∞(Ḡ;R2) and Φ ∈ C∞(Ḡ;R). We write

H =
(
(U ∧Uz)y + (Uy ∧U)z,(U ∧Ux)z + (Uz ∧U)x,

(U ∧Uy)x + (Ux ∧U)y

)
.

Integration by parts yields
∫

G

H · ∇Φ =
∫

Ω

U ∧ det (∇U,∇Φ,
→
n ).

By Lemma 3, we may assume further that
∂U

∂n
= 0 and

∂Φ

∂n
= 0.

For each σ ∈ Ω, we compute det(∇U,∇Φ,
→
n ) in the frame given by Lemma 1.

We have

det (∇U,∇Φ,
→
n ) = ∂U

∂x

∂Φ

∂y
− ∂U

∂y

∂Φ

∂x
= gxϕy − gyϕx,

and the conclusion follows.

Here are some straightforward variants and consequences of Lemma 1 and Re-

marks 2.1–2.2:

Lemma 6. — Let ω be an open subset of Ω. Let

g ∈ H1/2(ω;R2) ∩W1,1(ω) ∩ L∞(ω).

Then

〈T( g), ϕ〉 =
∫

ω

[( g ∧ gx)ϕy − ( g ∧ gy)ϕx], ∀ϕ ∈ C1
0(ω;R).(2.3)

Lemma 7. — Let ω be an open subset of Ω. Let g ∈ H1/2(ω; S1)∩VMO(ω; S1). Then

〈T( g), ϕ〉 = 0, ∀ϕ ∈ C1
0(ω;R).

Proof of Lemma 7. — In view of Remark 2.2, we may assume that ω is a disc.

There is a sequence ( gn) ∈ C∞(ω; S1) such that gn → g in H
1/2
loc (ω) (see [22]). Hence

〈T( gn), ϕ〉 → 〈T( g), ϕ〉,∀ϕ ∈ C1
0(ω;R), by (2.5) below. On the other hand, by Lem-

ma 6,

〈T( gn), ϕ〉 =
∫

ω

[( gn ∧ gnx)ϕy − ( gn ∧ gny)ϕx]

= 2

∫

ω

( gnx ∧ gny)ϕ = 0

since |gn| = 1 on ω.
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There is yet another representation formula for T:

Lemma 8. — Let g = ( g1, g2) ∈ H1/2(Ω;R2). Then if ω ⊂ Ω is diffeomorphic to a disc

ω̃ as in Remark 2.2, we have, ∀ϕ ∈ C∞0 (ω;R),

〈T( g), ϕ〉 = 〈 g̃1, ( g̃2ϕ̃y)x − ( g̃2ϕ̃x)y〉H1/2,H−1/2

− 〈 g̃2, ( g̃1ϕ̃y)x − ( g̃1ϕ̃x)y〉H1/2,H−1/2.
(2.4)

Observe that, e.g. g̃2ϕ̃y ∈ H1/2(ω̃), so that ( g̃2ϕ̃y)x ∈ H−1/2(ω̃).

Proof of Lemma 8. — When g is smooth, (2.4) coincides with (2.3). The general

case is obtained by approximation.

We now describe some elementary but useful facts about T and L:

Lemma 9. — We have, for g, h ∈ H1/2(Ω;R2), ϕ ∈ Lip (Ω;R),

|〈T( g)− T(h), ϕ〉| ≤ C|g − h|H1/2(|g|H1/2 + |h|H1/2)|ϕ|Lip,(2.5)

|L( g)− L(h)| ≤ C|g − h|H1/2(|g|H1/2 + |h|H1/2)(2.6)

and, in particular,

L( g) ≤ C|g|2
H1/2.

If, in addition, g and h are S1-valued, then

T( gh) = T( g)+ T(h),(2.7)

L( gh̄) ≤ C|g − h|H1/2(|g|H1/2 + |h|H1/2)(2.8)

and

L( gh) ≤ L( g)+ L(h).(2.9)

Here, we have identified R2 with C and gh denotes complex multiplication, while

| |H1/2 denotes the canonical seminorm on H1/2 :

|g|2
H1/2 =

∫

Ω

∫

Ω

|g(x)− g( y)|2
d(x, y)3

dxdy.

The constant C in this lemma depends only on Ω.
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Proof. — Let U, V ∈ H1(G;R2) be the harmonic extensions of g, respectively h.

Then clearly, ∀Φ ∈ Lip (G;R),

∫

G

HU · ∇Φ

≤
∫

G

HV · ∇Φ+ C‖∇U− ∇V‖L2(‖∇U‖L2 + ‖∇V‖L2)‖∇Φ‖L∞,

so that (2.5) follows. Moreover, we find that

L( g) ≤ L(h)+C|g − h|H1/2(|g|H1/2 + |h|H1/2).

Reversing the roles of g and h, yields (2.6).

The proof of (2.7)–(2.9) relies on the following

Lemma 10. — For g, h ∈ H1/2(Ω;R2)∩L∞, we have, ∀ϕ ∈ C∞0 (ω;R), with the same

notation as in Lemma 8,

〈T( gh), ϕ〉 = 〈|h̃|2g̃1, ( g̃2ϕ̃y)x − ( g̃2ϕ̃x)y〉H1/2,H−1/2

− 〈|h̃|2g̃2, ( g̃1ϕ̃y)x − ( g̃1ϕ̃x)y〉H1/2,H−1/2

+ 〈|g̃|2h̃1, (h̃2ϕy)x − (h̃2ϕ̃x)y〉H1/2,H−1/2

− 〈|g̃|2h̃2, (h̃1ϕ̃y)x − (h̃1ϕ̃x)y〉H1/2,H−1/2 .

Note that the above equality makes sense since H1/2 ∩ L∞ is an algebra.

Proof of Lemma 10. — When g and h are smooth, the above equality is clear by

Lemma 8. The general case follows by approximation, using the fact that, if gn → g in

H1/2, hn → h in H1/2, ‖gn‖L∞ ≤ C, ‖hn‖L∞ ≤ C, then gnhn → gh in H1/2 (this is proved

using dominated convergence).

Proof of Lemma 9 completed. — When |g| = |h| = 1, we find that T( gh) = T( g)+
T(h), by combining Lemma 8 and Lemma 10. Also in this case, we have

T( gh̄) = T( g)+ T(h̄) = T( g)− T(h).

Using (2.5), we find that

L( gh̄) = Sup
|ϕ|Lip≤1

〈T( g)− T(h), ϕ〉 ≤ C|g − h|H1/2 (|g|H1/2 + |h|H1/2).

Finally, inequality (2.9) is a trivial consequence of (2.7).
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Remark 2.3. — There is an alternative proof of (2.7)–(2.9), which consists of

combining Lemma 2 (proved below) with the density result of T. Rivière [38]; see

Lemma 11.

We now consider the special case where g ∈ H1/2(Ω; S1) is “smooth” except at

a finite number of singularities:

Proof of Lemma 2. — The proof consists of 3 steps:

Step 1. — Supp T( g) ⊂ ∪k
j=1{aj}

This is a trivial consequence of Lemma 7.

Step 2. — T( g) =∑
j=1 cjδaj

.

In view of Remark 2.2 we may assume that Ω is flat near each aj. We first note

that, by a celebrated result of L. Schwartz, T( g) is a finite sum of the form T( g) =∑
j,α cj,αDαδaj

.

We want to prove that cj,α = 0 if α �= 0. For this purpose, it suffices to check

that 〈T( g), ϕ〉 = 0 if ϕ(aj) = 0,∀j. Let ϕ be any such function. Then, clearly, there

is a sequence (ϕn) ⊂ C1
0(Ω\ ∪k

j=1 {aj}) such that ∇ϕn → ∇ϕ a.e. and ‖∇ϕn‖L∞ ≤ C.

Using Lemma 5, we obtain, by dominated convergence, that 〈T( g), ϕn〉 → 〈T( g), ϕ〉.
On the other hand, 〈T( g), ϕn〉 = 0 by Step 1.

Step 3. — We have cj = 2πdj where dj = deg( g, aj).

Let ϕ be a smooth function on Ω such that

ϕ(x) =
{

1, for |x − aj| < R/2

0, for |x − aj| ≥ R
,

where R > 0 is sufficiently small.

Note that ∇ϕ = 0 outside the annulus A = {x ∈ Ω; |x − aj| ∈ [R/2, R]} and,

moreover, that g ∈ H1 on the same annulus. By Lemma 8 we find that

〈T( g), ϕ〉 =
∫

A

g1[( g2ϕy)x − ( g2ϕx)y] −
∫

A

g2[( g1ϕy)x − ( g1ϕx)y].

Integration by parts yields

〈T( g), ϕ〉 =
∫

A

[( gy ∧ g)ϕx + ( g ∧ gx)ϕy].
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If g is smooth on A , and if we integrate by parts once more, we find that

〈T( g), ϕ〉 = −
∫

∑
( gy ∧ g)νx −

∫

∑
( g ∧ gx)νy,

where
∑ = {x ∈ Ω; |x− aj| = R/2} and ν is the inward normal to A on

∑
. With τ

the direct tangent vector on
∑

, we have

−( gy ∧ g)νx − ( g ∧ gx)νy = g ∧ gτ .

Since g is S1-valued, we find that

〈T( g), ϕ〉 = 2π deg( g, aj).

For a general g ∈ H1(A ; S1), we use the fact that C∞(Ā ; S1) is dense

in H1(A ; S1) (see [41], [10] and [22]) and the stability of the degree under H1/2-

convergence (see [17] and [22]), to conclude that 〈T( g), ϕ〉 = 2π deg( g, aj).

We now recall a useful density result due to T. Rivière, which is the H1/2 ana-

logue of a result of Bethuel and Zheng [10] concerning H1 maps from B3 to S2 (see

also a related result of Bethuel [4] concerning fractional Sobolev spaces).

Lemma 11 (Rivière [38]). — Let R denote the class of maps belonging to W1,p(Ω; S1),

∀p < 2, which are C∞ on Ω except at a finite number of points. Then R is dense in H1/2(Ω; S1).

Remark 2.4. — The above assertion does not appear in Rivière [38] but it is

implicit in his proof; for the convenience of the reader we present a simple proof in

Remark 5.1 – see also Appendix B for a more precise statement.

Remark 2.5. — Similar density results hold in greater generality. Let Ω ⊂ R2 be

a smooth bounded domain. Let 0 < s <∞, 1 < p <∞ and

R
s,p = {u ∈W s,p(Ω; S1); u is C∞ except at a finite number of points}.

Then Rs,p is dense in W s,p(Ω; S1) for all values of s and p (see [16]); this extends earlier

results in [10], [25] and [4].

The density result combined with Lemma 2 yields “concrete” representations of

the distribution T( g) and of the length of a minimal connection L( g) for a general

g ∈ H1/2(Ω; S1); this is the content of Theorem 1.

Proof of Theorem 1. — We start by recalling a result of Brezis, Coron and Lieb [19]

(see also [18]).
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Lemma 12 (Brezis, Coron and Lieb [19]). — Let (X, d) be a metric space. Let P1, ..., Pk,

and N1, ..., Nk be two collections of k points in X. Then

L = Min
σ∈Sk

∑
d(Pj, Nσ( j)) =Max

{∑

j

(ϕ(Pj)− ϕ(Nj)); |ϕ|Lip ≤ 1

}
,

where Sk denotes the group of permutation of {1, 2, ..., k}.

The analogue of Lemma 12 for infinite sequences, which we need, is

Lemma 12′. — Let (X, d) be a metric space. Let (Pi), (Ni) be two infinite sequences such

that
∑

d(Pi, Ni) <∞.

Let

L = Sup
ϕ

{∑

i

(ϕ(Pi)− ϕ(Ni)); |ϕ|Lip ≤ 1

}
.(2.10)

Then

L = Inf
(Ñi)

{∑

i

d(Pi, Ñi);
∑

i

(δPi
− δÑi

) =
∑

i

(δPi
− δNi

)

}
.

Here, and throughout the rest of the paper, the equality
∑

i

(δP̃i
− δÑi

) =
∑

i

(δPi
− δNi

)

for sequences (̃Pi), (Ñi), (Pi), (Ni) such that
∑

i

d (̃Pi, Ñi) <∞ and
∑

i

d(Pi, Ni) <∞

means that
∑

i

(ϕ(̃Pi)− ϕ(Ñi)) =
∑

i

(ϕ(Pi)− ϕ(Ni)), ∀ϕ ∈ Lip.

Remark 2.6. — A slightly different way of stating Lemma 12′ is the following.

Given sequences (Pi), (Ni) in a metric space X with
∑

i d(Pi, Ni) <∞, then

L = Inf
(̃Pi),(Ñi)

{∑

i

d (̃Pi, Ñi);
∑

i

(δP̃i
− δÑi

) =
∑

i

(δPi
− δNi

)

}

= Sup
ϕ

{∑

i

(ϕ(Pi)− ϕ(Ni));ϕ ∈ Lip (X;R) and |ϕ|Lip ≤ 1

}
.

(2.10′)

It is easy to see that the supremum in (2.10′) is always achieved. (Let (ϕn) be a maxi-

mizing sequence. By a diagonal process, we may assume that ϕn(Pi) and ϕn(Ni) con-
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verge for every i to limits which define a function ψ0 on the set {Pi, Ni, i = 1, 2, ...}
with |ψ0|Lip ≤ 1. Next, ψ0 is defined on all of X by a standard extension technique

preserving the condition |ψ|Lip ≤ 1). A natural question is whether the infimum in

(2.10′) is achieved. The answer is negative. An interesting example, with X = [0, 1],
has been constructed by A. Ponce [36].

Proof of Lemma 12′. — Let (Ñi) be such that
∑

(δPi
− δÑi

) =
∑

(δPi
− δNi

).

Then ∑

i

(ϕ(Pi)− ϕ(Ni)) ≤
∑

i

d(Pi, Ñi)

and thus

L ≤
∑

i

d(Pi, Ñi).

Conversely, given ε > 0, we will construct a sequence (Ñi) such that
∑

i d(Pi, Ñi)

≤ L+ ε and
∑

i(δPi
− δÑi

) =∑
i(δPi
− δNi

).

Let n0 be such that
∑

j >n0
d(Pj, Nj) < ε/2. Let σ0 be a permutation of the inte-

gers {1, 2, ..., n0} which achieves

Min
σ

n0∑

j=1

d(Pj, Nσ( j)).

Set

Ñj =
{

Nσ0( j), for 1 ≤ j ≤ n0

Nj, for j > n0

.

Clearly,
∑

j≥1

(
δPj
− δÑj

)
=

∑

j≥1

(
δPj
− δNj

)
.

By definition of L, we have

L = Sup
|ϕ|Lip≤1

∑

j≥1

(ϕ(Pj)− ϕ(Nj))

≥ Max
|ϕ|Lip≤1

n0∑

j=1

(ϕ(Pj)− ϕ(Nj))− ε/2

=
n0∑

j=1

d(Pj, Ñj)− ε/2,
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by Lemma 12. Thus

∑

j≥1

d(Pj, Ñj) ≤ L+ ε/2+ ε/2.

Proof of Theorem 1 continued. — For g ∈ R we have

L( g) =
k∑

j=1

d(Pj, Nj)

and

〈T( g), ϕ〉 = 2π

k∑

j=1

(
ϕ(Pj)− ϕ(Nj)

)

for some suitable integer k depending on g and suitable points P1, ..., Pk, N1, ..., Nk

in Ω. Let now g ∈ H1/2(Ω; S1) and consider a sequence ( gn) ⊂ R such that |gn−g|H1/2

≤ 1/2n.

By Lemma 2, T( gn+1)− T( gn) is a finite sum of the form 2π
∑

(δQ j
− δSj

). By

Lemma 12, after relabeling the points (Q j) and (Sj), we may assume that

T( g1) = 2π

k1∑

j=1

(δPj
− δNj

)

and

T( gn+1)− T( gn) = 2π

kn+1∑

j=kn+1

(δPj
− δNj

),∀n ≥ 1

with

2π

kn+1∑

kn+1

d(Pj, Nj) = Sup {〈T( gn+1)− T( gn), ϕ〉;
ϕ ∈ Lip (Ω;R), |ϕ|Lip≤ 1}

≤ C|gn+1 − gn|H1/2(|gn+1|H1/2 + |gn|H1/2) ≤ C/2n (by (2.5)).

We find that T( gn) = 2π
∑kn

j=1(δPj
− δNj

) and that
∑

j≥1 d(Pj, Nj) <∞.

Then for every ϕ ∈ Lip (Ω;R), the sequence
(
〈T( gn), ϕ〉

)
converges to

2π
∑

j≥1(ϕ(Pj)− ϕ(Nj)). By Lemma 9, we find that T( g) = 2π
∑

j≥1(δPj
− δNj

).

The second assertion in Theorem 1 is an immediate consequence of Lemma 12′

and Remark 2.6.
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The last property in Theorem 1, namely the fact that, if T( g) is a measure, then

T( g) may be represented as a finite sum of the form 2π
∑

j(δPj
− δNj

), was originally

announced in [13] and established using a technique of Jerrard and Soner [31], [32],

which was based on the ( Jacobian) structure of T( g). We do not reproduce this argu-

ment since Smets [43] has proved the following general result:

Theorem 10 (Smets [43]). — Let X be a compact metric space and let (Pj), (Nj) ⊂ X be

infinite sequences such that
∑

d(Pj, Nj) <∞. Assume that

∣∣∣∣
∑

j

(
ϕ(Pj)− ϕ(Nj)

)∣∣∣∣ ≤ C Sup
x∈X

|ϕ(x)|, ∀ϕ ∈ Lip (X).

Then one may find two finite collections of points (Q 1, ..., Q k) and (M1, ..., Mk), such that

∞∑

j=1

(
ϕ(Pj)− ϕ(Nj)

)
=

k∑

i=1

(
ϕ(Q i)− ϕ(Mi)

)
, ∀ϕ ∈ Lip (X).

We refer to [43] and to [36] for more general results.

Remark 2.7. — A final word about the possibility of defining a minimal connec-

tion L( g) when g ∈ W s,p(Ω; S1), for 0 < s <∞ and 1 ≤ p < ∞. Recall (see [16] and

Remark 2.5) that Rs,p is always dense in W s,p(Ω; S1) and note that we may always de-

fine L( g) for g ∈ Rs,p. A natural question is whether there is a continuous extension

of L to W s,p:

a) When sp < 1, the answer is negative. Indeed, let g ∈ Rs,p be a map with sin-

gularities of nonzero degree, so that L( g) > 0. There is a sequence ( gn) in C∞(Ω; S1)

such that gn → g in W s,p (see Escobedo [25]). Clearly, L( gn) = 0, ∀n, and L( gn) does

not converge to L( g).

b) When sp ≥ 2, the answer is positive since L( g) = 0, ∀g ∈ Rs,p (any singularity

in W s,p must have zero degree since W s,p ⊂ VMO).

c) When 1 ≤ sp < 2, the answer is positive. For s > 1/2 the proof is easy (indeed

if s ∈ (1/2, 1), then W s,p(Ω; S1) ⊂ H1/2, while if s ≥ 1, then W s,p ⊂W1,1 and we may

apply the result of Demengel [24] which asserts the existence of a minimal connection

in W1,1). The case where s ≤ 1/2 is delicate and studied in [16].

3. Lifting for g ∈ Y. Characterization of Y. Proof of Theorem 3

The main ingredient in this Section is the following estimate, whose proof has

already been presented in Bourgain-Brezis [11]. We reproduce it here for the conve-

nience of the reader.
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Theorem 3′. — Let ψ be a smooth real-valued function on the d-dimensional torus Td and

set g = e ıψ . Then

|ψ|H1/2+W1,1 ≤ C(d)(1+ |g|H1/2)|g|H1/2.(3.1)

Here, | | denotes the canonical seminorm on H1/2 (respectively H1/2 +W1,1).

Proof of Theorem 3′. — Write g − –
∫

g as a Fourier series,

g − /

∫
g =

∑

ξ∈Zd\{0}
ĝ(ξ)e ıx·ξ .

The H1/2-component in the decomposition of ψ will be obtained as a paraproduct of

g − –
∫

g and ḡ − –
∫

ḡ. Let

P =
∑

k

[∑

ξ2

λk(|ξ2|)ĝ(ξ2)e
−ıx·ξ2

][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)e
ıx·ξ1

]
,(3.2)

where, for each k, we let 0 ≤ λk ≤ 1 be a smooth function on R+ as below:

..........

..........

..........

..........

..........

...........................................................................................................................................................................................................................................................................................................................................................................................................

2
k−2

1

2
k−1

We claim that

|P|H1/2 ≤ C‖g‖∞|g|H1/2(3.3)

and

|ψ − 1

ı

P|W1,1 ≤ C|g|2
H1/2.(3.4)

Proof of (3.3). — This is totally obvious from the construction since, with ‖ ‖p

standing for the L p-norm, we have

|P|2
H1/2 ∼

∑

k

2k

∥∥∥∥
[∑

ξ2

λk(|ξ2|)ĝ(ξ2)e
−ıx·ξ2

][ ∑

2k≤|ξ1|<2k+1

ĝ(ξ1)e
ıx·ξ1

]∥∥∥∥
2

2

≤
∑

k

2k

∥∥∥∥
∑

λk(|ξ|)ĝ(ξ)e−ıx·ξ
∥∥∥∥

2

∞

[ ∑

|ξ|∼2k

|ĝ(ξ)|2
]

≤ C‖g‖2
∞|g|2H1/2.

(3.5)
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Proof of (3.4). — We estimate, for instance,

∥∥∥∥∂1ψ −
1

ı

∂1P

∥∥∥∥
L1

.(3.6)

Thus, letting ξ = (ξ1, ..., ξd ) ∈ Zd , we have

∂1ψ =
1

ı

ḡ∂1g =
∑

ξ1,ξ2∈Zd

ξ1
1 ĝ(ξ1)ĝ(ξ2) e ıx·(ξ1−ξ2)(3.7)

and, by (3.2), we find

1

ı

∂1P =
∑

k

∑

2k≤|ξ1|<2k+1

ξ2∈Zd

(
ξ1

1 − ξ1
2

)
λk(|ξ2|)ĝ(ξ1)ĝ(ξ2)e

ıx·(ξ1−ξ2)(3.8)

and

∂1ψ −
1

ı

∂1P =
∑

k

∑

2k≤|ξ1|<2k+1

ξ2∈Zd

mk(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)e
ıx·(ξ1−ξ2).(3.9)

Here, by definition of λk ,

mk(ξ1, ξ2) = ξ1
1 − λk(|ξ2|)

(
ξ1

1 − ξ1
2

)
=

{
ξ1

2 , if |ξ2| ≤ 2k−2

ξ1
1 , if |ξ2| ≥ 2k−1

.(3.10)

Estimate
∥∥∥∥∂1ψ −

1

ı

∂1P

∥∥∥∥
1

≤
∑

k1,k2

∥∥∥∥
∑

|ξ1|∼2k1 ,|ξ2|∼2k2

mk1
(ξ1, ξ2)ĝ(ξ1)ĝ(ξ2)e

ıx·(ξ1−ξ2)

∥∥∥∥
1

.(3.11)

We split the right-hand side of (3.11) as

∑

k1∼k2

+
∑

k1<k2−4

+
∑

k1>k2+4

= (3.12)+ (3.13)+ (3.14).

Clearly, 2−kmk(ξ1, ξ2) restricted to [|ξ1| ∼ 2k]× [|ξ2| ∼ 2k] is a smooth multiplier

satisfying the usual derivative bounds. Therefore,

(3.12) ≤ C
∑

k

2k

∥∥∥∥
∑

|ξ1|∼2k

ĝ(ξ1)e
ıx·ξ1

∥∥∥∥
2

∥∥∥∥
∑

|ξ2|∼2k

ĝ(ξ2)e
ıx·ξ2

∥∥∥∥
2

∼ |g|2
H1/2.(3.15)
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If k1 < k2 − 4, then |ξ2| > 2k1 and mk1
(ξ1, ξ2) = ξ1

1 , by (3.10). Therefore

(3.13) =
∑

k1<k2−4

∥∥∥∥
∑

|ξ1|∼2k1 ,|ξ2|∼2k2

ξ1
1 ĝ(ξ1)ĝ(ξ2)e

ıx·(ξ1−ξ2)

∥∥∥∥
1

≤
∑

k1<k2−4

2k1

∥∥∥∥
∑

|ξ1|∼2k1

ĝ(ξ1)e
ıx·ξ1

∥∥∥∥
2

.

∥∥∥∥
∑

|ξ2|∼2k2

ĝ(ξ2)e
ıx·ξ2

∥∥∥∥
2

≤
∑

k1<k2

2k1

( ∑

|ξ1|<2k1

|ĝ(ξ1)|2
)1/2( ∑

|ξ2|∼2k2

|ĝ(ξ2)|2
)1/2

≤ C|g|2
H1/2.

(3.16)

If k1 > k2+4, then |ξ2| < 2k1−2 and mk1
(ξ1, ξ2) = ξ1

2 and the bound on (3.14) is similar.

We now derive a consequence of Theorem 3′:

Corollary 1. — Let G be a smooth bounded domain in Rd+1 such that Ω = ∂G is con-

nected. Let ψ be a Lipschitz real-valued function on Ω and set g = e ıψ . Then

|ψ|H1/2+W1,1 ≤ CΩ(1+ |g|H1/2)|g|H1/2.

Proof of Corollary 1. — It is convenient to divide the argument into 4 steps.

Step 1. — The conclusion of Theorem 3′ still holds if ψ is Lipschitz. This is

clear by density.

Step 2. — The conclusion of Theorem 3′ holds if Td is replaced by a d-dimen-

sional cube Q and ψ ∈ Lip (Q ). This is done by standard reflections and extensions

by periodicity.

As a consequence, we have

Step 3. — The conclusion of Step 2 holds when Q is replaced by a domain in

Ω diffeomorphic to a cube.

Step 4. — Proof of Corollary 1. Consider a finite covering (Uα) of Ω by domains

diffeomorphic to cubes. Note that, if Uα ∩Uβ �= 0, then

|ψ|H1/2+W1,1(Uα∪Uβ) ∼ |ψ|H1/2+W1,1(Uα) + |ψ|H1/2+W1,1(Uβ).

Using the connectedness of Ω, we find that

|ψ|H1/2+W1,1(Ω) ∼
∑

α

|ψ|H1/2+W1,1(Uα).

The conclusion now follows from Step 3.
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Proof of Theorem 3. — First, let g ∈ Y and consider a sequence ( gn) ⊂ C∞(Ω; S1)

such that gn → g in H1/2. Since Ω is simply connected, we may write gn = e ıψn , with

ψn ∈ C∞(Ω;R).

Applying Corollary 1 to gn ḡm, we find

|ψn − ψm|H1/2+W1,1 ≤ C(1+ |gn ḡm|H1/2)|gn ḡm|H1/2.

Since gn → g in H1/2 and |gn| ≡ 1, we have |gn ḡm|H1/2 → 0 as m, n→∞ (see the

proof of Lemma 10). Therefore, (ψn − –
∫

Ω
ψn) converges in H1/2 +W1,1 to a map ζ .

Then, with C an appropriate constant, ψ = ζ + C ∈ H1/2 +W1,1, g = e ıψ and ψ

satisfies the estimate

|ψ|H1/2+W1,1 ≤ C(1+ |g|H1/2)|g|H1/2.

The uniqueness of ψ is an immediate consequence of the following

Lemma 13. — Let Ω be a connected open set in Rd . Let f : Ω → Z be such that

f = f0+
∑

j fj , with f0 ∈W
1,1
loc (Ω;R) and fj ∈W

sj ,pj

loc (Ω;R), where 0 < sj < 1, 1 < pj <∞,

sjpj ≥ 1. Then f is a constant.

The proof of Lemma 13 is given in [12], Appendix B, Step 2. The argument is

by dimensional reduction, observing that the restriction of f to almost every line is Z-

valued and VMO; thus it is constant (see [22]). This implies (see e.g. Lemma 2 in [20])

that f is locally constant in Ω.

We now prove the last assertion in Theorem 3. Let g ∈ H1/2(Ω; S1) be such

that g = e ıψ for some ψ ∈ H1/2 +W1,1(Ω;R). Let ψ = ψ1 + ψ2, with ψ1 ∈ H1/2 and

ψ2 ∈ W1,1. Set g j = e ıψj , j = 1, 2. Clearly, g1 ∈ X, so that g1 ∈ Y and thus T( g1) = 0.

On the other hand, g2 ∈ H1/2 ∩ W1,1, since g2 = g ḡ1 ∈ H1/2. Therefore, we may

use the representation of T( g2) given by Lemma 1 and find, after localization, as in

Remark 2.2,

〈T( g2), ϕ〉 =
∫

ω

(ψ2xϕy − ψ2yϕx) = 0, ∀ϕ ∈ C1
0(ω;R).

Hence T( g2) = 0. By (2.7) in Lemma 9, we obtain that T( g) = 0. Using Theorem 2,

we derive that g ∈ Y.

Remark 3.1. — Theorem 3 is not fully satisfactory since, whenever ψ ∈ W1,1,

the function e ıψ need not belong to H1/2 (but “almost”, since e ıψ ∈W1,1∩L∞, which is

almost contained in H1/2, but not quite). Here is an example: take some ψ ∈W1,1∩L∞

with ψ �∈ H1/2. We may assume |ψ| ≤ 1. Then

|e ıψ(x) − e ıψ( y)| ∼ |ψ(x)− ψ( y)|,
so that

|e ıψ |H1/2 ∼ |ψ|H1/2 = +∞.
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4. Lifting for a general g ∈ H1/2. Optimizing the BV part of the phase.

Proof of Theorems 4 and 5

Assume g is a general element in H1/2(Ω; S1). This g need not be in Y and thus

need not have a lifting in H1/2 + W1,1. However, g has a lifting in the larger space

H1/2+ BV. This is an immediate consequence of Theorem 3 (and estimate (1.9)) and

of the following result of T. Rivière [38] (which is the analogue of a similar result of

Bethuel [3] for H1 maps from B3 to S2).

Lemma 14 (Rivière [38]). — Let g ∈ H1/2(Ω; S1). Then there is a sequence ( gn) ⊂
C∞(Ω; S1) such that gn⇀ g weakly in H1/2.

Remark 4.1. — Lemma 14 implies that g �→ T( g) and g �→ L( g) are not con-

tinuous under weak H1/2 convergence.

Here is a refined version of Lemma 14 which will be proved at the end of Sec-

tion 4.2:

Lemma 14′. — Let g ∈ H1/2(Ω; S1). Then there is a sequence ( gn) ⊂ C∞(Ω; S1) such

that gn⇀ g weakly in H1/2 and

lim sup
n→∞

|gn|2H1/2 ≤ |g|2H1/2 + CΩL( g),

for some constant CΩ depending only on Ω. Moreover, for every sequence ( gn) in Y such that

gn → g a.e., we have

lim inf
n→∞

|gn|2H1/2 ≥ |g|2H1/2 +C′
Ω

L( g),

for some positive constant C′
Ω

depending only on Ω.

Existence of a lifting in H1/2 + BV

Let g ∈ H1/2(Ω; S1). For gn as in the above Lemma 14, write, using Corollary 1,

gn = e ıϕn , with ϕn ∈ C∞(Ω; S1) and

|ϕn|H1/2+W1,1 ≤ CΩ

(
|gn|H1/2 + |gn|2H1/2

)
.

Then, up to a subsequence, there is some ζ ∈ H1/2+BV such that ϕn− –
∫

ϕn → ζ a.e.

We find that g = e ıϕ , with ϕ = ζ + C and C some appropriate constant. Moreover,

we may write ϕ = ϕ1 + ϕ2, with

|ϕ1|H1/2 + |ϕ2|BV ≤ CΩ

(
|g|H1/2 + |g|2

H1/2

)
.(4.1)
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An additional information about the decomposition is contained in Theorem 4.

On the other hand note that estimate (4.1) implies that every g ∈ H1/2 may be written

as g = g1g2, with

g1 = e ıϕ1 ∈ X and g2 = e ıϕ2 ∈ H1/2 ∩ BV,

i.e., H1/2 = (X) · (H1/2 ∩ BV).

A finer assertion is H1/2 = (X) · (H1/2 ∩W1,1), which is the content of Theorem 5.

The proofs of Theorems 4 and 5 require a number of ingredients:

a) the dipole construction (see Section 4.1). This is inspired by the dipole con-

struction in the H1(B3; S2) context (see [19] and [3]);

b) the construction of a map g ∈ H1/2(Ω; S1)∩W1,1 having prescribed singularities

(with control of the norms). This is done in Section 4.2;

c) lower bound estimates for the BV part of the phase, which are presented in

Section 4.3, in the spirit of [19], [2], [27]. This is a typical phenomenon in the context

of relaxed energies and/or Cartesian Currents. More precisely, if one considers the

Sobolev space X =W s,p(U; Sk), U ⊂ RN, and if smooth maps are not dense in X for

the strong topology, then the relaxed energy is defined by

E( g) = Inf
{

lim inf
n→∞

‖gn‖p

W s,p; ( gn) ⊂ C∞(Ū; Sk), gn → g a.e.
}
.

The gap E( g) − ‖g‖p

W s,p ≥ 0 has often a geometrical interpretation in terms

of the singular set of g. For example, in the H1(B3; S2) context, the gap is 8πL( g),

where L( g) is the length of a minimal connection associated with the singularities of g

(see [19]). We will consider, in Section 4.3, similar lower bounds for S1-valued maps

on Ω.

4.1. The dipole construction

Throughout this section, the metric d denotes the geodesic distance dΩ in Ω and

L( g) = LΩ( g).

Lemma 15. — Let P, N ∈ Ω, P �= N. Given any ε > 0 there exists some g(= gε) such

that

g ∈W1,∞
loc (Ω\{P, N}; S1) ∩W1,p(Ω; S1),∀p ∈ [1, 2),(4.2)

T( g) = 2π(δP − δN),(4.3)

|g|W1,1 ≤ 2πd(P, N)+ ε,(4.4)
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|g|2
H1/2 ≤ CΩd(P, N) where CΩ depends only on Ω,(4.5) {

there is a function ψ(= ψε) ∈ BV(Ω;R) such that g = e ıψ,

with supp ψ ⊂ Λ = {x ∈ Ω; d(x, γ) < ε} and |ψ|BV ≤ 4πd(P, N)+ ε,
(4.6)

where γ is a geodesic curve joining P and N,

g = 1 outside Λ.(4.7)

Proof. — Extend γ smoothly beyond P and N; denote this extension by γ̃ . For

ε0 > 0 sufficiently small (depending on γ̃ ), the projection Π of

Γ = {x ∈ Ω; d(x, γ) < ε0}
onto γ̃ is well-defined and smooth. Let x1 be the arclength coordinate on γ̃ , such that

x1(P) = 0, x1(N) = d(P, N) = L.

..........................................
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............
............
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...........................
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.............................................................
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.......................................
.................................

...........................
.......................
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..................
..............
..............
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...........
.............
..........

•

x•

Π(x)
γ•

x1 = 0

P

x1 = d(P,N)

γ̃

N

For x ∈ Γ, let x1 = x1(Π(x)) be the arclength coordinate of Π(x) on γ̃ and

let x2 = ±d(x, γ̃ ), where we choose “+” if the basis formed by the (oriented) tangent

vector at Π(x) to γ̃ , the (oriented) tangent vector at Π(x) to the geodesic segment

[Π(x), x] and the exterior normal n at Π(x) to G is direct in R3; we choose “–” oth-

erwise. Define the mapping

x ∈ Γ �→ Φ(x) = (x1, x2) ∈ R2.

Let 0 < δ < ε0 and consider the domain in R2

Γ̃δ =
{
(t1, t2) ∈ R2; 0 < t1 < L and |t2| <

2δ

L
min(t1, L− t1)

}
.

and the corresponding domain Γδ in Ω,

Γδ = {x ∈ Γ;Φ(x) ∈ Γ̃δ}.
Set, on R2,

g̃(t) = g̃(t1, t2) =
{

exp(ıϕ(Lt2/2δ min(t1, L− t1)), on Γ̃δ,

1, outside Γ̃δ,

where ϕ is defined by ϕ(s) =
{

π(s + 1)+, if s ≤ 1

2π, if s > 1
.
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An easy computation shows that

g̃ ∈W
1,∞
loc (R2 \ {̃P, Ñ}; S1) ∩W

1,p

loc(R
2; S1), ∀ 1 ≤ p < 2,

where P̃ = Φ(P) = (0, 0) and Ñ = Φ(N) = (L, 0). More precisely, we have

|g̃|p
W1,p(Γ̃δ)

= 4

L/2∫

0

(
L

2δt1

)p−1

dt1

+1∫

0

πp

((
2δs

L

)2

+ 1

)p/2

ds.

In particular, we find

|g̃|W1,1(Γ̃δ) ≤ 2π (L+ δ)(4.8)

and, for every 1 ≤ p < 2,

|g̃|W1,p(Γ̃δ) ≤ Cp(Lδ)1/p

(
1

δ
+ 1

L

)
.(4.9)

For later purpose, it is also convenient to observe that, for any 1 ≤ q ≤ ∞,

‖g̃ − 1‖Lq(Γ̃δ) ≤ 2(Lδ)1/q.(4.10)

We now transport the function g̃ on Ω and define

g(x) =
{

g̃(Φ(x)), if x ∈ Γδ

1, outside Γδ

.

It is not difficult to see that Φ is a C2-diffeomorphism on Γ and

| Jac Φ(x)− 1| ≤ Cγδ on Γδ,(4.11)

where Cγ is a constant depending on γ . Combining (4.8)–(4.11) yields

|g|W1,1(Ω) ≤ 2π(L+ δ)(1+Cγδ),(4.12)

|g|W1,p(Ω) ≤ Cp(Lδ)1/p

(
1

δ
+ 1

L

)
(1+Cγδ), 1 ≤ p < 2,(4.13)

and

‖g − 1‖Lq(Ω) ≤ 2(Lδ)1/q(1+Cγδ).(4.14)

From a variant of the Gagliardo–Nirenberg inequality (see e.g. [21] and the ref-

erences therein) we know that, if 1 < p <∞ and

1

p
+ 1

q
= 1,(4.15)

then

|g|2
H1/2(Ω)

≤ C(p,Ω)|g|W1,p(Ω)‖g‖Lq(Ω).(4.16)

We now check properties (4.2)–(4.7): (4.2), (4.3) and (4.7) are clear. Estimate (4.4)

(resp. (4.5)) follows from (4.12) (resp. (4.16) applied e.g. with p = 3/2) provided δ is

sufficiently small (depending on ε and γ ).
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Construction of ψ and estimate (4.6)

In the region where g̃ ≡ 1, we take ψ̃ ≡ 0. In the region Γ̃δ where g̃ lives, we

take

ψ̃(t1, t2) =
{

ϕ(Lt2/2δ min(t1, L− t1)), if t2 ≤ 0

ϕ(Lt2/2δ min(t1, L− t1))− 2π, if t2 > 0
.

Set

ψ(x) =
{

ψ̃(Φ(x)), if x ∈ Γδ

0, outside Γδ

.

Then |Dψ| = |Dg| + 2πδγ , where δγ is the 1 − d Hausdorff measure uniformly dis-

tributed on γ . Thus

|ψ|BV =
∫

Ω

|Dψ| =
∫

Ω

|Dg| + 2πL ≤ 4πL+ ε.

4.2. Construction of a map with prescribed singularities

Let (Pi), (Ni) be two sequences of points in Ω = ∂G such that
∑

dΩ(Pi, Ni) <∞.

Define

T = 2π
∑

i

(δPi
− δNi

)

and

L = LΩ =
1

2π
sup{〈T, ϕ〉;ϕ ∈ Lip (Ω;R), |ϕ|Lip ≤ 1}.

Lemma 16. — a) For every g ∈ W1,1(Ω; S1) ∩H1/2(Ω; S1) such that T( g) = T, we

have ∫

Ω

|Dg| ≥ 2πL and |g|2
H1/2 ≥ CΩL,

where CΩ is a positive constant depending only on Ω.

b) For every ε > 0, there is some g(= gε) ∈W1,1(Ω; S1) ∩H1/2(Ω; S1) such that

T( g) = T,(4.17)

|g|W1,1 ≤ 2π(L+ ε),(4.18)

|g|2
H1/2 ≤ CΩL,(4.19)
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{
there is a function ψ(= ψε) ∈ BV(Ω;R) such that

g = e ıψ , and |ψ|BV ≤ 4π(L+ ε)
,(4.20)

meas (Supp ψ) = meas (Supp ( g − 1)) ≤ ε.(4.21)

In the proof of Lemma 16 we will use:

Lemma 17. — Let (un) be a bounded sequence in H1/2(Ω;C) ∩ L∞ such that un → 1

a.e. Then for every v ∈ H1/2(Ω;C) ∩ L∞ we have

|unv|2H1/2 =
∫

Ω

∫

Ω

|v(x)|2 |un(x)− un( y)|2
d(x, y)3

+ |v|2
H1/2 + o(1) as n→∞.

Proof of Lemma 17. — We have

|unv|2H1/2 =
∫

Ω

∫

Ω

|v(x)|2 |un(x)− un( y)|2
d(x, y)3

+
∫

Ω

∫

Ω

|un( y)|2 |v(x)− v( y)|2
d(x, y)3

+ 2In

=
∫

Ω

∫

Ω

|v(x)|2 |un(x)− un( y)|2
d(x, y)3

+ |v|2
H1/2 + 2In + o(1),

where

In =
∫

Ω

∫

Ω

(v(x)(un(x)− un( y))) · (un( y)(v(x) − v( y)))

d(x, y)3
,

so that it suffices to prove that

Jn =
∫

Ω

∫

Ω

|un(x)− un( y)||v(x)− v( y)|
d(x, y)3

→ 0.

Fix some ε > 0. Then

Jn =
∫∫

d(x,y)≥ε

|un(x)− un( y)||v(x)− v( y)|
d(x, y)3

+
∫∫

d(x,y)<ε

|un(x)− un( y)||v(x)− v( y)|
d(x, y)3

= o(1)+
∫∫

d(x,y)<ε

|un(x)− un( y)||v(x)− v( y)|
d(x, y)3

≤ o(1)+ |un|H1/2

( ∫∫

d(x,y)<ε

|v(x)− v( y)|2
d(x, y)3

)1/2

,

so that Jn → 0.
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Proof of Lemma 16. — a) By Lemma 1, we have

〈T( g), ϕ〉 =
∫

Ω

g ∧ ( gxϕy − gyϕx), ∀ϕ ∈ Lip (Ω;R),

so that

|〈T( g), ϕ〉| ≤
∫

Ω

|g| |Dg| |Dϕ| ≤
∫

Ω

|Dg|

if |ϕ|Lip ≤ 1. Taking the Sup over all such ϕ’s yields the first inequality.

The second inequality in a), namely L ≤ CΩ|g|2H1/2 , was already established in

Lemma 9.

b) Let ε < L. By Lemma 12′, we may find a sequence (Ñj) such that

T = 2π
∑

i

(δPi
− δNi

) = 2π
∑

j

(δPj
− δÑj

)(4.22)

and

∑

j

d(Pj, Ñj) < L+ ε/4π.(4.23)

By the dipole construction (Lemma 15), for each j and for each εj > 0, there is some

g j = g j,εj
such that

T( g j) = 2π(δPj
− δÑj

),(4.24)

∫

Ω

|Dg j| ≤ 2πd(Pj, Ñj)+ εj,(4.25)

|g j |2H1/2 ≤ CΩd(Pj, Ñj),(4.26)

there is a function ψj ∈ BV such that g j = e ıψj ,(4.27)

with

|ψj|BV ≤ 4πd(Pj, Ñj)+ εj(4.28)

and

meas (Supp ψj) = meas (Supp ( g j − 1)) ≤ εj .(4.29)
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We claim that g =
∞∏

j=1

g j and ψ =∑∞
j=1 ψj have all the required properties if we

choose the εj ’s appropriately.

Fix ε1 < ε/2 and let g1 = g1,ε1
. By Lemma 17, we have

lim sup
ε→0

|g1g2,ε|2H1/2 ≤ |g1|2H1/2 + lim sup
ε→0

|g2,ε|2H1/2.

Thus, we may choose ε2 < ε/4 and g2 = g2,ε2
such that (using (4.5))

|g1g2|2H1/2 ≤ CΩ(d(P1, Ñ1)+ d(P2, Ñ2))+ ε/2.

Using repeatedly Lemma 17, we choose ε3, ε4, ..., such that

εj ≤ ε2−j ∀j ≥ 1,(4.30)

and, for every k ≥ 2,

∣∣∣∣
k∏

j=1

g j

∣∣∣∣
2

H1/2

≤ CΩ

k∑

j=1

d(Pj, Ñj)+ ε

k−1∑

j=1

2−j

≤ CΩ(L+ ε)+ ε ≤ C′
Ω

L,

(4.31)

since ε < L.

We claim that

( k∏

j=1

g j

)
converges in W1,1. Indeed, set H = ∑

j≥1 |Dg j |. Then

clearly H ∈ L1 and

∣∣∣∣D
( k∏

j=1

g j

)∣∣∣∣ ≤ H.

On the other hand, for k2 ≥ k1 ≥ 1, we have, by (4.25),

∫

Ω

∣∣∣∣D
( k2∏

j=k1

g j

)∣∣∣∣ ≤
∑

j≥k1

∫
|Dg j| ≤ 2π

∑

j≥k1

d(Pj, Ñj)+ ε2−k1+1.

Thus

∣∣∣∣
k∏

j=1

g j −
k+ℓ∏

j=1

g j

∣∣∣∣
W1,1

≤
∫

Ω

H

∣∣∣∣1−
k+ℓ∏

j=k+1

g j

∣∣∣∣+ 2π
∑

j≥k+1

d(Pj, Ñj)+ ε2−k

≤ 2

∫

∪j >k{x;g j(x) �=1}

H+ 2π
∑

j ≥k+1

d(Pj, Ñj)+ ε2−k.
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Since meas
(⋃

j >k Supp ( g j − 1)) ≤ ε2−k and
∑

d(Pj, Ñj) < ∞, we conclude that
( k∏

j=1

g j

)
is a Cauchy sequence in W1,1 (note that it is clearly a Cauchy sequence in L1,

by (4.29)).

Set g =
∞∏

j=1

g j . By construction

|g|W1,1 ≤
∫

Ω

H ≤ 2π

∞∑

j=1

d(Pj, Ñj)+ ε

≤ 2π
(

L+ ε

4π

)
+ ε (by (4.23)) ≤ 2π(L+ ε).

This proves (4.18).

On the other hand, by (4.31), the sequence

( k∏

j=1

g j

)
is bounded in H1/2, so that

g ∈ H1/2 and |g|2
H1/2 ≤ C′

Ω
L; this proves (4.19).

We now turn to (4.17). By (2.7) and (4.24), we have

T

( k∏

j=1

g j

)
= 2π

k∑

j=1

(δPj
− δÑj

).

By Lemma 1 and the convergence of (
∏k

j=1 g j) to g in W1,1 as k →∞, we have

〈T
( k∏

j=1

g j

)
, ϕ〉 → 〈T( g), ϕ〉, ∀ϕ ∈ Lip (Ω;R).

Thus,

〈T( g), ϕ〉 = 2π

∞∑

j=1

(ϕ(Pj)− ϕ(Ñj)), ∀ϕ ∈ Lip (Ω;R).

From (4.22) we conclude that

T( g) = 2π
∑

i

(δPi
− δNi

).

Properties (4.20) and (4.21) are immediate consequences of (4.23), (4.28) and (4.29).
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We now derive some consequences of the above results. We start with a simple

Proof of Theorem 2. — Let g ∈ H1/2(Ω; S1) be such that L( g) = 0. We must show

that g ∈ Y = C∞(Ω; S1)
H1/2

. By Lemma 11 there exists a sequence ( gn) in R such that

gn → g in H1/2, and thus L( gn)→ 0. Since each gn has only finitely many singularities,

it follows from the dipole construction there exists a sequence (hn) such that

hn ∈W
1,∞

loc

(
Ω\Σn; S1

)
∩W1,p(Ω; S1),∀p ∈ [1, 2), T(hn) = T( gn),

where Σn is the singular set of gn(Σn is a finite set), and moreover

|hn|2H1/2 ≤ CΩL(hn)→ 0,

hn → 1 a.e. on Ω.

Clearly kn = gnhn ∈ W1,∞
loc (Ω\Σn; S1) ∩W1,p(Ω; S1),∀p ∈ [1, 2) and T(kn) = T( gn) −

T(hn) = 0. By Lemma 2, we have deg(kn, a) = 0 ∀a ∈ Σn. Therefore kn admits

a well-defined lifting on Ω, kn = eiϕn, with ϕn ∈ W
1,∞
loc (Ω\Σn;R) ∩W1,p(Ω;R),∀p ∈

[1, 2). In particular, kn ∈ X ⊂ Y. In order to prove that g ∈ Y it suffices to check that

kn → g in H1/2. Write

|kn − g|H1/2 = |gnhn − g|H1/2 = |( gn − g)hn + g(hn − 1)|H1/2

≤ |( gn − g)hn|H1/2 + |g(hn − 1)|H1/2.

But

|( gn − g)hn|H1/2 ≤ |gn − g|H1/2 + 2|hn|H1/2 → 0

and

|g(hn − 1)|2
H1/2 ≤ C

∫

Ω

∫

Ω

|g(x)− g( y)|2
d(x, y)3

|hn(x)− 1|2dxdy+ C|hn|2H1/2 → 0.

Corollary 2. — Given any g ∈ H1/2(Ω; S1), there exist h ∈ Y, k ∈ H1/2(Ω; S1) ∩
W1,1(Ω; S1) and ψ ∈ BV(Ω;R) such that

g = hk and k = e ıψ .

Moreover, for every ε > 0, one may choose h, k, ψ such that
∫

Ω

|Dk| ≤ 2πL( g)+ ε, |k|2
H1/2 ≤ CΩL( g),

|h|2
H1/2 ≤ |g|2H1/2 +CΩL( g)

and

|ψ|BV ≤ 4πL( g)+ ε.
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Proof. — By Lemma 16 there exists a sequence (kn) in H1/2(Ω; S1) ∩W1,1 such

that

T(kn) = T( g), ∀n,

lim sup
n→∞

|kn|W1,1 ≤ 2πL( g),

|kn|2H1/2 ≤ CΩL( g), ∀n,

and

kn → 1 a.e. on Ω.

Set hn = gk̄n, so that T(hn) = 0, ∀n, and thus hn ∈ Y. By Lemma 17 we have

lim sup
n→∞

|hn|2H1/2 ≤ |g|2H1/2 + CΩL( g).

The conclusion of Corollary 2 is now clear with k = kn, h = hn and n sufficiently large.

Proof of Theorem 5. — As in the proof of Corollary 2 write g = hnkn. Since hn ∈ Y,

we may apply Theorem 3 and write hn = e ı(ϕn+ψn), with ϕn ∈ H1/2 and ψn ∈W1,1. An

inspection of the proof of Theorem 3 shows that

|ϕn|H1/2 ≤ CΩ|hn|H1/2 ≤ C′
Ω
|g|H1/2

and

|ψn|W1,1 ≤ CΩ|hn|2H1/2 ≤ C′
Ω
|g|2

H1/2.

Thus

g = e ıϕn (e ıψn kn),

which is the desired decomposition since e ıψn kn ∈W1,1 and

|e ıψn kn|W1,1 ≤ |ψn|W1,1 + |kn|W1,1 ≤ C
′′
Ω
|g|2

H1/2.

Proof of the upper bound in Theorem 4. — We have to show that, for every g ∈
H1/2(Ω; S1),

Inf
{
|ψ|BV; g = e ı(ϕ+ψ), ϕ ∈ H1/2, ψ ∈ BV

}
≤ 4πL( g),

i.e., for every ε > 0, we must find ϕε ∈ H1/2 and ψε ∈ BV such that g = e ı(ϕε+ψε) and

|ψε|BV ≤ 4πL( g)+ ε.
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Going back to the proof of Corollary 2 and Theorem 5, we may write, by (4.20),

kn = e ıηn , with ηn ∈ BV and

lim sup
n→∞

|ηn|BV ≤ 4πL( g).

On the other hand, since C∞(Ω;R) is dense in W1,1(Ω;R), we may choose ψ̃n ∈
C∞(Ω;R) such that

‖ψn − ψ̃n‖W1,1 < 1/n.

Finally, we may write

g = hnkn = e ı(ϕn+ψn+ηn) = e ı(ϕn+ψ̃n)+ı(ψn−ψ̃n+ηn),

with ϕn + ψ̃n ∈ H1/2, ψn − ψ̃n + ηn ∈ BV and

lim sup |ψn − ψ̃n + ηn|BV ≤ 4πL( g),

which is the desired conclusion.

We now turn to the

Proof of Lemma 14′. — For the first assertion, we proceed as in the proof of Corol-

lary 2. Since hn ∈ Y, ∀n, we may find a sequence (h̃n) in C∞(Ω; S1) such that

‖h̃n − hn‖2
H1/2 → 0 as n→∞.

Recall that

hn = gk̄n −→ g a.e.

Thus, by Lemma 17, we find

lim sup |h̃n|2H1/2 ≤ |g|2H1/2 +CΩL( g)

and (passing to a subsequence)

h̃n −→ g a.e., h̃n⇀ g weakly in H1/2.

To prove the second assertion, let ( gn) be any sequence in Y such that gn −→ g

a.e. Writing gn = ( gn ḡ)g and observing that gn ḡ → 1 a.e., we deduce from Lemma 17

that

|gn|2H1/2 = |g|2H1/2 + |gn ḡ|2
H1/2 + o(1) as n→∞.
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On the other hand (see Lemma 9),

L( gn ḡ) ≤ CΩ|gn ḡ|2
H1/2.

But L( gn ḡ) = L(ḡ), since L( gn) = 0, and thus

|gn|2H1/2 ≥ |g|2H1/2 +C′
Ω

L( g)+ o(1).

Remark 4.2. — We have now at our disposal two different techniques for lifting

a general g ∈ H1/2(Ω; S1) in the form

g = e ı(ϕ+ψ) with ϕ ∈ H1/2 and ψ ∈ BV.

The first method, described at the beginning of Section 4, yields some ϕ ∈ H1/2

and ψ ∈ BV such that

g = e ı(ϕ+ψ),

with the estimate

|ϕ|H1/2 ≤ CΩ|g|H1/2(4.32)

and

|ψ|BV ≤ CΩ|g|2H1/2.(4.33)

The second method, described in the proof of Theorem 4 (upper bound), yields,

for every ε > 0, some ϕε ∈ H1/2 and ψε ∈ BV such that

g = e ı(ϕε+ψε),

with

|ψε|BV ≤ 4πL( g)+ ε(4.34)

and no estimate for ϕε in H1/2.

A natural question is whether one can achieve a decomposition of the phase in

the form

g = e ı(ϕ#
ε+ψ#

ε )

with the double control

∣∣ϕ#
ε

∣∣
H1/2 ≤ C(ε, |g|H1/2)
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and

∣∣ψ#
ε

∣∣
BV
≤ 4πL( g)+ ε ?

The answer is negative even with g ∈ Y. To see this, we may use an example studied

in [15]. Assume that, locally, near a point of Ω, say 0, the square Q = I2, with I =
(−1,+1), is contained in Ω. Consider the function γδ(x) defined on I by

γδ(x) =





0, if − 1 < x < 0

2πx/δ, if 0 < x < δ

2π, if δ < x < 1

,

where δ is small.

On Q , set

gδ(x, y) = e ıγδ(x) for (x, y) ∈ Q .

Clearly, we have gδ ∈ Y, so that L( gδ) = 0. We claim that

‖gδ‖H1/2(Q ) ≤ C, ∀ δ,(4.35)

and that there exist absolute positive constants c∗ and C∗ such that, if

gδ = e ı(ϕδ+ψδ), ϕδ ∈ H1/2(Q ), ψδ ∈ BV(Q ),(4.36)

with

|ψδ|BV(Q ) ≤ C∗,(4.37)

then

|ϕδ|2H1/2(Q )
≥ c∗ log(1/δ) as δ→ 0.(4.38)

The verification of (4.35) is easy. Indeed, by scaling we have

|gδ(·, y)|H1/2(I) ≤ C, ∀ δ, ∀ y,

and recall (see e.g. [1], Lemma 7.44) that

∫

I

| f (·, y)|2
H1/2(I)

dy+
∫

I

| f (x, ·)|2
H1/2(I)

dx ∼ | f |2
H1/2(Q )

,(4.39)

so that (4.35) follows.
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We now turn to the proof of (4.38) under the assumptions (4.36) and (4.37). By

Theorem 2 in [15] we know that, for a.e. y ∈ I,

|ϕδ(·, y)+ ψδ(·, y)|Hs(I) ≥ c(log(1/δ))1/2(4.40)

for some absolute constant c > 0, where

2s = 1− (log 1/δ)−1.(4.41)

On the other hand, it is easy to see that

| f |2Hσ (I) ≤
C

1− 2σ
| f |2BV(I), ∀ f ∈ BV(I), ∀ σ < 1/2(4.42)

and

| f |Hσ (I) ≤ C| f |H1/2(I), ∀ f ∈ H1/2, ∀ σ ≤ 1/2,(4.43)

with constants C independent of σ . Combining (4.40), (4.41), (4,42) and (4.43) yields,

for a.e. y ∈ I,

|ϕδ(·, y)|H1/2(I) + (log(1/δ))1/2|ψδ(·, y)|BV(I) ≥ c(log(1/δ))1/2.(4.44)

Integrating (4.44) in y and using the inequalities

∫

I

| f (·, y)|H1/2(I)dy ≤
(

2

∫

I

| f (·, y)|2
H1/2(I)

dy

)1/2

≤ C| f |H1/2(Q ), ∀ f ∈ H1/2(Q ),

and

∫

I

| f (·, y)|BV(I)dy ≤ C| f |BV(Q ), ∀ f ∈ BV(Q ),

together with (4.37), we obtain

|ϕδ|H1/2(Q ) + C∗(log 1/δ)1/2 ≥ c(log 1/δ)1/2,

and (4.38) follows, provided C∗ is sufficiently small.
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4.3. Lower bound estimates for the BV part of the phase

We start with a simple lemma about maps from S1 into S1.

Lemma 18. — Let ( gn) ⊂ BV(S1; S1) ∩ C0(S1; S1) be such that gn → g a.e. for some

g ∈ BV(S1; S1) ∩ C0(S1; S1) and ‖gn‖BV ≤ C. Then

lim inf
n→∞

(∫

S1

|ġn| − 2π| deg gn − deg g|
)
≥

∫

S1

|ġ|.

Here, ġ denotes the measure
∂g

∂θ
.

Proof. — (We thank Augusto Ponce for simplifying our original proof ). For g ∈
BV(S1; S1) ∩ C0(S1; S1), let f ∈ C0([0, 2π];R) be such that g(exp(ıθ)) = exp(ıf (θ)).

Then deg g = 1

2π

(
f (2π)− f (0)

)
. Moreover, we have f ∈ BV and

2π∫

0

| f ′| =
∫

S1

|ġ|,(4.45)

where f ′ is the measure
df

dx
. Indeed, since g is continuous, we have

∫

S1

|ġ| = Sup

{ n∑

j=1

|g(exp(ıtj+1))− g(exp(ıtj))|; 0 ≤ t1 < · · · < tn ≤ 2π

}

= Sup

{ n−1∑

j=1

|g(exp(ıtj+1))− g(exp(ıtj))|; 0 ≤ t1 < · · · < tn ≤ 2π

}(4.46)

(with the convention tn+1 = t1).

For a given δ > 0, we have

(1− δ)| f (tj+1)− f (tj)| ≤ |g(exp(ıtj+1))− g(exp(ıtj))| ≤ | f (tj+1)− f (tj)|,(4.47)

provided the partition (tj) is sufficiently fine. We obtain (4.45) by combining (4.46) and

(4.47).

Let fn ∈ BV([0, 2π];R) ∩ C0([0, 2π];R) be such that gn(exp(ıθ)) = exp(ıfn(θ))

and ‖ fn‖BV ≤ C. Up to a subsequence, we may assume that fn → h a.e. and in L1 for

some h ∈ BV.
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Since g = e ıh = e ıf , we find that h = f + k, where k ∈ BV([0, 2π]; 2πZ). Thus

k must be of the form

k = 2π

p∑

j=1

αjχIj
a.e.,

where αj ∈ Z, Ij = (aj, aj+1), 0 = a1 < · · · < ap+1 = 2π. Therefore

h′ = f ′ +
p∑

j=2

αjδaj
.(4.48)

We have to prove that

lim inf
n→∞

( 2π∫

0

| f ′n | −
∣∣∣∣

2π∫

0

( f ′n − f ′)

∣∣∣∣
)
≥

2π∫

0

| f ′|.(4.49)

It suffices to show that

lim inf
n→∞

( 2π∫

0

| f ′n | +
2π∫

0

( f ′n − f ′)

)
≥

2π∫

0

| f ′|.(4.50)

Indeed, (4.50) applied to ḡn gives

lim inf
n→∞

( 2π∫

0

| f ′n | −
2π∫

0

( f ′n − f ′)

)
≥

∫ 2π

0

| f ′|(4.51)

and the combination of (4.50) and (4.51) is equivalent to (4.49). We may rewrite (4.50)

as

lim inf
n→∞

2π∫

0

( f ′n )
+ ≥

2π∫

0

( f ′)+.(4.52)

Let ϕ ∈ C∞0 (0, 2π), 0 ≤ ϕ ≤ 1. Then

−
2π∫

0

fnϕ
′ =

2π∫

0

f ′n ϕ ≤
2π∫

0

( f ′n )
+
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and thus

−
2π∫

0

hϕ′ ≤ lim inf
n→∞

2π∫

0

( f ′n )
+.

Taking the supremum over such ϕ’s yields

lim inf
n→∞

2π∫

0

(
f ′n
)+ ≥

2π∫

0

(h′)+ =
2π∫

0

(
f ′ +

∑
αjδaj

)+
by (4. 48).

We conclude with the help of the following elementary

Lemma 19. — Let f ∈ BV([0, 2π]) ∩C0([0, 2π]). Then

2π∫

0

(
f ′ +

∑

finite

αjδaj

)+ =
2π∫

0

( f ′)+ +
∑

(αj)
+

for any choice of distinct points aj ∈ (0, 2π) and of αj in R.

Proof of Lemma 19. — It suffices to consider the case of a single point a ∈ (0, 2π).

Let ζn = ζ
(
n(x− a)

)
, where ζ is a fixed cutoff function with ζ(0) = 1, 0 ≤ ζ ≤ 1. For

any fixed ψ ∈ C1
(
[0, 2π]

)
, we claim that

2π∫

0

f (ζnψ)′→ 0.

Indeed,

2π∫

0

f (ζnψ)′ =
2π∫

0

(
f − f (a)

)
(ζnψ)′,

so that

∣∣∣∣

2π∫

0

f (ζnψ)′
∣∣∣∣ ≤

2π∫

0

| f − f (a)| |(ζnψ)′| n→ 0,

since f is continuous at a.
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Let ε > 0. Fix some ψ ∈ C1
0

(
(0, 2π)

)
, 0 ≤ ψ ≤ 1, such that

−
2π∫

0

f ψ ′ ≥
2π∫

0

( f ′)+ − ε.

Then, with 0 ≤ t ≤ 1,

2π∫

0

( f ′ + αδa)[(1− ζn)ψ + tζn] =

−
2π∫

0

f [(1− ζn)ψ + tζn]′ + tα
n→−

2π∫

0

f ψ ′ + tα.

Since 0 ≤ (1− ζn)ψ + tζn ≤ 1, we find that

2π∫

0

( f ′ + αδa)
+ ≥

2π∫

0

( f ′)+ + tα − ε, ∀ ε > 0, ∀ t ∈ [0, 1],

and thus

2π∫

0

( f ′ + αδa)
+ ≥

∫ 2π

0

( f ′)+ + α+.

The opposite inequality

2π∫

0

( f ′ + αδa)
+ ≤

2π∫

0

( f ′)+ + α+

being clear, the proof of Lemma 19 is complete.

Remark 4.3. — The assumption ‖gn‖BV ≤ C in Lemma 18 is essential (A. Ponce,

personal communication).

Corollary 3. — Let Γ ⊂ RN be an oriented curve. Let ( gn) ⊂ BV(Γ; S1) ∩ C0(Γ; S1)

be such that gn → g a.e. and ‖gn‖BV ≤ C, where g ∈ BV(Γ; S1) ∩C0(Γ; S1). Then

lim inf
n→∞

(∫

Γ

|ġn| − 2π| deg gn − deg g|
)
≥

∫

Γ

|ġ|.
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In particular, if deg gn = 0,∀n, then

lim inf
n→∞

∫

Γ

|ġn| ≥ 4π| deg g|

(the assumption ‖gn‖BV ≤ C is not required here).

Here, Γ need not be connected. If Γ =⋃
j γj , with each γj simple, we set

deg g =
∑

j

deg( g; γj),

where γj has the orientation inherited from that of Γ.

Remark 4.4. — It can be easily seen that the constants 2π in Lemma 18 and

4π in Corollary 3 cannot be improved.

We now prove a coarea type formula (in the spirit of [2]) used in the proof of

the lower bound in Theorem 4.

Lemma 20. — Let g ∈ H1/2(Ω; S1) and ζ ∈ C∞(Ω;R). If λ ∈ R is a regular value

of ζ , let

Γλ = {x ∈ Ω; ζ(x) = λ}.

We orient Γλ such that, for each x ∈ Γλ, the basis
(
τ(x), Dζ(x), n(x)

)
is direct, where n(x) is

the outward normal to Ω at x. Then

〈T( g), ζ〉 = 2π

∫

R

deg( g;Γλ)dλ.

Remark 4.5. — For a.e. λ we have g|Γλ
∈ H1/2 ⊂ VMO. Therefore, deg( g;Γλ)

makes sense for a.e. λ (see [22]). In general, Γλ is a union of simple curves, Γλ =
⋃

γj .

In this case, we set

deg( g;Γλ) =
∑

deg( g; γj),

where on each γj we consider the orientation inherited from Γλ.

Proof of Lemma 20. — We write g = g1h, with g1 ∈ X and h ∈ W1,1(Ω; S1) ∩
H1/2(Ω; S1). For a.e. λ, we have h|Γλ

∈W1,1 and g1|Γλ
∈ H1/2.



46 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

Since g1 = e ıϕ1 for some ϕ1 ∈ H1/2(Ω;R), for a.e. λ we have deg( g1;Γλ) = 0,

so that deg( g;Γλ) = deg(h;Γλ) for a.e. λ. Moreover, we have T( g) = T(h). It suffices

therefore to prove the statement of the lemma for h ∈ W1,1(Ω; S1) ∩ H1/2(Ω; S1). In

this case, we have

〈T(h), ζ〉 =
∫

Ω

|Dζ |h ∧
(

Dh ∧ Dζ

|Dζ |

)

(see Lemma 1 in the introduction).

We recall the coarea formula (see, e.g., Federer [26], Simon [42])

∫

Ω

f |Dϕ| =
∫

R

( ∫

ϕ=λ

fds

)
dλ, ϕ ∈ C∞(Ω;R), f ∈ L1(Ω;R).(4.53)

Applying (4.53) with ϕ = ζ, f = h ∧
(

Dh ∧ Dζ

|Dζ |

)
= h ∧ ∂h

∂τ
(where τ is the oriented

tangent unit vector to Γλ) we find

〈T(h), ζ〉 =
∫

R

(∫

Γλ

h ∧ ∂h

∂τ
ds

)
dλ = 2π

∫

R

deg(h;Γλ)dλ.

The final ingredient in the proof of Theorem 4 is the lower bound given by

Lemma 21. — Let g ∈ H1/2(Ω; S1). If g = e ı(ϕ+ψ) with ϕ ∈ H1/2(Ω;R) and ψ ∈
BV (Ω;R), then

∫

Ω

|Dψ| ≥ 4πL( g).

Proof. — Let h = e−ıϕg ∈ H1/2(Ω; S1). Let (ψn) be a sequence of smooth real-

valued functions such that ψn → ψ a.e. and

∫

Ω

|Dψn| →
∫

Ω

|Dψ|.

Fix some ζ ∈ C∞(Ω;R) and let, for λ a regular value of ζ , Γλ = {x ∈ Ω; ζ(x) = λ}.
Let hn = eiψn . For a.e. λ we have hn|Γλ

→ h|Γλ
a.e. and h|Γλ

∈ H1/2 ∩ BV. For any such

λ we have h|Γλ
∈ BV ∩ C0. Indeed, since k = h|Γλ

∈ BV, k has finite limits from the

left and from the right at each point. These limits must coincide, since H1/2 ⊂ VMO

in dimension 1 (see e.g. [17] and [22]) and non-trivial characteristic functions are not

in VMO.
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By the second assertion in Corollary 3, we find that, for a.e. λ,

lim inf
n→∞

∫

Γλ

|ḣn| ≥ 4π| deg(h;Γλ)|.

Thus, if |Dζ | ≤ 1, we have by the coarea formula,

lim inf
n→∞

∫

Ω

|Dhn| ≥ lim inf
n→∞

∫

Ω

|Dhn| |Dζ | = lim inf
n→∞

∫

R

(∫

Γλ

|Dhn|ds

)
dλ

≥ lim inf
n→∞

∫

R

(∫

Γλ

|ḣn|ds

)
dλ ≥ 4π

∫

R

| deg(h;Γλ)|dλ

≥ 4π

∣∣∣∣
∫

R

deg(h;Γλ)dλ

∣∣∣∣.

On the other hand, by Lemma 20, we have

4π

∣∣∣∣
∫

R

deg(h;Γλ)dλ

∣∣∣∣ = 2|〈T(h), ζ〉|.

Thus, if ζ ∈ C∞(Ω;R) is such that |Dζ | ≤ 1, we have

∫

Ω

|Dψ| = lim inf
n→∞

∫

Ω

|Dψn|

= lim inf
n→∞

∫

Ω

|Dhn| ≥ 2|〈T(h), ζ〉| = 2|〈T( g), ζ〉|.
(4.54)

We conclude by taking in (4.54) the supremum over all such ζ ’s.

5. Minimal connection and Ginzburg–Landau energy for g ∈ H1/2. Proof

of Theorem 6

Throughout this section, the metric d denotes dG, the geodesic distance (on Ω)

relative to G, and L = LG.

Proof of Theorem 6. — We start by deriving some elementary inequalities. For g ∈
H1/2(Ω;R2), let

eε,g = Min
{
Eε(u); u ∈ H1

g (G;R2)
}
.
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Let g1, g2 ∈ H1/2(Ω; S1) and let uj ∈ H1
g j
(G;B2) be such that eε,g j

= Eε(uj), j = 1, 2.

Then u1u2 ∈ H1
g1g2

(G;R2). We find that, for each δ > 0, we have

eε,g1g2
≤ Eε(u1u2) ≤

1

2

∫

G

(|∇u1| + |∇u2|)2 + 1

4ε2

∫

G

(1− |u1u2|2)2

≤ 1+ δ

2

∫

G

|∇u1|2 +
C(δ)

2

∫

G

|∇u2|2

+ 1

4ε2

∫

G

((1− |u1|2)+ (1− |u2|2))2

≤ (1+ δ)eε,g1
+C(δ)eε,g2

.

(5.1)

Similarly, we have

eε,g1g2
≥ (1− δ)eε,g1

−C(δ)eε,g2
.(5.2)

The upper bound eε,g ≤ πL( g) log(1/ε)+ o(log(1/ε))

We will use Lemma A.1 in Appendix A, which asserts that, if g ∈ R1, then

eε,g ≤ πL( g) log(1/ε)+ o(log(1/ε)) as ε→ 0.(5.3)

The class R1, which is dense in H1/2(Ω; S1), is defined in Appendix A. Inequality (5.3)

was essentially established by Sandier [40].

Another ingredient needed in the proof is the following upper bound, valid for

g ∈ H1/2(Ω; S1), and already mentioned in the Introduction (see [12], Theorem 5 and

Remark 8; see also [38], Proposition II.1 for a different proof):

eε,g ≤ C|g|2
H1/2(1+ log(1/ε)),(5.4)

for some C = C(G).

We now turn to the proof of the upper bound. Let g ∈ H1/2(Ω; S1). By Lemma

B.1 in Appendix B, there is a sequence ( gk) in R1 such that gk → g in H1/2. On the

one hand, since H1/2 ∩ L∞ is an algebra, we find that |g/gk|H1/2 → 0. On the other

hand, recall that L( gk)→ L( g). Fix some δ̃ > 0. By (5.4) applied to g/gk , we find that

eε,g/gk
≤ δ̃ log(1/ε) for ε sufficiently small,(5.5)

if k is sufficiently large. Using (5.3) for gk , where k is sufficiently large, we obtain

eε,gk
≤ π(L( g)+ δ) log(1/ε).(5.6)

The upper bound follows by combining (5.1), (5.5) and (5.6).
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The lower bound eε,g ≥ πL( g) log(1/ε)+ o(log(1/ε))

We rely on the corresponding lower bound in [40] (Theorem 3.1, part 1): if

g ∈ R0 (where the class R0, dense in H1/2(Ω; S1), is defined in Appendix A), then

eε,g ≥ πL( g) log(1/ε)+ o(log(1/ε)) for ε sufficiently small(5.7)

(no geometrical assumption is made on Ω or g). We fix some δ > 0. Applying (5. 7)

to gk for k sufficiently large, we find that

eε,gk
≥ π(L( g)− δ) log(1/ε) for ε sufficiently small.(5.8)

The lower bound is a consequence of (5.2), (5.5) and (5.8).

There is a variant of Theorem 6 when the boundary condition depends on ε.

Let g ∈ H1/2(Ω; S1) and let gε ∈ H1/2(Ω;R2) be such that

gε → g in H1/2,(5.9)

|gε| ≤ 1,(5.10)

‖|gε| − 1‖L2 ≤ C
√

ε.(5.11)

Set

eε,gε = Min
{
Eε(u); u ∈ H1

gε
(G;R2)

}
.

Theorem 6′. — Assume (5.9), (5.10) and (5.11). Then we have

eε,gε = πL( g) log(1/ε)+ o(log(1/ε)) as ε→ 0.(5.12)

The main ingredients in the proof of (5.12) are the following Lemmas 22 and

23.

Lemma 22. — Let ϕ ∈ H1/2(Ω;R2) and let u(= uε) be the solution of the linear problem

−∆u+ 1

ε2
u = 0 in G,(5.13)

u = ϕ on Ω = ∂G.(5.14)

Then, for sufficiently small ε > 0,

∫

G

|∇u|2 + 1

ε2

∫

G

|u|2 ≤ CG

(
|ϕ|2

H1/2(Ω)
+ 1

ε

∫

Ω

|ϕ|2
)

.(5.15)
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Proof of Lemma 22. — Let Φ be the harmonic extension of ϕ and fix some ζ ∈
C∞0 (R) with ζ(0) = 1. Set

v(x) = Φ(x)ζ(dist (x,Ω)/ε).

Using, for 0 < δ < δ0(G), the standard estimate

∫

{x;dist (x,Ω)=δ}

Φ
2 ≤ C

∫

Ω

ϕ2,

it is easy to see that, for 0 < ε < ε0(G), we have

∫

G

|∇v|2 + 1

ε2

∫

G

|v|2 ≤ CG

(
|ϕ|2

H1/2 +
1

ε

∫

G

|ϕ|2
)

,

and the conclusion follows, since u is a minimizer so that,

∫

G

|∇u|2 + 1

ε2

∫

G

|u|2 ≤
∫

G

|∇v|2 + 1

ε2

∫

G

|v|2.

For later use, we mention a related estimate, whose proof is similar and left to

the reader:

Lemma 22′. — For 0 < ε < ε0(G), set

Gε = { x ∈ R3 \G ; dist (x,Ω) < ε }.

Let ϕ ∈ H1/2(Ω;R2) and let u(= uε) be the solution of the linear problem

−∆u+ 1

ε2
u = 0 in Gε,(5.16)

u = ϕ on Ω = ∂G,(5.17)

u = 0 on ∂Gε \ ∂G.(5.18)

Then

∫

Gε

|∇u|2 + 1

ε2

∫

Gε

|u|2 ≤ CG

(
|ϕ|2

H1/2 +
1

ε

∫

Ω

|ϕ|2
)

.(5.19)
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Lemma 23. — Let ( gε) in H1/2(Ω;R2) satisfy (5.10), (5.11) and

‖gε‖H1/2 ≤ C.(5.20)

Then there is (hε) in H1/2(Ω; S1) such that

‖hε‖H1/2 ≤ C(5.21)

and

‖gε − hε‖L2 ≤ C
√

ε.(5.22)

Moreover if, in addition,

gε → g in H1/2,(5.23)

then

hε → g in H1/2.(5.24)

Proof. — We divide the proof in 4 steps

Step 1. — Let g1
ε = gε ∗ Pε be an ε-smoothing of gε.

Clearly

∥∥gε − g1
ε

∥∥
L2 ≤

√
ε‖gε‖H1/2 ≤ C

√
ε(5.25)

and from (5.11), (5.25) we have

∥∥1−
∣∣g1

ε

∣∣ ∥∥
L2 ≤ C

√
ε.(5.26)

Also

∥∥g1
ε

∥∥
H1/2 ≤ C,(5.27)

and

∥∥g1
ε

∥∥
H1 ≤ Cε−1/2‖gε‖H1/2 ≤ Cε−1/2.(5.28)

Step 2. — Given a point a ∈ R2 with |a| < 1/10, let πa : R2 \ {a} → S1 be the

radial projection onto S1 with vertex at a, i.e.,

πa(ξ) = a+ λ(ξ − a), ξ ∈ R2 \ {a}
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where λ ∈ R is the unique positive solution of

|a+ λ(ξ − a)| = 1.

It is also convenient to note that

πa(ξ) = j−1
a

(
ξ − a

|ξ − a|

)
for ξ �= a

where ja : S1 → S1, ja(z) =
z− a

|z− a|, is a smooth diffeomorphism.

In particular,

|Dπa(ξ)| ≤
C

|ξ − a| ∀ξ ∈ R2 \ {a},(5.29)

and πa is lipschitzian on {|ξ| ≥ 1/2} with a uniform Lipschitz constant (independent

of a).

We claim that

ha,ε = πa ◦ g1
ε : Ω→ S1(5.30)

satisfies all the required properties for an appropriate choice of a = aε, |aε| < 1/10.

For this purpose, it is useful to introduce a smooth function ψ : [0,∞)→ [0, 1]
such that

ψ(t) =
{

0 if t ≤ 1/4,

1 if t ≥ 1/2,

and to write

ha,ε = πa

(
g1
ε

)
ψ
(∣∣g1

ε

∣∣)+ πa

(
g1
ε

)(
1− ψ

(∣∣g1
ε

∣∣)) = ua,ε + va,ε.(5.31)

Note that, in general, ha,ε is not well-defined since g1
ε may take the value a on a large

set. However, if a is chosen to be a regular value of g1
ε , then

Σε =
{
x ∈ Ω; g1

ε (x) = a
}

consists of a finite number of points and ha,ε is smooth on Ω \Σε, and we have, using

(5.29),

∣∣∇
(
πa

(
g1
ε

))∣∣ ≤ C

∣∣∇g1
ε

∣∣
∣∣g1

ε − a
∣∣ on Ω \Σε.(5.32)
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Moreover, near every point σ ∈ Σε, we have |g1
ε (x)− a| ≥ c|x − σ |, c > 0, and thus

∣∣∇
(
πa

(
g1
ε

))∣∣ ≤ Cε

|x− σ | .

In particular ha,ε ∈W1,p(Ω; S1),∀p < 2.

Clearly, the function πa(z)ψ(|z|) is well-defined and lipschitzian on R2 for any a,

|a| < 1/10, with a uniform Lipschitz constant independent of a. Therefore, (5.27)

yields

‖ua,ε‖H1/2 ≤ C
∥∥g1

ε

∥∥
H1/2 ≤ C,(5.33)

where C is independent of a and ε.

Next, we turn to va,ε, which is well-defined only if a is a regular value of g1
ε . On

Ω \Σε, we have

|∇va,ε| ≤ C

∣∣∇g1
ε

∣∣
∣∣g1

ε − a
∣∣(1− ψ)

(∣∣g1
ε

∣∣)+
∣∣ψ ′

(∣∣g1
ε

∣∣)∣∣∣∣∇g1
ε

∣∣

≤ C

∣∣∇g1
ε

∣∣
∣∣g1

ε − a
∣∣χ[|g1

ε |<1/2],

with C independent of a and ε.

We now make use of an averaging device due to H. Federer and W. H. Fleming

[FF] and adapted by R. Hardt, D. Kinderlehrer and F. H. Lin [29] in the context of

Sobolev maps with values into spheres. Recall that, by Sard’s theorem, the regular

values of g1
ε have full measure and thus

∫

B1/10

∫

Ω

|∇va,ε|pdxda ≤ Cp

∫

[|g1
ε |<1/2]

|∇g1
ε |pdx, for any p < 2.(5.34)

By Hölder, (5.34), (5.26) and (5.28) we find

∫

B1/10

∫

Ω

|∇va,ε|pdxda ≤
∥∥g1

ε

∥∥p

H1

∣∣[∣∣g1
ε

∣∣ < 1/2
]∣∣1− p

2 ≤ Cε−
p
2 ε1− p

2 ≤ Cε1−p.(5.35)

Next, fix any 1 < p < 2 and estimate (see e.g. [21])

‖va,ε‖H1/2 ≤ C‖va,ε‖1/2

L p′ ‖va,ε‖1/2

W1,p .(5.36)

From the definition of ψ we have

|va,ε| ≤ χ[|g1
ε |<1/2]
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and, using (5.26), we obtain

‖va,ε‖L p′ ≤ Cε1/p′.(5.37)

Substitution of (5.37) and (5.35) in (5.36) yields

∫

B1/10

‖va,ε‖2p

H1/2da ≤ Cεp−1ε1−p ≤ C.(5.38)

In view of (5.38) we may now choose a = aε ∈ B1/10, a regular value of g1
ε , such that

‖vaε,ε‖H1/2 ≤ C.(5.39)

Returning to (5.31), and using (5.33) and (5.39), we obtain (5.21) with hε = haε,ε.

Step 3. — Write Zε = [|g1
ε | > 1/2]. For any regular value a of g1

ε we have

∥∥ha,ε − g1
ε

∥∥2

L2(Ω)
=

∥∥ha,ε − g1
ε

∥∥2

L2(|g1
ε |≤1/2)

+
∥∥ha,ε − g1

ε

∥∥2

L2(Zε)

≤ Cε+
∥∥ha,ε − g1

ε

∥∥2

L2(Zε)
by (5.26).

Next we estimate

∥∥ha,ε − g1
ε

∥∥
L2(Zε)

≤
∥∥∥∥ha,ε −

g1
ε

|g1
ε |

∥∥∥∥
L2(Zε)

+
∥∥∥∥

g1
ε

|g1
ε |
− g1

ε

∥∥∥∥
L2(Zε)

=
∥∥∥∥πa

(
g1
ε

)
− πa

(
g1
ε∣∣g1
ε

∣∣

) ∥∥∥∥
L2(Zε)

+
∥∥∥∥

g1
ε∣∣g1
ε

∣∣ − g1
ε

∥∥∥∥
L2(Zε)

.

Since πa(ξ) is lipschitzian on [|ξ| ≥ 1/2] we obtain

∥∥ha,ε − g1
ε

∥∥
L2(Zε)

≤ C

∥∥∥∥g1
ε −

g1
ε∣∣g1
ε

∣∣

∥∥∥∥
L2(Zε)

≤ C
∥∥1−

∣∣g1
ε

∣∣∥∥
L2(Zε)

≤ C
√

ε, by (5.26).

Therefore

∥∥ha,ε − g1
ε

∥∥
L2(Ω)

≤ C
√

ε(5.40)

with C independent of a and ε.

Combining (5.25) and (5.40) yields

‖ha,ε − gε‖L2(Ω) ≤ C
√

ε,

which is (5.22) when choosing a = aε.
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Step 4. — Suppose now, in addition, that gε → g in H1/2. We claim that hε → g

in H1/2.

Indeed, we have

∥∥g1
ε

∥∥
H1 ≤ ‖( gε − g) ∗ Pε‖H1 + ‖g ∗ Pε‖H1

≤ Cε−1/2‖gε − g‖H1/2 + ‖g ∗ Pε‖H1

= o(ε−1/2).

Returning to (5.35) and (5.38) we now find

∫

B1/10

∫

Ω

|∇va,ε|pdxda→ 0 as ε→ 0

and we may choose aε so that

‖vaε,ε‖H1/2 → 0 as ε→ 0.

It remains to show that

uaε,ε → g in H1/2 as ε→ 0.(5.41)

Recall that

uaε,ε = πaε

(
g1
ε

)
ψ
(∣∣g1

ε

∣∣) = Lε

(
g1
ε

)
,

where Lε : R2 → R2 are lipschitzian maps with a uniform Lipschitz constant.

We have

∥∥g1
ε − g

∥∥
H1/2 = ‖( gε − g) ∗ Pε + ( g ∗ Pε)− g‖H1/2

≤ C‖gε − g‖H1/2 + ‖( g ∗ Pε)− g‖H1/2,

so that

‖g1
ε − g‖H1/2 → 0.(5.42)

Finally we use the following claim:





If (kn) is a sequence in H1/2(Ω;R2) such that kn → k in H1/2 and

Ln : R2 → R2 satisfy a uniform Lipschitz condition, then

Ln(kn)− Ln(k)→ 0 in H1/2.

(5.43)



56 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

Proof of (5.43). — It suffices to argue on subsequences. Since

|kn − k|2
H1/2 =

∫

Ω

∫

Ω

|kn(x)− k(x)− kn( y)+ k( y)|2
d(x, y)3

dxdy→ 0,

there is, (modulo a subsequence), some fixed h(x, y) ∈ L1(Ω×Ω) such that

|kn(x)− kn( y)|2
d(x, y)3

≤ h(x, y), ∀n.

We have

|Ln(kn)− Ln(k)|2H1/2

=
∫

Ω

∫

Ω

|Ln(kn(x))− Ln(k(x))− Ln(kn( y))+ Ln(k( y))|2
d(x, y)3

dxdy,

and the integrand In(x, y) satisfies

In(x, y) ≤ C
(|kn(x)− kn( y)|2 + |k(x)− k( y)|2)

d(x, y)3

≤ Ch(x, y),

and also,

In(x, y) ≤ C
(|kn(x)− k(x)|2 + |kn( y)− k( y)|2)

d(x, y)3
.

Therefore, by dominated convergence,

|Ln(kn)− Ln(k)|H1/2 → 0.

This proves (5.43).

We now return to the proof of (5.41). Applying (5.43) to Ln(ξ) = πaεn
(ξ)ψ(|ξ|)

and to kn = g1
εn
→ g in H1/2 by (5.42), we find that

Ln

(
g1
εn

)
− Ln( g)→ 0 in H1/2.

But Ln( g) = g ∀n since |g| = 1. Thus we are led to Ln( g1
εn
) → g in H1/2, which is

(5.41).

This completes the proof of Lemma 23.
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Remark 5.1. — It is interesting to observe that the construction used in the proof

of Lemma 23 gives a simple proof of Rivière’s Lemma 11. In fact, we have a more

precise statement. Fix any element g ∈ H1/2(Ω; S1) and apply the construction de-

scribed above with gε ≡ g. The sequence

hε = πaε
( g ∗ Pε)

satisfies the following properties:

hε ∈W1,p(Ω; S1), ∀p < 2,∀ε,(5.44)

hε → g in H1/2 as ε→ 0,(5.45)





hε is smooth except on a finite set Σε ⊂ Ω and

|∇hε(x)| ≤
Cε

dist (x,Σε)
, ∀x ∈ Ω \Σε,

(5.46)





for each σ ∈ Σε, there is a smooth diffeomorphism γ = γε,σ,

from the unit circle in Tσ(Ω) onto S1, such that, assuming

Ω flat near σ (for simplicity), we have∣∣∣∣hε(x)− γ

(
x − σ

|x− σ |

)∣∣∣∣ ≤ Cε|x− σ | for x ∈ Ω near σ.

(5.47)

Here, Tσ(Ω) denotes the tangent space to Ω at σ . Note that (5.47) implies that

deg( g, σ) = ±1 for each singularity σ .

All the above properties are clear from the proof of Lemma 23, except possibly

(5.47). Taylors’s expansion near σ ∈ Σε gives

g1
ε (x) = g1

ε (σ)+M(x − σ)+O(|x − σ |2)
where g1

ε (σ) = aε and M = Mε,σ = Dg1
ε (σ) is a bounded invertible linear operator

from Tσ(Ω) onto R2 (since aε is a regular value of g1
ε ). Thus

g1
ε (x)− aε∣∣g1
ε (x)− aε

∣∣ =
M(x − σ)

|M(x− σ)| +O(|x− σ |)

and therefore

hε(x) = j−1
aε

(
g1
ε (x)− aε∣∣g1
ε (x)− aε

∣∣

)
= j−1

aε

(
M(x − σ)

|M(x − σ)|

)
+O(|x − σ |),

where jaε
(ξ) = ξ − aε

|ξ − aε|
: S1 → S1. This proves (5.47) with

γ(z) = j−1
aε

(
Mz

|Mz|

)
, z ∈ Tσ(Ω).

Clearly, γ is a smooth diffeomorphism from the unit circle in Tσ(Ω) onto S1. We will

present in Appendix B a more precise statement.
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Remark 5.2. — The averaging process over a in the proof of Lemma 23 can be

done on any ball Bρ, 0 < ρ ≤ 1/10, with ρ possibly depending on ε. In particular,

when gε → g in H1/2, one may choose some special ρε → 0 and obtain a correspond-

ing aε with aε → 0. Then

h̃aε,ε =
g1
ε − aε

|g1
ε − aε|

has all the desired properties without having to consider

haε,ε = j−1
aε

h̃aε,ε.

The argument is similar, with a minor modification in Step 3.

Proof of Theorem 6 ′. — Let kε ∈ H1/2(Ω;R2) with |kε| ≤ 1. We claim that

eε,kε ≤ CΩ

(
|kε|2H1/2 +

1

ε
‖kε − 1‖2

L2

)
.(5.48)

Indeed, let u = uε be the solution of (5.13), (5.14) corresponding to ϕ = kε − 1.

Using the function (uε + 1) as a test function in the definition of eε,kε , we find

eε,kε ≤
1

2

∫

G

|∇uε|2 +
1

4ε2

∫

G

(
|uε + 1|2 − 1

)2
.(5.49)

From (5.15), we have

∫

G

|∇uε|2 ≤ C

(
|kε|2H1/2 +

1

ε
‖kε − 1‖2

L2

)
.(5.50)

On the other hand, by the maximum principle, we have

‖uε‖L∞(G) ≤ ‖kε − 1‖L∞(Ω) ≤ 2,

and thus, by (5.15),

∫

G

(|uε + 1|2 − 1)2 =
∫

G

(|uε + 1| − 1)2(|uε + 1| + 1)2 ≤ 16

∫

G

|uε|2

≤ Cε2

(
|kε|2H1/2 +

1

ε
‖kε − 1‖2

L2

)
.

(5.51)

Combining (5.49), (5.50) and (5.51) yields (5.48).
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Next, we write, using hε from Lemma 23,

gε = ( gεh̄ε)(hεḡ)g

and apply (5.1) to find

eε,gε ≤ (1+ δ)eε,g +C(δ)(eε,hε ḡ + eε,gε h̄ε
).(5.52)

We deduce from (5.48) (applied to kε = gεh̄ε) that

eε,gε h̄ε
≤ C

(
|gεh̄ε|2H1/2 +

1

ε
‖gεh̄ε − 1‖2

L2

)

≤ C

(
|gε|2H1/2 + |hε|2H1/2 +

1

ε
‖gε − hε‖2

L2

)
≤ C.

(5.53)

Applying (5.4) (with g replaced by hεḡ) yields

eε,hε ḡ ≤ C|hεḡ|2H1/2(1+ log(1/ε)).(5.54)

Recall that |hεḡ|H1/2 → 0 as ε→ 0 (by (5.24)). By Theorem 6, we know that

eε,g = πL( g) log(1/ε)+ o(log(1/ε)).(5.55)

Combining (5.52)–(5.55) we finally obtain

lim sup
ε→0

eε,gε

log(1/ε)
≤ πL( g)(1+ δ), ∀ δ > 0.

The lower bound

lim inf
ε→0

eε,gε

log(1/ε)
≥ πL( g)(1− δ), ∀ δ > 0,

is deduced in the same way via (5.2). This completes the proof of Theorem 6′.

6. W1,p(G) compactness for p < 3/2 and g ∈ H1/2. Proof of Theorem 7′

Proof of Theorem 7′. — The estimate

‖uε‖W1,p(G) ≤ Cp, ∀ 1 ≤ p < 3/2,

was established in [5]. We will now show that a simple adaptation of the argument

there yields compactness. We rely on the following
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Lemma 24. — The family (uε ∧ duε) is compact in L p(G), 1 ≤ p < 3/2.

Proof of Lemma 24. — Let Xε = uε ∧ duε. Since div (Xε) = 0, we may write

Xε = curl Hε. As explained in Section 3 of [5], we may choose Hε of the form

Hε = H1
ε + H2. Here H2 ∈ W1,p(G), 1 ≤ p < 3/2, depends only on g, while H1

ε is

a linear operator acting on Xε satisfying the estimate

∥∥H1
ε

∥∥
W1,p(G)

≤ Cp‖d Xε‖[W1,q(G)]∗, 1 ≤ p < 3/2,
1

p
+ 1

q
= 1.

Therefore, it suffices to prove that (d Xε) is relatively compact in [W1,q(G)]∗.
For 1 ≤ p < 3/2 and

1

p
+ 1

q
= 1, let 0 < β < α = 1 − 3

q
. Then the imbedding

W1,q(G) ⊂ C0,β(G) is compact. Hence the imbedding (C0,β(G))∗ ⊂ (W1,q(G))∗ is

compact. The conclusion of Lemma 24 follows now easily from the bound

‖d Xε‖[C0,β(G)]∗ ≤ C derived in [5]; see Theorem 2bis in [5].

Proof of Theorem 7′ completed. — Let A = Aε = {x ∈ G ; |uε(x)| ≤ 1/2}. Since

Eε(uε) ≤ C log(1/ε), we have |Aε| ≤ Cε2 log(1/ε). In G\Aε, we have

duε =
ıuε

|uε|2
uε ∧ duε +

uε

|uε|
d|uε|.(6.1)

We may thus write in G

duε = χAε
duε + χG\Aε

(
ıuε

|uε|2
uε ∧ duε +

uε

|uε|
d|uε|

)
.

Note that
∫

Aε

|duε|p ≤
( ∫

Aε

|duε|2
)p/2

|Aε|1−p/2 ε→ 0, 1 ≤ p < 2.

Recall the following estimate (see [9], Proposition VI. 4):
∫

G

|d|uε||p ε→ 0, 1 ≤ p < 2.

Applying (6.1) and Lemma 24 we see that (uε) is bounded in W1,p, p < 3/2. In par-

ticular, up to a subsequence, we have uε

ε→ u0 a.e. for some u0. Moreover, we see that

|uε| ε→ 1 a.e., since

1

ε2

∫

G

(1− |uε|2)2 ≤ C log(1/ε),
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so that |u0| = 1. Thus, up to a subsequence, we find

duε − ıu0(uε ∧ duε)
ε→ 0 in L p, 1 ≤ p < 2.

Finally, Lemma 24 implies that, up to a further sequence, (duε) converges in L p(G),

1 ≤ p < 3/2.

The proof of Theorem 7′ is complete.

As in the case of Theorem 6, Theorem 7′ generalizes to the situation where the

boundary data is not fixed anymore:

Theorem 7′′. — Assume that the maps gε ∈ H1/2(Ω;R2) are such that:

|gε|H1/2 ≤ C,(6.2)

|gε| ≤ 1 on Ω,(6.3)

and

‖|gε| − 1‖L2 ≤ C
√

ε.(6.4)

Let uε be a minimizer of Eε in H1
gε
(G;R2). Then Eε(uε) ≤ C log(1/ε) and (uε) is relatively

compact in W1,p(G), 1 ≤ p < 3/2.

An easy variant of the proof of Theorem 6′ yields the bound Eε(uε)≤C log(1/ε).

To establish compactness in W1,p we rely on the following variant of Lemma 24:

Lemma 24′. — The family (uε ∧ duε) is compact in L p(G), 1 ≤ p < 3/2.

Proof of Lemma 24′. — With Xε = uε ∧ duε, we may write Xε = curl Hε, where

Hε is a linear operator acting on (Xε, gε ∧ dTgε) and satisfying the estimate

‖Hε‖W1,p ≤ C(‖d Xε‖[W1,q(G)]∗ + ‖gε ∧ dTgε‖[W1−1/q,q(Ω)]∗),

1 ≤ p < 3/2,
1

p
+ 1

q
= 1

(see [5]). Here, dT stands for the tangential differential operator on Ω.

The proof of Lemma 2 in [5] implies that ( gε ∧ dTgε) is bounded in [Wσ,q(Ω)]∗

provided σ > 1/2 and σq > 2. If we choose σ > 1/2 such that
2

q
< σ < 1 − 1

q
, we

find that ( gε ∧ dTgε) is compact in [W1−1/q,q(Ω)]∗.
It remains to prove that (d Xε) is compact in [W1,q(G)]∗. As in the proof of

Lemma 24, it suffices to prove that (d Xε) is bounded in [C0,α(G)]∗ for 0 < α < 1.



62 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

For this purpose, we construct an appropriate extension of uε to a larger domain. Let,

for 0 < ε < ε0(G), Πε be the projection onto Ω of the set

Ωε = { x ∈ R3 \Ω ; dist (x,Ω) = ε }.

Set h̃ε = hε ◦ Πε ∈ H1/2(Ωε) (where hε is defined in Lemma 23) and let Kε be the

harmonic extension of h̃ε to

G ∪ { x ∈ R3 ; dist (x,Ω) < ε }.
By standard estimates, we have

‖hε −Kε|Ω‖L2 ≤ CG|hε|H1/2ε1/2,

so that

‖gε −Kε|Ω‖L2 ≤ Cε1/2.

By Lemma 22′ applied to ϕ = gε −Kε|Ω, we may find a map vε : Gε → C such that
∫

Gε

|∇vε|2 +
1

ε2

∫

Gε

|vε|2 ≤ C,

vε = gε −Kε|Ω on Ω, vε = 0 on Ωε

and

|vε| ≤ 2 in Gε.

Set

Uε =
{

uε, in G

vε +Kε, in Gε

,

which satisfies Uε = h̃ε on Ωε. Since, for 0 < δ < ε, we have
∫

Ωδ

(1− |Uε|2)2 ≤
∫

Ωδ

(|1− |Kε|| + |vε|)2(1+ |Kε| + |vε|)2

≤ 32

∫

Ωδ

(|hε ◦Πδ −Kε|2 + |vε|2),

we find by standard estimates that

∫

Ωδ

(1− |Uε|2)2 ≤ C

(
ε|hε|2H1/2 +

∫

Ωδ

|vε|2
)

.(6.5)
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Integration of (6.5) over δ combined with the obvious bound

‖Kε‖H1(G∪Gε) ≤ C

yields

Eε(Uε;Gε) ≤ C.(6.6)

As we already mentioned, an easy variant of the proof of Theorem 6′ gives

Eε(uε;G) ≤ C log(1/ε)

and thus

Eε(Uε;G ∪Gε) ≤ C log(1/ε).(6.7)

Let now R > 0 be such that

G ∪Gε0(G) ⊂ BR.

A straightforward adaptation of Proposition 4 in [5] implies that, for 0 < ε < ε0(G),

there is a map wε ∈ H1(BR \ (G ∪Gε)) such that

wε = h̃ε on Ωε, wε = 1 on ∂BR,(6.8)

Eε(wε) ≤ C log(1/ε),(6.9)

and
∫

BR\(G∪Gε)

| Jac wε| ≤ C.(6.10)

Set

Vε =
{

Uε, in G ∪Gε

wε, in BR \ (G ∪Gε)
.

By (6.7) and (6.9), we have

Eε(Vε;BR) ≤ C log(1/ε),

so that Jac Vε is bounded in [C0,α
loc (BR)]∗ for 0 < α < 1 (see [33]). As in the proof of

Theorem 2bis in [5], we may now establish the boundedness of d Xε in [C0,α(G)]∗ for
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0 < α < 1. Indeed, let δ > 0 be sufficiently small. For ζ ∈ C0,α(G; ∧1(R)), let ψ be an

extension of ζ to R3 such that ‖ψ‖C0,α(R3) ≤ C‖ζ‖C0,α(G) and Supp ψ ⊂ BR−δ. Then

∣∣∣∣
∫

G

d Xε ∧ ζ

∣∣∣∣ ≤
∣∣∣∣
∫

BR

d(Vε ∧ d Vε) ∧ ψ

∣∣∣∣+
∫

BR\G

∣∣∣d(Vε ∧ d Vε) ∧ ψ

∣∣∣

≤ Cα‖ψ‖C0,α(G) + ‖ψ‖L∞

∫

BR\G

| Jac Vε| ≤ C‖ζ‖C0,α(G),

by (6.6) and (6.10).

The proof of Lemma 24′ is complete.

Proof of Theorem 7′′. — An inspection of the proof of Theorem 7′ shows that it

suffices to establish the estimate
∫

G

|∇|uε||p → 0 as ε→ 0, ∀ 1 ≤ p < 2.(6.11)

We adapt the proof of Proposition VI.4 in [9]. Set η = ηε = 1− |uε|2, which satisfies

−∆η+ 2

ε2
|uε|2η = 2|∇uε|2 in G,(6.12)

η ≥ 0 on Ω.(6.13)

Let η̃ be the solution of

−∆η̃+ 2

ε2
|uε|2η̃ = 2|∇uε|2 in G,(6.14)

η̃ = 0 on Ω,(6.15)

so that

1− |uε|2 = η ≥ η̃ ≥ 0,(6.16)

by the maximum principle. Set η = Min (̃η, ε1/2). Multiplying (6.14) by η, we find

∫

{̃η<ε1/2}

|∇ η̃|2 ≤ 2ε1/2

∫

G

|∇uε|2 → 0 as ε→ 0.(6.17)

On the other hand, we have

{x ; η̃(x) ≥ ε1/2 } ⊂ {x ; |uε(x)|2 ≤ 1− ε1/2 }.(6.18)
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Set ζ = η− η̃, which satisfies

−∆ζ + 2

ε2
|uε|2ζ = 0 in G,(6.19)

ζ = ϕε on Ω,(6.20)

where ϕε = 1− |gε|2. Clearly, we have |ϕε|H1/2 ≤ C and by (6.4)

‖ϕε‖L2 ≤ Cε1/2.(6.21)

By the proof of Lemma 22, we find that

∫

G

|∇ζ |2 ≤ C.(6.22)

We claim that
∫

G

|∇ζ |p → 0 as ε→ 0, ∀p < 2.(6.23)

Indeed, by the maximum principle, 0 ≤ ζ ≤ ζ̂ where ζ̂ is the solution of

−∆ζ̂ = 0 in G,

ζ̂ = ϕε on Ω.

In particular, from (6.21) we see that

∫

G

|ζ̂ |2 → 0 as ε→ 0.(6.24)

Let χ ∈ C∞0 (G) with 0 ≤ χ ≤ 1 on G. Multiplying (6.19) by ζχ and integrating we

obtain
∫

G

|∇ζ |2χ ≤ 1

2

∫

G

ζ 2|∆χ| ≤ 1

2

∫

G

ζ̂ 2|∆χ|.

Combining this with (6.24) yields

∫

G

|∇ζ |2χ → 0 ∀χ ∈ C∞0 (G), 0 ≤ χ ≤ 1.(6.25)

From (6.22) and (6.25) we deduce (6.23).
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We now claim that

∫

G

|∇η|p → 0 as ε→ 0, ∀p < 2.(6.26)

Since η = ζ + η̃, in view of (6.17) and (6.23) it suffices to prove that

∫

Zε

|∇η̃|p → 0.

where Zε = {x ; |uε(x)|2 ≤ 1− ε1/2 }. But

∫

G

(1− |uε|2)2 ≤ Cε2 log(1/ε),

and thus

|Zε| ≤ Cε log(1/ε),(6.27)

so that, by Hölder and (6.14)–(6.15),

∫

Zε

|∇η̃|p ≤ ‖∇η̃‖p

L2 |Zε|(2−p)/2

≤ C‖∇uε‖p

L2 |Zε|(2−p)/2 ≤ Cε(2−p)/2(log(1/ε))→ 0 as ε→ 0.

(6.28)

Hence we have established (6.26). Similarly,

∫

Zε

|∇uε|p ≤ ‖∇uε‖p

L2 |Zε|(2−p)/2 ≤ Cε(2−p)/2 log(1/ε))→ 0 as ε→ 0.(6.29)

Finally, we note that, for ε sufficiently small, we have

|∇|uε|| ≤ |∇uε|χZε
+ |∇η|,(6.30)

so that (6.11) follows by combining (6.26), (6.29) and (6.30).

The proof of Theorem 7′′ is complete.
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7. Improved interior estimates. W
1,p

loc(G) compactness for p < 2 and

g ∈ H1/2. Proof of Theorem 8

Remark 7.1. — As in the proof of Theorems 7′ and 7′′, it suffices to establish

the estimate

‖uε ∧ duε‖L p(K) ≤ C, 3/2 ≤ p < 2, K compact in G.(7.1)

Estimate (7.1) will be proved under the following assumptions:

Eε(uε) ≤ C log(1/ε)

and

uε is bounded in W1,r(G), for some 4/3 < r < 3/2.

In view of Theorems 6, 7 and of their variants, we find that Theorem 8 extends to

minimizers uε of Eε when the variable boundary conditions satisfy (6.1)–(6.3).

Proof of Theorem 8. — In what follows, we establish (7.1) when K is any compact

subset of the unit ball B.

Fix some 3/2 ≤ p < 2 and 0 < γ < 1. Fix

4/3 < r < 3/2.(7.2)

Denote u = uε. Since, by Theorems 6 and 7, we have

‖u‖W1,r (B) ≤ C and ‖u‖H1(B) ≤ C(log(1/ε))1/2,

we may choose

1− γ < ρ < 1− γ/2

such that

‖u‖W1,r (∂Bρ) ≤ Cγ(7.3)

and

‖u‖H1(Bρ) ≤ Cγ (log(1/ε))1/2.(7.4)

Set now p = 2− s, so that s > 0 and the conjugate exponent of p is

2 < q = 2− s

1− s
≤ 3.(7.5)
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Perform on Bρ a Hodge decomposition

u ∧ du

|u ∧ du|s = d∗k + d L,

where

L = 0-form, L = 0 on ∂Bρ(7.6)

and

k = 2-form, ‖k‖W1,q ≤ C

∥∥∥∥
u ∧ du

|u∧ du|s
∥∥∥∥

q

= C‖u ∧ du‖1−s
p

= C‖u ∧ du‖p−1
p ;

(7.7)

here, we use the notation ‖ ‖p = ‖ ‖L p(Bρ).

Recalling the fact that div(u ∧ du) = 0, we find that

‖u ∧ du‖p
p =

∫

Bρ

(d∗k) · (u ∧ du)+
∫

Bρ

d L · (u ∧ du) =
∫

Bρ

(d ∗ k) ∧ (u ∧ du),(7.8)

since, by (7.6), we have L = 0 on ∂Bρ.

Let

δ = ε10−3

.(7.9)

Assuming, for simplicity, ∂B to be flat near some point, consider a partition of Bρ in

δ-cubes Q

∂Bρ

∂B

(we will average over translates of this grid in later estimates).

Define

F =
{

Q |Q ∩
[
|u| <

1

2

]
�= ∅

}
.

We are going to estimate the number of cubes in F with the help of the η-ellipticity

property of T. Rivière [37], that we state in a more precise form, proved in [8]:
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Lemma 25. — Let uε be a minimizer of Eε in BR with respect to its own boundary condi-

tion. Then there is a universal constant C such that, for every η > 0, 0 < ε < 1 and R > 0 we

have

Eε(uε;BR) ≤ ηR log(R/ε)⇒ |uε(0)| ≥ 1− Cη1/60.

Let, for Q ∈ F , Q̃ be the cube having the same center as Q and the size twice

the one of Q . From the η-ellipticity property, we have
∫

Q̃

eε(u) ≥ Cδ log(δ/ε) ∼ δ log(1/ε), ∀Q ∈ F,(7.10)

so that

#F ≤ Cδ−1 and

∣∣∣∣
⋃

Q∈F
Q

∣∣∣∣ ≤ Cδ2.(7.11)

Define

Ω = Bρ\
⋃

Q∈F
Q ,(7.12)

on which |u| > 1/2.

We have, by (7.8),

‖u ∧ du‖p
p =

∫

Ω

(d ∗ k) ∧ (u ∧ du)+
∫

Bρ\Ω

(d ∗ k) ∧ (u ∧ du)

≤
∫

Ω

(d ∗ k) ∧ (u ∧ du)+ 2‖k‖W1,q‖∇u‖2(Bρ\Ω)1/2−1/q.

(7.13)

By (7.7) and (7.11), the second term of (7.13) is bounded by

C(log(1/ε))1/2 · δ1−2/q‖u ∧ du‖1−s
p ≤ ‖u ∧ du‖1−s

p ,(7.14)

provided ε is sufficiently small.

For the first term of (7.13), we use the identity

u ∧ du = u

|u| ∧
(

d

(
u

|u|

))
+

(
1− 1

|u|2
)
(u ∧ du) in Ω

and the fact that

d

(
u

|u| ∧
(

d

(
u

|u|

)))
= 0,
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to get

∫

Ω

(d ∗ k) ∧ (u ∧ du) =
∫

∂Ω

(∗k) ∧
(

u

|u| ∧ d

(
u

|u|

))

+O(‖k‖W1,q‖∇u‖2‖1− |u|2‖2q/(q−2)).

(7.15)

Since |u| ≤ 1 and

‖1− |u|2‖2 ≤ 2ε(Eε(uε))
1/2 ≤ Cε(log(1/ε))1/2,

the second term of (7.15) bounded by

C‖u ∧ du‖1−s
p (log(1/ε))1−1/qε1−2/q ≤ ‖u ∧ du‖1−s

p ,(7.16)

provided ε is sufficiently small.

Let ϕ : D = [|z| ≤ 1] → D be a smooth map such that ϕ(z) = ϕ(z) and

ϕ(z) = z/|z| if |z| > 1/10. Thus

∫

∂Ω

∗k ∧
(

u

|u| ∧ d

(
u

|u|

))
=

∫

∂Bρ

∗k ∧ (ϕ(u) ∧ dϕ(u))

−
∑

Q∈F

∫

∂Q

∗k ∧ (ϕ(u) ∧ dϕ(u))

= (7.17)− (7.18).

Using (7.3) and the fact that, by (7.5), we have q > 2, we find that

(7.17) ≤ C‖u‖W1,r (∂Bρ)‖k‖Lr ′ (∂Bρ) ≤ C‖k‖Lr ′ (∂Bρ) ≤ C‖k‖H1−2/r ′ (∂Bρ)

≤ C‖k‖H3/2−2/r ′ (Bρ) ≤ C‖k‖W1,q(Bρ) ≤ C‖u ∧ du‖1−s
p .

(7.19)

In order to estimate the term (7.18) we replace, on each cube Q , k by its

mean k̄Q . The error is of the order of

∑

Q∈F

∫

∂Q

|k − k̄Q ||∇u| ≤
∫

∂Bρ

|k| · |∇u| +
∑

Q∈F
Q∩∂Bρ �=∅

|k̄Q |
∫

∂Q∩∂Bρ

|∇u|

+
∑

Q∈F

∫

∂Q\∂Bρ

|k − k̄Q ||∇u|

= (7.20)+ (7.21)+ (7.22).
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As for (7.17), we find that

(7.20) ≤ C‖u ∧ du‖1−s
p .(7.23)

Since

|k̄Q | ≤ δ−3

∫

Q

|k| ≤ δ−3/r ′
(∫

Q

|k|r ′
)1/r ′

and

∫

∂Q∩∂Bρ

|∇u| ≤ δ2/r ′
( ∫

∂Q∩∂Bρ

|∇u|r
)1/r

,

we have

(7.21) ≤ Cδ−1/r ′
∑

Q∈F
Q∩∂Bρ �=∅

( ∫

Q

|k|r ′
)1/r ′( ∫

∂Q∩∂Bρ

|∇u|r
)1/r

≤ Cδ−1/r ′‖u‖W1,r (∂Bρ) ·
( ∫

∪Q

Q ∈F

Q∩∂Bρ �=∅

|k|r ′
)1/r ′

≤ Cδ−1/r ′
∣∣∣

⋃

Q∈F,Q∩∂Bρ �=∅
Q

∣∣∣
1/r ′−1/6

· ‖k‖6.

In view of (7.11) one may clearly choose 1− γ < ρ < 1− γ/2 such that

#{Q ∈ F |Q ∩ ∂Bρ �= ∅} � 1/γ,(7.24)

and therefore
∣∣∣

⋃

Q∈F,Q∩∂Bρ �=∅
Q

∣∣∣ ≤ Cδ3.

This gives

(7.21) ≤ Cδ−1/r ′δ3/r ′−1/2‖k‖W1,q ≤ Cδ2/r ′−1/2‖k‖W1,q < ‖u ∧ du‖1−s
p ,(7.25)

provided ε is sufficiently small.
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To bound (7.22), we use averaging over the grids. For λ ∈ R3 with |λ| < δ,

consider the grid of δ–cubes having λ as one of the vertices and let Fλ be the corres-

ponding collection of bad cubes. Then

δ−3

∫

|λ|<δ

(7.22) ≤ δ−3

∫

|λ|<δ

δ−3
∑

Q∈Fλ

∫

∂Q\∂Bρ

dx

∫

Q

dy|k(x)− k( y)||∇u(x)|

≤ Cδ−4
∑

Q∈F0

∫∫

Q̃×Q̃

dxdy|k(x)− k( y)||∇u(x)|

≤ Cδ1/2−6/q
∑

Q∈F0

‖∇u‖L2(Q̃ )‖k(x)− k( y)‖Lq(Q̃×Q̃ )

≤ Cδ−5/q‖∇u‖L2(Bρ)

[ ∑

Q∈F0

∫ ∫

Q̃×Q̃

|k(x)− k( y)|qdxdy
]1/q

≤ Cδ1−2/q(log(1/ε))1/2
[ ∑

Q∈F0

∫

Q̃

|∇k|q
]1/q

≤ ‖u ∧ du‖1−s
p ,

provided ε is sufficiently small. Therefore, by choosing the proper grid, we may as-

sume that

(7.22) ≤ C‖u ∧ du‖1−s
p .(7.26)

Combining (7.23), (7.25) and (7.26), it follows that

(7.20)+ (7.21)+ (7.22) ≤ C‖u ∧ du‖1−s
p .(7.27)

By (7.13), (7.14), (7.16) and (7.27), we have

‖u ∧ du‖p
p = (7.29)+O

(∥∥u ∧ du
∥∥1−s

p

)
,(7.28)

where

(7.29) = −
∑

Q∈F

∫

∂Q

∗k̄Q ∧ (ϕ(u) ∧ dϕ(u)).

For i = 1, 2, 3, let πi be the projection onto the axis 0xi. For xi ∈ πi(∂Q ), let

Γxi
= (πi)

−1(xi) ∩ ∂Q .
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Then

|(7.29)| ≤
3∑

i=1

∑

Q∈F
|k̄Q |

∫

πi(Q )

∣∣∣∣
∫

Γxi

ϕ(u) ∧ ∂ϕ(u)/∂τ

∣∣∣∣dxi.(7.30)

Denote Γ̃ the δ-square with ∂ Γ̃ = Γ and let

δ1 = δ3, δ2 = δ4.(7.31)

Consider “good” sections Γ, i.e., such that

dist (Γ, [|u| < 1/2]) > δ1(7.32)

and, with

eε(u) = eε(u)(x) = |∇u(x)|2 + 1

ε2
(1− |u|2)2(x),

∫

Γ̃

eε(u) < δ2ε
−1.(7.33)

Condition (7.33) implies that

1

ε2

∫

Γ̃

(1− |u|2)2 < δ2ε
−1.(7.34)

Since |∇u| ≤ C/ε, it follows that the set Γ̃ ∩ [|u| < 1/2] may be covered by a family

G of ε–squares such that

#G ≤ C0δ2/ε

and
∑

S∈G
length(S) ≤ C0εδ2/ε = C0δ2.(7.35)

We next invoke the following estimate (see the proposition in Section 1 in [39]):

Lemma 26 (Sandier [39]). — Under the assumptions (7.32) and (7.35) we have, with C0

the constant in (7.35),

∫

Γ̃∩[|u|≥1/2]

∣∣∣∣∇
(

u

|u|

)∣∣∣∣
2

dx ≥ K|d| log(δ1/(2C0δ2)),

where d is the degree of u|Γ and K is some universal constant.
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By Lemma 26 and our choice of δ1, δ2, we find that

∣∣∣∣
∫

Γ

ϕ(u) ∧ dϕ(u)

∣∣∣∣ =
∣∣∣∣ deg

( u

|u| ,Γ
)∣∣∣∣ ≤ C

∫

Γ̃

|∇u|2/log(1/ε).(7.36)

On the other hand, recall the monotonicity formula of T. Rivière (see Lemma 2.5

in [37]):

Lemma 27 (Rivière [37]). — Let x ∈ G. Then, for 0 < r < dist (x,Ω), the map

r �→ 1

r

∫

Br(x)

(
|∇uε(x)|2 +

3

2ε2
(1− |uε|2)2

)

is non-increasing.

By combining (7.36) and Lemma 27, we see that the collected contribution of

the good sections in the r.h.s. of (7.30) is bounded by

C
∑

Q∈F
|k̄Q |

∫

Q

|∇u|2/log(1/ε) ≤ Cδ
∑

Q∈F
|k̄Q | � δ−2

∫

Bρ

|k|
( ∑

Q∈F
χQ

)
.(7.37)

We consider an extension, denoted by h, of |k| to R3, such that

‖h‖W1,q(R3) ≤ C‖|k|‖W1,q(Bρ).

We estimate the integral in (7.37) using the (B1
q,q, B−1

p,p )–duality (for the definition of the

Besov spaces Bσ
p,q, see e.g. H. Triebel [45]), where

‖ f ‖Bσ
r,r
=

[
2σ r‖ f ∗ P1‖r

r +
∑

j≥2

(2σ j‖ f ∗ P2−j − f ∗ P2−j+1‖r)
r
]1/r

.(7.38)

We let here P1 ≥ 0 be a suitable L1–normalized smooth bump function supported in

the unit cube of R3, and denote Ph(x) = h−3P1(h
−1x).

On the one hand, since q > 2 we have

‖ h ‖B1
q,q
≤ C‖ h ‖W1,q ≤ C‖k‖W1,q ≤ C‖u ∧ du‖1−s

p .(7.39)

Letting f = ∑
Q∈F χQ , we estimate next ‖ f ‖B−1

p,p
. Without any loss of generality, we

may assume that B6 ⊂ G.

Assume first that j is such that 1 ≥ 2−j ≥ δ. If Q 1 ⊂ B3 is a 2−j–cube, then
∫

Q 1

eε(u) ≤ C2−j log(1/ε),(7.40)
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by Lemma 27. On the other hand, if Q ∈ F , then (7.10) holds. Therefore

#{Q ∈ F;Q ⊂ Q 1} ≤ C2−jδ−1.(7.41)

Also, if Q 1 ∩F �= ∅, the η-ellipticity lemma implies
∫

Q̃ 1

eε(u) ≥ C2−j log(1/ε),(7.42)

and hence the set [|u| ≤ 1/2] intersects at most C2 j cubes Q 1 of size 2−j. Thus

‖( f ∗ P2−j)− ( f ∗ P2−j+1)‖p � ‖ f ∗ P2−j‖p

�
∥∥∥

∑

Q 1,Q 1∩F �=∅

1

|Q1|
χQ̃ 1

∫

Q̃ 1

f
∥∥∥

p

�
[ ∑

Q 1,Q 1∩F �=∅
2−3j(23j|Q̃1 ∩F |)p

]1/p

�
[ ∑

Q 1∩F �=∅
2−3j(23j · δ3 ·2−jδ−1)p

]1/p

by (7.41)

� 2−2j/p22jδ2 = δ24 j/q.

(7.43)

Assume now that 2−j < δ. Estimate then

| f ∗ (P2−j − P2−j+1)| ≤
∑

Q∈F
|χQ ∗ (P2−j − P2−j+1)|.

In this case, it is easy to see that

|χQ ∗ (P2−j − P2−j+1)| ≤ CχA,

where

A = { x ; dist (x, ∂Q ) ≤ 2−j }.
In particular, each point in R3 belongs to at most 8 A′s. Thus

‖
∑

Q∈F
χQ ∗ (P2−j − P2−j+1)‖p

p ≤ C
∑

Q∈F
‖χQ ∗ (P2−j − P2−j+1)‖p

p ≤ Cδ2−j.(7.44)

From (7.43), (7.44)

‖ f ‖B−1
p,p
≤ C

[ ∑

2−j≥δ

(2−jδ24 j/q)p +
∑

2−j<δ

(2−jδ1/p2−j/p)p
]1/q ′

� (δ2p + δ2+p)1/p < δ2.

(7.45)

Here, we have used the fact that p < 2 < q.
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From (7.37), (7.39) and (7.45), we find that

(7. 37) ≤ C‖u ∧ du‖1−s
p .(7.46)

Next, we analyze the contribution of the “bad” sections Γxi
in (7.30). A bad

section Γxi
= Γ fails either (7.32) or (7.33).

Fix i = 1, 2, 3 and Q ∈ F . Define

J′Q = {xi ∈ πi(Q );Γxi
fails (7.32)},(7.47)

J′′Q = {xi ∈ πi(Q );Γxi
fails (7.33)},(7.48)

and the surfaces

S
′ = S′i =

⋃

Q

⋃

xi∈ J′Q

Γxi
(7.49)

S
′′ = S′′i =

⋃

Q

⋃

xi∈ J′′Q

Γxi
.(7.50)

Estimate the contribution of the bad sections in (7.30) by

(
max
Q∈F
|k̄Q |

) 3∑

i=1

∫

S′i∪S′′i

|∇u|.(7.51)

Estimate

|k̄Q | ≤ δ−3

∫

Q

|k| ≤ δ−3|Q |5/6‖k‖L6(Bρ) � δ−1/2‖k‖W1,q(Bρ)

� δ−1/2‖u ∧ du‖1−s
p .

(7.52)

Consider, for λ ∈ R3, the grid of δ–cubes having λ as one of the edges and let Gλ be

the grid defined by the boundaries of these cubes. For each λ, we have

∫

S′i∪S′′i

|∇u| ≤
( ∫

Gλ

|∇u|2
)1/2

(|S′i| + |S′′i |)1/2

≤ C
( ∫

Gλ

|∇u|2
)1/2(

δ
∑

Q∈Fλ

(| J′Q | + | J′′Q |)
)1/2

.

(7.53)
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Since (7.33) fails for xi ∈ J′′Q , we have

∫

Q

eε(u) ≥
∫

∪Γ̃xi

xi∈ J′′Q

eε(u) ≥ | J′′Q |δ2ε
−1.

Thus

∑

Q∈Fλ

| J′′Q | � εδ−1
2 log(1/ε).(7.54)

To estimate (7.53), we use again an average over the grids Gλ. Denote this averaging

by Avτ (τ refers to the translation).

Thus, taking (7.54) into account, we obtain

(7.53) �
[
Avτ

∫

Gλ

|∇u|2
]1/2[

δδ−1
2 ε log(1/ε)+ δAvτ

( ∑

Q∈Fλ

| J′Q |
)]1/2

.(7.55)

Notice that the J′Q -intervals of points xi such that dist
(
Γxi

,
[
|u| < 1

2

])
< δ1 do depend

on the grid translation – a fact that will be exploited next.

First, recalling (7.4), we have

Avτ

∫

Gτ

|∇u|2 ≤
∫

∂Bρ

|∇u|2 + 1

δ

∫

Bρ

|∇u|2 � log 1/ε

δ
.(7.56)

By the η–ellipticity lemma, we may cover [|u| < 1/2] ∩B with at most Cδ−1
1 δ1–cubes

qα, α ≤ Cδ−1
1 . We fix such a covering (independent of λ). Fix i, Q . If dist (Γxi

, [|u| <

1/2]) < δ1, then clearly xi ∈ πi (̃qα) for some qα ⊂ Q̃ with dist (qα,Gλ) < δ1.

...........
.......
........
........
........
.........
...........................

..........................
..................................

�

Γxiqα

Hence

| J′Q | ≤ 2δ1 · #{α; qα ⊂ Q̃ , dist (qα,Gλ) < δ1}(7.57)
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and
∑

Q

| J′Q | ≤ Cδ1 · #{α; dist (qα,Gλ) < δ1}.(7.58)

We now average over the grid translation. On the one hand, for fixed α, the inequality

dist (qα,Gλ \ ∂Bρ) < δ1

holds with τ–probability ∼ δ1/δ. On the other hand, for fixed α and 1 − γ < ρ <

1− γ/2, the inequality

dist (qα, ∂Bρ) < δ1

holds with ρ–probability ∼ δ1/γ .

Hence, by choosing ρ properly, we may assume that

#{α; dist (qα, ∂Bρ) < δ1} ≤ C.

For any such ρ, we have

Avτ(7.58) � δ1 ·
1

δ1

· δ1

δ
+C �

δ1

δ
.(7.59)

Hence

Avτ

(∑
| J′Q |

)
≤ C

δ1

δ
.(7.60)

Substitution of (7.56), (7.60) into (7.55) yields, for small ε,

(7.55) �
( log(1/ε)

δ

)1/2(
δδ−1

2 ε log(1/ε)+ δ1

)1/2

< δ3/4,(7.61)

by (7.9) and (7.31).

From (7.52) and (7.61),

(7.51) ≤ δ3/4δ−1/2‖u ∧ du‖1−s
p ≤ C‖u ∧ du‖1−s

p .(7.62)

This completes the analysis. Indeed, by collecting the estimates (7.28), (7.30), (7.37),

(7.46), (7.51) and (7.62), it follows that

‖u ∧ du‖p

L p(Bρ) ≤ Cγ‖u ∧ du‖1−s
L p(Bρ),(7.63)

and thus

‖u ∧ du‖L p(B1−γ ) ≤ Cγ .

Since 0 < γ < 1 and 3/2 ≤ p < 2 are arbitrary, the proof of Theorem 8 is complete.
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8. Convergence for g ∈ Y. Proof of Theorem 9

Proof of Theorem 9. — We already know that a subsequence of (uε) converges in

W1,p(G), 1 ≤ p < 3/2. The main novelties in Theorem 9 are:

a) the identification of the limit

u∗ = e ıϕ̃,

where g = e ıϕ, ϕ ∈ H1/2 +W1,1 and ϕ̃ is the harmonic extension of ϕ;

b) uε → u∗ in C∞(G).

We first discuss b), which is easier. In view of a), it suffices to prove that (uε)

is bounded in Ck(K) for every integer k and every compact subset K of G. Since

Eε(uε) = o(log 1/ε), by Theorem 6, we find, with the help of the η–ellipticity Lem-

ma 24 that, for every compact K in G, we have

|uε| ≥
1

2

in K for small ε.

We next recall Theorem IV.1 in [9].

Lemma 28. — Let uε be a solution of

−∆uε =
1

ε2
uε(1− |uε|2) in B1

such that

Eε(uε;B1) ≤ C.(8.1)

Then (uε) is bounded in Ck(B1/2), for every k ∈ N.

We now complete the proof of b) by establishing (8.1) on every ball B compactly

contained in G.

We write uε = ρεe
iϕε in B. Let ζ be a cutoff function with ζ ≡ 1 in B. We start

by multiplying the equation for ϕε

div(ρ2
ε∇ϕε) = 0

by ζ 2(ϕε − –
∫

B
ϕε).

We find that∫
ρ2

ε |∇ϕε|2ζ 2 ≤ 2

∫
ρ2

ε |∇ϕε| |ζ | |∇ζ | |ϕε − /

∫

B

ϕε|

≤ C

(∫
ρ2

ε |∇ϕε|2ζ 2

)1/2(∫
|∇ϕε|6/5

)5/6

,

by the Sobolev imbedding W1,6/5 ⊂ L2,
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We obtain that ϕε is bounded in H1
loc, since |∇ϕε| ≤ 2|∇uε| in B and uε is

bounded in W1,6/5 by Theorem 7.

Next consider the equation for ρε,

−∆ρε + ρε|∇ϕε|2 =
1

ε2
ρε

(
1− ρ2

ε

)
.

Multiplying by (1− ρε)ζ , we find that

∫
|∇ρε|2ζ +

1

ε2

∫ (
1− ρ2

ε

)2
ζ ≤ C

(∫
|∇ρε| +

∫
|∇ϕε|2

)
.

We conclude by noting that

Eε(uε;B) ≤
∫

B

|∇ρε|2 +
∫

B

|∇ϕε|2 +
1

ε2

∫

B

(
1− ρ2

ε

)2 ≤ CB.

We now turn to the proof of a).

We start by constructing an appropriate domain Gε ⊂ G on which |uε| ∼ 1. For

simplicity, we assume Ω flat near some point. Fix some 0 < δ0 < 1 to be determined

later. Let 0 < δ < δ0 and u = uε. Set

Aδ = {x ∈ G; dist (x,Ω) ≥ √ε, |u(x)| ≤ 1− δ}.(8.2)

For x ∈ Aδ, let Q be the cube centered at x such that one of its faces is contained in

Ω and let Q̃ be the conical domain

................................................................................................................................................................
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
......
....

Q

Q̃

Ω

Let also Q # be the cube centered at x having the size a third the one of Q .

By Vitali’s lemma, we may choose a finite family (Q #
α) of disjoint cubes such that

Aδ ⊂ ∪Q α. By the η-ellipticity property, there is some η(δ) > 0 such that we have,

with δα the size of Q α,

Eε(u, Q #
α) ≥ η(δ)δα log(δα/ε) ≥ 1/2η(δ)δα log(1/ε),(8.3)

since δα ≥
√

ε. Thus

∑
δα <

2

η(δ)

Eε(u, G)

log(1/ε)
.(8.4)
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Since, by Theorem 6, we have Eε(u, G) = o(log(1/ε)), we find that

∑
δα < δ,(8.5)

provided ε is sufficiently small.

We now set

Gε = {x ∈ G; dist (x,Ω) ≥ √ε} \ ∪Q̃ α,

so that |uε| ≥ 1− δ in Gε.

By (8.5) and the construction of Gε, there is a Lipschitz homeomorphism Φε :
Gε → G such that

‖DΦε‖L∞ ≤ C,
∥∥D

(
Φ
−1
ε

)∥∥
L∞ ≤ C,

Φε|∂Gε
= Π|∂Gε

,Φε|{x∈G;dist (x,Ω)≥2δ} = id,
(8.6)

provided δ0 is sufficiently small, with constants C independent of ε.

Here, Π is the projection on Ω. In particular, Gε is simply connected. We may

thus write in Gε

u = ρe ıψ, ρ = |u|, ψ ∈ C∞.(8.7)

Assuming further that δ0 < 1/2, we have ρ ≥ 1/2 in Gε and thus

|ψ|2
H1(Gε)

≤ 4|u|2
H1(Gε)

≤ 4|u|2
H1(G)

≤ δ log(1/ε),(8.8)

provided ε is sufficiently small. Moreover, by Theorem 7, we have

|ψ|W1,p(Gε) ≤ 2|u|W1,p(Gε) ≤ 2|u|W1,p(G) ≤ Cp, 1 ≤ p < 3/2.(8.9)

We are now going to prove that ψ|∂Gε
is almost equal to ϕ ◦Π|∂Gε

, where ϕ ∈
H1/2 +W1,1(Ω;R) is such that g = e ıϕ .

Let η > 0 be to be determined later. Since g ∈ Y, we may find some h ∈
C∞(Ω; S1) such that ‖g − h‖H1/2 < η. Let ζ ∈ C∞(Ω;R) be such that h = eiζ . Let

Tε = Φε

∣∣
∂Gε

and Uε = T−1
ε : Ω → ∂Gε. Fix a smooth map π : C → C such that

π(z) = z/|z| if |z| ≥ 1/2 and let

ξ(x) = g(x)− e ıψ(Uε(x)), x ∈ Ω,

so that

ξ(x) = π( g(x))− π(eiψ(Uε(x))), x ∈ Ω \ ∪Q̃ α.(8.10)
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Therefore, we have
∫

Ω\∪Q̃ α

|ξ(x)|dx ≤ C(G)

∫

{x;dist (x,∂Ω)≤√ε}

|Du| ≤ C‖Du‖L2ε1/4

≤ Cε1/4(log 1/ε)1/2 ≤ 1/2ε1/5,

(8.11)

provided ε is sufficiently small. It follows that

∫

Ω\∪Q̃ α

|h(x)− eiψ(Uε(x))|dx < ε1/5,(8.12)

provided η is sufficiently small. Thus, with λ = ζ − ψ ◦Uε, we have

‖eiλ − 1‖L1(Ω\∪Q̃ α) < ε1/5.(8.13)

By combining (8.6) and (8.8) (resp. (8.6) and (8.9)), we find that

|λ|H1/2(Ω) ≤ ‖ζ‖H1/2(Ω) +C‖ψ‖H1(Gε) < δ1/2(log(1/ε))1/2(8.14)

and

‖λ‖W1/4,4/3(Ω) ≤ ‖ζ‖W1/4,4/3(Ω) + C‖ψ‖W1,4/3(Gε) ≤ C,(8.15)

provided ε is sufficiently small. In particular, we have

‖λ‖L4/3(Ω) ≤ C.(8.16)

By Lemma C.1 in Appendix C, if δ0 is sufficiently small and λ satisfies (8.13),

(8.14) and (8.15), while the squares Q̃ α ∩Ω satisfy (8.5), then there is some integer a

such that

‖λ− 2πa‖L1(Ω) < δ1/18.(8.17)

Without restricting the generality, we may assume that a = 0, so that

‖ξ − ψ ◦Uε‖L1(Ω) < δ1/18.(8.18)

We actually claim that

‖ϕ − ψ ◦Uε‖L1(Ω) < δ1/20,(8.19)

if we choose the lifting ϕ of g properly. Indeed, by estimate (1.9) in Theorem 3, the

map gh̄ ∈ Y has a lifting χ ∈ H1/2 +W1,1 such that

|χ|H1/2+W1.1 ≤ C(G)|gh̄|H1/2(1+ |gh̄|H1/2).(8.20)
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Since

|gh̄|H1/2 = |h̄( g − h)|H1/2 → 0 as h→ g,

we may choose η sufficiently small in order to have

‖χ − /

∫
χ‖L1(Ω) < δ1/18.(8.21)

Using the fact that

‖gh̄ − eı –
∫

χ‖L1 = ‖eiχ − ei –
∫

χ‖L1 ≤ ‖χ − /

∫
χ‖L1 < δ1/18

and

‖gh̄ − 1‖L1 < δ1/18,

provided η is sufficiently small, we find that, modulo 2πZ, we may assume that

‖ /

∫
χ‖L1(Ω) < 2δ1/18.(8.22)

Since g = e ı(χ+ξ), inequality (8.19) follows by combining (8.20)–(8.22), provided δ0 is

sufficiently small.

We now prove that ψ and ϕ̃ are close on compact sets of G. Set ψ̃ = ψ ◦
Φ
−1
ε , ρ̃ = ρ ◦Φ

−1
ε , so that ψ̃, ρ̃ are defined on G and, in the set

M = {x ∈ G; dist (x,Ω) ≥ 2δ},

we have ψ̃ = ψ and ρ̃ = ρ.

Recall that ψ satisfies the equation div (ρ2∇ψ) = 0 in Gε. Transporting this

equation on G and using (8.6), we see that ψ satisfies

{
div(A(x)ρ̃2∇ψ̃) = 0 in G

ψ̃ = ψ ◦Uε on Ω
,(8.23)

with

C−1|ξ|2 ≤< A(x)ξ, ξ >≤ C|ξ|2, ρ̃(x) = ρ(x) and A(x) = I if x ∈M.(8.24)

Therefore, the function

f = ϕ̃ − ψ̃



84 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

satisfies
{

∆f = div ((I− A(x)ρ̃2)∇ψ̃) in G

f = ϕ − ψ ◦Uε on ∂G
.(8.25)

Thus, for 1 ≤ p < 3/2 and K compact in G, we have

‖ f ‖W1,p(K) ≤ CK(‖(I− A(x)ρ̃2)∇ψ‖L p(G) + ‖ϕ − ψ ◦Uε‖L1(Ω)).(8.26)

As we already observed in the proof of part b) of the theorem, we have ρ→ 1

uniformly on the compacts of G. Thus

‖(I− A(x)ρ̃2)∇ψ̃‖L p(M) → 0.(8.27)

as ε→ 0. On the other hand, we have

‖(I− A(x)ρ̃2)∇ψ̃‖L p(G\M) ≤ C‖∇ψ̃‖L p(G\M) ≤ C‖∇u‖L p(G\M).(8.28)

If we choose some r with p < r < 3/2, we find that

‖(I− A(x)ρ̃2)∇ψ̃‖L p(G\M) ≤ C‖∇u‖Lr (G\M)|G \M| r−p
r ≤ Cδ

r−p
r ,(8.29)

by Theorem 7. By combining (8.19), (8.26), (8.27) and (8.29) we find that, for some

0 < α < 1 fixed, we have

‖ f ‖W1,p(K) ≤ δα,(8.30)

provided ε is sufficiently small.

Since, for δ0 = δ0(K) sufficiently small, we have f = ϕ − ψ in K, we find that,

as ε→ 0, ϕ̃−ψ → 0 in W
1,p

loc (G), 1 ≤ p < 3/2. Using once more the fact that ρ→ 1

in Ck
loc (G), we find that uε → u∗ in W

1,p

loc (G). This proves Theorem 9.

Remark 8.1. — Under the assumptions of Theorem 9 it is not true in general

that |uε| → 1 uniformly on Ḡ. Indeed, if this were true, then uε/|uε| would belong

to H1(G; S1) for ε sufficiently small. Thus uε/|uε| admits a lifting ϕε ∈ H1(G;R) and

g = eiϕε|Ω . Hence g must necessarily belong to X. But, even when g ∈ X it is unlikely

that |uε| → 1 uniformly on Ḡ.

Remark 8.2. — Let g ∈ H1/2(Ω; S1) with L( g) = 0 and write g = eiϕ with

ϕ ∈ H1/2 +W1,1. Let ϕ̃ be the harmonic extension of ϕ. One may wonder whether

‖uεe
−iϕ̃‖W1,p ≤ C ∀p < 2 as ε→ 0?(8.31)

The answer is negative. The argument relies on the following
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Lemma 29. — Fix ε and let uε be a minimizer for Eε, with uε = g on Ω. Then

uε = g̃ + ψ(8.32)

where g̃ is the harmonic extension of g and

|ψ(x)| ≤ Cε−1dist (x,Ω).(8.33)

Proof. — Clearly ψ = 0 on Ω, |ψ| ≤ 2, and |∆ψ| ≤ Cε−2 on G. By interpola-

tion one deduces that |∇ψ| ≤ Cε−1 (see e.g. [7]) and the conclusion follows.

1. Using (8.32), write

|∇(uεe
−iϕ̃)| ≥ |uε| |∇ϕ̃| − |∇uε|

≥ |g̃| |∇ϕ̃| − |ψ| |∇ϕ̃| − |∇uε|.
(8.34)

We have

‖∇uε‖L2(G) �

(
log

1

ε

)1/2

<∞

and, by (8.33)
∫

G

(|ψ| |∇ϕ̃|)2 ≤ Cε−2
∑

s≥0

4−s

∫

dist(x,Ω)∼2−s

|(∇ϕ̃)(x)|2

≤ Cε−2
∑

s≥0

4−s. 4s. 2−s‖ϕ‖2
L2(Ω)

≤ Cε−2 <∞.

Consequently, assuming (8.31) were true for some p < 2, we necessarily must have, by

(8.34), that

|g̃| |∇ϕ̃| ∈ L p(G)(8.35)

whenever g = eiϕ ∈ H1/2(Ω, S1).

This statement relates only to g and we show next that (8.35) cannot hold for

p > 3/2.

2. Let 0 < δ < 1 be small and take 0 ≤ ϕ ≤ ( 1

δ
)1− such that

supp ϕ ⊂ B(0, 2δ) ⊂ Ω (identified with the x1, x2-plane),(8.36)

ϕ =
(

1

δ

)1−
on B(0, δ),(8.37)

|∇ϕ| ≤
(

1

δ

)2−
.(8.38)
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Hence

‖eiϕ‖H1/2 < C.

Also, from (8.1)

‖1− eiϕ‖L1 ≤ Cδ2.

Hence for x3 > Cδ

|1− g̃(x1, x2, x3)| ≤
∫
|1− eiϕ|(x′1, x′2)Px(x

′
1, x′2)dx1dx2 ≤ Cδ2‖Px‖∞ <

1

10
.(8.39)

Thus from (8.39)

‖g̃. |∇ϕ̃| ‖L p � ‖∇ϕ̃‖L p(x1,x2;x3>Cδ)

∼
∥∥∥∥
∫

R2

|ξ|ϕ̂(ξ)ei(x1ξ1+x2ξ2)e−x3|ξ|dξ

∥∥∥∥
L p(x1,x2;x3>Cδ)

≥
∥∥∥∥ ‖ |ξ|ϕ̂(ξ)e−x3 |ξ|‖

L
p′
ξ

∥∥∥∥
L p(x3>Cδ)

≥ c
[
‖ |ξ|ϕ̂(ξ)‖

L
p′
|ξ |∼ 1

10δ

]
. δ

1
p

∼ δ−1ϕ̂(0) ·
(

1

δ

) 2
p′

δ1/p

(8.40)

∼ δ
1
p− 2

p′ +.(8.41)

In (8.40), we use Hausdorff–Young inequality and (8.41) follows from (8.36), (8.37).

Since 1

p
− 2

p′ < 0 for p > 3/2, a gluing construction with the preceding as building

block and δ→ 0 will clearly violate (8.35).

As in the previous sections and with some more work, we may prove the follow-

ing variant of Theorem 9:

Theorem 9′. — Assume g ∈ Y, and let gε be as in Theorem 6 ′ of Section 5. Let uε be

a minimizer of Eε in H1
gε

. Then

uε → u∗ in W1.p(G) ∩ C∞(G), ∀p < 3/2,

where u∗ is the same as in Theorem 9.
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9. Further thoughts about p = 3/2

Let g ∈ H1/2(Ω; S1) and let (uε) be a minimizer for Eε in H1
g . In Section 6

we have established that (uε) is relatively compact in W1,p(G) for every p < 3/2. It

is plausible that (uε) is bounded and possibly even relatively compact in W1,3/2; see

Open Problem 2 in Section 10.

There are two directions of evidence suggesting that, indeed, (uε) is bounded in

W1,3/2.

The first one relies on a conjectured strengthening of the Jerrard–Soner inequal-

ity mentioned below.

The second one is a complete proof of the fact that any limit (in W1,p, p < 3/2)

of (uε) belongs to W1,3/2; see Theorem 12.

9.1. Jerrard–Soner revisited

First recall the following immediate consequence of a result in [33]:

Proposition 1 ( Jerrard and Soner [33]). — Let (vε) be a sequence in H1(Q ;R2),

Q ⊂ R3 a cube, satisfying

Eε(vε;Q ) =
∫

Q

[
1

2
[∇vε|2 +

1

4ε2
||vε|2 − 1|2

]
≤ C log 1/ε(9.1)

for all ε < ε0. Then for ζ ∈ C∞0 (ω), ω̄ ⊂ Q , we have the inequality

∣∣∣∣
∫

J(vε)ζ

∣∣∣∣ ≤ K‖ζ‖W1,q(Q )(9.2)

where J(vε) is any 2× 2 Jacobian determinant of vε, q > 3, and K = K(C, q, ω).

Remark 9.1. — In fact in [33] one obtains a stronger estimate with the norm

‖ζ‖W1,q replaced by any ‖ζ‖C0,α -norm, α > 0.

In this subsection, we will show that:

a) The conclusion of Proposition 1 fails for any q < 3.

b) The validity of Proposition 1 for q = 3 (which we conjecture) would imply

the boundedness in W1,3/2 of the minimizers (uε) of the Ginzburg–Landau

problem in G with boundary data g controlled in H1/2(Ω; S1),Ω = ∂G.

A basic tool is the following construction of an extension of g outside G.

Lemma 30. — Assume G ⊂ Q and g ∈ H1/2(Ω; S1). Then there is wε ∈
H1(Q\G;R2) satisfying
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wε = g on ∂G and wε ≡ 1 in some fixed neighborhood of ∂Q ,(9.3)

Eε(wε;Q\G) ≤ C‖g‖H1/2 log 1/ε,(9.4)

‖wε‖W1,p(Q\G) ≤ Cp‖g‖H1/2 for every p < 2,(9.5)

wεn
→ w in W1,p(Q \G) for every p < 2 with w ∈W1,p(Q \G), ∀p < 2(9.6)

|wε| ≤ 1 in Q \G.(9.7)

Proof. — We follow the same construction as in [5] which we briefly recall here.

First, let H be any smooth function in Q\G with H ∈ H1(Q \ G;R2) satisfying the

boundary conditions H = g on Ω = ∂G, H ≡ 1 near ∂Q , and ‖H‖H1 ≤ C‖g‖H1/2 .

Using the same notation as in the proof of Lemma 23, define

wε,a(x) = ψ

( |H(x)− a|
ε

)
πa(H(x)).

It may be shown as in [5] (or as in the proof of Lemma 23) that for some a = aε

∈ C, |aε| < 1/10, the functions (wε,aε
) satisfy all the required properties.

Next, we establish the following

Proposition 2. — Assume that the conclusion of Proposition 1 is valid for some 2 < q ≤ 3.

Let (uε) be a sequence of minimizers of Eε in G as above. Then (uε) is bounded in W1,q′(G) with

q′ = q/(q− 1).

Proof. — As in Section 6, it suffices to establish the boundedness of uε ∧ duε in

the space Lq′(G). Proceeding by duality, consider ζ ∈ Lq(G;R3), ‖ζ‖q ≤ 1 and take

its Hodge decomposition as





ζ = curl k + ∇L in G

L = 0 on Ω,

with ‖k‖W1,q(G) + ‖L‖W1,q(Q ) ≤ C

(9.8)

(see e.g. [30] or [27]). Recall that, with the notations of differential forms we used ear-

lier, curl = d∗ and ∇ = d . Let Q be a cube with G ⊂ Q and let ω be an open set

such that

G ⊂ ω and ω ⊂ Q .
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Next, extend k to k̃ on Q , k̃ = 0 on Q \ ω, with control of ‖k̃‖W1,q(Q ). We extend uε

to Q defining

vε =
{

uε in G

wε in Q\G
where wε is provided by Lemma 30.

Recall that div(uε ∧ duε) = 0, and thus
∫

G

(uε ∧ duε) · ζ =
∫

G

(uε ∧ duε) · curl k.

Hence ∣∣∣∣
∫

G

(uε ∧ duε) · ζ
∣∣∣∣ ≤

∣∣∣∣
∫

Q

(vε ∧ dvε) · curl k̃

∣∣∣∣+
∫

Q\G
|∇wε| |∇ k̃|.(9.9)

From (9.5), the last term in (9.9) is bounded by C‖wε‖W1,q′ (Q\G), hence by C′‖g‖H1/2 ,

since q ′ < 2.

For the first term, perform an integration by part (k̃ = 0 on ∂Q ) to get
∣∣∣∣
∫

Q

(vε ∧ dvε) · curl k̃

∣∣∣∣ = 2

∣∣∣∣
∫

Q

J(vε) · k̃
∣∣∣∣(9.10)

and this quantity is bounded, by assumption, by C‖k̃‖W1,q(Q ) (since supp k̃ ⊂ ω).

This proves Proposition 2.

Remark 9.2. — The proof of Proposition 2 also provides an alternative quick

proof of Theorem 7.

Corollary 4. — The conclusion of Proposition 1 fails for every q < 3.

Proof. — By Proposition 2, one would otherwise obtain the boundedness of the

Ginzburg–Landau minimizers in W1,p(G) for some p > 3/2. This is not true in gen-

eral, even for certain g ∈ Y. Arguing by contradiction, one would otherwise obtain

that the limit u∗ obtained in Theorem 9 belongs to W1,p with p > 3/2. However, this

is false. Indeed

Remark 9.3. — In general u∗ �∈ W1,t for t > 3/2. Here is an example (see [5]):

Suppose Ω is flat near 0 and choose g(r) = e ı/r α

with α < 1, α close to 1 and g smooth

away from 0. This g belongs to Y. It is easy to see that the harmonic extension of 1/r α

does not belong to W1,t, for t > 3/(α+ 1). Thus u∗ �∈W1,t.

Remark 9.4. — The preceding also shows that the improved interior estimates

from Section 7 can not be established via a strengthening of Jerrard–Soner but re-

quires additional structure (in particular the monotonicity formula).
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9.2. W1,3/2 – estimate of the limit

We start with the simple case when g ∈ Y.

Theorem 11. — Assume g ∈ Y and let u∗ be as in Theorem 9. Then u∗ ∈W1,3/2.

Proof of Theorem 11. — Recall that u∗ = e ıϕ̃ where ϕ̃ is the harmonic extension of

ϕ ∈ H1/2 +W1,1. Therefore, it suffices to apply the following imbedding result, which

is an immediate consequence of Theorem 1.5 in Cohen, Dahmen, Daubechies and

DeVore [23]:

Lemma 31. — In 2-dimensions we have W1,1(Ω) ⊂W
1
3
, 3

2 (Ω).

For completeness we will prove a slightly more general form of this result in

Appendix D.

We now turn to the case of a general g ∈ H1/2(Ω; S1).

Theorem 12. — Let g ∈ H1/2(Ω; S1) and let (uε) be a minimizer of Eε in H1
g (G;R2).

In view of Theorem 7′ we may assume that (modulo a subsequence)

uεn
→ U in W1,p(G), ∀p < 3/2.

Then

U ∈W1,3/2(G).

Proof of Theorem 12. — In the proof we will not fully use the fact that uε is a min-

imizer. We will only make use of the properties

div(uε ∧ duε) = 0 in G,(9.0.1)

eε = Eε(uε) ≤ C log 1/ε,(9.0.2)

uεn
→ U in W1,p(G), ∀p < 3/2,(9.0.3)

uε|Ω = g ∈ H1/2(Ω; S1).(9.0.4)

Claim.

U ∧ d U belongs to L3/2(G).(9.0.5)
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This implies that U ∈W1,3/2. Indeed we have

|b|2 = |a ∧ b|2 + |a · b|2

for any vectors a, b in R2 with |a| = 1; applying this with a = U and b = ∂U

∂xi
yields

|d U| = |U ∧ d U| since U · ∂U

∂xi
= 0.

In order to prove the Claim (9.0.5) we will check that, for every �ζ ∈ L3(G;R3),

we have ∣∣∣∣
∫

G

�ζ · (U ∧ d U)

∣∣∣∣ ≤ C‖�ζ‖L3 .(9.0.6)

Clearly, it suffices to verify (9.0.6) when �ζ ∈ C∞0 . Consider the Hodge decomposition

of �ζ as above, i.e.,

�ζ = curl �k + ∇L in G,(9.0.7)

L = 0 on ∂G,(9.0.8)

‖�k‖W1,3(G) ≤ C‖�ζ‖L3 .(9.0.9)

Then, by (9.0.1) and (9.0.8),
∫

G

∇L · (U ∧ d U) = 0

and thus ∫

G

�ζ · (U ∧ d U) =
∫

G

(curl �k) · (U ∧ d U).(9.0.10)

We will establish the bound∣∣∣∣
∫

G

(curl �k) · (U ∧ d U)

∣∣∣∣ ≤ C‖�k‖W1,3(9.0.11)

in 5 steps. The desired estimate (9.0.6) will be consequence of (9.0.10) and (9.0.11).

Step 1. — Extensions.

Let Q be a cube such that G ⊂ Q . Let k̃ ∈ W1,3(Q ;R3) be such that supp k̃

is contained in a fixed compact subset of Q ,

k̃ = �k in G,

and

‖k̃‖W1,3(Q ) ≤ C‖�k‖W1,3(G).
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Next, we extend g to Q \G using Lemma 30. Thus, we obtain a family wε ∈ H1(Q \
G;R2) satisfying

wε|∂G = g,(9.1.1)

wε ≡ 1 in some fixed neighborhood of ∂Q ,(9.1.2)

Eε(wε;Q \G) ≤ C log 1/ε(9.1.3)

‖wε‖W1,p(Q\G) ≤ Cp, ∀p < 2(9.1.4)

wεn
−→ w in W1,p(Q \G), ∀p < 2,(9.1.5)

for some w ∈W1,p(Q \G; S1), ∀p < 2.

Set

ũε =
{

uε in G

wε in Q \G,

so that ũε ∈ H1(Q ;R2) and

ũεn
−→ Ũ in W1,p(Q ), ∀p < 3/2,(9.1.6)

where

Ũ =
{

u in G

w in Q \G

and Ũ ∈W1,p(Q ; S1), ∀p < 3/2.

Clearly,

Eε(ũε;Q ) ≤ C log 1/ε.(9.1.7)

It is convenient to introduce the following distribution denoted Ũxi
∧ Ũxj

, i �= j

Ũxi
∧ Ũxj

= 1

2
(Ũxi
∧ Ũ)xj

+ 1

2
(Ũ ∧ Ũxj

)xi

acting on functions C∞0 (Q ;R).

An immediate computation shows that

−1

2

∫

Q

(curl k̃) · Ũ ∧ d Ũ = < Ũx2
∧ Ũx3

, k̃1 > + < Ũx3
∧ Ũx1

, k̃2 >

+ < Ũx1
∧ Ũx2

, k̃3 >.

(9.1.8)
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We will prove e.g. that
∣∣ < Ũx1

∧ Ũx2
, k >

∣∣ ≤ C‖k‖W1,3 .(9.1.9)

for every k ∈ C∞0 (Q ;R) and similarly for the other terms.

Assuming (9.1.9) we then have
∣∣∣∣
∫

Q

(curl k̃) · (Ũ ∧ dŨ)

∣∣∣∣ ≤ C‖k̃‖W1,3(Q )(9.1.10)

and thus
∣∣∣∣
∫

G

(curl �k) · (U ∧ d U)

∣∣∣∣ ≤
∣∣∣∣
∫

Q\G

(curl k̃) · w ∧ dw

∣∣∣∣+C‖k̃‖W1,3(Q )

≤ ‖k̃‖W1,3(Q\G)‖w‖L3/2(Q\G) + C‖k̃‖W1,3(Q ).

(9.1.11)

Finally we obtain, by (9.1.4),
∣∣∣∣
∫

G

(curl �k) · (U ∧ dU)

∣∣∣∣ ≤ C‖�k‖W1,3(G)(9.1.12)

which is the desired estimate (9.0.11).

The rest of the argument is devoted to the proof of (9.1.9).

Step 2. — Use of a result of Jerrard–Soner.

For any x̄3 ∈ R set

Σx̄3
= Q ∩ (R2 × {x̄3}).

Consider x̄3 such that

lim inf
ε→0

Eε(ũε

∣∣Σx̄3
)

log 1/ε
<∞(9.2.1)

and

Ũεn|Σx̄3
−→ Ũ|Σx̄3

in W1, 3
2−(Σx̄3

).(9.2.2)

From (9.1.6), (9.1.7), this is the case for almost all x̄3.

It follows then from Theorem 3.1 in [33] that (ũεn
)x1
∧ (ũεn

)x2
converges in

D ′(Σx̄3
) to Ũx1

∧ Ũx2
and that

Ũx1
∧ Ũx2

= π
∑

i

diδai
(9.2.3)
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where di = di(x̄3) ∈ Z, ai = ai(x̄3) ∈
∑

x̄3
satisfy

π
∑

i

|di(x̄3)| ≤ lim inf
ε→0

Eε(ũε

∣∣Σx̄3
)

log 1/ε
.(9.2.4)

Thus, from (9.1.7)

∑

i

∫
|di(x3)|dx3 ≤ C(9.2.5)

and we may write

< Ũx1
∧ Ũx2

, k >= π

∫
dx3

{∑

i

di(x3)k
(
ai(x3)

)}
.(9.2.6)

To bound (9.2.6), we will need, besides (9.2.5), also certain cancellations that have to

do with the sign of di’s.

Step 3. — Use of minimal connections.

Take x̄3 as in Step 2 and consider the domain

Ωx̄3
= Q ∩ [x3 ≤ x̄3] (or x3 ≥ x̄3).

Since ũεn
→ Ũ in W1, 3

2
−(∂Ωx̄3

), ũεn
→ Ũ in H1/2(∂Ωx̄3

). Remark also that, since Ũ = 1

on ∂Q , the singularities of Ũ on ∂Ωx̄3
are necessarily in Σ

x̄3
.

Invoke next Theorem 6′ to claim that

πL(Ũ|Σx̄3
) = πL(Ũ|∂Ωx̄3

) ≤ lim inf
ε→0

Eε(ũε|Ωx̄3
)

log 1/ε
≤ sup

Eε(ũε)

log 1/ε
≤ C.(9.3.1)

Note that assumption (5.11) is satisfied since

1

ε2

∫

Q

(|ũε|2 − 1)2 ≤ C log 1/ε

implies

1

ε

∫

Q

(|ũε|2 − 1)2 = 1

ε

∫
dx3

∫

Σx3

(|ũε|2 − 1)2 −→ 0



H1/2 MAPS WITH VALUES INTO THE CIRCLE 95

and then

1

εn

∫

Σx3

(|ũεn
| − 1)2 ≤ h(x3)

for some fixed function h ∈ L1.

Thus, by (9.3.1), there is a reordering

{ai(di)} = {p1, ..., pℓ} ∪ {n1, ..., nℓ}

with possible repetition, such that

∑

j

|pj(x̄3)− nj(x̄3)| ≤ C(9.3.2)

and (9.2.5), (9.2.6) may be rewritten as

∫
ℓ(x3)dx3 ≤ C(9.3.3)

(where 2ℓ(x3) =
∑ |di(x3)|)

and

< Ũx1
∧ Ũx2

, k >= π

∫
dx3

{∑

j

[k(pj(x3))− k(nj(x3))]
}
.(9.3.4)

We will now establish the desired bound (9.1.9) with the help of the following

Proposition 3. — Assume (9.3.3) and (9.3.4), then, for every k ∈ C∞0 (Q ;R),

∣∣∣∣
∫

dx3

{∑

j

[
k(pj(x3))− k(nj(x3))

]}∣∣∣∣ ≤ C‖k‖W1,3(Q ).(9.3.5)

Step 4. — Decomposition of W1,3(R3)-function.

Let k ∈W1,3(R3), ‖k‖W1,3 ≤ 1 and let

k =
∑

s≥0

∆sk

be a usual Littlewood–Paley decomposition (we assume supp k ⊂ Q ).

Thus

∑
8s‖∆sk‖3

3 < C.(9.4.1)
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Denote

λs = 8s‖∆sk‖3
3;(9.4.2)

hence
∑

λs < C.(9.4.3)

First we estimate for fixed ρ > 0

meas [x3; sup
x1,x2

|∆sk(x1, x2, x3)| > ρ].(9.4.4)

Clearly, for fixed x3,

‖∆sk(x3)‖L∞x1,x2
≤ C4s/3‖∆sk(x3)‖L3

x1,x2

so that

(9.4.4) ≤ ρ−3

∫
(‖∆sk(x3)‖L∞x1,x2

)3dx3 ≤ Cρ−34s‖∆sk‖3
3 ≤ Cρ−32−sλs.(9.4.5)

Denote ζρ the function on R
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−ρ −
ρ

2
0 ρ

2
ρ

1

Fix s0 and decompose for s ≥ s0 + 1

∆sk = k1
s,s0
+ k2

s,s0
with k1

s,s0
= ∆sk(1− ζ1/(s−s0)2)(∆sk).

Hence ∣∣k1
s,s0

∣∣ ≤ |∆sk| χ[|∆sk|<(s−s0)−2]∣∣k2
s,s0

∣∣ ≤ |∆sk| χ[|∆sk|> 1
2

(s−s0)−2]
.

Therefore
∑

s≥s0+1

∣∣k1
s,s0

∣∣ < C(9.4.6)

and by (9.4.5)

meas x3

(
Projx3

(
supp k2

s,s0

))
≤ C(s − s0)

6 2−sλs.(9.4.7)
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Step 5. — Estimation of (9.3.5).

Using the decomposition of Step 4, estimate

(9.3.5) ≤
∫

dx3

{∑

s0

∑

j||pj−nj |∼2−s0

∣∣k(pj(x3))− k
(
nj(x3)

)∣∣
}

(9.5.0)

and

|k(pj)− k(nj)| ≤
∑

s≤s0

|∆sk(pj)−∆sk(nj)|(9.5.1)

+
∑

s>s0

(∣∣k1
s,s0

(pj)
∣∣+

∣∣k1
s,s0

(nj)
∣∣)(9.5.2)

+
∑

s>s0

(∣∣k2
s,s0

(pj)
∣∣+

∣∣k2
s,s0

(nj)
∣∣).(9.5.3)

Contribution of (9.5.1)

Estimate

|∆sk(pj)−∆sk(nj)| ≤ ‖∆sk‖Lip |pj − nj | ≤ C2s−s0.

Thus the contribution in (9.5.0) is bounded by
∫

dx3

[ ∑

s0,s≤s0

2s−s0(#{ j| |pj(x3)− nj(x3)| ∼ 2−s0})
]

≤
∫

ℓ(x3)dx3 < C

by (9.3.3).

Contribution of (9.5.2)

Same, since (9.5.2) < C from (9.4.6).

Contribution of (9.5.3)

This is the crux of the argument.

Estimate, using (9.3.2) and the fact that |k2
s,so| ≤ C,

∑

j| |pj−nj |∼2−s0

|k2
s,s0

(
pj(x3)

)
| ≤ ‖k2

s,s0
‖∞ · χ

Projx3 (supp k2
s,s0

)
(x3)

· [#{ j| |pj(x3)− nj(x3)| ∼ 2−s0}]
< C2s0χ

Projx3 (supp k2
s,s0

)
(x3).
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Integration in x3 gives therefore, using (9.4.7),

C(s − s0)
6 2−(s−s0)λs(9.5.4)

which, by (9.4.3), is summable in
∑

s0,s>s0
.

This completes the proof of (9.3.5), and thus of Theorem 12.

9.3. A geometric estimate related to Proposition 3

With the same technique as in the proof of Proposition 3 we may derive the fol-

lowing estimate which has an interesting geometric flavour. It may be used to provide

an alternative proof of Theorem 12 as in [BOS1].

Proposition 4. — Let Γ be a closed, oriented, rectifiable curve in R3, and denote by �t the

unit tangent vector along Γ; let �k ∈W1,3(R3;R3).Then

∣∣∣∣
∫

Γ

�k · �t
∣∣∣∣ ≤ C‖k‖W1,3 |Γ|.

Proof. — Part of the argument is a repetition of the proof of Proposition 3, but

we have kept it for the convenience of the reader who wishes to concentrate on Propo-

sition 4 independently of the rest of the paper. Assume |Γ| = 1 and let γ : [0, 1]
−→ Γ be the arclength parametrization (|γ̇ | = 1).

We need to bound
∫

Γ

k3(γ(s))γ̇3(s)ds =
∫

dx3

[ ∑

x∈Γx3

σ(x)k3(x)

]
,(9.6.1)

where Γx3
= Γ ∩ [x = x3] is assumed finite (by choice of coordinate system) and

σ(γ(s)) = signγ̇3(s).

Thus Γx3
= {P1, ..., Pr} ∪ {N1, ..., Nr}, where σ(Pi) = 1 and σ(Q i) = −1. Also,

r = r(x3) =
1

2
card(Γx3

)

and
∫

r(x3)dx3 =
1

2

∫
|γ̇3(s)|ds < 1,

∑

i

|Pi −Ni| ≤ |Γ| = 1.(9.6.3)



H1/2 MAPS WITH VALUES INTO THE CIRCLE 99

Write k for k3 and assume ‖k‖W1,3 ≤ 1. Write, for fixed x3,

∣∣∣∣
∑

x∈Γx3

σ(x)k(x)

∣∣∣∣ ≤
r(x3)∑

i=1

|k(Pi)− k(Ni)|

=
∑

s0

∑

|Pi−Ni |∼2−s0

|k(Pi)− k(Ni)|.
(9.6.4)

To estimate (9.6.4), we perform again the same decomposition of k ∈ W1,3.

Thus, for fixed s0,

k = ks0
+

∑

s>s0

k1
s0,s
+

∑

s>s0

k2
s0,s

satisfying

|∇ks0
| � 2s0(9.6.5)

∣∣k1
s0,s

∣∣ � (s − s0)
−2(9.6.6)

{∣∣k2
s0,s

∣∣ � 1 and

supp k2
s0,s

contained in the union of � σs(s − s0)
6 cubes of size 2−s

(9.6.7)

with
∑

σs < C(9.6.8)

(in fact σ 1/3
s = ‖∆sk‖W1,3, k =∑

∆sk, Littlewood-Paley decomposition).

Returning to (9.6.4), we get for fixed s0,
∑

|Pi−Ni |∼2−s0

|ks0
(Pi)− ks0

(Ni)|(9.6.9)

+
∑

s>s0

∑

|Pi−Ni |∼2−s0

∣∣k1
s0,s

(Pi)
∣∣+

∣∣k1
s0,s

(Ni)
∣∣(9.6.10)

+
∑

s>s0

∑

|Pi−Ni |∼2−s0

∣∣k2
s0,s

(Pi)
∣∣+

∣∣k2
s0,s

(Ni)
∣∣.(9.6.11)

Contribution of (9.6.9)

(9.6.5)⇒ (9.6.9) � #
{
i
∣∣ |Pi −Ni| ∼ 2−s0

}
.

Sum in s0 ⇒ r(x3) satisfying (9.6.2).
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Contribution of (9.6.10)

(9.6.6)⇒
∑

s>s0

∣∣k1
s0,s

∣∣ < C.

Hence

(9.6.10) � #
{
i
∣∣|Pi −Ni| ∼ 2−s0

}
.

Contribution of (9.6.11)

For fixed s > s0, we need to restrict x3 to Projx3
(supp k2

s0,s
) ⊂ R of measure

� σs(s − s0)
62−s by (9.6.7).

By (9.6.3), #
{
i
∣∣|Pi −Ni| ∼ 2−s0

}
≤ 2s0, ∀x3.

Thus,

∫
dx3

[ ∑

|Pi−Ni |∼2−s0

∣∣k2
s0,s

(Pi)
∣∣+ ...

]
≤ σs(s − s0)

62−(s−s0),

summable in s, s0, s > s0, taking also (9.6.8) into account.

10. Open problems

OP 1. — Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω; S1). Is it

true that
∫

G

|uεxi
∧ uεxj

| ≤ C ∀i, j as ε→ 0 ?

OP 2. — Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω; S1).

Is it true that

‖uε‖W1,3/2(G) ≤ C as ε→ 0 ?

Is (uε) relatively compact in W1,3/2?

OP 3. — Assume uε : B→ R2 (B unit ball in R3) is smooth and satisfies

∫

B

|∇uε|2 +
1

ε2

∫

B

(|uε|2 − 1)2 ≤ C log(1/ε).
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Is it true that for every compact subset K ⊂ B,
∣∣∣∣
∫

B

(uεx ∧ uεy)ϕ

∣∣∣∣ ≤ CK‖ϕ‖W1,3 ∀ϕ ∈ C∞0 (K)?

(As explained in Section 9.1 a positive solution of OP3 yields a positive answer to the

first question in OP2)

OP 4. — Let uε be a minimizer of Eε in H1
g with g ∈ H1/2(Ω; S1).

Is it true that

|uε| is bounded in H1(G)?

11. Appendices

Appendix A. The upper bound for the energy

With G and Ω = ∂G as in Section 1, consider the following distinguished classes

in H1/2(Ω; S1):

R =
{

g ∈ g ∈W1,p(Ω; S1),∀p < 2; g is smooth away from

a finite set Σ of singularities

}
,

R0 =
{

g ∈ R; |∇g(x)| ≤ C/|x− σ | near each σ ∈ Σ

and deg( g, σ) = ±1, ∀σ ∈ Σ

}
,

R1 =



g ∈ R0

∣∣∣∣
for each σ ∈ Σ, there is some R ∈ O(3) such that
∣∣g(x)−R

(
x−σ

|x−σ |

) ∣∣ ≤ C|x − σ |for x near σ



 ,

where O(3) denotes the group of linear isometries of R3. Here, we identify S1 ⊂ R2

with S1×{0} viewed as a subset of R3. From the definition of R1 we see that R must

map the tangent plane Tσ(Ω) into R2 × {0} and thus R(n(σ)) = (0, 0,±1), where

n(σ) is the outward unit normal to Ω. Clearly, deg( g, σ) = +1 if R is orientation-

preserving and −1 otherwise.

This appendix is devoted to the proof of the following

Lemma A.1. — Let g ∈ R1 and let LG be the length of a minimal connection corresponding

to the geodesic distance in G. Then

Min
{
Eε(u); u ∈ H1

g (G;R2)
}

≤ πLG( g) log(1/ε)+ o(log(1/ε)) as ε→ 0.
(A.1)



102 JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

The proof we present below uses some arguments from [40], Section 1.

Proof. — Given δ > 0 small, we first construct a domain Gδ and a diffeomor-

phism ξδ: G→ Gδ (with ξδ : ∂G→ ∂Gδ) such that

‖Dξδ − I‖ ≤ Cδ on G(A.2)

and ∂Gδ is flat in a δ-neighborhood of each singularity ξδ(aj) of gδ = g ◦ ξ−1
δ .

The construction of ξδ is standard. Assume, for simplicity, that 0 is a singular

point of g on Ω and that, near 0, the graph of Ω is given by x3 = ψ(x1, x2) with ψ

smooth and ∇ψ(0) = 0. Set

η(x1, x2, x3) = (x1, x2, x3 − ψ(x1, x2))

so that ‖Dη(x)− I‖ ≤ C|x| near 0. Let ζ ∈ C∞0 (B1) with ζ = 1 on B1/2. Then

ξδ(x) = x + ζ(x/δ)(η(x)− x), x ∈ G

has all the required properties relative to one singularity. We proceed similarly for the

other singularities.

We now write G and g instead of Gδ and gδ, so that we may assume that Ω is

flat in a δ-neighborhood of each singularity.

After relabeling the singularities of g, we may assume that LG( g) =∑k

j=1 length

(γj), where γj connects (in G) Pj and Nj . We now introduce a second parameter λ, 0 <

λ < δ, and we choose some disjoint smooth curves Γj having the following properties:

a)
∑k

j=1 length (Γj) ≤ LG( g)+ λ;

b) Γj is a simple curve;

c) Γj is contained in G except for its endpoints Pj and Nj;

d) the curve Γj is orthogonal to Ω in a λ-neighborhood of its endpoints.

Moreover, we may assume that Γj is parametrized in such a way that the tan-

gent vector at Pj is outward and the one at Nj is inward. We take the arclength as

parameter. We may thus write Γj = {Xj(t); t ∈ [0, Tj]}, with Xj(0) = Nj, Xj(Tj) = Pj ,

where Xj is smooth, into and an immersion, and Tj = length(Γj).

We consider the unit tangent vector to Γj, e(Xj(t)) = X′j(t). We may find two

smooth vector fields f , g on Γj such that { f (Xj(t)), g(Xj(t)), e(Xj(t))} is a direct or-

thonormal basis for each t.

We now define the map Φj : [0, Tj] × Bλ → R3 by

Φj(t, u, v) = Xj(t)+ uf (Xj(t))+ vg(Xj(t)),

where Bλ = {(u, v) ∈ R2; u2 + v2 ≤ λ2}.



H1/2 MAPS WITH VALUES INTO THE CIRCLE 103

Clearly,

‖DΦj(t, u, v) −M(t)‖ ≤ Cλ on [0, Tj] × Bλ,(A.3)

where M(t) ∈ O(3). Thus, for λ sufficiently small, Φj is a diffeomorphism from [0, Tj]
× Bλ onto a λ-tubular neighborhood Uj of Γj . Moreover Uj ⊂ G for λ small.

It is easy to see that the restriction of g to Ω \ ∪jUj has a smooth S1-valued

extension, g̃, to G \ ∪jUj. Indeed, let ζj : G → R3 be a diffeomorphism onto ζj(G)

with ζj(G) ⊂ BR×[0, Tj] and ζj(Uj) = Bλ×[0, Tj]. Consider the function k : R3 → S1

defined by

k(x, y, z) = (x, y)
/
(x2 + y2)1/2.

Then

kj = k ◦ ζj : G \Uj → S1

is smooth and

q = Π
k
j=1kj : G \ ∪

j
Uj → S1

is also smooth. Moreover

deg
(
q, C±j

)
= ±1 ∀j

where C+j = {x ∈ Ω; |x− Pj| = λ} and C−j = {x ∈ Ω; |x−Nj| = λ}. Therefore

deg
(

g/q, C±j
)
= 0 ∀j.

Hence the function g/q restricted to Ω \ ∪
j
Uj admits a smooth extension f : Ω→ S1.

Then f extends to a smooth map f̃ : G→ S1. Finally, the map g̃ = f̃ q has the desired

properties.

Clearly we have

Eε( g̃;G \ ∪
j
Uj) ≤ Cλ.(A.4)

Consider the map hj : ∂([0, Tj] × Bλ)→ S1 defined by

hj =
{

g̃ ◦Φj, on [0, Tj] × ∂Bλ

g ◦Φj, on {0} × Bλ and on {Tj} × Bλ

.
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Then hj is smooth on ∂([0, Tj]×Bλ) except at the points (0, 0, 0) and (Tj, 0, 0). From

the construction in [40] we know that

Min
{
Eε(u; (0, Tj)× Bλ)); u ∈ H1

hj

(
(0, Tj)× Bλ;R2

)}

≤ πTj log(1/ε)+Cλ.
(A.5)

Using (A.5) and (A.3) we return to Uj via Φj and obtain a map

v = vj,ε,λ : Uj → R2

such that v = g on (∂Uj) ∩Ω and

Eε(v;Uj) ≤ (πTj log(1/ε)+Cλ)(1+ Cλ).(A.6)

Gluing the maps vj,ε,λ defined above with the map g̃|G\∪j Uj
, we obtain a map

wε,λ : G→ R2 satisfying

wε,λ = g on Ω

and (by (A.4) and (A.6)),

Eε(wε,λ;G) ≤
(
π
(∑

Tj

)
log(1/ε)+Cλ

)
(1+ Cλ)+ Cλ.(A.7)

Returning to the original notation Gδ and Ωδ = ∂Gδ, we have just constructed a map

wε,λ : Gδ → R2 satisfying

wε,λ = gδ = g ◦ ξ−1
δ on Ωδ

and

Eε(wε,λ;Gδ) ≤ π(LGδ
( gδ)+ λ) log(1/ε)(1+ Cλ)+ C′λ.(A.8)

Finally, coming back to the original domain G via ξδ, we obtain some w̃ε,λ,δ ∈
H1

g (G;R2) such that

Eε(w̃ε,λ,δ;G) ≤
[
π(LGδ

( gδ)+ λ) log(1/ε)(1+Cλ)+C′λ
]
(1+Cδ).(A.9)

It is easy to see that

∣∣LGδ
( gδ)− LG( g)

∣∣ ≤ Cδ

and thus we arrive at

Eε(w̃ε,λ,δ;G) ≤ πLG( g) log(1/ε)(1+Cλ+Cδ)+C′λ,δ,(A.10)

which yields the desired conclusion (A.1) since λ < δ are arbitrarily small.
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Appendix B. A variant of the density result of T. Rivière

We use the same notation as in Appendix A for R,R0 and R1. Recall that R0

is dense in H1/2(Ω; S1); see Rivière [38], quoted as Lemma 11, and see Remark 5.1

for a proof. This appendix is devoted to the following improvement:

Lemma B.1. — The class R1 is dense in H1/2(Ω; S1).

Proof. — Given g ∈ H1/2(Ω; S1) and ε > 0 we first use the density of R0 to

construct a map h ∈ R0 such that ‖h− g‖H1/2 < ε.

Next, write, as usual, the singular set Σ of h as

Σ = {P1, P2, ..., Pk, N1, N2, ..., Nk}.
For every σ ∈ Ω, let Tσ(Ω) denote the tangent plane to Ω at σ ; we orient it using the

outward normal n(σ) to G. Let PΩ denote the projection onto Ω defined in a tubular

neighborhood of Ω in R3.

For each i = 1, 2, ..., k, fix two smooth maps:

γ+i :{ξ ∈ TPi
(Ω); |ξ| = 1} → S1,

γ−i :{ξ ∈ TNi
(Ω); |ξ| = 1} → S1,

such that

deg(γ+i ) = +1 and deg(γ−i ) = −1.(B.1)

The conclusion of Lemma B.1 is an immediate consequence of the following

more general:

Claim. — With h as above, there is a sequence (hn) in H1/2(Ω; S1) such that:

hn → h in H1/2(B.2)

hn ∈ C∞(Ω \Σ; S1), ∀n,(B.3)

hn ∈W1,p(Ω \Σ; S1), ∀n, ∀p < 2,(B.4)

|∇hn(x)| ≤ Cn/dist (x,Σ), ∀n, ∀x ∈ Ω \Σ,(B.5)

for all 0 < t < t0 (sufficiently small, depending only on Ω) and all i = 1, 2, ...k, we

have:

|hn(PΩ(Pi + tξ))− γ+i (ξ)| ≤ Cnt, ∀n,∀ξ ∈ TPi
(Ω), |ξ| = 1,(B.6)

|hn(PΩ(Ni + tξ))− γ−i (ξ)| ≤ Cnt, ∀n,∀ξ ∈ TNi
(Ω), |ξ| = 1.(B.7)
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Proof of the Claim. — Fix an arbitrary function k ∈ C∞(Ω \ Σ; S1) ∩W1,p(Ω, S1),

∀p < 2 satisfying

|∇k(x)| ≤ C dist (x,Σ), ∀x ∈ Ω \Σ,(B.8)

|k(PΩ(Pi + tξ))− γ+i (ξ)| ≤ Ct,(B.9)

|k(PΩ(Ni + tξ))− γ−i (ξ)| ≤ Ct,(B.10)

for all t, i, ξ as in (B.6)–(B.7).

The existence of k is proved as in Appendix A. First we define it on ∂B1 ×
[0, T] using the parameter t to homotopy γ+i to the complex conjugate of γ−i . We

then extend it to B1 × [0, T] by homogeneity of degree 0 and transfer it to a “tube-

like” region Ui in G connecting Pi to Ni. Finally, we extend these functions smoothly

to G \Ui, take their complex product, and restrict it to Ω.

To complete the proof of the claim, note that T(h) = T(k) = 2π
∑k

i=1(δPi
−δNi

).

Thus T(hk̄) = 0 and, by Theorem 2, there exists a sequence rn ∈ C∞(Ω; S1) such that

rn → hk̄ in H1/2. Using the fact that points have zero H1-capacity in 2− d (and thus

zero H1/2 - capacity), we may also assume that rn(Pi) = rn(Ni) = 1,∀n,∀i. Clearly, the

sequence hn = krn has all the desired properties (B.2)–(B.7).

Lemma B.1 is obtained by choosing, in the claim, as γ+i and γ−i any isometries

from TPi
(Ω) and TNi

(Ω) onto R2.

Appendix C: Almost Z-valued functions

The purpose of this section is to prove the following fact used earlier in Sec-

tion 8.

Lemma C.1. — Assume ϕ ∈ H1/2((0, 1)× (0, 1)) and {Q α} a collection of squares in

(0, 1)2 such that

‖ϕ‖L4/3 ≤ C(C.1)

‖e ıϕ − 1‖L1([0,1]2\∪Q α) ≤ ε(C.2)

|ϕ|H1/2 ≤ δ(log(1/ε))1/2(C.3)

∑

α

σα ≤ δ,(C.4)

where ε < δ≪ 1 and σα denotes the size of Q α.

Then there is some a ∈ Z such that

‖ϕ − 2πa‖L1 ≤ Cδ1/8.(C.5)
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The proof will rely on the following inequality (see also [15] and [35] for related

results).

Lemma C.2. — Let Q = (0, 1)2, f ∈ L1(Q ). Then for all 0 < ρ < ρ0, ρ0 sufficiently

small,

∥∥∥∥ f −
∫

f

∥∥∥∥
L1

≤ C| log ρ|−1

∫∫

Q×Q

| f (x)− f ( y)|
|x − y|(|x − y| + ρ)2

dxdy(C.6)

with C some constant.

Proof of Lemma C.1. — It follows from (C2) that we may write Q as a disjoint

union

Q =
⋃

Q α ∪ Z0 ∪
⋃

j∈Z

Aj.

where

Aj ⊂ [|ϕ − 2π j| < ε1/8](C.7)

|Z0| < ε3/4.(C.8)

Apply Lemma C.2 to f = χAj
with ρ = ε1/20. Hence, denoting Z = Z0 ∪

⋃
α Q α,

|Aj|(1− |Aj|) ≤ C| log ε|−1

∫∫

Aj×(Q\Aj)

|x − y|−1(|x − y| + ρ)−2

≤ C| log ε|−1
∑

k �=j

∫∫

Aj×Ak

|x − y|−3 +C| log ε|−1

×
∫∫

Aj×Z

|x − y|−1(|x − y| + ρ)−2

≤ C| log ε|−1

∫∫

Aj×∪Ak

k �=j

|ϕ(x)− ϕ( y)|2
|x− y|3 +C| log ε|−1

×
∫∫

Aj×Z

|x − y|−1(|x − y| + ρ)−2.
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Summation over j gives
∑

j

|Aj|(1− |Aj|) ≤ C| log ε|−1 ‖ϕ‖2
H1/2

+C| log ε|−1

∫∫

Z×(Q\Z)

|x− y|−1(|x − y| + ρ)−2

by (C.3)

≤ Cδ2 +C| log ε|−1

×
[∑

α

∫∫

Q α×(Q\Q α)

|x− y|−1(|x− y| + ρ)−2

]

+C|Z0|. ε−
1
10 .

(C.9)

For fixed α, estimate
∫∫

Q α×(Q\Q α)

|x − y|−1(|x − y| + ρ)−2.(C.10)

Since for fixed x ∈ Q α, |x− y| > dist (x, ∂Q α), we get easily

(C.10) ≤ C

∫

Q α

[dist (x, ∂Q α)+ ρ]−1dx < C| log ε|σα

with σα the size of Q α.

Substitute in (C.9) and use (C.4), (C.8) to bound
∑

j

|Aj|(1− |Aj|) ≤ Cδ2 + C
∑

σα + ε
3
4− 1

10 ≤ Cδ+ ε3/5.(C.11)

Take j0 with |Aj| = max |Aj|. Thus |Aj| ≤ 1

2
for j �= j0 and by (C.11)

∑

j �=j0

|Aj| ≤ C(δ + ε3/5).(C.12)

Taking a = j0, finally estimate using (C.1), (C.7)

‖ϕ − 2πa‖1 ≤ ‖ϕ − 2π j0‖L1(Aj0
) + ‖ϕ‖L1(Q\Aj0

) + 2π|a| |Q\Aj0|

≤ ε
1
8 +C|Q\Aj0|

1
4 + 2π|a| |Q\Aj0|

where, by (C.4), (C.8), (C.12)

|Q\Aj0| ≤
∑
|Q α| + |Z0| +

∑

j �=j0

|Aj| ≤
∑

σ 2
α + ε3/4 + C(δ+ ε3/5)

≤ C(δ+ ε3/5).
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Hence

‖ϕ − 2πa‖1 ≤ C(ε1/8 + δ1/4)+C|a|(δ+ ε3/5)

implying

2π|a| ≤ ‖ϕ‖1 + 1+ |a|
so that

|a| ≤ C and ‖ϕ − 2πa‖1 ≤ C(δ1/4 + ε1/8) ≤ Cδ1/8

which is (C.5).

Proof of Lemma C.2. — We will derive the inequality by contradiction, using Theo-

rem 4 in [14]. Let thus ( fn) be a sequence in L1(Q ) and (εn) ↓ 0 such that

| log εn|−1

∫∫

Q×Q

| fn(x)− fn( y)|
|x − y|(|x − y| + εn)2

dxdy ≤ 1(C.13)

and

‖ fn −
∫

fn‖L1 →∞.(C.14)

Denote by ρn the radial mollifier on R2

ρn(x) = cn| log εn|−1(|x| + εn)
−2(C.15)

with cn such that
∫

ρn = 1 (hence cn ∼ 1). Applying Theorem 4 from [14], with p = 1,

it follows that ( fn) is relatively compact in L1(Q ), contradicting (C.14). This proves

(C.6).

Appendix D. Sobolev imbeddings for BV

It is well-known that, if p > 1 and 0 < s < 1, then

W1,p(Ω) ⊂W s,q(Ω), Ω ⊂ Rd

with

1

q
= 1

p
− (1− s)

d
.

This imbedding fails for p = 1 and d = 1, i.e., W1,1 is not contained in W1/q,q

for q > 1. Surprisingly, the imbedding holds when p = 1 and d ≥ 2.
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Lemma D.1. — Assume d ≥ 2 and 0 < s < 1. Then

BV(Rd ) ⊂W s,p(Rd )

with

1

p
= 1− 1− s

d
.(D.1)

When d = 2, this result is an immediate consequence of an interpolation result

of Cohen, Dahmen, Daubechies and DeVore [23]. It also seems to be contained in

an earlier work of V. A. Solonnikov [44] although the condition d ≥ 2 does not ap-

pear in his paper. We thank V. Maz’ya and T. Shaposhnikova for calling our attention

to the paper of Solonnikov and for confirming that the assumption d ≥ 2 is indeed

used there implicitly; they have also devised another proof of Solonnikov’s inequality

(personal communication).

Our proof relies on the following one-dimensional elementary inequality:

Lemma D.2. — Let 1 < p <∞ and 0 < s < 1/p. Then, for every f ∈ C∞0 (R),

| f |pW s,p(R) ≤ C‖ f ‖p(1−sp)

L p(R) ‖ f ′‖sp2

L1(R)
,(D.2)

where C depends only on p and s.

Here, | |W s,p(R) denotes the canonical semi-norm on W s,p(R), i.e.,

| f |pW s,p(R) =
∫

R

dx

∞∫

0

| f (x + h)− f (x)|p
h1+sp

dh.

Proof. — Write, for λ > 0,

| f |pW s,p =
∫

R

dx

λ∫

0

· · · dh+
∫

R

dx

∞∫

λ

· · · dh

≤ 2p−1‖ f ‖p−1

L∞ ‖ f ′‖L1

λ1−sp

1− sp
+ 2p−1‖ f ‖p

L p

λ−sp

sp

≤ 2p−1

(
‖ f ′‖p

L1

λ1−sp

1− sp
+ ‖ f ‖p

L p

λ−sp

sp

)
,

since sp < 1. Minimizing in λ yields (D.2) with C = 2p−1/sp(1− sp).
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Proof of Lemma D.1. — Let u ∈ C∞0 (Rd ). We will use the following equivalent

norm on W s,p (see e.g. Adams [1], Lemma 7.44)

‖u‖p

W s,p ∼ ‖u‖p

L p +
d∑

j=1

∫

Rd

dx

∞∫

0

|u(x + hej)− u(x)|p
h1+sp

dh.(D.3)

Note that BV ⊂ L1 ∩ Ld/(d−1) and thus we may estimate (via Hölder)

‖u‖L p ≤ C‖u‖BV,

since

1

p
= 1− (1− s)

d
= s

1
+ 1− s

d/(d − 1)
.(D.4)

We now turn to the second term in (D.3); without loss of generality we may take

j = 1. We apply Lemma D.1 to the function

f (·) = u(·, x2, x3, . . . , xd )

(note that, by (D.4), sp < 1) and we obtain

∫

R

dx1

∫ ∞

0

|u(x1 + h, x2, . . . , xd )− u(x1, x2, . . . , xd )|p
h1+sp

dh

≤ C‖ f ‖p(1−sp)

L p(R) ‖ f ′‖sp2

L1(R)
≤ C‖ f ‖sp(1−sp)

L1 ‖ f ‖(1−s)p(1−sp)

Ld/(d−1) ‖ f ′‖sp2

L1 .

(D.5)

On the one hand, we have

∫

Rd−1

‖ f ′‖L1(R)dx2dx3. . . dxd ≤
∫

Rd

|∇u|dx.(D.6)

On the other hand, the imbedding BV ⊂ Ld/(d−1) gives, with q = d/(d − 1),

∫

Rd−1

‖ f ‖q

Lq(R)dx2dx3. . . dxd = ‖u‖q

Lq(Rd )
≤ C




∫

Rd

|∇u|dx




q

.(D.7)

Finally we claim that

∫

Rd−1

‖ f ‖(d−1)/(d−2)

L1(R)
dx2dx3. . . dxd ≤ C




∫

Rd

|∇u|dx




(d−1)/(d−2)

;(D.8)
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when d = 2, inequality (D.8) reads

‖ f ‖L∞x2
(L1

x1
) ≤

∫

R2

|∇u|.

To prove (D.8) we use once more the imbedding BV ⊂ Lr , but this time in Rd−1, with

r = (d − 1)/(d − 2), and we obtain

‖ f (x1, ·)‖Lr (Rd−1) ≤ C

∫

Rd−1

|∇u(x1, ·)|dx2dx3. . . dxd.(D.9)

Next, we have

‖ f ‖Lr(Rd−1;L1(R)) =
∥∥∥∥
∫

R

| f (x1, ·)|dx1

∥∥∥∥
Lr(Rd−1)

≤
∫

R

‖ f (x1, ·)‖Lr (Rd−1)dx1 by the triangle inequality

≤ C

∫

Rd

|∇u(x)|dx by (D.9).

Finally, we return to (D.5), integrate in dx2dx3. . . dxd , and apply Hölder with exponents

P, Q , R such that

Psp(1− sp) = (d − 1)/(d − 2),

Q (1− s)p(1− sp) = d/(d − 1),

Rsp2 = 1.

[A straightforward computation shows that 1

P
+ 1

Q
+ 1

R
= 1]. From (D.8), (D.7) and

(D.6) we deduce that

|u|p
W s,p(Rd )

≤ C




∫

Rd

|∇u|dx




p

.
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Added in proof:

1) After our work was completed some of our results were generalized to higher

dimensions in [ABO].

2) F. Bethuel, G. Orlandi and D. Smets have solved our Open Problem 3 (and
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3) J. Van Schaftingen [VS] has given an elementary proof of our Proposition 4,
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except that he uses the Morrey-Sobolev imbedding in place of a Littlewood Paley
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4) An alternative approach to Proposition 4 is to use a new estimate for the

div-curl system (see [BB]), namely
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5) An interesting extension of Lemma C.2 may be found in [P].
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Université Paris-Sud,

91405 Orsay, France

Petru.Mironescu@math.u-psud.fr
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