H^{1/2} MAPS WITH VALUES INTO THE CIRCLE: MINIMAL CONNECTIONS, LIFTING, AND THE GINZBURG–LANDAU EQUATION

by JEAN BOURGAIN, HAIM BREZIS, and PETRU MIRONESCU

1. Introduction

Let $G \subset \mathbf{R}^3$ be a smooth bounded domain with $\Omega = \partial G$ simply connected. We are concerned with the properties of the space

$$\mathrm{H}^{1/2}(\Omega; \mathrm{S}^1) = \{g \in \mathrm{H}^{1/2}(\Omega; \mathbf{R}^2); |g| = 1 \text{ a.e. on } \Omega\}.$$

Recall (see [12]) that there are functions in $\mathrm{H}^{1/2}(\Omega; \mathrm{S}^1)$ which cannot be written in the form $g = e^{i\varphi}$ with $\varphi \in \mathrm{H}^{1/2}(\Omega; \mathbf{R})$. For example, we may assume that locally, near a point on Ω , say 0, Ω is a disc B_1 ; then take

(1.1)
$$g(x,y) = (x,y)/(x^2 + y^2)^{1/2}$$
 on B_1 .

Recall also (see [25]) that there are functions in $H^{1/2}(\Omega; S^1)$ which cannot be approximated in the $H^{1/2}$ -norm by functions in $C^{\infty}(\Omega; S^1)$. Consider, for example, again a function g which is the same as in (1.1) near 0.

It is therefore natural to introduce the classes

$$\mathbf{X} = \{ g \in \mathbf{H}^{1/2}(\Omega; \mathbf{S}^1); g = e^{i\varphi} \text{ for some } \varphi \in \mathbf{H}^{1/2}(\Omega; \mathbf{R}) \}$$

and

$$Y = \overline{C^{\infty}(\Omega; S^1)}^{H^{1/2}}.$$

Clearly, we have

$$X \subset Y \subset H^{1/2}(\Omega; S^1).$$

Moreover, these inclusions are strict. Indeed, any function $g \in H^{1/2}(\Omega; S^1)$ which satisfies (1.1) does not belong to Y. On the other hand, the function

$$g(x, y) = \begin{cases} e^{2i\pi/r^{\alpha}}, & \text{on } B_1\\ 1, & \text{on } \Omega \setminus B_2 \end{cases}$$

with $r = (x^2 + y^2)^{1/2}$ and $1/2 \le \alpha \le 1$, belongs to Y, but not to X (see [12]).

To every map $g \in H^{1/2}(\Omega; \mathbb{R}^2)$ we associate a distribution $T = T(g) \in \mathscr{D}'(\Omega; \mathbb{R})$. When $g \in H^{1/2}(\Omega; S^1)$, the distribution T(g) describes the location and the topological degree of its singularities. This is the analogue of a tool introduced by Brezis, Coron and Lieb [19] in the framework of $H^1(G; S^2)$ (see the discussion following Lemma 2 below). In the context of $H^{1/2}(\Omega; S^1)$, the distribution T(g) and the corresponding number L(g) (defined after Lemma 1) were originally introduced by the authors in 1996 and these concepts were presented in various lectures.

Given $g \in H^{1/2}(\Omega; \mathbb{R}^2)$ and $\varphi \in Lip(\Omega; \mathbb{R})$, consider any $U \in H^1(G; \mathbb{R}^2)$ and any $\Phi \in Lip(G; \mathbb{R})$ such that

(1.2)
$$U_{|\Omega} = g \text{ and } \Phi_{|\Omega} = \varphi.$$

Set

$$\mathbf{H} = 2(\mathbf{U}_{y} \wedge \mathbf{U}_{z}, \mathbf{U}_{z} \wedge \mathbf{U}_{x}, \mathbf{U}_{x} \wedge \mathbf{U}_{y});$$

this H is independent of the choice of direct orthonormal bases in \mathbf{R}^3 (to compute derivatives) and in \mathbf{R}^2 (to compute \wedge -products). Next, consider

(1.3)
$$\int_{G} H \cdot \nabla \Phi.$$

It is not difficult to show (see Section 2) that (1.3) is independent of the choice of U and Φ ; it depends only on g and φ . We may thus define the distribution $T(g) \in \mathscr{D}'(\Omega; \mathbf{R})$ by

$$\langle \mathrm{T}(g), \varphi \rangle = \int_{\mathrm{G}} \mathrm{H} \cdot \nabla \Phi.$$

If there is no ambiguity, we will simply write T instead of T(g).

When g has a little more regularity, we may also express T in a simpler form:

Lemma 1. — If
$$g \in \mathrm{H}^{1/2}(\Omega; \mathbf{R}^2) \cap \mathrm{W}^{1,1}(\Omega; \mathbf{R}^2) \cap \mathrm{L}^{\infty}(\Omega; \mathbf{R}^2)$$
, then
 $\langle \mathrm{T}(g), \varphi \rangle = \int_{\Omega} \left((g \wedge g_x) \varphi_y - (g \wedge g_y) \varphi_x \right), \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}).$

The integrand is computed pointwise in any orthonormal frame (x, y) such that (x, y, n) is direct, where n is the outward normal to G – and the corresponding quantity is frame-invariant.

By analogy with the results of [19] and [6] we introduce, for every $g \in H^{1/2}(\Omega; \mathbb{R}^2)$, the number

$$\begin{split} \mathcal{L}(g) &= \frac{1}{2\pi} \quad \text{Sup } \left\{ \left< \mathcal{T}(g), \varphi \right>; \ \varphi \in \text{Lip } (\Omega; \mathbf{R}), |\varphi|_{\text{Lip}} \leq 1 \right\} \\ &= \frac{1}{2\pi} \quad \text{Max } \{\ldots\}, \end{split}$$

where $|\varphi|_{\text{Lip}} = \sup_{x \neq y} |\varphi(x) - \varphi(y)| / d(x, y)$ refers to a given metric *d* on Ω . There are three (equivalent) metrics on Ω which are of interest:

(1.4)
$$d_{\mathbf{R}^{3}}(x, y) = |x - y|,$$
$$d_{\mathbf{G}}(x, y) = \text{the geodesic distance in } \bar{\mathbf{G}},$$
$$d_{\Omega}(x, y) = \text{the geodesic distance in } \Omega.$$

When dealing with a specified metric, we will write $L_{\mathbf{R}^3}$, L_G or L_{Ω} . Otherwise, we will simply write L (note that all these L's are equivalent). It is easy to see that

(1.5)
$$0 \le L(g) \le C \|g\|_{H^{1/2}}^2, \quad \forall g \in H^{1/2}(\Omega; \mathbb{R}^2)$$

and

(1.6)
$$|\mathcal{L}(g) - \mathcal{L}(h)| \le C ||g - h||_{\mathrm{H}^{1/2}} (||g||_{\mathrm{H}^{1/2}} + ||h||_{\mathrm{H}^{1/2}}), \quad \forall g, h \in \mathrm{H}^{1/2}(\Omega; \mathbf{R}^2).$$

When g takes its values into S^1 and has only a finite number of singularities, there are very simple expressions for T(g) and L(g):

Lemma 2. — If
$$g \in \mathrm{H}^{1/2}(\Omega; \mathrm{S}^1) \cap \mathrm{H}^1_{\mathrm{loc}}\left(\Omega \setminus \bigcup_{j=1}^k \{a_j\}; \mathrm{S}^1\right)$$
, then

$$\mathrm{T}(g) = 2\pi \sum_{j=1}^k d_j \delta_{a_j},$$

where $d_j = \deg(g, a_j)$. Moreover L(g) is the length of the minimal connection associated to the configuration (a_i, d_j) and to the specific metric on Ω (in the sense of [19]; see also [27]).

Remark **1.1.** — Here, $\deg(g, a_j)$ denotes the topological degree of g restricted to any small circle around a_j , positively oriented with respect to the outward normal. It is well defined using the degree theory for maps in $\mathrm{H}^{1/2}(\mathrm{S}^1; \mathrm{S}^1)$ (see [17] and [22]).

By the definition of T(g), we see that $\langle T(g), 1 \rangle = 0$. Therefore, if g is as in Lemma 2, then $\sum d_j = 0$. Thus we may write the collection of points (a_j) , repeated with their multiplicity d_j , as $(P_1, ..., P_k, N_1, ..., N_k)$, where $k = 1/2 \sum |d_j|$ (we exclude from this collection the points of degree 0). A point a_j is counted among the P's if it has positive degree and among the N's otherwise. Then L(g) = $\inf_{\sigma} \sum d(P_j, N_{\sigma(j)})$. Here, the Inf is taken over all the permutations σ of $\{1, ..., k\}$ and d is one of the metrics in (1.4).

The conclusion of Lemma 2 is reminiscent of a concept originally introduced by Brezis, Coron and Lieb [19]. There, u is a map from $G \subset \mathbf{R}^3$ into S^2 with a finite number of singularities $a_j \in G$. To such a map u, one associates a distribution T(u) describing the location and the topological charge of the singular set of u. More precisely, if $u \in H^1(G; S^2)$, set

$$\mathscr{D} = (u \cdot u_y \wedge u_z, \quad u \cdot u_z \wedge u_x, \quad u \cdot u_x \wedge u_z)$$

and $T(u) = \operatorname{div} \mathscr{D}$.

If u is smooth except at the a_i 's, it is proved in [19] that

$$\mathrm{T}(u)=4\pi\sum d_j\delta_{a_j}.$$

Here, d_i is the topological degree of u around a_i .

Using a density result of T. Rivière (*see* [38] and Lemma 11 in Section 2; *see* also the proof of Lemma 23, Remark 5.1 and Appendix B), we will extend Lemma 2 to general functions in $H^{1/2}(\Omega; S^1)$:

Theorem **1.** — Given any $g \in H^{1/2}(\Omega; S^1)$, there are two sequences of points (P_i) and (N_i) in Ω such that

$$(1.7) \qquad \sum_{i} |\mathbf{P}_{i} - \mathbf{N}_{i}| < \infty$$

and

(1.8)
$$\langle \mathrm{T}(g), \varphi \rangle = 2\pi \sum_{i} \left(\varphi(\mathrm{P}_{i}) - \varphi(\mathrm{N}_{i}) \right), \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}).$$

In addition, for any metric d in (1.4)

$$\mathcal{L}(g) = \operatorname{Inf} \sum_{i} d(\mathcal{P}_{i}, \mathcal{N}_{i}),$$

where the infimum is taken over all possible sequences (P_i) , (N_i) satisfying (1.7), (1.8). If the distribution T is a measure (of finite total mass), then

$$\mathrm{T}(g) = 2\pi \sum_{\mathrm{finite}} d_j \delta_{a_j}$$

with $d_j \in \mathbf{Z}$ and $a_j \in \Omega$.

Remark **1.2.** — There are always infinitely many representations of T(g) as a sum satisfying (1.7)–(1.8) and such representations need not be equivalent modulo a permutation of points. For example, a dipole $\delta_P - \delta_Q$ may be represented as $\delta_P - \delta_{Q_1} + \sum_{j\geq 1} (\delta_{Q_j} - \delta_{Q_{j+1}})$ for any sequence (Q_j) rapidly converging to Q. The last assertion in Theorem 1 is the H^{1/2}-analogue of a result of Jerrard and Soner [28, 29] (see also Hang and Lin [28]) concerning maps in W^{1,1}(Ω ; S¹).

Maps in Y can be characterized in terms of the distribution T:

Theorem 2 (Rivière [38]). — Let $g \in H^{1/2}(\Omega; S^1)$. Then T(g) = 0 if and only if $g \in Y$.

This result is the $H^{1/2}$ -counterpart of a well-known result of Bethuel [3] characterizing the closure of smooth maps in $H^1(B^3; S^2)$ (see also Demengel [24]).

The implication $g \in Y \implies T(g) = 0$ is trivial, using e.g. (1.6). The converse is more delicate; it uses the "dipole removing" technique of Bethuel [3] and we refer the reader to [38]; for convenience we present in Section 4 a slightly different proof.

As was mentioned earlier, functions in Y need not belong to X, i.e., they need not have a lifting in $H^{1/2}(\Omega; \mathbf{R})$. However, we have

Theorem **3.** — For every $g \in Y$ there exists $\varphi \in H^{1/2}(\Omega; \mathbf{R}) + W^{1,1}(\Omega; \mathbf{R})$, which is unique (modulo 2π), such that $g = e^{i\varphi}$. Conversely, if $g \in H^{1/2}(\Omega; S^1)$ can be written as $g = e^{i\varphi}$ with $\varphi \in H^{1/2} + W^{1,1}$, then $g \in Y$.

The existence will be proved in Section 3 with the help of paraproducts (in the sense of J.-M. Bony and Y. Meyer). The heart of the matter is the estimate

(1.9)
$$\|\varphi\|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}_{\Omega} \|e^{i\varphi}\|_{\mathrm{H}^{1/2}} (1+\|e^{i\varphi}\|_{\mathrm{H}^{1/2}}),$$

which holds for any smooth real-valued function φ ; here C_{Ω} depends only on Ω .

Using Theorem 3 and the basic estimate (1.9), we will prove that, for every $g \in H^{1/2}(\Omega; S^1)$, there exists $\varphi \in H^{1/2}(\Omega; \mathbf{R}) + BV(\Omega; \mathbf{R})$ such that $g = e^{i\varphi}$ (see Section 4). Of course, this φ is not unique. There is an interesting link between all possible liftings of g and the minimal connection of g:

Theorem **4.** — For every $g \in H^{1/2}(\Omega; S^1)$ we have

Inf
$$\{ |\varphi_2|_{\text{BV}}; g = e^{i(\varphi_1 + \varphi_2)}; \varphi_1 \in \text{H}^{1/2} \text{ and } \varphi_2 \in \text{BV} \} = 4\pi L_{\Omega}(g),$$

where $|\varphi_2|_{BV} = \int_{\Omega} |D\varphi_2|.$

Another useful fact about the structure of $H^{1/2}(\Omega; S^1)$ is the following factorization result:

Theorem 5. — We have $H^{1/2}(\Omega; S^1) = (X) \cdot (H^{1/2} \cap W^{1,1}),$

i.e., every $g \in H^{1/2}(\Omega; S^1)$ may be written as $g = e^{i\varphi}h$, with $\varphi \in H^{1/2}(\Omega; \mathbf{R})$ and $h \in H^{1/2}(\Omega; S^1) \cap W^{1,1}(\Omega; S^1)$. Moreover we have the control

$$\|arphi\|_{\mathrm{H}^{1/2}}^2 + \|h\|_{\mathrm{W}^{1,1}} \leq \mathrm{C}_\Omega \|g\|_{\mathrm{H}^{1/2}}^2$$

The interplay between the Ginzburg–Landau energy and minimal connections has been first pointed out in the important work of T. Rivière [37] (see also [34] and [38]) in the case of boundary data with a finite number of singularities. We are concerned here with a general boundary condition g in $H^{1/2}$.

Given $g \in H^{1/2}(\Omega; S^1)$, set

(1.10)
$$e_{\varepsilon,g} = e_{\varepsilon} = \min_{\mathrm{H}^{1}_{g}(\mathrm{G}; \mathbf{R}^{2})} \mathrm{E}_{\varepsilon}(u),$$

where

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{G} |\nabla u|^{2} + \frac{1}{4\varepsilon^{2}} \int_{G} (|u|^{2} - 1)^{2}$$

and

$$\mathrm{H}^{1}_{g}(\mathrm{G}; \mathbf{R}^{2}) = \{ u \in \mathrm{H}^{1}(\mathrm{G}; \mathbf{R}^{2}); u = g \text{ on } \Omega \}.$$

Theorem **6.** — For every $g \in H^{1/2}(\Omega; S^1)$ we have, as $\varepsilon \to 0$,

(1.11) $e_{\varepsilon} = \pi L_{G}(g) \log(1/\varepsilon) + o(\log(1/\varepsilon)).$

This result and some variants are proved in Section 5. For special g's (namely g's with finite number of singularities), formula (1.11) was first proved by T. Rivière in [37]. For a general $g \in H^{1/2}(\Omega; S^1)$, it was established in [12] that

$$e_{\varepsilon} \leq C(g) \log(1/\varepsilon)$$

where $C(g) = C(G) ||g||^2_{H^{1/2}(\Omega)}$; another proof of the same inequality is given in [38].

Using Theorem 6, we may characterize the classes X and Y in terms of the behavior of the Ginzburg–Landau energy as $\varepsilon \to 0$. Indeed, Theorem 6 implies that

$$\mathbf{Y} = \{ g \in \mathbf{H}^{1/2}(\Omega; \mathbf{S}^1) ; e_{\varepsilon} = o(\log(1/\varepsilon)) \}.$$

On the other hand, it is easy to see that

$$X = \{g \in H^{1/2}(\Omega; S^1); e_{\varepsilon} = O(1)\}.$$

Next, we present various estimates for minimizers u_{ε} in (1.10). In Section 6, we discuss the following theorem (originally announced in [13] and subsequently established with a simpler proof in [5]):

Theorem 7. — For every $g \in H^{1/2}(\Omega; S^1)$ we have

(1.12)
$$||u_{\varepsilon}||_{W^{1,p}(G)} \leq C_{p}, \quad \forall 1 \leq p < 3/2.$$

In fact, we will prove the following slight generalization of Theorem 7:

Theorem 7'. — For every $g \in H^{1/2}(\Omega; S^1)$, the family (u_{ε}) is relatively compact in $W^{1,p}$ for every p < 3/2.

Remark **1.3.** — It is very plausible that Theorem 7 still holds when p = 3/2. However, the conclusion fails for p > 3/2; see the discussion in Section 9.

In Section 7, we will establish stronger interior estimates:

Theorem 8. — For every $g \in H^{1/2}(\Omega; S^1)$, we have

(1.13) $||u_{\varepsilon}||_{W^{1,p}(K)} \leq C_{p,K}, \quad \forall 1 \leq p < 2, \quad \forall K \text{ compact in } G.$

Consequently, (u_{ε}) is relatively compact in $W_{loc}^{1,p}$ for every p < 2.

Remark **1.4.** — The conclusion of Theorem 8 fails for p = 2. Here is an example, with $G = B_1$, the unit ball in \mathbf{R}^3 , and $g(x_1, x_2, x_3) = (x_1, x_2)/\sqrt{x_1^2 + x_2^2}$. T. Rivière [37] (see also F.H. Lin and T. Rivière [34]) has proved that in this case $u_{\varepsilon} \rightarrow u = (x_1, x_2)/\sqrt{x_1^2 + x_2^2}$, and clearly this u does not belong to $H^1_{loc}(G)$.

Finally, we have a very precise result concerning the limit of u_{ε} when $g \in Y$:

Theorem **9.** — For every $g \in Y$, write (as in Theorem 3) $g = e^{i\varphi}$, with $\varphi \in H^{1/2} + W^{1,1}$. Then we have

$$u_{\varepsilon} \to u_* = e^{i\tilde{\varphi}} \text{ in } W^{1,p}(G) \cap C^{\infty}(G), \quad \forall p < 3/2,$$

where $\widetilde{\varphi}$ is the harmonic extension of φ .

JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

Theorem 9 and some of its variants are presented in Section 8. In Section 9 we prove some partial results about estimates in $W^{1,p}$ when p = 3/2. In Section 10 we list some open problems.

Most of the results in this paper were announced in [13].

The paper is organized as follows:

1.	Introduction	1
2.	Elementary properties of the minimal connection. Proof of Theorem 1	- 8
3.	Lifting for $g \in Y$. Characterization of Y. Proof of Theorem 3	21
4.	Lifting for a general $g \in H^{1/2}$. Optimizing the BV part of the phase. Proof of Theorems 4 and 5	26
	4.1. The dipole construction	27
	4.2. Construction of a map with prescribed singularities	30
	4.3. Lower bound estimates for the BV part of the phase	41
5.	Minimal connection and Ginzburg–Landau energy for $g \in H^{1/2}$. Proof of Theorem 6	47
6.	$W^{1,p}(G)$ compactness for $p < 3/2$ and $g \in H^{1/2}$. Proof of Theorem 7'	59
7.	Improved interior estimates. $W_{loc}^{1,p}(G)$ compactness for $p < 2$ and $g \in H^{1/2}$. Proof of Theorem 8	67
8.	Convergence for $g \in Y$. Proof of Theorem 9	79
9.	Further thoughts about $p = 3/2$	87
	9.1. Jerrard–Soner revisited	87
	9.2. $W^{1,3/2}$ – estimate of the limit	90
	9.3. A geometric estimate related to Proposition 3	98
10	. Open problems	100
11	Appendices	101
12	. References	113

2. Elementary properties of the minimal connection. Proof of Theorem 1

To every $g \in H^{1/2}(\Omega; \mathbb{R}^2)$ we associate a distribution $T(g) \in \mathscr{D}'(\Omega; \mathbb{R})$ in the following way: consider any $U \in H^1(G; \mathbb{R}^2)$ such that

$$U_{|\Omega} = g.$$

Given $\varphi \in \text{Lip}(\Omega; \mathbf{R})$, let $\Phi \in \text{Lip}(G; \mathbf{R})$ be such that

$$\Phi_{|\Omega} = \varphi.$$

Set

$$\mathbf{H} = 2(\mathbf{U}_{y} \wedge \mathbf{U}_{z}, \mathbf{U}_{z} \wedge \mathbf{U}_{x}, \mathbf{U}_{x} \wedge \mathbf{U}_{y}).$$

Lemma **3.** — The quantity $\int_{G} H \cdot \nabla \Phi$ depends only on g and φ .

Proof. — We first claim that $\int_{G} H \cdot \nabla \Phi$ does not depend on the choice of Φ . Observe that, if $U \in C^{\infty}(\overline{G}; \mathbf{R}^2)$, then

div H = 0.

By density, we find that

$$\operatorname{div} \mathbf{H} = 0$$
 in $\mathscr{D}'(\mathbf{G})$

for any $U \in H^1(G; \mathbb{R}^2)$. It follows easily that

$$\int_{G} \mathbf{H} \cdot \nabla \Psi = 0, \qquad \forall \Psi \in \text{ Lip } (G; \mathbf{R}) \text{ with } \Psi = 0 \text{ on } \Omega.$$

This implies the above claim.

Next, we verify that $\int_{G} H \cdot \nabla \Phi$ does not depend on the choice of U. Let V be another choice in H¹(G; **R**²) such that $V_{|\Omega} = g$. Set $W = V - U \in H_0^1$. Then, with obvious notation,

$$\int_{G} H_{V} \cdot \nabla \Phi = \int_{G} H_{U} \cdot \nabla \Phi + \int_{G} R_{1} \cdot \nabla \Phi + \int_{G} R_{2} \cdot \nabla \Phi,$$

with $\mathbf{R}_1 = (\mathbf{W}_y \wedge \mathbf{U}_z + \mathbf{U}_y \wedge \mathbf{W}_z, ...), \quad \mathbf{R}_2 = (\mathbf{W}_y \wedge \mathbf{W}_z, ...).$

We complete the proof of Lemma 3 with the help of

Lemma **4.** — For each
$$U \in H^1(G; \mathbb{R}^2)$$
 and $W \in H^1_0(G; \mathbb{R}^2)$ we have

$$\int_G R_1 \cdot \nabla \Phi = 0, \qquad \forall \Phi \in \text{Lip } (G; \mathbb{R}).$$

Proof of Lemma 4. — By density, it suffices to prove the above equality for $U \in C^{\infty}(\bar{G}; \mathbb{R}^2)$, $W \in C^{\infty}_0(\bar{G}; \mathbb{R}^2)$ and $\Phi \in C^{\infty}(\bar{G}; \mathbb{R})$. For such U and W, note that

$$\mathbf{W}_{y} \wedge \mathbf{U}_{z} + \mathbf{U}_{y} \wedge \mathbf{W}_{z} = (\mathbf{W} \wedge \mathbf{U}_{z})_{y} + (\mathbf{U}_{y} \wedge \mathbf{W})_{z}.$$

Therefore,

$$\int_{G} \mathbf{R}_{1} \cdot \nabla \Phi = - \int_{G} \left[(\mathbf{W} \wedge \mathbf{U}_{z}) \Phi_{xy} + (\mathbf{U}_{y} \wedge \mathbf{W}) \Phi_{xz} + \cdots \right] = 0.$$

As a consequence of Lemma 3, the map

$$\varphi\longmapsto \int\limits_{\mathcal{G}}\mathcal{H}\cdot\nabla\Phi$$

is a continuous linear functional on Lip $(\Omega; \mathbf{R})$. In particular, it is a distribution. Again by Lemma 3, this distribution depends only on $g \in H^{1/2}(\Omega; \mathbf{R}^2)$. We will denote it T(g). *Remark* **2.1.** — It is important to note that T has a "local" character. More precisely, if $g_1, g_2 \in H^{1/2}(\Omega; \mathbb{R}^2)$ are such that $g_1 = g_2$ in ω (where ω is an open subset of Ω), then

$$\langle T(g_1), \varphi \rangle = \langle T(g_2), \varphi \rangle, \quad \forall \varphi \in Lip \ (\Omega; \mathbf{R}), \text{ with supp } \varphi \subset \omega.$$

This is an easy consequence of Lemma 3 and of the fact that, if $\operatorname{supp} g \cap \operatorname{supp} \varphi = \emptyset$, then one may extend g to $U \in H^1$ and φ to $\Phi \in \operatorname{Lip}$ such that $\operatorname{supp} U \cap \operatorname{supp} \Phi = \emptyset$. Thus, one may define a local version of T as follows: if $g \in \operatorname{H}^{1/2}_{\operatorname{loc}}(\omega; \mathbb{R}^2)$, set

$$\langle \mathrm{T}(g), \varphi \rangle = \langle \mathrm{T}(h), \varphi \rangle, \qquad \forall \varphi \in \mathrm{C}^{1}_{0}(\omega; \mathbf{R}),$$

where h is any map in $H^{1/2}(\Omega; \mathbf{R}^2)$ such that h = g in a neighborhood of supp φ .

Remark **2.2.** — Another important property is the invariance under diffeomorphisms. More precisely, let Ω , G, g, φ be as above and let $\xi : \widetilde{\Omega} \to \Omega$ be an orient-ation-preserving diffeomorphism. Then

$$\langle \mathrm{T}(g), \varphi \rangle = \langle \mathrm{T}(\tilde{g}), \tilde{\varphi} \rangle,$$

where $\tilde{g} = g \circ \xi$ and $\tilde{\varphi} = \varphi \circ \xi$. Clearly, ξ extends as an orientation-preserving diffeomorphism (still denoted ξ) from a small tubular neighborhood of $\tilde{\Omega}$ in \tilde{G} to a tubular neighborhood of Ω in G (as in the proof of Lemma 5 below).

We have

$$\langle \mathbf{T}(g), \varphi \rangle = \int_{\mathbf{G}} \mathbf{H} \cdot \nabla \Phi = 2 \int_{\mathbf{G}} \mathbf{Jac} \ (\Phi, \mathbf{U}),$$

since

$$\mathbf{H} = 2(\mathbf{U}_{y} \wedge \mathbf{U}_{z}, \mathbf{U}_{z} \wedge \mathbf{U}_{x}, \mathbf{U}_{x} \wedge \mathbf{U}_{y}).$$

We may choose U and Φ supported in a small tubular neighborhood of Ω and set $\widetilde{U} = U \circ \xi$ and $\widetilde{\Phi} = \Phi \circ \xi$. Then, with obvious notation,

$$\langle \mathrm{T}(\tilde{g}), \tilde{\varphi} \rangle = \int_{\widetilde{G}} \widetilde{\mathrm{H}} \cdot \nabla \widetilde{\Phi} = 2 \int_{\widetilde{G}} \mathrm{Jac} \ (\widetilde{\Phi}, \widetilde{\mathrm{U}})$$
$$= 2 \int_{G} \mathrm{Jac} \ (\Phi, \mathrm{U}) = \langle \mathrm{T}(g), \varphi \rangle.$$

Similarly, if ω is an open subset of Ω and $\xi : \tilde{\omega} \to \omega$ is an orientation-preserving diffeomorphism, then (using Remark 2.1) we have

$$\langle \mathrm{T}(g), \varphi \rangle = \langle \mathrm{T}(\tilde{g}), \tilde{\varphi} \rangle$$

for every $g \in H^{1/2}_{loc}(\omega; \mathbb{R}^2)$ and $\varphi \in C^1_0(\omega; \mathbb{R})$. This is extremely useful because we can always choose a local diffeomorphism with $\widetilde{\Omega}$ flat near a point. More precisely, let (ω_i) be a finite covering of Ω with each ω_i diffeomorphic to a disc D via $\xi_i : D \to \omega_i$. Let (α_i) be a corresponding partition of unity. Then, $\forall \varphi \in \text{Lip}(\Omega; \mathbb{R})$,

$$\langle \mathrm{T}(g), \varphi \rangle = \sum \langle \mathrm{T}(g), \alpha_i \varphi \rangle$$

and we may compute each term $\langle T(g), \alpha_i \varphi \rangle$ in D using the fact that

$$\langle \mathrm{T}(g), \alpha_i \varphi \rangle = \langle \mathrm{T}(g \circ \xi_i), (\alpha_i \varphi) \circ \xi_i \rangle.$$

Here is a noticeable fact about T(g):

Lemma 5. — Let $g \in H^{1/2}(\Omega; \mathbb{R}^2)$. Then there exists an L¹-section F of the tangent bundle $T(\Omega)$ such that

$$\langle \mathrm{T}(g), \varphi \rangle = \int_{\Omega} \mathrm{F} \cdot \nabla \varphi, \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}).$$

Proof of Lemma 5. — For $\beta > 0$, let

$$G_{\beta} = \{X \in G; \delta(X) \le \beta\}, \Omega_{\beta} = \{X \in G; \delta(X) = \beta\},\$$

where $\delta(X) = \text{dist}(X, \Omega)$. Assuming that β is sufficiently small, say $\beta < \beta_0$, for every $X \in G_\beta$ there exists a unique point $\sigma(X) \in \Omega$ such that $\delta(X) = |X - \sigma(X)|$. Let $\Pi : G_\beta \to (0, \beta) \times \Omega$ be the mapping defined by $\Pi(X) = (\delta(X), \sigma(X))$. This mapping is a C²-diffeomorphism and its inverse is given by

$$\Pi^{-1}(t,\sigma) = \sigma - tn(\sigma), \qquad \forall (t,\sigma) \in (0,\beta) \times \Omega,$$

where $n(\sigma)$ is the outward unit normal to Ω at σ . For $0 < t < \beta_0$, let \mathbf{K}_t denote the mapping $\Pi^{-1}(t, \cdot)$ of Ω onto Ω_t .

Since $n(\sigma)$ is orthogonal to $\Omega_t = \Pi^{-1}(t, \Omega)$ at $\sigma - tn(\sigma)$, it follows that, for every integrable non-negative function f in G_{β} ,

$$\int_{\mathbf{G}_{\beta}} f = \int_{0}^{\beta} dt \int_{\Omega_{t}} f d\sigma_{t} = \int_{0}^{\beta} dt \int_{\Omega} f(\mathbf{K}_{t}(\sigma)) (\operatorname{Jac} \, \mathbf{K}_{t}) d\sigma,$$

where $d\sigma$, $d\sigma_t$ denote surface elements on Ω , Ω_t respectively.

We now make a special choice of U and Φ . Let

$$\Phi(\mathbf{X}) = \varphi(\sigma(\mathbf{X}))\zeta(\delta(\mathbf{X})),$$

where $\varphi \in C^1(\Omega; \mathbf{R})$ is the given test function and

$$\zeta(t) = \begin{cases} 1, & \text{for } 0 \le t \le \beta_0/2 \\ 0, & \text{for } t \ge \beta_0. \end{cases}$$

We take U to be any H¹ extension of g such that U(X) = 0 if $\delta(X) \ge \beta_0/2$. Hence

.

(2.1)

$$\langle \mathbf{T}(g), \varphi \rangle = \int_{\mathbf{G}} \mathbf{H} \cdot \nabla \Phi = \int_{\mathbf{G}_{\beta_0/2}} \mathbf{H} \cdot \nabla \Phi$$

$$= \int_{0}^{\beta_0/2} dt \int_{\Omega} \mathbf{H} \cdot \nabla \Phi(\mathbf{K}_t(\sigma)) (\operatorname{Jac} \mathbf{K}_t) d\sigma.$$

For every $\sigma \in \Omega$, fix a frame $\mathscr{F}_{\sigma} = (x, y)$ as in Lemma 1. We already observed that $H \cdot \nabla \Phi$ can be computed (pointwise) in any direct orthonormal frame of \mathbb{R}^3 . We choose, at any points $X \in G_{\beta_0/2}$, the special frame $(\mathscr{F}_{\sigma(X)}, n(\sigma(X)))$. Then, we have, $\forall t \in (0, \beta_0/2), \forall \sigma \in \Omega$,

(2.2)
$$(\mathbf{H} \cdot \nabla \Phi)(\mathbf{K}_t(\sigma)) = 2(\mathbf{U}_y \wedge \mathbf{U}_z)(\mathbf{K}_t(\sigma))\varphi_x(\sigma) + 2(\mathbf{U}_z \wedge \mathbf{U}_x)(\mathbf{K}_t(\sigma))\varphi_y(\sigma).$$

We now insert (2.2) into (2.1) and obtain the conclusion of Lemma 5 with $F(\sigma) = F_1(\sigma) \frac{\partial}{\partial x} + F_2(\sigma) \frac{\partial}{\partial y}$, where

$$F_1(\sigma) = 2 \int_0^{\beta_0/2} (U_y \wedge U_z) (K_t(\sigma)) (Jac K_t) dt$$

and

$$\mathbf{F}_2(\boldsymbol{\sigma}) = 2 \int_{0}^{\beta_0/2} (\mathbf{U}_z \wedge \mathbf{U}_x) (\mathbf{K}_t(\boldsymbol{\sigma})) (\operatorname{Jac} \mathbf{K}_t) dt.$$

We now turn to the

Proof of Lemma 1. - It suffices to prove that

$$\int_{G} \mathbf{H} \cdot \nabla \Phi = \int_{\Omega} \left[(g \wedge g_x) \varphi_y - (g \wedge g_y) \varphi_x \right]$$

when $U \in C^{\infty}(\overline{G}; \mathbb{R}^2)$ and $\Phi \in C^{\infty}(\overline{G}; \mathbb{R})$. We write

$$\begin{split} \mathbf{H} &= \big((\mathbf{U} \wedge \mathbf{U}_z)_y + (\mathbf{U}_y \wedge \mathbf{U})_z, (\mathbf{U} \wedge \mathbf{U}_x)_z + (\mathbf{U}_z \wedge \mathbf{U})_x, \\ &\quad (\mathbf{U} \wedge \mathbf{U}_y)_x + (\mathbf{U}_x \wedge \mathbf{U})_y \big). \end{split}$$

Integration by parts yields

$$\int_{G} \mathbf{H} \cdot \nabla \Phi = \int_{\Omega} \mathbf{U} \wedge \det (\nabla \mathbf{U}, \nabla \Phi, \vec{n}).$$

By Lemma 3, we may assume further that $\frac{\partial U}{\partial n} = 0$ and $\frac{\partial \Phi}{\partial n} = 0$.

For each $\sigma \in \Omega$, we compute det $(\nabla U, \nabla \Phi, \vec{n})$ in the frame given by Lemma 1. We have

$$\det \left(\nabla \mathbf{U}, \nabla \Phi, \vec{n}\right) = \frac{\partial \mathbf{U}}{\partial x} \frac{\partial \Phi}{\partial y} - \frac{\partial \mathbf{U}}{\partial y} \frac{\partial \Phi}{\partial x} = g_x \varphi_y - g_y \varphi_x,$$

and the conclusion follows.

Here are some straightforward variants and consequences of Lemma 1 and Remarks 2.1–2.2:

Lemma **6.** — Let
$$\omega$$
 be an open subset of Ω . Let
 $g \in \mathrm{H}^{1/2}(\omega; \mathbf{R}^2) \cap \mathrm{W}^{1,1}(\omega) \cap \mathrm{L}^{\infty}(\omega).$

Then

(2.3)
$$\langle \mathrm{T}(g), \varphi \rangle = \int_{\omega} [(g \wedge g_x)\varphi_y - (g \wedge g_y)\varphi_x], \quad \forall \varphi \in \mathrm{C}^1_0(\omega; \mathbf{R}).$$

Lemma 7. — Let ω be an open subset of Ω . Let $g \in H^{1/2}(\omega; S^1) \cap VMO(\omega; S^1)$. Then

$$\langle \mathbf{T}(g), \varphi \rangle = 0, \quad \forall \varphi \in \mathbf{C}_0^1(\omega; \mathbf{R}).$$

Proof of Lemma 7. — In view of Remark 2.2, we may assume that ω is a disc. There is a sequence $(g_n) \in C^{\infty}(\omega; S^1)$ such that $g_n \to g$ in $H^{1/2}_{loc}(\omega)$ (see [22]). Hence $\langle T(g_n), \varphi \rangle \to \langle T(g), \varphi \rangle, \forall \varphi \in C^1_0(\omega; \mathbf{R})$, by (2.5) below. On the other hand, by Lemma 6,

$$\langle \mathbf{T}(g_n), \varphi \rangle = \int_{\omega} [(g_n \wedge g_{nx})\varphi_y - (g_n \wedge g_{ny})\varphi_x]$$
$$= 2 \int_{\omega} (g_{nx} \wedge g_{ny})\varphi = 0$$

since $|g_n| = 1$ on ω .

There is yet another representation formula for T:

Lemma 8. — Let $g = (g_1, g_2) \in H^{1/2}(\Omega; \mathbb{R}^2)$. Then if $\omega \subset \Omega$ is diffeomorphic to a disc $\tilde{\omega}$ as in Remark 2.2, we have, $\forall \varphi \in C_0^{\infty}(\omega; \mathbb{R})$,

(2.4)
$$\langle \mathbf{T}(g), \varphi \rangle = \langle \tilde{g}_1, (\tilde{g}_2 \tilde{\varphi}_y)_x - (\tilde{g}_2 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}} - \langle \tilde{g}_2, (\tilde{g}_1 \tilde{\varphi}_y)_x - (\tilde{g}_1 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}}.$$

Observe that, e.g. $\tilde{g}_2 \tilde{\varphi}_y \in \mathrm{H}^{1/2}(\tilde{\omega})$, so that $(\tilde{g}_2 \tilde{\varphi}_y)_x \in \mathrm{H}^{-1/2}(\tilde{\omega})$.

Proof of Lemma 8. — When g is smooth, (2.4) coincides with (2.3). The general case is obtained by approximation.

We now describe some elementary but useful facts about T and L:

Lemma **9.** — We have, for $g, h \in H^{1/2}(\Omega; \mathbb{R}^2), \varphi \in Lip (\Omega; \mathbb{R})$,

(2.5)
$$|\langle \mathbf{T}(g) - \mathbf{T}(h), \varphi \rangle| \le C|g - h|_{\mathbf{H}^{1/2}}(|g|_{\mathbf{H}^{1/2}} + |h|_{\mathbf{H}^{1/2}})|\varphi|_{\mathbf{Lip}},$$

(2.6)
$$|\mathcal{L}(g) - \mathcal{L}(h)| \le C|g - h|_{\mathrm{H}^{1/2}}(|g|_{\mathrm{H}^{1/2}} + |h|_{\mathrm{H}^{1/2}})$$

and, in particular,

$$\mathcal{L}(g) \leq \mathcal{C}|g|_{\mathcal{H}^{1/2}}^2.$$

If, in addition, g and h are S^1 -valued, then

(2.7)
$$T(gh) = T(g) + T(h),$$

(2.8)
$$L(gh) \le C|g - h|_{H^{1/2}}(|g|_{H^{1/2}} + |h|_{H^{1/2}})$$

and

$$(2.9) L(gh) \le L(g) + L(h).$$

Here, we have identified \mathbf{R}^2 with \mathbf{C} and *gh* denotes complex multiplication, while $||_{\mathbf{H}^{1/2}}$ denotes the canonical seminorm on $\mathbf{H}^{1/2}$:

$$|g|_{\mathrm{H}^{1/2}}^2 = \int_{\Omega} \int_{\Omega} \frac{|g(x) - g(y)|^2}{d(x, y)^3} dx dy.$$

The constant C in this lemma depends only on Ω .

Proof. — Let U, V \in H¹(G; **R**²) be the harmonic extensions of *g*, respectively *h*. Then clearly, $\forall \Phi \in$ Lip (G; **R**),

$$\begin{split} &\int\limits_{G} H_{U} \cdot \nabla \Phi \\ &\leq \int\limits_{G} H_{V} \cdot \nabla \Phi + C \|\nabla U - \nabla V\|_{L^{2}} (\|\nabla U\|_{L^{2}} + \|\nabla V\|_{L^{2}}) \|\nabla \Phi\|_{L^{\infty}}, \end{split}$$

so that (2.5) follows. Moreover, we find that

~

$$L(g) \le L(h) + C|g - h|_{H^{1/2}}(|g|_{H^{1/2}} + |h|_{H^{1/2}}).$$

Reversing the roles of g and h, yields (2.6).

The proof of (2.7)–(2.9) relies on the following

Lemma 10. — For $g, h \in H^{1/2}(\Omega; \mathbb{R}^2) \cap L^{\infty}$, we have, $\forall \varphi \in C_0^{\infty}(\omega; \mathbb{R})$, with the same notation as in Lemma 8,

$$\begin{split} \langle \mathrm{T}(gh), \varphi \rangle &= \langle |\tilde{h}|^2 \tilde{g}_1, (\tilde{g}_2 \tilde{\varphi}_y)_x - (\tilde{g}_2 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}} \\ &- \langle |\tilde{h}|^2 \tilde{g}_2, (\tilde{g}_1 \tilde{\varphi}_y)_x - (\tilde{g}_1 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}} \\ &+ \langle |\tilde{g}|^2 \tilde{h}_1, (\tilde{h}_2 \varphi_y)_x - (\tilde{h}_2 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}} \\ &- \langle |\tilde{g}|^2 \tilde{h}_2, (\tilde{h}_1 \tilde{\varphi}_y)_x - (\tilde{h}_1 \tilde{\varphi}_x)_y \rangle_{\mathrm{H}^{1/2}, \mathrm{H}^{-1/2}}. \end{split}$$

Note that the above equality makes sense since $H^{1/2} \cap L^{\infty}$ is an algebra.

Proof of Lemma 10. — When g and h are smooth, the above equality is clear by Lemma 8. The general case follows by approximation, using the fact that, if $g_n \to g$ in $\mathrm{H}^{1/2}$, $h_n \to h$ in $\mathrm{H}^{1/2}$, $||g_n||_{\mathrm{L}^{\infty}} \leq \mathrm{C}$, $||h_n||_{\mathrm{L}^{\infty}} \leq \mathrm{C}$, then $g_n h_n \to gh$ in $\mathrm{H}^{1/2}$ (this is proved using dominated convergence).

Proof of Lemma 9 completed. — When |g| = |h| = 1, we find that T(gh) = T(g) + T(h), by combining Lemma 8 and Lemma 10. Also in this case, we have

$$T(g\overline{h}) = T(g) + T(\overline{h}) = T(g) - T(h).$$

Using (2.5), we find that

$$\mathcal{L}(g\bar{h}) = \sup_{|\varphi|_{\text{Lip}} \le 1} \langle \mathcal{T}(g) - \mathcal{T}(h), \varphi \rangle \le \mathcal{C}|g - h|_{\mathcal{H}^{1/2}} \ (|g|_{\mathcal{H}^{1/2}} + |h|_{\mathcal{H}^{1/2}}).$$

Finally, inequality (2.9) is a trivial consequence of (2.7).

Remark **2.3.** — There is an alternative proof of (2.7)–(2.9), which consists of combining Lemma 2 (proved below) with the density result of T. Rivière [38]; *see* Lemma 11.

We now consider the special case where $g \in H^{1/2}(\Omega; S^1)$ is "smooth" except at a finite number of singularities:

Proof of Lemma 2. — The proof consists of 3 steps:

Step 1. — Supp $T(g) \subset \bigcup_{i=1}^{k} \{a_i\}$

This is a trivial consequence of Lemma 7.

Step 2. — T(g) =
$$\sum_{j=1} c_j \delta_{a_j}$$
.

In view of Remark 2.2 we may assume that Ω is flat near each a_j . We first note that, by a celebrated result of L. Schwartz, T(g) is a finite sum of the form $T(g) = \sum_{i,\alpha} c_{j,\alpha} D^{\alpha} \delta_{\alpha_i}$.

We want to prove that $c_{j,\alpha} = 0$ if $\alpha \neq 0$. For this purpose, it suffices to check that $\langle T(g), \varphi \rangle = 0$ if $\varphi(a_j) = 0, \forall j$. Let φ be any such function. Then, clearly, there is a sequence $(\varphi_n) \subset C_0^1(\Omega \setminus \bigcup_{j=1}^k \{a_j\})$ such that $\nabla \varphi_n \to \nabla \varphi$ a.e. and $\|\nabla \varphi_n\|_{L^{\infty}} \leq C$. Using Lemma 5, we obtain, by dominated convergence, that $\langle T(g), \varphi_n \rangle \to \langle T(g), \varphi \rangle$. On the other hand, $\langle T(g), \varphi_n \rangle = 0$ by Step 1.

Step **3.** — We have $c_i = 2\pi d_i$ where $d_i = \deg(g, a_i)$.

Let φ be a smooth function on Ω such that

$$\varphi(x) = \begin{cases} 1, \text{ for } |x - a_j| < \mathbb{R}/2\\ 0, \text{ for } |x - a_j| \ge \mathbb{R} \end{cases},$$

where R > 0 is sufficiently small.

Note that $\nabla \varphi = 0$ outside the annulus $\mathscr{A} = \{x \in \Omega; |x - a_j| \in [\mathbb{R}/2, \mathbb{R}]\}$ and, moreover, that $g \in \mathbb{H}^1$ on the same annulus. By Lemma 8 we find that

$$\langle \mathbf{T}(g), \varphi \rangle = \int_{\mathscr{A}} g_1[(g_2\varphi_y)_x - (g_2\varphi_x)_y] - \int_{\mathscr{A}} g_2[(g_1\varphi_y)_x - (g_1\varphi_x)_y].$$

Integration by parts yields

$$\langle \mathrm{T}(g), \varphi \rangle = \int_{\mathscr{A}} [(g_{y} \wedge g)\varphi_{x} + (g \wedge g_{x})\varphi_{y}].$$

If g is smooth on \mathcal{A} , and if we integrate by parts once more, we find that

$$\langle \mathrm{T}(g), \varphi \rangle = -\int_{\Sigma} (g_{y} \wedge g) v_{x} - \int_{\Sigma} (g \wedge g_{x}) v_{y},$$

where $\sum = \{x \in \Omega; |x - a_j| = \mathbb{R}/2\}$ and ν is the inward normal to \mathscr{A} on \sum . With τ the direct tangent vector on \sum , we have

$$-(g_{y} \wedge g)\nu_{x} - (g \wedge g_{x})\nu_{y} = g \wedge g_{\tau}.$$

Since g is S¹-valued, we find that

$$\langle \mathrm{T}(g), \varphi \rangle = 2\pi \deg(g, a_j).$$

For a general $g \in H^1(\mathscr{A}; S^1)$, we use the fact that $C^{\infty}(\overline{\mathscr{A}}; S^1)$ is dense in $H^1(\mathscr{A}; S^1)$ (see [41], [10] and [22]) and the stability of the degree under $H^{1/2}$ convergence (see [17] and [22]), to conclude that $\langle T(g), \varphi \rangle = 2\pi \deg(g, a_j)$.

We now recall a useful density result due to T. Rivière, which is the $H^{1/2}$ analogue of a result of Bethuel and Zheng [10] concerning H^1 maps from B^3 to S^2 (see also a related result of Bethuel [4] concerning fractional Sobolev spaces).

Lemma **11** (Rivière [38]). — Let \mathscr{R} denote the class of maps belonging to $W^{1,p}(\Omega; S^1)$, $\forall p < 2$, which are C^{∞} on Ω except at a finite number of points. Then \mathscr{R} is dense in $H^{1/2}(\Omega; S^1)$.

Remark **2.4.** — The above assertion does not appear in Rivière [38] but it is implicit in his proof; for the convenience of the reader we present a simple proof in Remark 5.1 - see also Appendix B for a more precise statement.

Remark **2.5.** — Similar density results hold in greater generality. Let $\Omega \subset \mathbf{R}^2$ be a smooth bounded domain. Let $0 \le s \le \infty$, $1 \le p \le \infty$ and

 $\mathscr{R}^{s,p} = \{ u \in W^{s,p}(\Omega; S^1); u \text{ is } C^{\infty} \text{ except at a finite number of points} \}.$

Then $\mathscr{R}^{s,p}$ is dense in $W^{s,p}(\Omega; S^1)$ for all values of *s* and *p* (see [16]); this extends earlier results in [10], [25] and [4].

The density result combined with Lemma 2 yields "concrete" representations of the distribution T(g) and of the length of a minimal connection L(g) for a general $g \in H^{1/2}(\Omega; S^1)$; this is the content of Theorem 1.

Proof of Theorem 1. — We start by recalling a result of Brezis, Coron and Lieb [19] (*see* also [18]).

Lemma **12** (Brezis, Coron and Lieb [19]). — Let (X, d) be a metric space. Let $P_1, ..., P_k$, and $N_1, ..., N_k$ be two collections of k points in X. Then

$$\mathbf{L} = \min_{\sigma \in \mathbf{S}_{k}} \sum d(\mathbf{P}_{j}, \mathbf{N}_{\sigma(j)}) = \operatorname{Max}\left\{\sum_{j} (\varphi(\mathbf{P}_{j}) - \varphi(\mathbf{N}_{j})); |\varphi|_{\operatorname{Lip}} \leq 1\right\},\$$

where S_k denotes the group of permutation of $\{1, 2, ..., k\}$.

The analogue of Lemma 12 for infinite sequences, which we need, is

Lemma 12'. — Let (X, d) be a metric space. Let (P_i) , (N_i) be two infinite sequences such that $\sum_{i=1}^{n} d(P_i, N_i) < \infty$. Let

(2.10)
$$L = \sup_{\varphi} \bigg\{ \sum_{i} (\varphi(\mathbf{P}_i) - \varphi(\mathbf{N}_i)); \ |\varphi|_{\mathrm{Lip}} \le 1 \bigg\}.$$

Then

$$\mathbf{L} = \inf_{(\widetilde{\mathbf{N}}_i)} \bigg\{ \sum_i d(\mathbf{P}_i, \widetilde{\mathbf{N}}_i); \ \sum_i (\delta_{\mathbf{P}_i} - \delta_{\widetilde{\mathbf{N}}_i}) = \sum_i (\delta_{\mathbf{P}_i} - \delta_{\mathbf{N}_i}) \bigg\}.$$

Here, and throughout the rest of the paper, the equality

$$\sum_{i} (\delta_{\widetilde{\mathbf{P}}_{i}} - \delta_{\widetilde{\mathbf{N}}_{i}}) = \sum_{i} (\delta_{\mathbf{P}_{i}} - \delta_{\mathbf{N}_{i}})$$

for sequences $(\widetilde{\mathbf{P}}_i)$, $(\widetilde{\mathbf{N}}_i)$, (\mathbf{P}_i) , (\mathbf{N}_i) such that

$$\sum_{i} d(\widetilde{\mathbf{P}}_{i}, \widetilde{\mathbf{N}}_{i}) < \infty \text{ and } \sum_{i} d(\mathbf{P}_{i}, \mathbf{N}_{i}) < \infty$$

means that

$$\sum_{i} (\varphi(\widetilde{\mathbf{P}}_{i}) - \varphi(\widetilde{\mathbf{N}}_{i})) = \sum_{i} (\varphi(\mathbf{P}_{i}) - \varphi(\mathbf{N}_{i})), \quad \forall \varphi \in \operatorname{Lip}.$$

Remark **2.6.** — A slightly different way of stating Lemma 12' is the following. Given sequences (P_i), (N_i) in a metric space X with $\sum_i d(P_i, N_i) < \infty$, then

(2.10')
$$L = \inf_{(\widetilde{P}_i), (\widetilde{N}_i)} \left\{ \sum_i d(\widetilde{P}_i, \widetilde{N}_i); \sum_i (\delta_{\widetilde{P}_i} - \delta_{\widetilde{N}_i}) = \sum_i (\delta_{P_i} - \delta_{N_i}) \right\}$$
$$= \sup_{\varphi} \left\{ \sum_i (\varphi(P_i) - \varphi(N_i)); \varphi \in \operatorname{Lip}(X; \mathbf{R}) \text{ and } |\varphi|_{\operatorname{Lip}} \le 1 \right\}.$$

It is easy to see that the supremum in (2.10') is always achieved. (Let (φ_n) be a maximizing sequence. By a diagonal process, we may assume that $\varphi_n(\mathbf{P}_i)$ and $\varphi_n(\mathbf{N}_i)$ con-

verge for every *i* to limits which define a function ψ_0 on the set {P_i, N_i, *i* = 1, 2, ...} with $|\psi_0|_{\text{Lip}} \leq 1$. Next, ψ_0 is defined on all of X by a standard extension technique preserving the condition $|\psi|_{\text{Lip}} \leq 1$). A natural question is whether the infimum in (2.10') is achieved. The answer is negative. An interesting example, with X = [0, 1], has been constructed by A. Ponce [36].

Proof of Lemma 12'. — Let (\widetilde{N}_i) be such that $\sum (\delta_{P_i} - \delta_{\widetilde{N}_i}) = \sum (\delta_{P_i} - \delta_{N_i}).$

Then

$$\sum_{i} (\varphi(\mathbf{P}_{i}) - \varphi(\mathbf{N}_{i})) \leq \sum_{i} d(\mathbf{P}_{i}, \widetilde{\mathbf{N}}_{i})$$

and thus

$$\mathbf{L} \leq \sum_{i} d(\mathbf{P}_{i}, \widetilde{\mathbf{N}}_{i}).$$

Conversely, given $\varepsilon > 0$, we will construct a sequence (\widetilde{N}_i) such that $\sum_i d(P_i, \widetilde{N}_i) \le L + \varepsilon$ and $\sum_i (\delta_{P_i} - \delta_{\widetilde{N}_i}) = \sum_i (\delta_{P_i} - \delta_{N_i})$.

Let n_0 be such that $\sum_{j>n_0} d(\mathbf{P}_j, \mathbf{N}_j) < \varepsilon/2$. Let σ_0 be a permutation of the integers $\{1, 2, ..., n_0\}$ which achieves

$$\operatorname{Min}_{\sigma} \sum_{j=1}^{n_0} d(\mathbf{P}_j, \mathbf{N}_{\sigma(j)}).$$

Set

$$\widetilde{\mathbf{N}}_{j} = \begin{cases} \mathbf{N}_{\sigma_{0}(j)}, & \text{for} \quad 1 \leq j \leq n_{0} \\ \mathbf{N}_{j}, & \text{for} \quad j > n_{0} \end{cases}.$$

Clearly,

$$\sum_{j\geq 1} ig(\delta_{\mathrm{P}_j} - \delta_{\widetilde{\mathrm{N}}_j} ig) = \sum_{j\geq 1} ig(\delta_{\mathrm{P}_j} - \delta_{\mathrm{N}_j} ig) \,.$$

By definition of L, we have

$$\begin{split} \mathbf{L} &= \sup_{|\varphi|_{\mathrm{Lip}} \leq 1} \sum_{j \geq 1} (\varphi(\mathbf{P}_j) - \varphi(\mathbf{N}_j)) \\ &\geq \max_{|\varphi|_{\mathrm{Lip}} \leq 1} \sum_{j=1}^{n_0} (\varphi(\mathbf{P}_j) - \varphi(\mathbf{N}_j)) - \varepsilon/2 \\ &= \sum_{j=1}^{n_0} d(\mathbf{P}_j, \widetilde{\mathbf{N}}_j) - \varepsilon/2, \end{split}$$

by Lemma 12. Thus

$$\sum_{j\geq 1} d(\mathbf{P}_j, \widetilde{\mathbf{N}}_j) \leq \mathbf{L} + \varepsilon/2 + \varepsilon/2.$$

Proof of Theorem 1 continued. — For $g \in \mathscr{R}$ we have

$$\mathcal{L}(g) = \sum_{j=1}^{k} d(\mathbf{P}_j, \mathbf{N}_j)$$

and

$$\langle \mathrm{T}(g), \varphi \rangle = 2\pi \sum_{j=1}^{k} \left(\varphi(\mathrm{P}_{j}) - \varphi(\mathrm{N}_{j}) \right)$$

for some suitable integer k depending on g and suitable points $P_1, ..., P_k, N_1, ..., N_k$ in Ω . Let now $g \in \mathrm{H}^{1/2}(\Omega; \mathrm{S}^1)$ and consider a sequence $(g_n) \subset \mathscr{R}$ such that $|g_n - g|_{\mathrm{H}^{1/2}}$ $\leq 1/2^{n}$.

By Lemma 2, $T(g_{n+1}) - T(g_n)$ is a finite sum of the form $2\pi \sum (\delta_{Q_j} - \delta_{S_j})$. By Lemma 12, after relabeling the points (Q_i) and (S_i) , we may assume that

$$\mathrm{T}(g_1) = 2\pi \sum_{j=1}^{k_1} (\delta_{\mathrm{P}_j} - \delta_{\mathrm{N}_j})$$

and

$$\mathrm{T}(g_{n+1}) - \mathrm{T}(g_n) = 2\pi \sum_{j=k_n+1}^{k_{n+1}} (\delta_{\mathrm{P}_j} - \delta_{\mathrm{N}_j}), \forall n \ge 1$$

with

$$2\pi \sum_{k_n+1}^{k_{n+1}} d(\mathbf{P}_j, \mathbf{N}_j) = \operatorname{Sup} \left\{ \langle \mathrm{T}(g_{n+1}) - \mathrm{T}(g_n), \varphi \rangle; \\ \varphi \in \operatorname{Lip} (\Omega; \mathbf{R}), |\varphi|_{\operatorname{Lip}} \le 1 \right\}$$

$$\leq C|g_{n+1} - g_n|_{H^{1/2}}(|g_{n+1}|_{H^{1/2}} + |g_n|_{H^{1/2}}) \leq C/2^n \text{ (by (2.5))}$$

We find that $T(g_n) = 2\pi \sum_{j=1}^{k_n} (\delta_{P_j} - \delta_{N_j})$ and that $\sum_{j\geq 1} d(P_j, N_j) < \infty$.

Then for every $\varphi \in \text{Lip}(\Omega; \mathbf{R})$, the sequence $(\langle T(g_n), \varphi \rangle)$ converges to $2\pi \sum_{j\geq 1} (\varphi(\mathbf{P}_j) - \varphi(\mathbf{N}_j))$. By Lemma 9, we find that $T(g) = 2\pi \sum_{j\geq 1} (\delta_{\mathbf{P}_j} - \delta_{\mathbf{N}_j})$. The second assertion in Theorem 1 is an immediate consequence of Lemma 12'

and Remark 2.6.

The last property in Theorem 1, namely the fact that, if T(g) is a measure, then T(g) may be represented as a *finite* sum of the form $2\pi \sum_{j} (\delta_{P_j} - \delta_{N_j})$, was originally announced in [13] and established using a technique of Jerrard and Soner [31], [32], which was based on the (Jacobian) structure of T(g). We do not reproduce this argument since Smets [43] has proved the following general result:

Theorem 10 (Smets [43]). — Let X be a compact metric space and let (P_j) , $(N_j) \subset X$ be infinite sequences such that $\sum d(P_j, N_j) < \infty$. Assume that

$$\left|\sum_{j} \left(\varphi(\mathbf{P}_{j}) - \varphi(\mathbf{N}_{j})\right)\right| \leq C \sup_{x \in \mathbf{X}} |\varphi(x)|, \qquad \forall \varphi \in \operatorname{Lip} (\mathbf{X}).$$

Then one may find two finite collections of points $(Q_1, ..., Q_k)$ and $(M_1, ..., M_k)$, such that

$$\sum_{j=1}^{\infty} \left(\varphi(\mathbf{P}_j) - \varphi(\mathbf{N}_j) \right) = \sum_{i=1}^{k} \left(\varphi(\mathbf{Q}_i) - \varphi(\mathbf{M}_i) \right), \qquad \forall \varphi \in \operatorname{Lip} (\mathbf{X}).$$

We refer to [43] and to [36] for more general results.

Remark **2.7.** — A final word about the possibility of defining a minimal connection L(g) when $g \in W^{s,p}(\Omega; S^1)$, for $0 \le s \le \infty$ and $1 \le p \le \infty$. Recall (see [16] and Remark 2.5) that $\mathscr{R}^{s,p}$ is always dense in $W^{s,p}(\Omega; S^1)$ and note that we may always define L(g) for $g \in \mathscr{R}^{s,p}$. A natural question is whether there is a continuous extension of L to $W^{s,p}$:

a) When sp < 1, the answer is negative. Indeed, let $g \in \mathscr{R}^{s,p}$ be a map with singularities of nonzero degree, so that L(g) > 0. There is a sequence (g_n) in $C^{\infty}(\Omega; S^1)$ such that $g_n \to g$ in $W^{s,p}$ (see Escobedo [25]). Clearly, $L(g_n) = 0$, $\forall n$, and $L(g_n)$ does not converge to L(g).

b) When $sp \ge 2$, the answer is positive since L(g) = 0, $\forall g \in \mathscr{R}^{s,p}$ (any singularity in $W^{s,p}$ must have zero degree since $W^{s,p} \subset VMO$).

c) When $1 \le sp < 2$, the answer is positive. For s > 1/2 the proof is easy (indeed if $s \in (1/2, 1)$, then $W^{s,p}(\Omega; S^1) \subset H^{1/2}$, while if $s \ge 1$, then $W^{s,p} \subset W^{1,1}$ and we may apply the result of Demengel [24] which asserts the existence of a minimal connection in $W^{1,1}$). The case where $s \le 1/2$ is delicate and studied in [16].

3. Lifting for $g \in Y$. Characterization of Y. Proof of Theorem 3

The main ingredient in this Section is the following estimate, whose proof has already been presented in Bourgain-Brezis [11]. We reproduce it here for the convenience of the reader.

Theorem **3'.** — Let ψ be a smooth real-valued function on the d-dimensional torus \mathbf{T}^d and set $g = e^{i\psi}$. Then

$$(\mathbf{3.1}) \qquad |\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}(d)(1+|g|_{\mathrm{H}^{1/2}})|g|_{\mathrm{H}^{1/2}}.$$

Here, | | denotes the canonical seminorm on $H^{1/2}$ (respectively $H^{1/2} + W^{1,1}$).

Proof of Theorem 3'. — Write $g - \int g$ as a Fourier series,

$$g - \oint g = \sum_{\xi \in \mathbf{Z}^d \setminus \{0\}} \hat{g}(\xi) e^{ix \cdot \xi}.$$

The H^{1/2}-component in the decomposition of ψ will be obtained as a paraproduct of $g - \int g$ and $\bar{g} - \int \bar{g}$. Let

(3.2)
$$\mathbf{P} = \sum_{k} \left[\sum_{\xi_2} \lambda_k(|\xi_2|) \overline{\hat{g}}(\xi_2) e^{-ix\cdot\xi_2} \right] \left[\sum_{2^k \le |\xi_1| < 2^{k+1}} \hat{g}(\xi_1) e^{ix\cdot\xi_1} \right],$$

where, for each k, we let $0 \le \lambda_k \le 1$ be a smooth function on \mathbf{R}_+ as below:

We claim that

$$(\mathbf{3.3}) \qquad |\mathbf{P}|_{\mathbf{H}^{1/2}} \le \mathbf{C} \|g\|_{\infty} |g|_{\mathbf{H}^{1/2}}$$

and

(**3.4**)
$$|\psi - \frac{1}{\iota} \mathbf{P}|_{\mathbf{W}^{1,1}} \le \mathbf{C}|g|_{\mathbf{H}^{1/2}}^2.$$

Proof of (3.3). — This is totally obvious from the construction since, with $\| \|_{p}$ standing for the L^{*p*}-norm, we have

$$|\mathbf{P}|_{\mathbf{H}^{1/2}}^{2} \sim \sum_{k} 2^{k} \left\| \left[\sum_{\xi_{2}} \lambda_{k}(|\xi_{2}|) \overline{\hat{g}}(\xi_{2}) e^{-\iota_{X} \cdot \xi_{2}} \right] \left[\sum_{2^{k} \le |\xi_{1}| < 2^{k+1}} \widehat{g}(\xi_{1}) e^{\iota_{X} \cdot \xi_{1}} \right] \right\|_{2}^{2}$$

$$(\mathbf{3.5})$$

$$\leq \sum_{k} 2^{k} \left\| \sum_{k} \lambda_{k}(|\xi|) \overline{\hat{g}}(\overline{\xi}) e^{-\iota_{X} \cdot \xi} \right\|_{\infty}^{2} \left[\sum_{|\xi| \sim 2^{k}} |\widehat{g}(\xi)|^{2} \right]$$

$$\leq \mathbf{C} \|g\|_{\infty}^{2} |g|_{\mathbf{H}^{1/2}}^{2}.$$

Proof of (3.4). — We estimate, for instance,

$$(\mathbf{3.6}) \qquad \left\| \partial_1 \psi - \frac{1}{\iota} \partial_1 \mathbf{P} \right\|_{\mathbf{L}^1}.$$

Thus, letting $\boldsymbol{\xi} = (\boldsymbol{\xi}^1, ..., \boldsymbol{\xi}^d) \in \mathbf{Z}^d$, we have

(3.7)
$$\partial_1 \psi = \frac{1}{\iota} \overline{g} \partial_1 g = \sum_{\xi_1, \xi_2 \in \mathbf{Z}^d} \xi_1^1 \widehat{g}(\xi_1) \overline{\widehat{g}(\xi_2)} e^{\iota x \cdot (\xi_1 - \xi_2)}$$

and, by (3.2), we find

(3.8)
$$\frac{1}{\iota}\partial_{1}\mathbf{P} = \sum_{k} \sum_{\substack{2^{k} \le |\xi_{1}| < 2^{k+1} \\ \xi_{2} \in \mathbf{Z}^{d}}} (\xi_{1}^{1} - \xi_{2}^{1})\lambda_{k}(|\xi_{2}|)\hat{g}(\xi_{1})\overline{\hat{g}(\xi_{2})}e^{\iota x \cdot (\xi_{1} - \xi_{2})}$$

and

(**3.9**)
$$\partial_1 \psi - \frac{1}{\iota} \partial_1 \mathbf{P} = \sum_k \sum_{\substack{2^k \le |\xi_1| \le 2^{k+1} \\ \xi_2 \in \mathbf{Z}^d}} m_k(\xi_1, \xi_2) \hat{g}(\xi_1) \overline{\hat{g}(\xi_2)} e^{\iota x \cdot (\xi_1 - \xi_2)}.$$

Here, by definition of λ_k ,

(3.10)
$$m_k(\xi_1, \xi_2) = \xi_1^1 - \lambda_k(|\xi_2|) \left(\xi_1^1 - \xi_2^1\right) = \begin{cases} \xi_2^1, & \text{if } |\xi_2| \le 2^{k-2} \\ \xi_1^1, & \text{if } |\xi_2| \ge 2^{k-1} \end{cases}$$

Estimate

(3.11)
$$\left\| \partial_1 \psi - \frac{1}{\iota} \partial_1 P \right\|_1 \leq \sum_{k_1, k_2} \left\| \sum_{|\xi_1| \sim 2^{k_1}, |\xi_2| \sim 2^{k_2}} m_{k_1}(\xi_1, \xi_2) \hat{g}(\xi_1) \overline{\hat{g}(\xi_2)} e^{\iota x \cdot (\xi_1 - \xi_2)} \right\|_1.$$

We split the right-hand side of (3.11) as

$$\sum_{k_1 \sim k_2} + \sum_{k_1 < k_2 - 4} + \sum_{k_1 > k_2 + 4} = (3.12) + (3.13) + (3.14).$$

Clearly, $2^{-k}m_k(\xi_1, \xi_2)$ restricted to $[|\xi_1| \sim 2^k] \times [|\xi_2| \sim 2^k]$ is a smooth multiplier satisfying the usual derivative bounds. Therefore,

(3.15)
$$(3.12) \le C \sum_{k} 2^{k} \left\| \sum_{|\xi_{1}|\sim 2^{k}} \hat{g}(\xi_{1}) e^{ix\cdot\xi_{1}} \right\|_{2} \left\| \sum_{|\xi_{2}|\sim 2^{k}} \hat{g}(\xi_{2}) e^{ix\cdot\xi_{2}} \right\|_{2} \sim |g|_{\mathrm{H}^{1/2}}^{2}.$$

.

If $k_1 < k_2 - 4$, then $|\xi_2| > 2^{k_1}$ and $m_{k_1}(\xi_1, \xi_2) = \xi_1^1$, by (3.10). Therefore

$$(3.13) = \sum_{k_1 < k_2 - 4} \left\| \sum_{\substack{|\xi_1| \sim 2^{k_1}, |\xi_2| \sim 2^{k_2}}} \xi_1^1 \hat{g}(\xi_1) \overline{\hat{g}(\xi_2)} e^{ix \cdot (\xi_1 - \xi_2)} \right\|_1$$
$$\leq \sum_{k_1 < k_2 - 4} 2^{k_1} \left\| \sum_{\substack{|\xi_1| \sim 2^{k_1}}} \hat{g}(\xi_1) e^{ix \cdot \xi_1} \right\|_2 \cdot \left\| \sum_{\substack{|\xi_2| \sim 2^{k_2}}} \hat{g}(\xi_2) e^{ix \cdot \xi_2} \right\|_2$$
$$\leq \sum_{k_1 < k_2} 2^{k_1} \left(\sum_{\substack{|\xi_1| < 2^{k_1}}} |\hat{g}(\xi_1)|^2 \right)^{1/2} \left(\sum_{\substack{|\xi_2| \sim 2^{k_2}}} |\hat{g}(\xi_2)|^2 \right)^{1/2} \leq C |g|_{\mathrm{H}^{1/2}}^2$$

If $k_1 > k_2 + 4$, then $|\xi_2| < 2^{k_1-2}$ and $m_{k_1}(\xi_1, \xi_2) = \xi_2^1$ and the bound on (3.14) is similar.

We now derive a consequence of Theorem 3':

Corollary **1.** — Let G be a smooth bounded domain in \mathbf{R}^{d+1} such that $\Omega = \partial G$ is connected. Let ψ be a Lipschitz real-valued function on Ω and set $g = e^{i\psi}$. Then

 $|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}_{\Omega}(1+|g|_{\mathrm{H}^{1/2}})|g|_{\mathrm{H}^{1/2}}.$

Proof of Corollary 1. - It is convenient to divide the argument into 4 steps.

Step 1. — The conclusion of Theorem 3' still holds if ψ is Lipschitz. This is clear by density.

Step 2. — The conclusion of Theorem 3' holds if \mathbf{T}^d is replaced by a *d*-dimensional cube Q and $\psi \in \text{Lip}(Q)$. This is done by standard reflections and extensions by periodicity.

As a consequence, we have

Step 3. — The conclusion of Step 2 holds when Q is replaced by a domain in Ω diffeomorphic to a cube.

Step **4.** — Proof of Corollary 1. Consider a finite covering (U_{α}) of Ω by domains diffeomorphic to cubes. Note that, if $U_{\alpha} \cap U_{\beta} \neq 0$, then

 $|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}(\mathrm{U}_{lpha}\cup\mathrm{U}_{eta})}\sim |\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}(\mathrm{U}_{lpha})}+|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}(\mathrm{U}_{eta})}.$

Using the connectedness of Ω , we find that

$$|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}(\Omega)}\sim\sum_{lpha}|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}(\mathrm{U}_{lpha})}.$$

The conclusion now follows from Step 3.

Proof of Theorem 3. — First, let $g \in Y$ and consider a sequence $(g_n) \subset C^{\infty}(\Omega; S^1)$ such that $g_n \to g$ in $H^{1/2}$. Since Ω is simply connected, we may write $g_n = e^{i\psi_n}$, with $\psi_n \in C^{\infty}(\Omega; \mathbf{R})$.

Applying Corollary 1 to $g_n \bar{g}_m$, we find

 $|\psi_n - \psi_m|_{\mathrm{H}^{1/2} + \mathrm{W}^{1,1}} \leq \mathrm{C}(1 + |g_n \bar{g}_m|_{\mathrm{H}^{1/2}})|g_n \bar{g}_m|_{\mathrm{H}^{1/2}}.$

Since $g_n \to g$ in $\mathrm{H}^{1/2}$ and $|g_n| \equiv 1$, we have $|g_n \bar{g}_m|_{\mathrm{H}^{1/2}} \to 0$ as $m, n \to \infty$ (see the proof of Lemma 10). Therefore, $(\psi_n - f_\Omega \psi_n)$ converges in $\mathrm{H}^{1/2} + \mathrm{W}^{1,1}$ to a map ζ . Then, with C an appropriate constant, $\psi = \zeta + \mathrm{C} \in \mathrm{H}^{1/2} + \mathrm{W}^{1,1}$, $g = e^{i\psi}$ and ψ satisfies the estimate

$$|\psi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}(1+|g|_{\mathrm{H}^{1/2}})|g|_{\mathrm{H}^{1/2}}$$

The uniqueness of ψ is an immediate consequence of the following

Lemma 13. — Let Ω be a connected open set in \mathbf{R}^d . Let $f : \Omega \to \mathbf{Z}$ be such that $f = f_0 + \sum_j f_j$, with $f_0 \in W^{1,1}_{loc}(\Omega; \mathbf{R})$ and $f_j \in W^{s_j, p_j}_{loc}(\Omega; \mathbf{R})$, where $0 < s_j < 1$, $1 < p_j < \infty$, $s_j p_j \ge 1$. Then f is a constant.

The proof of Lemma 13 is given in [12], Appendix B, Step 2. The argument is by dimensional reduction, observing that the restriction of f to almost every line is **Z**valued and VMO; thus it is constant (*see* [22]). This implies (*see* e.g. Lemma 2 in [20]) that f is locally constant in Ω .

We now prove the last assertion in Theorem 3. Let $g \in H^{1/2}(\Omega; S^1)$ be such that $g = e^{i\psi}$ for some $\psi \in H^{1/2} + W^{1,1}(\Omega; \mathbf{R})$. Let $\psi = \psi_1 + \psi_2$, with $\psi_1 \in H^{1/2}$ and $\psi_2 \in W^{1,1}$. Set $g_j = e^{i\psi_j}$, j = 1, 2. Clearly, $g_1 \in X$, so that $g_1 \in Y$ and thus $T(g_1) = 0$. On the other hand, $g_2 \in H^{1/2} \cap W^{1,1}$, since $g_2 = g\bar{g}_1 \in H^{1/2}$. Therefore, we may use the representation of $T(g_2)$ given by Lemma 1 and find, after localization, as in Remark 2.2,

$$\langle \mathrm{T}(g_2), \varphi \rangle = \int_{\omega} (\psi_{2x} \varphi_y - \psi_{2y} \varphi_x) = 0, \quad \forall \varphi \in \mathrm{C}^1_0(\omega; \mathbf{R}).$$

Hence $T(g_2) = 0$. By (2.7) in Lemma 9, we obtain that T(g) = 0. Using Theorem 2, we derive that $g \in Y$.

Remark **3.1.** — Theorem 3 is not fully satisfactory since, whenever $\psi \in W^{1,1}$, the function $e^{i\psi}$ need not belong to $H^{1/2}$ (but "almost", since $e^{i\psi} \in W^{1,1} \cap L^{\infty}$, which is almost contained in $H^{1/2}$, but not quite). Here is an example: take some $\psi \in W^{1,1} \cap L^{\infty}$ with $\psi \notin H^{1/2}$. We may assume $|\psi| \leq 1$. Then

$$|e^{i\psi(x)} - e^{i\psi(y)}| \sim |\psi(x) - \psi(y)|,$$

so that

$$|e^{\imath\psi}|_{\mathrm{H}^{1/2}}\sim|\psi|_{\mathrm{H}^{1/2}}=+\infty$$

4. Lifting for a general $g \in H^{1/2}$. Optimizing the BV part of the phase. Proof of Theorems 4 and 5

Assume g is a general element in $H^{1/2}(\Omega; S^1)$. This g need not be in Y and thus need not have a lifting in $H^{1/2} + W^{1,1}$. However, g has a lifting in the larger space $H^{1/2} + BV$. This is an immediate consequence of Theorem 3 (and estimate (1.9)) and of the following result of T. Rivière [38] (which is the analogue of a similar result of Bethuel [3] for H^1 maps from B^3 to S^2).

Lemma 14 (Rivière [38]). — Let $g \in H^{1/2}(\Omega; S^1)$. Then there is a sequence $(g_n) \subset C^{\infty}(\Omega; S^1)$ such that $g_n \rightharpoonup g$ weakly in $H^{1/2}$.

Remark **4.1.** — Lemma 14 implies that $g \mapsto T(g)$ and $g \mapsto L(g)$ are not continuous under weak $H^{1/2}$ convergence.

Here is a refined version of Lemma 14 which will be proved at the end of Section 4.2:

Lemma 14'. — Let $g \in H^{1/2}(\Omega; S^1)$. Then there is a sequence $(g_n) \subset C^{\infty}(\Omega; S^1)$ such that $g_n \rightharpoonup g$ weakly in $H^{1/2}$ and

$$\limsup_{n\to\infty}|g_n|_{\mathrm{H}^{1/2}}^2\leq |g|_{\mathrm{H}^{1/2}}^2+\mathrm{C}_{\Omega}\mathrm{L}(g),$$

for some constant C_{Ω} depending only on Ω . Moreover, for **every** sequence (g_n) in Y such that $g_n \to g$ a.e., we have

$$\liminf_{n \to \infty} |g_n|_{\mathrm{H}^{1/2}}^2 \ge |g|_{\mathrm{H}^{1/2}}^2 + \mathrm{C}'_{\Omega} \mathrm{L}(g),$$

for some positive constant C'_{Ω} depending only on Ω .

Existence of a lifting in $H^{1/2} + BV$

Let $g \in H^{1/2}(\Omega; S^1)$. For g_n as in the above Lemma 14, write, using Corollary 1, $g_n = e^{i\varphi_n}$, with $\varphi_n \in C^{\infty}(\Omega; S^1)$ and

$$|\varphi_n|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}_{\Omega}(|g_n|_{\mathrm{H}^{1/2}}+|g_n|_{\mathrm{H}^{1/2}}^2).$$

Then, up to a subsequence, there is some $\zeta \in H^{1/2} + BV$ such that $\varphi_n - \oint \varphi_n \to \zeta$ a.e. We find that $g = e^{i\varphi}$, with $\varphi = \zeta + C$ and C some appropriate constant. Moreover, we may write $\varphi = \varphi_1 + \varphi_2$, with

(**4.1**) $|\varphi_1|_{\mathrm{H}^{1/2}} + |\varphi_2|_{\mathrm{BV}} \leq \mathrm{C}_{\Omega} (|g|_{\mathrm{H}^{1/2}} + |g|_{\mathrm{H}^{1/2}}^2).$

An additional information about the decomposition is contained in Theorem 4. On the other hand note that estimate (4.1) implies that every $g \in H^{1/2}$ may be written as $g = g_1g_2$, with

$$g_1 = e^{i\varphi_1} \in \mathbf{X} \text{ and } g_2 = e^{i\varphi_2} \in \mathbf{H}^{1/2} \cap \mathbf{BV},$$

i.e., $\mathbf{H}^{1/2} = (\mathbf{X}) \cdot (\mathbf{H}^{1/2} \cap \mathbf{BV}).$

A finer assertion is $H^{1/2} = (X) \cdot (H^{1/2} \cap W^{1,1})$, which is the content of Theorem 5. The proofs of Theorems 4 and 5 require a number of ingredients:

a) the dipole construction (see Section 4.1). This is inspired by the dipole construction in the $H^1(B^3; S^2)$ context (see [19] and [3]);

b) the construction of a map $g \in H^{1/2}(\Omega; S^1) \cap W^{1,1}$ having *prescribed* singularities (with control of the norms). This is done in Section 4.2;

c) lower bound estimates for the BV part of the phase, which are presented in Section 4.3, in the spirit of [19], [2], [27]. This is a typical phenomenon in the context of relaxed energies and/or Cartesian Currents. More precisely, if one considers the Sobolev space $X = W^{s,p}(U; S^k)$, $U \subset \mathbb{R}^N$, and if smooth maps are *not* dense in X for the strong topology, then the relaxed energy is defined by

$$\mathcal{E}(g) = \operatorname{Inf} \left\{ \liminf_{n \to \infty} \|g_n\|_{W^{s,p}}^{p}; (g_n) \subset \mathcal{C}^{\infty}(\bar{\mathcal{U}}; \mathcal{S}^k), g_n \to g \text{ a.e.} \right\}.$$

The gap $E(g) - ||g||_{W^{s,p}}^{p} \ge 0$ has often a geometrical interpretation in terms of the singular set of g. For example, in the H¹(B³; S²) context, the gap is $8\pi L(g)$, where L(g) is the length of a minimal connection associated with the singularities of g (see [19]). We will consider, in Section 4.3, similar lower bounds for S¹-valued maps on Ω .

4.1. The dipole construction

Throughout this section, the metric d denotes the geodesic distance d_{Ω} in Ω and $L(g) = L_{\Omega}(g)$.

Lemma 15. — Let $P, N \in \Omega, P \neq N$. Given any $\varepsilon > 0$ there exists some $g(=g_{\varepsilon})$ such that

(4.2)
$$g \in W^{1,\infty}_{loc}(\Omega \setminus \{P, N\}; S^1) \cap W^{1,p}(\Omega; S^1), \forall p \in [1, 2),$$

(4.3)
$$T(g) = 2\pi(\delta_{\rm P} - \delta_{\rm N}),$$

 $|g|_{W^{1,1}} \le 2\pi d(\mathbf{P}, \mathbf{N}) + \varepsilon,$

JEAN BOURGAIN, HAIM BREZIS, PETRU MIRONESCU

(4.5)
$$|g|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega} d(\mathrm{P},\mathrm{N})$$
 where C_{Ω} depends only on Ω ,

(4.6)

$$\begin{cases} \text{there is a function } \psi(=\psi_{\varepsilon}) \in BV(\Omega; \mathbf{R}) \text{ such that } g = e^{i\psi}, \end{cases}$$

with supp
$$\psi \subset \Lambda = \{x \in \Omega; d(x, \gamma) < \varepsilon\}$$
 and $|\psi|_{BV} \le 4\pi d(P, N) + \varepsilon$,

where γ is a geodesic curve joining P and N,

(4.7)
$$g = 1$$
 outside Λ .

Proof. — Extend γ smoothly beyond P and N; denote this extension by $\tilde{\gamma}$. For $\varepsilon_0 > 0$ sufficiently small (depending on $\tilde{\gamma}$), the projection Π of

$$\Gamma = \{ x \in \Omega; \, d(x, \gamma) < \varepsilon_0 \}$$

onto $\tilde{\gamma}$ is well-defined and smooth. Let x_1 be the arclength coordinate on $\tilde{\gamma}$, such that $x_1(\mathbf{P}) = 0$, $x_1(\mathbf{N}) = d(\mathbf{P}, \mathbf{N}) = \mathbf{L}$.

For $x \in \Gamma$, let $x_1 = x_1(\Pi(x))$ be the arclength coordinate of $\Pi(x)$ on $\tilde{\gamma}$ and let $x_2 = \pm d(x, \tilde{\gamma})$, where we choose "+" if the basis formed by the (oriented) tangent vector at $\Pi(x)$ to $\tilde{\gamma}$, the (oriented) tangent vector at $\Pi(x)$ to the geodesic segment $[\Pi(x), x]$ and the exterior normal *n* at $\Pi(x)$ to G is direct in \mathbb{R}^3 ; we choose "–" otherwise. Define the mapping

$$x \in \Gamma \mapsto \Phi(x) = (x_1, x_2) \in \mathbf{R}^2.$$

Let $0 < \delta < \varepsilon_0$ and consider the domain in \mathbf{R}^2

$$\widetilde{\Gamma}_{\delta} = \left\{ (t_1, t_2) \in \mathbf{R}^2; 0 < t_1 < L \text{ and } |t_2| < \frac{2\delta}{L} \min(t_1, L - t_1) \right\}.$$

and the corresponding domain Γ_{δ} in Ω ,

$$\Gamma_{\delta} = \{ x \in \Gamma; \, \Phi(x) \in \widetilde{\Gamma}_{\delta} \}.$$

Set, on \mathbf{R}^2 ,

$$\tilde{g}(t) = \tilde{g}(t_1, t_2) = \begin{cases} \exp(\iota\varphi(\mathrm{L}t_2/2\delta\min(t_1, \mathrm{L} - t_1))), & \text{on } \widetilde{\Gamma}_{\delta}, \\ 1, & \text{outside } \widetilde{\Gamma}_{\delta}, \end{cases}$$

where φ is defined by $\varphi(s) = \begin{cases} \pi(s+1)^+, & \text{if } s \le 1\\ 2\pi, & \text{if } s > 1 \end{cases}$.

28

An easy computation shows that

$$\tilde{g} \in W^{1,\infty}_{\text{loc}}(\mathbf{R}^2 \setminus \{\widetilde{\mathbf{P}}, \widetilde{\mathbf{N}}\}; \mathbf{S}^1) \cap W^{1,p}_{\text{loc}}(\mathbf{R}^2; \mathbf{S}^1), \quad \forall 1 \le p < 2,$$

where $\widetilde{P} = \Phi(P) = (0, 0)$ and $\widetilde{N} = \Phi(N) = (L, 0)$. More precisely, we have

$$|\tilde{g}|_{W^{1,p}(\tilde{\Gamma}_{\delta})}^{p} = 4 \int_{0}^{L/2} \left(\frac{L}{2\delta t_{1}}\right)^{p-1} dt_{1} \int_{0}^{+1} \pi^{p} \left(\left(\frac{2\delta s}{L}\right)^{2} + 1\right)^{p/2} ds.$$

In particular, we find

$$|\tilde{g}|_{W^{1,1}(\tilde{\Gamma}_{\delta})} \leq 2\pi (L+\delta)$$

and, for every $1 \le p \le 2$,

(4.9)
$$|\tilde{g}|_{W^{1,p}(\tilde{\Gamma}_{\delta})} \leq C_p (L\delta)^{1/p} \left(\frac{1}{\delta} + \frac{1}{L}\right).$$

For later purpose, it is also convenient to observe that, for any $1 \le q \le \infty$,

$$(4.10) \qquad \|\tilde{g}-1\|_{\mathrm{L}^{q}(\tilde{\Gamma}_{\delta})} \leq 2(\mathrm{L}\delta)^{1/q}.$$

We now transport the function \tilde{g} on Ω and define

$$g(x) = \begin{cases} \tilde{g}(\Phi(x)), & \text{if } x \in \Gamma_{\delta} \\ 1, & \text{outside } \Gamma_{\delta} \end{cases}$$

It is not difficult to see that Φ is a C²-diffeomorphism on Γ and

•

(4.11)
$$|\operatorname{Jac} \Phi(x) - 1| \le C_{\gamma} \delta$$
 on Γ_{δ}

where C_{γ} is a constant depending on γ . Combining (4.8)–(4.11) yields

(4.12)
$$|g|_{W^{1,1}(\Omega)} \le 2\pi (L+\delta)(1+C_{\gamma}\delta),$$

(4.13)
$$|g|_{\mathrm{W}^{1,p}(\Omega)} \leq \mathrm{C}_{p}(\mathrm{L}\delta)^{1/p}\left(\frac{1}{\delta} + \frac{1}{\mathrm{L}}\right)(1 + \mathrm{C}_{\gamma}\delta), \quad 1 \leq p < 2,$$

and

(**4.14**)
$$||g-1||_{L^{q}(\Omega)} \le 2(L\delta)^{1/q}(1+C_{\gamma}\delta).$$

From a variant of the Gagliardo–Nirenberg inequality (see e.g. [21] and the references therein) we know that, if $1 \le p \le \infty$ and

(4.15)
$$\frac{1}{p} + \frac{1}{q} = 1,$$

then

 $(\mathbf{4.16}) \qquad |g|_{\mathrm{H}^{1/2}(\Omega)}^2 \leq \mathrm{C}(p,\Omega)|g|_{\mathrm{W}^{1,p}(\Omega)}||g||_{\mathrm{L}^{q}(\Omega)}.$

We now check properties (4.2)–(4.7): (4.2), (4.3) and (4.7) are clear. Estimate (4.4) (resp. (4.5)) follows from (4.12) (resp. (4.16) applied e.g. with p = 3/2) provided δ is sufficiently small (depending on ε and γ).

Construction of ψ and estimate (4.6)

In the region where $\tilde{g} \equiv 1$, we take $\tilde{\psi} \equiv 0$. In the region $\tilde{\Gamma}_{\delta}$ where \tilde{g} lives, we take

$$\tilde{\psi}(t_1, t_2) = \begin{cases} \varphi(\mathrm{L}t_2/2\delta\min(t_1, \mathrm{L} - t_1)), & \text{if } t_2 \le 0\\ \varphi(\mathrm{L}t_2/2\delta\min(t_1, \mathrm{L} - t_1)) - 2\pi, & \text{if } t_2 > 0 \end{cases}.$$

Set

$$\psi(x) = \begin{cases} \tilde{\psi}(\Phi(x)), & \text{if } x \in \Gamma_{\delta} \\ 0, & \text{outside } \Gamma_{\delta} \end{cases}$$

Then $|D\psi| = |Dg| + 2\pi\delta_{\gamma}$, where δ_{γ} is the 1 - d Hausdorff measure uniformly distributed on γ . Thus

$$|\psi|_{\mathrm{BV}} = \int_{\Omega} |\mathrm{D}\psi| = \int_{\Omega} |\mathrm{D}g| + 2\pi \mathrm{L} \le 4\pi \mathrm{L} + \varepsilon.$$

4.2. Construction of a map with prescribed singularities

Let (\mathbf{P}_i) , (\mathbf{N}_i) be two sequences of points in $\Omega = \partial \mathbf{G}$ such that $\sum d_{\Omega}(\mathbf{P}_i, \mathbf{N}_i) < \infty$. Define

$$T = 2\pi \sum_{i} (\delta_{P_i} - \delta_{N_i})$$

and

$$\mathbf{L} = \mathbf{L}_{\Omega} = \frac{1}{2\pi} \sup\{\langle \mathbf{T}, \varphi \rangle; \varphi \in \operatorname{Lip} (\Omega; \mathbf{R}), |\varphi|_{\operatorname{Lip}} \leq 1\}.$$

Lemma 16. — a) For every $g \in W^{1,1}(\Omega; S^1) \cap H^{1/2}(\Omega; S^1)$ such that T(g) = T, we

have

$$\int_{\Omega} |\mathrm{D}g| \ge 2\pi \mathrm{L} \ \text{and} \ |g|_{\mathrm{H}^{1/2}}^2 \ge \mathrm{C}_{\Omega} \mathrm{L},$$

where C_{Ω} is a positive constant depending only on Ω .

b) For every $\varepsilon > 0$, there is some $g(=g_{\varepsilon}) \in W^{1,1}(\Omega; S^1) \cap H^{1/2}(\Omega; S^1)$ such that

(**4.17**)
$$T(g) = T$$
,

- $|g|_{\mathbf{W}^{1,1}} \leq 2\pi(\mathbf{L}+\varepsilon),$
- (4.19) $|g|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega}\mathrm{L},$

30

(4.20)
$$\begin{cases} \text{there is a function } \psi(=\psi_{\varepsilon}) \in BV(\Omega; \mathbf{R}) \text{ such that} \\ g = e^{i\psi}, \text{ and } |\psi|_{BV} \le 4\pi(L+\varepsilon) \end{cases},$$

(4.21) meas (Supp ψ) = meas (Supp (g-1)) $\leq \varepsilon$.

In the proof of Lemma 16 we will use:

Lemma 17. — Let (u_n) be a bounded sequence in $\mathrm{H}^{1/2}(\Omega; \mathbf{C}) \cap \mathrm{L}^{\infty}$ such that $u_n \to 1$ a.e. Then for every $v \in \mathrm{H}^{1/2}(\Omega; \mathbf{C}) \cap \mathrm{L}^{\infty}$ we have

$$|u_n v|_{\mathrm{H}^{1/2}}^2 = \iint_{\Omega \ \Omega} |v(x)|^2 \frac{|u_n(x) - u_n(y)|^2}{d(x, y)^3} + |v|_{\mathrm{H}^{1/2}}^2 + o(1) \quad \text{as } n \to \infty.$$

Proof of Lemma 17. — We have

$$\begin{aligned} |u_n v|_{\mathrm{H}^{1/2}}^2 &= \iint_{\Omega \ \Omega} \ |v(x)|^2 \frac{|u_n(x) - u_n(y)|^2}{d(x, y)^3} + \iint_{\Omega \ \Omega} \ |u_n(y)|^2 \frac{|v(x) - v(y)|^2}{d(x, y)^3} + 2\mathrm{I}_n \\ &= \iint_{\Omega \ \Omega} \ |v(x)|^2 \frac{|u_n(x) - u_n(y)|^2}{d(x, y)^3} + |v|_{\mathrm{H}^{1/2}}^2 + 2\mathrm{I}_n + o(1), \end{aligned}$$

where

$$\mathbf{I}_n = \iint_{\Omega \ \Omega} \frac{(v(x)(u_n(x) - u_n(y))) \cdot (u_n(y)(v(x) - v(y)))}{d(x, y)^3},$$

so that it suffices to prove that

$$\mathbf{J}_n = \iint_{\Omega \ \Omega} \frac{|u_n(x) - u_n(y)| |v(x) - v(y)|}{d(x, y)^3} \to 0.$$

Fix some $\varepsilon > 0$. Then

$$\begin{split} J_{n} &= \iint_{d(x,y) \geq \varepsilon} \frac{|u_{n}(x) - u_{n}(y)| |v(x) - v(y)|}{d(x,y)^{3}} + \iint_{d(x,y) < \varepsilon} \frac{|u_{n}(x) - u_{n}(y)| |v(x) - v(y)|}{d(x,y)^{3}} \\ &= o(1) + \iint_{d(x,y) < \varepsilon} \frac{|u_{n}(x) - u_{n}(y)| |v(x) - v(y)|}{d(x,y)^{3}} \\ &\leq o(1) + |u_{n}|_{\mathrm{H}^{1/2}} \bigg(\iint_{d(x,y) < \varepsilon} \frac{|v(x) - v(y)|^{2}}{d(x,y)^{3}} \bigg)^{1/2}, \end{split}$$

so that $J_n \to 0$.

Proof of Lemma 16. — a) By Lemma 1, we have

$$\langle \mathrm{T}(g), \varphi \rangle = \int_{\Omega} g \wedge (g_x \varphi_y - g_y \varphi_x), \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}),$$

so that

$$|\langle \mathbf{T}(g), \varphi \rangle| \le \int_{\Omega} |g| \ |\mathbf{D}g| \ |\mathbf{D}\varphi| \le \int_{\Omega} |\mathbf{D}g|$$

if $|\varphi|_{\text{Lip}} \leq 1$. Taking the Sup over all such φ 's yields the first inequality. The second inequality in a), namely $L \leq C_{\Omega}|g|_{\text{H}^{1/2}}^2$, was already established in Lemma 9.

b) Let $\varepsilon < L$. By Lemma 12', we may find a sequence (\widetilde{N}_j) such that

(4.22)
$$T = 2\pi \sum_{i} (\delta_{\mathbf{P}_{i}} - \delta_{\mathbf{N}_{i}}) = 2\pi \sum_{j} (\delta_{\mathbf{P}_{j}} - \delta_{\widetilde{\mathbf{N}}_{j}})$$

and

(4.23)
$$\sum_{j} d(\mathbf{P}_{j}, \widetilde{\mathbf{N}}_{j}) < \mathbf{L} + \varepsilon/4\pi.$$

By the dipole construction (Lemma 15), for each j and for each $\varepsilon_i > 0$, there is some $g_j = g_{j,\varepsilon_j}$ such that

(4.24)
$$T(g_j) = 2\pi (\delta_{\mathbf{P}_j} - \delta_{\widetilde{\mathbf{N}}_j}),$$

(4.25)
$$\int_{\Omega} |\mathrm{D}g_j| \leq 2\pi d(\mathrm{P}_j, \widetilde{\mathrm{N}}_j) + \varepsilon_j,$$

$$|g_j|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega} d(\mathrm{P}_j, \widetilde{\mathrm{N}}_j),$$

(**4.27**) there is a function
$$\psi_j \in BV$$
 such that $g_j = e^{i\psi_j}$,

with

$$|\boldsymbol{\psi}_j|_{\rm BV} \le 4\pi d(\mathbf{P}_j, \widetilde{\mathbf{N}}_j) + \varepsilon_j$$

and

(**4.29**) meas (Supp
$$\psi_j$$
) = meas (Supp $(g_j - 1)$) $\leq \varepsilon_j$.

We claim that $g = \prod_{j=1}^{\infty} g_j$ and $\psi = \sum_{j=1}^{\infty} \psi_j$ have all the required properties if we

choose the ε_j 's appropriately.

Fix $\varepsilon_1 < \varepsilon/2$ and let $g_1 = g_{1,\varepsilon_1}$. By Lemma 17, we have

$$\limsup_{\varepsilon \to 0} |g_1 g_{2,\varepsilon}|^2_{\mathrm{H}^{1/2}} \le |g_1|^2_{\mathrm{H}^{1/2}} + \limsup_{\varepsilon \to 0} |g_{2,\varepsilon}|^2_{\mathrm{H}^{1/2}}.$$

Thus, we may choose $\varepsilon_2 < \varepsilon/4$ and $g_2 = g_{2,\varepsilon_2}$ such that (using (4.5))

$$|g_1g_2|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega}(d(\mathrm{P}_1,\widetilde{\mathrm{N}}_1) + d(\mathrm{P}_2,\widetilde{\mathrm{N}}_2)) + \varepsilon/2.$$

Using repeatedly Lemma 17, we choose $\varepsilon_3, \varepsilon_4, ...,$ such that

$$(4.30) \qquad \qquad \varepsilon_j \le \varepsilon 2^{-j} \quad \forall j \ge 1,$$

and, for every $k \ge 2$,

(**4.31**)
$$\left| \prod_{j=1}^{k} g_j \right|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega} \sum_{j=1}^{k} d(\mathrm{P}_j, \widetilde{\mathrm{N}}_j) + \varepsilon \sum_{j=1}^{k-1} 2^{-j} \leq \mathrm{C}_{\Omega}(\mathrm{L} + \varepsilon) + \varepsilon \leq \mathrm{C}'_{\Omega}\mathrm{L},$$

since $\varepsilon < L$.

We claim that $\left(\prod_{j=1}^{k} g_{j}\right)$ converges in W^{1,1}. Indeed, set $H = \sum_{j\geq 1} |Dg_{j}|$. Then clearly $H \in L^{1}$ and

$$\left| \mathbf{D} \bigg(\prod_{j=1}^k g_j \bigg) \right| \le \mathbf{H}.$$

On the other hand, for $k_2 \ge k_1 \ge 1$, we have, by (4.25),

$$\int_{\Omega} \left| \mathbf{D} \left(\prod_{j=k_1}^{k_2} g_j \right) \right| \le \sum_{j \ge k_1} \int |\mathbf{D}g_j| \le 2\pi \sum_{j \ge k_1} d(\mathbf{P}_j, \widetilde{\mathbf{N}}_j) + \varepsilon 2^{-k_1 + 1}$$

Thus

$$\begin{split} \left| \prod_{j=1}^{k} g_j - \prod_{j=1}^{k+\ell} g_j \right|_{\mathrm{W}^{1,1}} &\leq \int_{\Omega} \mathrm{H} \left| 1 - \prod_{j=k+1}^{k+\ell} g_j \right| + 2\pi \sum_{j \geq k+1} d(\mathrm{P}_j, \widetilde{\mathrm{N}}_j) + \varepsilon 2^{-k} \\ &\leq 2 \int_{\bigcup_{j>k} \{x; g_j(x) \neq 1\}} \mathrm{H} + 2\pi \sum_{j \geq k+1} d(\mathrm{P}_j, \widetilde{\mathrm{N}}_j) + \varepsilon 2^{-k}. \end{split}$$

Since meas $(\bigcup_{j>k} \text{Supp } (g_j - 1)) \leq \varepsilon 2^{-k}$ and $\sum d(\mathbf{P}_j, \widetilde{\mathbf{N}}_j) < \infty$, we conclude that $\left(\prod_{j=1}^{\kappa} g_j\right)$ is a Cauchy sequence in W^{1,1} (note that it is clearly a Cauchy sequence in L¹, by (4.29)).

Set $g = \prod_{j=1}^{\infty} g_j$. By construction

$$\begin{split} |g|_{\mathbf{W}^{1,1}} &\leq \int_{\Omega} \mathbf{H} \leq 2\pi \sum_{j=1}^{\infty} d(\mathbf{P}_{j}, \widetilde{\mathbf{N}}_{j}) + \varepsilon \\ &\leq 2\pi \left(\mathbf{L} + \frac{\varepsilon}{4\pi} \right) + \varepsilon \quad (\text{by } (4.23)) \leq 2\pi (\mathbf{L} + \varepsilon). \end{split}$$

This proves (4.18).

On the other hand, by (4.31), the sequence $\left(\prod_{j=1}^{k} g_{j}\right)$ is bounded in H^{1/2}, so that $g \in \mathbf{H}^{1/2}$ and $|g|^2_{\mathbf{H}^{1/2}} \leq \mathbf{C}'_{\Omega}\mathbf{L}$; this proves (4.19). We now turn to (4.17). By (2.7) and (4.24), we have

$$\mathrm{T}\bigg(\prod_{j=1}^{k} g_j\bigg) = 2\pi \sum_{j=1}^{k} (\delta_{\mathrm{P}_j} - \delta_{\widetilde{\mathrm{N}}_j}).$$

By Lemma 1 and the convergence of $(\prod_{j=1}^k g_j)$ to g in $W^{1,1}$ as $k \to \infty$, we have

$$\langle \mathrm{T}\bigg(\prod_{j=1}^k g_j\bigg), \varphi\rangle \to \langle \mathrm{T}(g), \varphi\rangle, \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}).$$

Thus,

$$\langle \mathrm{T}(g), \varphi \rangle = 2\pi \sum_{j=1}^{\infty} (\varphi(\mathrm{P}_j) - \varphi(\widetilde{\mathrm{N}}_j)), \quad \forall \varphi \in \mathrm{Lip} \ (\Omega; \mathbf{R}).$$

From (4.22) we conclude that

$$\mathrm{T}(g) = 2\pi \sum_{i} (\delta_{\mathrm{P}_{i}} - \delta_{\mathrm{N}_{i}}).$$

Properties (4.20) and (4.21) are immediate consequences of (4.23), (4.28) and (4.29).

We now derive some consequences of the above results. We start with a simple

Proof of Theorem 2. — Let $g \in H^{1/2}(\Omega; S^1)$ be such that L(g) = 0. We must show that $g \in Y = \overline{\mathbb{C}^{\infty}(\Omega; S^1)}^{H^{1/2}}$. By Lemma 11 there exists a sequence (g_n) in \mathscr{R} such that $g_n \to g$ in $H^{1/2}$, and thus $L(g_n) \to 0$. Since each g_n has only finitely many singularities, it follows from the dipole construction there exists a sequence (h_n) such that

$$h_n \in W^{1,\infty}_{loc}\left(\Omega \setminus \Sigma_n; S^1\right) \cap W^{1,p}(\Omega; S^1), \forall p \in [1, 2), T(h_n) = T(g_n),$$

where Σ_n is the singular set of $g_n(\Sigma_n$ is a finite set), and moreover

$$|h_n|^2_{\mathrm{H}^{1/2}} \leq \mathrm{C}_{\Omega} \mathrm{L}(h_n) \to 0,$$

 $h_n \to 1 \text{ a.e. on } \Omega.$

Clearly $k_n = g_n \overline{h_n} \in W^{1,\infty}_{loc}(\Omega \setminus \Sigma_n; S^1) \cap W^{1,p}(\Omega; S^1), \forall p \in [1, 2) \text{ and } T(k_n) = T(g_n) - T(h_n) = 0$. By Lemma 2, we have deg $(k_n, a) = 0 \quad \forall a \in \Sigma_n$. Therefore k_n admits a well-defined lifting on $\Omega, k_n = e^{i\varphi_n}$, with $\varphi_n \in W^{1,\infty}_{loc}(\Omega \setminus \Sigma_n; \mathbf{R}) \cap W^{1,p}(\Omega; \mathbf{R}), \forall p \in [1, 2)$. In particular, $k_n \in X \subset Y$. In order to prove that $g \in Y$ it suffices to check that $k_n \to g$ in $H^{1/2}$. Write

$$\begin{aligned} |k_n - g|_{\mathrm{H}^{1/2}} &= |g_n \overline{h_n} - g|_{\mathrm{H}^{1/2}} = |(g_n - g)\overline{h_n} + g(\overline{h_n} - 1)|_{\mathrm{H}^{1/2}} \\ &\leq |(g_n - g)\overline{h_n}|_{\mathrm{H}^{1/2}} + |g(\overline{h_n} - 1)|_{\mathrm{H}^{1/2}}. \end{aligned}$$

But

$$|(g_n - g)\overline{h_n}|_{\mathrm{H}^{1/2}} \le |g_n - g|_{\mathrm{H}^{1/2}} + 2|h_n|_{\mathrm{H}^{1/2}} \to 0$$

and

$$|g(\overline{h_n}-1)|_{\mathrm{H}^{1/2}}^2 \leq C \int_{\Omega} \int_{\Omega} \frac{|g(x)-g(y)|^2}{d(x,y)^3} |h_n(x)-1|^2 dx dy + C|h_n|_{\mathrm{H}^{1/2}}^2 \to 0.$$

Corollary **2.** — Given any $g \in H^{1/2}(\Omega; S^1)$, there exist $h \in Y, k \in H^{1/2}(\Omega; S^1) \cap W^{1,1}(\Omega; S^1)$ and $\psi \in BV(\Omega; \mathbf{R})$ such that

g = hk and $k = e^{i\psi}$.

Moreover, for every $\varepsilon > 0$, one may choose h, k, ψ such that

$$\int_{\Omega} |\mathbf{D}k| \le 2\pi \mathbf{L}(g) + \varepsilon, \quad |k|_{\mathbf{H}^{1/2}}^2 \le \mathbf{C}_{\Omega} \mathbf{L}(g),$$

$$|h|_{\mathrm{H}^{1/2}}^2 \le |g|_{\mathrm{H}^{1/2}}^2 + \mathrm{C}_{\Omega}\mathrm{L}(g)$$

and

$$|\psi|_{\rm BV} \le 4\pi \mathcal{L}(g) + \varepsilon.$$

Proof. — By Lemma 16 there exists a sequence (k_n) in $H^{1/2}(\Omega; S^1) \cap W^{1,1}$ such that

$$T(k_n) = T(g), \quad \forall n,$$
$$\limsup_{n \to \infty} |k_n|_{W^{1,1}} \le 2\pi L(g),$$
$$|k_n|_{H^{1/2}}^2 \le C_{\Omega} L(g), \quad \forall n,$$

and

$$k_n \rightarrow 1$$
 a.e. on Ω .

Set $h_n = g\bar{k}_n$, so that $T(h_n) = 0$, $\forall n$, and thus $h_n \in Y$. By Lemma 17 we have

$$\limsup_{n \to \infty} |h_n|_{\mathrm{H}^{1/2}}^2 \le |g|_{\mathrm{H}^{1/2}}^2 + \mathrm{C}_{\Omega} \mathrm{L}(g).$$

The conclusion of Corollary 2 is now clear with $k = k_n$, $h = h_n$ and n sufficiently large.

Proof of Theorem 5. — As in the proof of Corollary 2 write $g = h_n k_n$. Since $h_n \in Y$, we may apply Theorem 3 and write $h_n = e^{i(\varphi_n + \psi_n)}$, with $\varphi_n \in H^{1/2}$ and $\psi_n \in W^{1,1}$. An inspection of the proof of Theorem 3 shows that

$$|\varphi_n|_{\mathrm{H}^{1/2}} \leq \mathrm{C}_{\Omega}|h_n|_{\mathrm{H}^{1/2}} \leq \mathrm{C}'_{\Omega}|g|_{\mathrm{H}^{1/2}}$$

and

$$|\psi_n|_{\mathrm{W}^{1,1}} \leq \mathrm{C}_{\Omega} |h_n|_{\mathrm{H}^{1/2}}^2 \leq \mathrm{C}_{\Omega}' |g|_{\mathrm{H}^{1/2}}^2$$

Thus

$$g = e^{i\varphi_n} (e^{i\psi_n} k_n),$$

which is the desired decomposition since $e^{i\psi_n}k_n \in \mathbf{W}^{1,1}$ and

$$|e^{i\psi_n}k_n|_{\mathrm{W}^{1,1}} \leq |\psi_n|_{\mathrm{W}^{1,1}} + |k_n|_{\mathrm{W}^{1,1}} \leq \mathrm{C}_{\Omega}^{''}|g|_{\mathrm{H}^{1/2}}^2.$$

Proof of the upper bound in Theorem 4. — We have to show that, for every $g \in H^{1/2}(\Omega; S^1)$,

$$\operatorname{Inf}\left\{|\psi|_{\mathrm{BV}};g=e^{i(\varphi+\psi)},\varphi\in\mathrm{H}^{1/2},\psi\in\mathrm{BV}\right\}\leq 4\pi\mathrm{L}(g),$$

i.e., for every $\varepsilon > 0$, we must find $\varphi_{\varepsilon} \in \mathrm{H}^{1/2}$ and $\psi_{\varepsilon} \in \mathrm{BV}$ such that $g = e^{i(\varphi_{\varepsilon} + \psi_{\varepsilon})}$ and

$$|\psi_{\varepsilon}|_{\rm BV} \leq 4\pi \mathcal{L}(g) + \varepsilon$$
Going back to the proof of Corollary 2 and Theorem 5, we may write, by (4.20), $k_n = e^{i\eta_n}$, with $\eta_n \in BV$ and

$$\limsup_{n\to\infty} |\eta_n|_{\rm BV} \leq 4\pi {\rm L}(g).$$

On the other hand, since $C^{\infty}(\Omega; \mathbf{R})$ is dense in $W^{1,1}(\Omega; \mathbf{R})$, we may choose $\tilde{\psi}_n \in C^{\infty}(\Omega; \mathbf{R})$ such that

$$\|\psi_n - \tilde{\psi}_n\|_{W^{1,1}} < 1/n.$$

Finally, we may write

$$g = h_n k_n = e^{\iota(\varphi_n + \psi_n + \eta_n)} = e^{\iota(\varphi_n + \tilde{\psi}_n) + \iota(\psi_n - \tilde{\psi}_n + \eta_n)}$$

with $\varphi_n + \tilde{\psi}_n \in \mathrm{H}^{1/2}, \psi_n - \tilde{\psi}_n + \eta_n \in \mathrm{BV}$ and

$$\limsup |\psi_n - \tilde{\psi}_n + \eta_n|_{\rm BV} \le 4\pi L(g),$$

which is the desired conclusion.

We now turn to the

Proof of Lemma 14'. — For the first assertion, we proceed as in the proof of Corollary 2. Since $h_n \in Y$, $\forall n$, we may find a sequence (\tilde{h}_n) in $C^{\infty}(\Omega; S^1)$ such that

$$\|\tilde{h}_n - h_n\|_{\mathrm{H}^{1/2}}^2 \to 0 \text{ as } n \to \infty.$$

Recall that

$$h_n = g\bar{k}_n \longrightarrow g$$
 a.e.

Thus, by Lemma 17, we find

$$\limsup |\tilde{h}_n|_{\mathrm{H}^{1/2}}^2 \le |g|_{\mathrm{H}^{1/2}}^2 + \mathrm{C}_{\Omega}\mathrm{L}(g)$$

and (passing to a subsequence)

$$\tilde{h}_n \longrightarrow g$$
 a.e., $\tilde{h}_n \rightharpoonup g$ weakly in $\mathrm{H}^{1/2}$.

To prove the second assertion, let (g_n) be any sequence in Y such that $g_n \longrightarrow g$ a.e. Writing $g_n = (g_n \bar{g})g$ and observing that $g_n \bar{g} \to 1$ a.e., we deduce from Lemma 17 that

$$|g_n|_{\mathrm{H}^{1/2}}^2 = |g|_{\mathrm{H}^{1/2}}^2 + |g_n \bar{g}|_{\mathrm{H}^{1/2}}^2 + o(1) \text{ as } n \to \infty.$$

On the other hand (see Lemma 9),

$$L(g_n \overline{g}) \leq C_{\Omega} |g_n \overline{g}|^2_{\mathrm{H}^{1/2}}$$

But $L(g_n \bar{g}) = L(\bar{g})$, since $L(g_n) = 0$, and thus

$$|g_n|_{\mathrm{H}^{1/2}}^2 \ge |g|_{\mathrm{H}^{1/2}}^2 + \mathrm{C}'_{\Omega}\mathrm{L}(g) + o(1).$$

Remark **4.2.** — We have now at our disposal two different techniques for lifting a general $g \in H^{1/2}(\Omega; S^1)$ in the form

$$g = e^{\iota(\varphi + \psi)}$$
 with $\varphi \in \mathbf{H}^{1/2}$ and $\psi \in \mathbf{BV}$.

The first method, described at the beginning of Section 4, yields some $\varphi \in H^{1/2}$ and $\psi \in BV$ such that

$$g = e^{\iota(\varphi + \psi)},$$

with the estimate

$$(4.32) \qquad |\varphi|_{\mathrm{H}^{1/2}} \leq \mathrm{C}_{\Omega}|g|_{\mathrm{H}^{1/2}}$$

and

$$(4.33) |\psi|_{\rm BV} \le C_{\Omega}|g|_{{\rm H}^{1/2}}^2.$$

The second method, described in the proof of Theorem 4 (upper bound), yields, for every $\varepsilon > 0$, some $\varphi_{\varepsilon} \in \mathrm{H}^{1/2}$ and $\psi_{\varepsilon} \in \mathrm{BV}$ such that

$$g=e^{\iota(\varphi_{\varepsilon}+\psi_{\varepsilon})},$$

with

$$|\psi_{\varepsilon}|_{\rm BV} \le 4\pi \mathcal{L}(g) + \varepsilon$$

and **no estimate** for φ_{ε} in H^{1/2}.

A natural question is whether one can achieve a decomposition of the phase in the form

$$g = e^{\iota \left(\varphi_{\varepsilon}^{\#} + \psi_{\varepsilon}^{\#}\right)}$$

with the double control

$$\left| \varphi_{\varepsilon}^{\#} \right|_{\mathrm{H}^{1/2}} \leq \mathrm{C}(\varepsilon, |g|_{\mathrm{H}^{1/2}})$$

and

$$\left|\psi_{\varepsilon}^{\#}\right|_{\rm BV} \leq 4\pi \, {\rm L}(g) + \varepsilon \ ?$$

The answer is negative even with $g \in Y$. To see this, we may use an example studied in [15]. Assume that, locally, near a point of Ω , say 0, the square $Q = I^2$, with I = (-1, +1), is contained in Ω . Consider the function $\gamma_{\delta}(x)$ defined on I by

,

$$\gamma_{\delta}(x) = \begin{cases} 0, & \text{if } -1 < x < 0\\ 2\pi x/\delta, & \text{if } 0 < x < \delta\\ 2\pi, & \text{if } \delta < x < 1 \end{cases}$$

where δ is small.

On Q, set

$$g_{\delta}(x, y) = e^{i\gamma_{\delta}(x)}$$
 for $(x, y) \in \mathbb{Q}$.

Clearly, we have $g_{\delta} \in Y$, so that $L(g_{\delta}) = 0$. We claim that

$$(4.35) ||g_{\delta}||_{\mathrm{H}^{1/2}(\mathrm{Q})} \leq \mathrm{C}, \quad \forall \, \delta,$$

and that there exist absolute positive constants c_* and C_* such that, if

(4.36)
$$g_{\delta} = e^{\iota(\varphi_{\delta} + \psi_{\delta})}, \ \varphi_{\delta} \in \mathrm{H}^{1/2}(\mathrm{Q}), \ \psi_{\delta} \in \mathrm{BV}(\mathrm{Q}),$$

with

$$|\psi_{\delta}|_{\mathrm{BV}(\mathbf{Q})} \leq \mathbf{C}_{*},$$

then

(4.38)
$$|\varphi_{\delta}|^2_{\mathrm{H}^{1/2}(\mathrm{Q})} \geq c_* \log(1/\delta) \text{ as } \delta \to 0.$$

The verification of (4.35) is easy. Indeed, by scaling we have

$$|g_{\delta}(\cdot, y)|_{\mathrm{H}^{1/2}(\mathrm{I})} \leq \mathrm{C}, \quad \forall \, \delta, \, \forall \, y,$$

and recall (see e.g. [1], Lemma 7.44) that

(4.39)
$$\int_{\mathbf{I}} |f(\cdot,y)|^2_{\mathbf{H}^{1/2}(\mathbf{I})} dy + \int_{\mathbf{I}} |f(x,\cdot)|^2_{\mathbf{H}^{1/2}(\mathbf{I})} dx \sim |f|^2_{\mathbf{H}^{1/2}(\mathbf{Q})},$$

so that (4.35) follows.

We now turn to the proof of (4.38) under the assumptions (4.36) and (4.37). By Theorem 2 in [15] we know that, for a.e. $y \in I$,

$$|\varphi_{\delta}(\cdot, y) + \psi_{\delta}(\cdot, y)|_{\mathrm{H}^{s}(\mathrm{I})} \geq c(\log(1/\delta))^{1/2}$$

for some absolute constant c > 0, where

(4.41)
$$2s = 1 - (\log 1/\delta)^{-1}$$
.

On the other hand, it is easy to see that

$$(\mathbf{4.42}) \qquad |f|_{\mathrm{H}^{\sigma}(\mathrm{I})}^{2} \leq \frac{\mathrm{C}}{1-2\sigma} |f|_{\mathrm{BV}(\mathrm{I})}^{2}, \quad \forall f \in \mathrm{BV}(\mathrm{I}), \ \forall \sigma < 1/2$$

and

(**4.43**)
$$|f|_{\mathrm{H}^{\sigma}(\mathrm{I})} \leq \mathrm{C}|f|_{\mathrm{H}^{1/2}(\mathrm{I})}, \quad \forall f \in \mathrm{H}^{1/2}, \, \forall \sigma \leq 1/2,$$

with constants C independent of σ . Combining (4.40), (4.41), (4,42) and (4.43) yields, for a.e. $y \in I$,

(4.44)
$$|\varphi_{\delta}(\cdot, y)|_{\mathrm{H}^{1/2}(\mathrm{I})} + (\log(1/\delta))^{1/2} |\psi_{\delta}(\cdot, y)|_{\mathrm{BV}(\mathrm{I})} \ge c (\log(1/\delta))^{1/2}.$$

Integrating (4.44) in y and using the inequalities

$$\begin{split} \int_{\mathbf{I}} |f(\cdot, y)|_{\mathbf{H}^{1/2}(\mathbf{I})} dy &\leq \left(2 \int_{\mathbf{I}} |f(\cdot, y)|_{\mathbf{H}^{1/2}(\mathbf{I})}^2 dy \right)^{1/2} \\ &\leq \mathbf{C} |f|_{\mathbf{H}^{1/2}(\mathbf{Q})}, \quad \forall f \in \mathbf{H}^{1/2}(\mathbf{Q}), \end{split}$$

and

$$\int_{\mathbf{I}} |f(\cdot, y)|_{\mathrm{BV}(\mathbf{I})} dy \leq \mathbf{C} |f|_{\mathrm{BV}(\mathbf{Q})}, \quad \forall f \in \mathrm{BV}(\mathbf{Q}),$$

together with (4.37), we obtain

$$|\varphi_{\delta}|_{\mathrm{H}^{1/2}(\mathrm{Q})} + \mathrm{C}_{*}(\log 1/\delta)^{1/2} \ge c(\log 1/\delta)^{1/2},$$

and (4.38) follows, provided C_{\ast} is sufficiently small.

4.3. Lower bound estimates for the BV part of the phase

We start with a simple lemma about maps from S^1 into S^1 .

Lemma 18. — Let $(g_n) \subset BV(S^1; S^1) \cap C^0(S^1; S^1)$ be such that $g_n \to g$ a.e. for some $g \in BV(S^1; S^1) \cap C^0(S^1; S^1)$ and $||g_n||_{BV} \leq C$. Then

$$\liminf_{n\to\infty}\left(\int_{\mathrm{S}^1} |\dot{g}_n| - 2\pi |\deg g_n - \deg g|\right) \ge \int_{\mathrm{S}^1} |\dot{g}|.$$

Here, \dot{g} denotes the measure $\frac{\partial g}{\partial \theta}$.

Proof. — (We thank Augusto Ponce for simplifying our original proof). For $g \in$ BV(S¹; S¹) \cap C⁰(S¹; S¹), let $f \in$ C⁰([0, 2π]; **R**) be such that $g(\exp(\iota\theta)) = \exp(\iota f(\theta))$. Then deg $g = \frac{1}{2\pi} (f(2\pi) - f(0))$. Moreover, we have $f \in$ BV and

(**4.45**)
$$\int_{0}^{2\pi} |f'| = \int_{S^1} |\dot{g}|,$$

where f' is the measure $\frac{df}{dx}$. Indeed, since g is continuous, we have

$$(4.46) \qquad \int_{S^1} |\dot{g}| = \sup \left\{ \sum_{j=1}^n |g(\exp(\iota t_{j+1})) - g(\exp(\iota t_j))|; 0 \le t_1 < \dots < t_n \le 2\pi \right\}$$
$$= \sup \left\{ \sum_{j=1}^{n-1} |g(\exp(\iota t_{j+1})) - g(\exp(\iota t_j))|; 0 \le t_1 < \dots < t_n \le 2\pi \right\}$$

(with the convention $t_{n+1} = t_1$).

For a given $\delta > 0$, we have

$$(4.47) (1-\delta)|f(t_{j+1}) - f(t_j)| \le |g(\exp(\iota t_{j+1})) - g(\exp(\iota t_j))| \le |f(t_{j+1}) - f(t_j)|,$$

provided the partition (t_j) is sufficiently fine. We obtain (4.45) by combining (4.46) and (4.47).

Let $f_n \in BV([0, 2\pi]; \mathbf{R}) \cap C^0([0, 2\pi]; \mathbf{R})$ be such that $g_n(\exp(i\theta)) = \exp(if_n(\theta))$ and $||f_n||_{BV} \leq C$. Up to a subsequence, we may assume that $f_n \to h$ a.e. and in L¹ for some $h \in BV$. Since $g = e^{ih} = e^{if}$, we find that h = f + k, where $k \in BV([0, 2\pi]; 2\pi \mathbb{Z})$. Thus k must be of the form

$$k = 2\pi \sum_{j=1}^{p} \alpha_j \chi_{\mathbf{I}_j} \text{ a.e.},$$

where $\alpha_j \in \mathbf{Z}$, $I_j = (a_j, a_{j+1}), 0 = a_1 < \cdots < a_{p+1} = 2\pi$. Therefore

(**4.48**)
$$h' = f' + \sum_{j=2}^{p} \alpha_j \delta_{a_j}.$$

We have to prove that

(**4.49**)
$$\lim_{n \to \infty} \inf \left(\int_{0}^{2\pi} |f'_{n}| - \left| \int_{0}^{2\pi} (f'_{n} - f') \right| \right) \ge \int_{0}^{2\pi} |f'|.$$

It suffices to show that

(**4.50**)
$$\lim_{n \to \infty} \inf \left(\int_{0}^{2\pi} |f'_{n}| + \int_{0}^{2\pi} (f'_{n} - f') \right) \ge \int_{0}^{2\pi} |f'|.$$

Indeed, (4.50) applied to \bar{g}_n gives

(4.51)
$$\lim_{n \to \infty} \inf \left(\int_{0}^{2\pi} |f'_{n}| - \int_{0}^{2\pi} (f'_{n} - f') \right) \ge \int_{0}^{2\pi} |f'|$$

and the combination of $\left(4.50\right)$ and $\left(4.51\right)$ is equivalent to $\left(4.49\right)$. We may rewrite $\left(4.50\right)$ as

(**4.52**)
$$\liminf_{n \to \infty} \int_{0}^{2\pi} (f'_{n})^{+} \ge \int_{0}^{2\pi} (f')^{+}.$$

Let $\varphi \in C_0^{\infty}(0, 2\pi), 0 \le \varphi \le 1$. Then

$$-\int_{0}^{2\pi} f_n \varphi' = \int_{0}^{2\pi} f'_n \varphi \le \int_{0}^{2\pi} (f'_n)^+$$

42

and thus

$$-\int_{0}^{2\pi}h\varphi'\leq\liminf_{n\to\infty}\int_{0}^{2\pi}(f'_{n})^{+}.$$

Taking the supremum over such φ 's yields

$$\liminf_{n\to\infty} \int_{0}^{2\pi} (f'_{n})^{+} \ge \int_{0}^{2\pi} (h')^{+} = \int_{0}^{2\pi} (f' + \sum \alpha_{j} \delta_{a_{j}})^{+} \text{ by } (4.48).$$

We conclude with the help of the following elementary

Lemma 19. — Let $f \in BV([0, 2\pi]) \cap C^0([0, 2\pi])$. Then

$$\int_{0}^{2\pi} \left(f' + \sum_{\text{finite}} \alpha_j \delta_{a_j} \right)^+ = \int_{0}^{2\pi} (f')^+ + \sum (\alpha_j)^+$$

for any choice of distinct points $a_i \in (0, 2\pi)$ and of α_i in **R**.

Proof of Lemma 19. — It suffices to consider the case of a single point $a \in (0, 2\pi)$. Let $\zeta_n = \zeta (n(x-a))$, where ζ is a fixed cutoff function with $\zeta(0) = 1, 0 \le \zeta \le 1$. For any fixed $\psi \in C^1([0, 2\pi])$, we claim that

$$\int_{0}^{2\pi} f(\zeta_n \psi)' \to 0.$$

Indeed,

$$\int_{0}^{2\pi} f(\zeta_n \psi)' = \int_{0}^{2\pi} (f - f(a))(\zeta_n \psi)',$$

so that

$$\left|\int_{0}^{2\pi} f(\zeta_n \psi)'\right| \leq \int_{0}^{2\pi} |f - f(a)| |(\zeta_n \psi)'| \stackrel{n}{\to} 0,$$

since f is continuous at a.

Let $\varepsilon > 0$. Fix some $\psi \in C_0^1((0, 2\pi)), 0 \le \psi \le 1$, such that

$$-\int_{0}^{2\pi} f\psi' \ge \int_{0}^{2\pi} (f')^{+} -\varepsilon.$$

Then, with $0 \le t \le 1$,

$$\int_{0}^{2\pi} (f' + \alpha \delta_a) [(1 - \zeta_n)\psi + t\zeta_n] =$$
$$-\int_{0}^{2\pi} f[(1 - \zeta_n)\psi + t\zeta_n]' + t\alpha \xrightarrow{n} - \int_{0}^{2\pi} f\psi' + t\alpha$$

Since $0 \le (1 - \zeta_n)\psi + t\zeta_n \le 1$, we find that

$$\int_{0}^{2\pi} (f' + \alpha \delta_a)^+ \ge \int_{0}^{2\pi} (f')^+ + t\alpha - \varepsilon, \quad \forall \varepsilon > 0, \ \forall t \in [0, 1],$$

and thus

$$\int_{0}^{2\pi} (f' + \alpha \delta_a)^+ \ge \int_{0}^{2\pi} (f')^+ + \alpha^+.$$

The opposite inequality

$$\int_{0}^{2\pi} (f' + \alpha \delta_a)^+ \le \int_{0}^{2\pi} (f')^+ + \alpha^+$$

being clear, the proof of Lemma 19 is complete.

Remark **4.3.** — The assumption $||g_n||_{BV} \leq C$ in Lemma 18 is essential (A. Ponce, personal communication).

Corollary **3.** — Let $\Gamma \subset \mathbf{R}^{N}$ be an oriented curve. Let $(g_n) \subset BV(\Gamma; S^1) \cap C^0(\Gamma; S^1)$ be such that $g_n \to g$ a.e. and $||g_n||_{BV} \leq C$, where $g \in BV(\Gamma; S^1) \cap C^0(\Gamma; S^1)$. Then

$$\liminf_{n\to\infty}\left(\int_{\Gamma}|\dot{g}_n|-2\pi|\deg g_n-\deg g|\right)\geq\int_{\Gamma}|\dot{g}|.$$

In particular, if deg $g_n = 0$, $\forall n$, then

$$\liminf_{n\to\infty}\int_{\Gamma}|\dot{g}_n|\geq 4\pi|\deg g|$$

(the assumption $||g_n||_{BV} \leq C$ is not required here).

Here, Γ need not be connected. If $\Gamma = \bigcup_{i} \gamma_{j}$, with each γ_{j} simple, we set

$$\deg g = \sum_{j} \deg(g; \gamma_j),$$

where γ_i has the orientation inherited from that of Γ .

Remark **4.4.** — It can be easily seen that the constants 2π in Lemma 18 and 4π in Corollary 3 cannot be improved.

We now prove a coarea type formula (in the spirit of [2]) used in the proof of the lower bound in Theorem 4.

Lemma 20. — Let $g \in H^{1/2}(\Omega; S^1)$ and $\zeta \in C^{\infty}(\Omega; \mathbf{R})$. If $\lambda \in \mathbf{R}$ is a regular value of ζ , let

$$\Gamma_{\lambda} = \{ x \in \Omega; \, \zeta(x) = \lambda \}.$$

We orient Γ_{λ} such that, for each $x \in \Gamma_{\lambda}$, the basis $(\tau(x), D\zeta(x), n(x))$ is direct, where n(x) is the outward normal to Ω at x. Then

$$\langle \mathrm{T}(g), \zeta \rangle = 2\pi \int_{\mathbf{R}} \mathrm{deg}(g; \Gamma_{\lambda}) d\lambda.$$

Remark **4.5.** — For a.e. λ we have $g_{|\Gamma_{\lambda}} \in H^{1/2} \subset VMO$. Therefore, $\deg(g; \Gamma_{\lambda})$ makes sense for a.e. λ (*see* [22]). In general, Γ_{λ} is a union of simple curves, $\Gamma_{\lambda} = \bigcup \gamma_{j}$. In this case, we set

$$\deg(g;\Gamma_{\lambda}) = \sum \deg(g;\gamma_j)$$

where on each γ_i we consider the orientation inherited from Γ_{λ} .

Proof of Lemma 20. — We write $g = g_1 h$, with $g_1 \in X$ and $h \in W^{1,1}(\Omega; S^1) \cap H^{1/2}(\Omega; S^1)$. For a.e. λ , we have $h_{|\Gamma_{\lambda}} \in W^{1,1}$ and $g_{1|\Gamma_{\lambda}} \in H^{1/2}$.

Since $g_1 = e^{i\varphi_1}$ for some $\varphi_1 \in H^{1/2}(\Omega; \mathbf{R})$, for a.e. λ we have $\deg(g_1; \Gamma_{\lambda}) = 0$, so that $\deg(g; \Gamma_{\lambda}) = \deg(h; \Gamma_{\lambda})$ for a.e. λ . Moreover, we have T(g) = T(h). It suffices therefore to prove the statement of the lemma for $h \in W^{1,1}(\Omega; S^1) \cap H^{1/2}(\Omega; S^1)$. In this case, we have

$$\langle \mathbf{T}(h), \zeta \rangle = \int_{\Omega} |\mathbf{D}\zeta| h \wedge \left(\mathbf{D}h \wedge \frac{\mathbf{D}\zeta}{|\mathbf{D}\zeta|} \right)$$

(see Lemma 1 in the introduction).

We recall the coarea formula (see, e.g., Federer [26], Simon [42])

(4.53)
$$\int_{\Omega} f |\mathrm{D}\varphi| = \int_{\mathbf{R}} \left(\int_{\varphi=\lambda} f ds \right) d\lambda, \quad \varphi \in \mathrm{C}^{\infty}(\Omega; \mathbf{R}), \ f \in \mathrm{L}^{1}(\Omega; \mathbf{R}).$$

Applying (4.53) with $\varphi = \zeta$, $f = h \wedge \left(Dh \wedge \frac{D\zeta}{|D\zeta|} \right) = h \wedge \frac{\partial h}{\partial \tau}$ (where τ is the oriented tangent unit vector to Γ_{λ}) we find

$$\langle \mathrm{T}(h), \zeta \rangle = \int_{\mathbf{R}} \left(\int_{\Gamma_{\lambda}} h \wedge \frac{\partial h}{\partial \tau} ds \right) d\lambda = 2\pi \int_{\mathbf{R}} \mathrm{deg}(h; \Gamma_{\lambda}) d\lambda.$$

The final ingredient in the proof of Theorem 4 is the lower bound given by

Lemma **21.** — Let $g \in H^{1/2}(\Omega; S^1)$. If $g = e^{i(\varphi+\psi)}$ with $\varphi \in H^{1/2}(\Omega; \mathbf{R})$ and $\psi \in BV(\Omega; \mathbf{R})$, then

$$\int_{\Omega} |\mathbf{D}\psi| \ge 4\pi \mathbf{L}(g).$$

Proof. — Let $h = e^{-i\varphi}g \in H^{1/2}(\Omega; S^1)$. Let (ψ_n) be a sequence of smooth real-valued functions such that $\psi_n \to \psi$ a.e. and

$$\int_{\Omega} |\mathrm{D}\psi_n| \to \int_{\Omega} |\mathrm{D}\psi|.$$

Fix some $\zeta \in C^{\infty}(\Omega; \mathbf{R})$ and let, for λ a regular value of ζ , $\Gamma_{\lambda} = \{x \in \Omega; \zeta(x) = \lambda\}$. Let $h_n = e^{i\psi_n}$. For a.e. λ we have $h_{n|\Gamma_{\lambda}} \rightarrow h_{|\Gamma_{\lambda}}$ a.e. and $h_{|\Gamma_{\lambda}} \in H^{1/2} \cap BV$. For any such λ we have $h_{|\Gamma_{\lambda}} \in BV \cap C^0$. Indeed, since $k = h_{|\Gamma_{\lambda}} \in BV$, k has finite limits from the left and from the right at each point. These limits must coincide, since $H^{1/2} \subset VMO$ in dimension 1 (*see* e.g. [17] and [22]) and non-trivial characteristic functions are not in VMO. By the second assertion in Corollary 3, we find that, for a.e. λ ,

$$\liminf_{n\to\infty}\int_{\Gamma_{\lambda}}|\dot{h}_n|\geq 4\pi|\deg(h;\Gamma_{\lambda})|.$$

Thus, if $|D\zeta| \leq 1$, we have by the coarea formula,

$$\liminf_{n \to \infty} \int_{\Omega} |Dh_n| \ge \liminf_{n \to \infty} \int_{\Omega} |Dh_n| |D\zeta| = \liminf_{n \to \infty} \int_{\mathbf{R}} \left(\int_{\Gamma_{\lambda}} |Dh_n| ds \right) d\lambda$$
$$\ge \liminf_{n \to \infty} \int_{\mathbf{R}} \left(\int_{\Gamma_{\lambda}} |\dot{h}_n| ds \right) d\lambda \ge 4\pi \int_{\mathbf{R}} |\deg(h; \Gamma_{\lambda})| d\lambda$$
$$\ge 4\pi \left| \int_{\mathbf{R}} \deg(h; \Gamma_{\lambda}) d\lambda \right|.$$

On the other hand, by Lemma 20, we have

$$4\pi \left| \int_{\mathbf{R}} \deg(h; \Gamma_{\lambda}) d\lambda \right| = 2 |\langle \mathbf{T}(h), \zeta \rangle|.$$

Thus, if $\zeta \in C^{\infty}(\Omega; \mathbf{R})$ is such that $|D\zeta| \leq 1$, we have

(4.54)
$$\int_{\Omega} |\mathbf{D}\psi| = \liminf_{n \to \infty} \int_{\Omega} |\mathbf{D}\psi_n| = \liminf_{n \to \infty} \int_{\Omega} |\mathbf{D}h_n| \ge 2|\langle \mathbf{T}(h), \zeta \rangle| = 2|\langle \mathbf{T}(g), \zeta \rangle|.$$

We conclude by taking in (4.54) the supremum over all such ζ 's.

5. Minimal connection and Ginzburg-Landau energy for $g \in H^{1/2}$. Proof of Theorem 6

Throughout this section, the metric d denotes d_G , the geodesic distance (on Ω) relative to G, and $L = L_G$.

Proof of Theorem 6. — We start by deriving some elementary inequalities. For $g \in H^{1/2}(\Omega; \mathbb{R}^2)$, let

$$e_{\varepsilon,g} = \operatorname{Min} \left\{ \operatorname{E}_{\varepsilon}(u); \, u \in \operatorname{H}^{1}_{g}(\mathrm{G}; \mathbf{R}^{2}) \right\}.$$

Let $g_1, g_2 \in H^{1/2}(\Omega; S^1)$ and let $u_j \in H^1_{g_j}(G; B^2)$ be such that $e_{\varepsilon,g_j} = E_{\varepsilon}(u_j), j = 1, 2$. Then $u_1u_2 \in H^1_{g_1g_2}(G; \mathbb{R}^2)$. We find that, for each $\delta > 0$, we have

(5.1)

$$e_{\varepsilon,g_{1}g_{2}} \leq E_{\varepsilon}(u_{1}u_{2}) \leq \frac{1}{2} \int_{G} (|\nabla u_{1}| + |\nabla u_{2}|)^{2} + \frac{1}{4\varepsilon^{2}} \int_{G} (1 - |u_{1}u_{2}|^{2})^{2} \\ \leq \frac{1 + \delta}{2} \int_{G} |\nabla u_{1}|^{2} + \frac{C(\delta)}{2} \int_{G} |\nabla u_{2}|^{2} \\ + \frac{1}{4\varepsilon^{2}} \int_{G} ((1 - |u_{1}|^{2}) + (1 - |u_{2}|^{2}))^{2} \\ \leq (1 + \delta)e_{\varepsilon,g_{1}} + C(\delta)e_{\varepsilon,g_{2}}.$$

Similarly, we have

(5.2)
$$e_{\varepsilon,g_1g_2} \ge (1-\delta)e_{\varepsilon,g_1} - \mathcal{C}(\delta)e_{\varepsilon,g_2}$$

The upper bound $e_{\varepsilon,g} \leq \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon))$

We will use Lemma A.1 in Appendix A, which asserts that, if $g \in \mathscr{R}_1$, then

(5.3)
$$e_{\varepsilon,g} \leq \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon))$$
 as $\varepsilon \to 0$.

The class \mathscr{R}_1 , which is dense in $H^{1/2}(\Omega; S^1)$, is defined in Appendix A. Inequality (5.3) was essentially established by Sandier [40].

Another ingredient needed in the proof is the following upper bound, valid for $g \in H^{1/2}(\Omega; S^1)$, and already mentioned in the Introduction (*see* [12], Theorem 5 and Remark 8; *see* also [38], Proposition II.1 for a different proof):

(5.4)
$$e_{\varepsilon,g} \leq C|g|_{\mathrm{H}^{1/2}}^2(1+\log(1/\varepsilon)),$$

for some C = C(G).

We now turn to the proof of the upper bound. Let $g \in H^{1/2}(\Omega; S^1)$. By Lemma B.1 in Appendix B, there is a sequence (g_k) in \mathscr{R}_1 such that $g_k \to g$ in $H^{1/2}$. On the one hand, since $H^{1/2} \cap L^{\infty}$ is an algebra, we find that $|g/g_k|_{H^{1/2}} \to 0$. On the other hand, recall that $L(g_k) \to L(g)$. Fix some $\tilde{\delta} > 0$. By (5.4) applied to g/g_k , we find that

(5.5)
$$e_{\varepsilon,g/g_k} \leq \tilde{\delta} \log(1/\varepsilon)$$
 for ε sufficiently small,

if k is sufficiently large. Using (5.3) for g_k , where k is sufficiently large, we obtain

(5.6)
$$e_{\varepsilon,g_k} \leq \pi(\mathcal{L}(g) + \delta) \log(1/\varepsilon).$$

The upper bound follows by combining (5.1), (5.5) and (5.6).

The lower bound $e_{\varepsilon,g} \geq \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon))$

We rely on the corresponding lower bound in [40] (Theorem 3.1, part 1): if $g \in \mathscr{R}_0$ (where the class \mathscr{R}_0 , dense in $\mathrm{H}^{1/2}(\Omega; \mathrm{S}^1)$, is defined in Appendix A), then

(5.7)
$$e_{\varepsilon,g} \ge \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon))$$
 for ε sufficiently small

(no geometrical assumption is made on Ω or g). We fix some $\delta > 0$. Applying (5.7) to g_k for k sufficiently large, we find that

(5.8)
$$e_{\varepsilon,g_k} \ge \pi(\mathbf{L}(g) - \delta) \log(1/\varepsilon)$$
 for ε sufficiently small.

The lower bound is a consequence of (5.2), (5.5) and (5.8).

There is a variant of Theorem 6 when the boundary condition depends on ε . Let $g \in H^{1/2}(\Omega; S^1)$ and let $g_{\varepsilon} \in H^{1/2}(\Omega; \mathbb{R}^2)$ be such that

(5.9)
$$g_{\varepsilon} \to g \text{ in } \mathrm{H}^{1/2},$$

$$(5.10) |g_{\varepsilon}| \le 1,$$

$$(5.11) |||g_{\varepsilon}| - 1||_{L^2} \le C\sqrt{\varepsilon}.$$

Set

$$e_{\varepsilon,g_{\varepsilon}} = \operatorname{Min}\left\{ \operatorname{E}_{\varepsilon}(u); u \in \operatorname{H}^{1}_{g_{\varepsilon}}(\mathrm{G}; \mathbf{R}^{2}) \right\}.$$

Theorem 6'. — Assume (5.9), (5.10) and (5.11). Then we have

(5.12)
$$e_{\varepsilon,g_{\varepsilon}} = \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon)) \text{ as } \varepsilon \to 0$$

The main ingredients in the proof of (5.12) are the following Lemmas 22 and 23.

Lemma 22. — Let $\varphi \in H^{1/2}(\Omega; \mathbb{R}^2)$ and let $u(=u_{\varepsilon})$ be the solution of the linear problem

$$(5.13) \qquad -\Delta u + \frac{1}{\varepsilon^2}u = 0 \quad in \ \mathrm{G},$$

$$(5.14) u = \varphi on \ \Omega = \partial \mathbf{G}.$$

Then, for sufficiently small $\varepsilon > 0$,

(5.15)
$$\int_{G} |\nabla u|^2 + \frac{1}{\varepsilon^2} \int_{G} |u|^2 \le C_G \bigg(|\varphi|^2_{H^{1/2}(\Omega)} + \frac{1}{\varepsilon} \int_{\Omega} |\varphi|^2 \bigg).$$

Proof of Lemma 22. — Let Φ be the harmonic extension of φ and fix some $\zeta \in C_0^{\infty}(\mathbf{R})$ with $\zeta(0) = 1$. Set

$$v(x) = \Phi(x)\zeta(\text{dist } (x, \Omega)/\varepsilon).$$

Using, for $0 < \delta < \delta_0(G)$, the standard estimate

$$\int_{\{x; \operatorname{dist}(x, \Omega) = \delta\}} \Phi^2 \leq \operatorname{C} \int_{\Omega} \varphi^2,$$

it is easy to see that, for $0 < \varepsilon < \varepsilon_0(G)$, we have

$$\int_{G} |\nabla v|^2 + \frac{1}{\varepsilon^2} \int_{G} |v|^2 \le C_G \bigg(|\varphi|^2_{\mathrm{H}^{1/2}} + \frac{1}{\varepsilon} \int_{G} |\varphi|^2 \bigg),$$

and the conclusion follows, since u is a minimizer so that,

$$\int_{\mathcal{G}} |\nabla u|^2 + \frac{1}{\varepsilon^2} \int_{\mathcal{G}} |u|^2 \leq \int_{\mathcal{G}} |\nabla v|^2 + \frac{1}{\varepsilon^2} \int_{\mathcal{G}} |v|^2.$$

For later use, we mention a related estimate, whose proof is similar and left to the reader:

Lemma **22'.** — For
$$0 < \varepsilon < \varepsilon_0(G)$$
, set
 $G_{\varepsilon} = \{ x \in \mathbf{R}^3 \setminus G ; \text{ dist } (x, \Omega) < \varepsilon \}.$

Let $\varphi \in H^{1/2}(\Omega; \mathbb{R}^2)$ and let $u(=u_{\varepsilon})$ be the solution of the linear problem

(5.16)
$$-\Delta u + \frac{1}{\varepsilon^2}u = 0 \quad in \ \mathrm{G}_{\varepsilon},$$

$$(5.17) u = \varphi on \ \Omega = \partial \mathbf{G},$$

$$(5.18) u = 0 on \ \partial \mathbf{G}_{\varepsilon} \setminus \partial \mathbf{G}.$$

Then

(5.19)
$$\int_{G_{\varepsilon}} |\nabla u|^2 + \frac{1}{\varepsilon^2} \int_{G_{\varepsilon}} |u|^2 \le C_G \bigg(|\varphi|^2_{H^{1/2}} + \frac{1}{\varepsilon} \int_{\Omega} |\varphi|^2 \bigg).$$

50

Lemma 23. — Let
$$(g_{\varepsilon})$$
 in $\mathrm{H}^{1/2}(\Omega; \mathbf{R}^2)$ satisfy (5.10), (5.11) and

$$(\mathbf{5.20}) \qquad \|g_{\varepsilon}\|_{\mathrm{H}^{1/2}} \leq \mathrm{C}.$$

Then there is (h_{ε}) in $H^{1/2}(\Omega; S^1)$ such that

$$(5.21) \|h_{\varepsilon}\|_{\mathrm{H}^{1/2}} \leq \mathrm{C}$$

and

$$||g_{\varepsilon} - h_{\varepsilon}||_{\mathrm{L}^2} \leq \mathrm{C}\sqrt{\varepsilon}.$$

Moreover if, in addition,

$$(5.23) g_{\varepsilon} \to g \text{ in } \mathrm{H}^{1/2},$$

then

(5.24)
$$h_{\varepsilon} \rightarrow g \text{ in } \mathrm{H}^{1/2}.$$

Proof. — We divide the proof in 4 steps

Step **1.** — Let $g_{\varepsilon}^1 = g_{\varepsilon} * P_{\varepsilon}$ be an ε -smoothing of g_{ε} . Clearly

(5.25)
$$\left\|g_{\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}} \leq \sqrt{\varepsilon} \|g_{\varepsilon}\|_{\mathrm{H}^{1/2}} \leq \mathrm{C}\sqrt{\varepsilon}$$

and from (5.11), (5.25) we have

(5.26)
$$\|1 - |g_{\varepsilon}^1|\|_{L^2} \leq C\sqrt{\varepsilon}.$$

Also

(5.27)
$$||g_{\varepsilon}^{1}||_{\mathrm{H}^{1/2}} \leq \mathrm{C},$$

and

(5.28)
$$\|g_{\varepsilon}^1\|_{\mathrm{H}^1} \leq \mathrm{C}\varepsilon^{-1/2} \|g_{\varepsilon}\|_{\mathrm{H}^{1/2}} \leq \mathrm{C}\varepsilon^{-1/2}.$$

Step 2. — Given a point $a \in \mathbb{R}^2$ with |a| < 1/10, let $\pi_a : \mathbb{R}^2 \setminus \{a\} \to S^1$ be the radial projection onto S^1 with vertex at a, i.e.,

$$\pi_a(\xi) = a + \lambda(\xi - a), \ \xi \in \mathbf{R}^2 \setminus \{a\}$$

where $\lambda \in \mathbf{R}$ is the unique positive solution of

$$|a + \lambda(\xi - a)| = 1.$$

It is also convenient to note that

$$\pi_a(\xi) = j_a^{-1} \left(\frac{\xi - a}{|\xi - a|} \right) \text{ for } \xi \neq a$$

where $j_a: S^1 \to S^1, j_a(z) = \frac{z-a}{|z-a|}$, is a smooth diffeomorphism. In particular,

(5.29)
$$|\mathrm{D}\pi_a(\xi)| \leq \frac{\mathrm{C}}{|\xi-a|} \quad \forall \xi \in \mathbf{R}^2 \setminus \{a\},$$

and π_a is lipschitzian on $\{|\xi| \ge 1/2\}$ with a uniform Lipschitz constant (independent of a).

We claim that

$$(5.30) h_{a,\varepsilon} = \pi_a \circ g_{\varepsilon}^1 : \Omega \to \mathrm{S}^1$$

satisfies all the required properties for an appropriate choice of $a = a_{\varepsilon}$, $|a_{\varepsilon}| < 1/10$.

For this purpose, it is useful to introduce a smooth function $\psi : [0, \infty) \to [0, 1]$ such that

$$\psi(t) = \begin{cases} 0 & \text{if } t \le 1/4, \\ 1 & \text{if } t \ge 1/2, \end{cases}$$

and to write

(5.31)
$$h_{a,\varepsilon} = \pi_a(g_{\varepsilon}^1)\psi(|g_{\varepsilon}^1|) + \pi_a(g_{\varepsilon}^1)(1-\psi(|g_{\varepsilon}^1|)) = u_{a,\varepsilon} + v_{a,\varepsilon}.$$

Note that, in general, $h_{a,\varepsilon}$ is not well-defined since g_{ε}^{1} may take the value *a* on a large set. However, if *a* is chosen to be a *regular value* of g_{ε}^{1} , then

$$\Sigma_{\varepsilon} = \left\{ x \in \Omega; g_{\varepsilon}^{1}(x) = a \right\}$$

consists of a finite number of points and $h_{a,\varepsilon}$ is smooth on $\Omega \setminus \Sigma_{\varepsilon}$, and we have, using (5.29),

(5.32)
$$\left| \nabla \left(\pi_a \left(g_{\varepsilon}^1 \right) \right) \right| \leq \mathrm{C} \frac{\left| \nabla g_{\varepsilon}^1 \right|}{\left| g_{\varepsilon}^1 - a \right|} \text{ on } \Omega \setminus \Sigma_{\varepsilon}.$$

Moreover, near every point $\sigma \in \Sigma_{\varepsilon}$, we have $|g_{\varepsilon}^{1}(x) - a| \ge c|x - \sigma|, c > 0$, and thus

$$\left|
abla \left(\pi_a \left(g^1_{\varepsilon}
ight)
ight)
ight| \leq rac{\mathrm{C}_{\varepsilon}}{|x - \sigma|}.$$

In particular $h_{a,\varepsilon} \in W^{1,p}(\Omega; S^1), \forall p < 2.$

Clearly, the function $\pi_a(z)\psi(|z|)$ is well-defined and lipschitzian on \mathbf{R}^2 for any a, |a| < 1/10, with a uniform Lipschitz constant independent of a. Therefore, (5.27) yields

$$(\mathbf{5.33}) \qquad \qquad \|u_{a,\varepsilon}\|_{\mathbf{H}^{1/2}} \leq \mathbf{C} \left\|g_{\varepsilon}^{1}\right\|_{\mathbf{H}^{1/2}} \leq \mathbf{C},$$

where C is independent of a and ε .

Next, we turn to $v_{a,\varepsilon}$, which is well-defined only if *a* is a regular value of g_{ε}^1 . On $\Omega \setminus \Sigma_{\varepsilon}$, we have

$$\begin{split} |\nabla v_{a,\varepsilon}| &\leq \mathrm{C} \frac{\left|\nabla g_{\varepsilon}^{1}\right|}{\left|g_{\varepsilon}^{1}-a\right|} (1-\psi) \left(\left|g_{\varepsilon}^{1}\right|\right) + \left|\psi'\left(\left|g_{\varepsilon}^{1}\right|\right)\right) \left|\left|\nabla g_{\varepsilon}^{1}\right|\right| \\ &\leq \mathrm{C} \frac{\left|\nabla g_{\varepsilon}^{1}\right|}{\left|g_{\varepsilon}^{1}-a\right|} \chi_{\left[\left|g_{\varepsilon}^{1}\right| \leq 1/2\right]}, \end{split}$$

with C independent of a and ε .

We now make use of an averaging device due to H. Federer and W. H. Fleming [FF] and adapted by R. Hardt, D. Kinderlehrer and F. H. Lin [29] in the context of Sobolev maps with values into spheres. Recall that, by Sard's theorem, the regular values of g_{ε}^{1} have full measure and thus

(5.34)
$$\int_{\mathrm{B}_{1/10}} \int_{\Omega} |\nabla v_{a,\varepsilon}|^p dx da \leq \mathrm{C}_p \int_{[|g_{\varepsilon}^1| < 1/2]} |\nabla g_{\varepsilon}^1|^p dx, \text{ for any } p < 2.$$

By Hölder, (5.34), (5.26) and (5.28) we find

(5.35)
$$\int_{B_{1/10}} \int_{\Omega} |\nabla v_{a,\varepsilon}|^{p} dx da \leq \left\|g_{\varepsilon}^{1}\right\|_{\mathrm{H}^{1}}^{p} \left|\left[\left|g_{\varepsilon}^{1}\right| < 1/2\right]\right|^{1-\frac{p}{2}} \leq \mathrm{C}\varepsilon^{-\frac{p}{2}}\varepsilon^{1-\frac{p}{2}} \leq \mathrm{C}\varepsilon^{1-p}.$$

Next, fix any 1 and estimate (see e.g. [21])

(5.36)
$$\|v_{a,\varepsilon}\|_{\mathrm{H}^{1/2}} \leq C \|v_{a,\varepsilon}\|_{\mathrm{L}^{p'}}^{1/2} \|v_{a,\varepsilon}\|_{\mathrm{W}^{1,p}}^{1/2}.$$

From the definition of ψ we have

$$|v_{a,\varepsilon}| \leq \chi_{\left[\left|g^1_{\varepsilon}\right| < 1/2\right]}$$

and, using (5.26), we obtain

$$(\mathbf{5.37}) \qquad \|v_{a,\varepsilon}\|_{\mathbf{L}^{p'}} \leq \mathbf{C}\varepsilon^{1/p'}.$$

Substitution of (5.37) and (5.35) in (5.36) yields

(5.38)
$$\int_{\mathrm{B}_{1/10}} \|v_{a,\varepsilon}\|_{\mathrm{H}^{1/2}}^{2p} da \leq \mathrm{C}\varepsilon^{p-1}\varepsilon^{1-p} \leq \mathrm{C}.$$

In view of (5.38) we may now choose $a = a_{\varepsilon} \in B_{1/10}$, a regular value of g_{ε}^{1} , such that

$$(5.39) \|v_{a_{\varepsilon},\varepsilon}\|_{\mathrm{H}^{1/2}} \leq \mathrm{C}.$$

Returning to (5.31), and using (5.33) and (5.39), we obtain (5.21) with $h_{\varepsilon} = h_{a_{\varepsilon},\varepsilon}$.

Step 3. — Write $Z_{\varepsilon} = [|g_{\varepsilon}^{1}| > 1/2]$. For any regular value *a* of g_{ε}^{1} we have

$$\begin{split} \left\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(\Omega)}^{2} &= \left\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}\left(\left|g_{\varepsilon}^{1}\right| \leq 1/2\right)}^{2} + \left\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})}^{2} \\ &\leq \mathrm{C}\varepsilon + \left\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})}^{2} \text{ by (5.26).} \end{split}$$

Next we estimate

$$\begin{split} \left\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})} &\leq \left\|h_{a,\varepsilon} - \frac{g_{\varepsilon}^{1}}{|g_{\varepsilon}^{1}|}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})} + \left\|\frac{g_{\varepsilon}^{1}}{|g_{\varepsilon}^{1}|} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})} \\ &= \left\|\pi_{a}\left(g_{\varepsilon}^{1}\right) - \pi_{a}\left(\frac{g_{\varepsilon}^{1}}{|g_{\varepsilon}^{1}|}\right)\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})} + \left\|\frac{g_{\varepsilon}^{1}}{|g_{\varepsilon}^{1}|} - g_{\varepsilon}^{1}\right\|_{\mathrm{L}^{2}(Z_{\varepsilon})} \end{split}$$

Since $\pi_a(\xi)$ is lipschitzian on $[|\xi| \ge 1/2]$ we obtain

$$\begin{aligned} \left\| h_{a,\varepsilon} - g_{\varepsilon}^{1} \right\|_{L^{2}(Z_{\varepsilon})} &\leq C \left\| g_{\varepsilon}^{1} - \frac{g_{\varepsilon}^{1}}{\left| g_{\varepsilon}^{1} \right|} \right\|_{L^{2}(Z_{\varepsilon})} &\leq C \left\| 1 - \left| g_{\varepsilon}^{1} \right| \right\|_{L^{2}(Z_{\varepsilon})} \\ &\leq C \sqrt{\varepsilon}, \text{ by } (5.26). \end{aligned}$$

Therefore

(5.40) $\|h_{a,\varepsilon} - g_{\varepsilon}^{1}\|_{L^{2}(\Omega)} \leq C\sqrt{\varepsilon}$

with C independent of a and ε . Combining (5.25) and (5.40) yields

$$\|h_{a,\varepsilon} - g_{\varepsilon}\|_{\mathrm{L}^{2}(\Omega)} \leq \mathrm{C}\sqrt{\varepsilon},$$

which is (5.22) when choosing $a = a_{\varepsilon}$.

Step 4. — Suppose now, in addition, that $g_{\varepsilon} \to g$ in $H^{1/2}$. We claim that $h_{\varepsilon} \to g$ in $H^{1/2}$.

Indeed, we have

$$\begin{split} \left\|g_{\varepsilon}^{1}\right\|_{\mathrm{H}^{1}} &\leq \|(g_{\varepsilon}-g)\ast\mathrm{P}_{\varepsilon}\|_{\mathrm{H}^{1}} + \|g\ast\mathrm{P}_{\varepsilon}\|_{\mathrm{H}^{1}} \\ &\leq \mathrm{C}\varepsilon^{-1/2}\|g_{\varepsilon}-g\|_{\mathrm{H}^{1/2}} + \|g\ast\mathrm{P}_{\varepsilon}\|_{\mathrm{H}^{1}} \\ &= o(\varepsilon^{-1/2}). \end{split}$$

Returning to (5.35) and (5.38) we now find

$$\int_{\mathbf{B}_{1/10}} \int_{\Omega} |\nabla v_{a,\varepsilon}|^{p} dx da \to 0 \text{ as } \varepsilon \to 0$$

and we may choose a_{ε} so that

$$\|v_{a_{\varepsilon},\varepsilon}\|_{\mathrm{H}^{1/2}} \to 0 \text{ as } \varepsilon \to 0.$$

It remains to show that

(5.41)
$$u_{a_{\varepsilon},\varepsilon} \to g \text{ in } \mathrm{H}^{1/2} \text{ as } \varepsilon \to 0.$$

Recall that

$$u_{a_{\varepsilon},\varepsilon} = \pi_{a_{\varepsilon}} \left(g_{\varepsilon}^{1} \right) \psi \left(\left| g_{\varepsilon}^{1} \right| \right) = \mathcal{L}_{\varepsilon} \left(g_{\varepsilon}^{1} \right),$$

where $L_{\varepsilon}: \mathbf{R}^2 \to \mathbf{R}^2$ are lipschitzian maps with a uniform Lipschitz constant. We have

$$\begin{split} \left\|g_{\varepsilon}^{1}-g\right\|_{\mathrm{H}^{1/2}} &= \left\|(g_{\varepsilon}-g)\ast\mathrm{P}_{\varepsilon}+(g\ast\mathrm{P}_{\varepsilon})-g\right\|_{\mathrm{H}^{1/2}}\\ &\leq \mathrm{C}\|g_{\varepsilon}-g\|_{\mathrm{H}^{1/2}}+\left\|(g\ast\mathrm{P}_{\varepsilon})-g\right\|_{\mathrm{H}^{1/2}}, \end{split}$$

so that

 $(\mathbf{5.42}) \qquad \|g_{\varepsilon}^{1} - g\|_{\mathrm{H}^{1/2}} \to 0.$

Finally we use the following claim:

(5.43)
$$\begin{cases} \text{If } (k_n) \text{ is a sequence in } H^{1/2}(\Omega; \mathbb{R}^2) \text{ such that } k_n \to k \text{ in } H^{1/2} \text{ and} \\ L_n : \mathbb{R}^2 \to \mathbb{R}^2 \text{ satisfy a uniform Lipschitz condition, then} \\ L_n(k_n) - L_n(k) \to 0 \text{ in } H^{1/2}. \end{cases}$$

Proof of (5.43). - It suffices to argue on subsequences. Since

$$|k_n - k|_{\mathrm{H}^{1/2}}^2 = \int_{\Omega} \int_{\Omega} \frac{|k_n(x) - k(x) - k_n(y) + k(y)|^2}{d(x, y)^3} dx dy \to 0,$$

there is, (modulo a subsequence), some fixed $h(x, y) \in L^{1}(\Omega \times \Omega)$ such that

$$\frac{|k_n(x) - k_n(y)|^2}{d(x, y)^3} \le h(x, y), \quad \forall n.$$

We have

$$|\mathbf{L}_{n}(k_{n}) - \mathbf{L}_{n}(k)|_{\mathbf{H}^{1/2}}^{2} = \int_{\Omega} \int_{\Omega} \frac{|\mathbf{L}_{n}(k_{n}(x)) - \mathbf{L}_{n}(k(x)) - \mathbf{L}_{n}(k_{n}(y)) + \mathbf{L}_{n}(k(y))|^{2}}{d(x, y)^{3}} dxdy,$$

and the integrand $I_n(x, y)$ satisfies

$$I_n(x,y) \le C \frac{(|k_n(x) - k_n(y)|^2 + |k(x) - k(y)|^2)}{d(x,y)^3} \le Ch(x,y),$$

and also,

$$I_n(x, y) \le C \frac{(|k_n(x) - k(x)|^2 + |k_n(y) - k(y)|^2)}{d(x, y)^3}.$$

Therefore, by dominated convergence,

$$|\mathbf{L}_n(k_n)-\mathbf{L}_n(k)|_{\mathbf{H}^{1/2}}\to 0.$$

This proves (5.43).

We now return to the proof of (5.41). Applying (5.43) to $L_n(\xi) = \pi_{a_{\varepsilon_n}}(\xi)\psi(|\xi|)$ and to $k_n = g_{\varepsilon_n}^1 \to g$ in H^{1/2} by (5.42), we find that

$$L_n(g_{\varepsilon_n}^1) - L_n(g) \rightarrow 0$$
 in $H^{1/2}$.

But $L_n(g) = g \quad \forall n \text{ since } |g| = 1$. Thus we are led to $L_n(g_{\varepsilon_n}^1) \to g$ in $H^{1/2}$, which is (5.41).

This completes the proof of Lemma 23.

Remark **5.1.** — It is interesting to observe that the construction used in the proof of Lemma 23 gives a simple proof of Rivière's Lemma 11. In fact, we have a more precise statement. Fix any element $g \in H^{1/2}(\Omega; S^1)$ and apply the construction described above with $g_{\varepsilon} \equiv g$. The sequence

$$h_{\varepsilon} = \pi_{a_{\varepsilon}}(g * \mathbf{P}_{\varepsilon})$$

satisfies the following properties:

.

(5.44)
$$h_{\varepsilon} \in W^{1,p}(\Omega; S^1), \quad \forall p < 2, \forall \varepsilon,$$

(**5.45**)
$$h_{\varepsilon} \to g \text{ in } \mathrm{H}^{1/2} \text{ as } \varepsilon \to 0,$$

(5.46)
$$\begin{cases} h_{\varepsilon} \text{ is smooth except on a finite set } \Sigma_{\varepsilon} \subset \Omega \text{ and} \\ |\nabla h_{\varepsilon}(x)| \leq \frac{C_{\varepsilon}}{\operatorname{dist}(x, \Sigma_{\varepsilon})}, \quad \forall x \in \Omega \setminus \Sigma_{\varepsilon}, \end{cases}$$

$$\text{for each } \sigma \in \Sigma_{\varepsilon}, \text{ there is a smooth diffeomorphism } \gamma = \gamma_{\varepsilon,\sigma}, \text{from the unit circle in } T_{\sigma}(\Omega) \text{ onto } S^{1}, \text{ such that, assuming} \\ \Omega \text{ flat near } \sigma \text{ (for simplicity), we have} \\ \left| h_{\varepsilon}(x) - \gamma \left(\frac{x - \sigma}{|x - \sigma|} \right) \right| \leq C_{\varepsilon}|x - \sigma| \text{ for } x \in \Omega \text{ near } \sigma. \end{cases}$$

Here, $T_{\sigma}(\Omega)$ denotes the tangent space to Ω at σ . Note that (5.47) implies that $\deg(g, \sigma) = \pm 1$ for each singularity σ .

All the above properties are clear from the proof of Lemma 23, except possibly (5.47). Taylors's expansion near $\sigma \in \Sigma_{\varepsilon}$ gives

$$g_{\varepsilon}^{1}(x) = g_{\varepsilon}^{1}(\sigma) + M(x - \sigma) + O(|x - \sigma|^{2})$$

where $g_{\varepsilon}^{1}(\sigma) = a_{\varepsilon}$ and $\mathbf{M} = \mathbf{M}_{\varepsilon,\sigma} = \mathbf{D}g_{\varepsilon}^{1}(\sigma)$ is a bounded invertible linear operator from $\mathbf{T}_{\sigma}(\Omega)$ onto \mathbf{R}^{2} (since a_{ε} is a regular value of g_{ε}^{1}). Thus

$$\frac{g_{\varepsilon}^{1}(x) - a_{\varepsilon}}{\left|g_{\varepsilon}^{1}(x) - a_{\varepsilon}\right|} = \frac{\mathbf{M}(x - \sigma)}{|\mathbf{M}(x - \sigma)|} + \mathbf{O}(|x - \sigma|)$$

and therefore

$$h_{\varepsilon}(x) = j_{a_{\varepsilon}}^{-1} \left(\frac{g_{\varepsilon}^{1}(x) - a_{\varepsilon}}{\left| g_{\varepsilon}^{1}(x) - a_{\varepsilon} \right|} \right) = j_{a_{\varepsilon}}^{-1} \left(\frac{\mathbf{M}(x - \sigma)}{|\mathbf{M}(x - \sigma)|} \right) + \mathbf{O}(|x - \sigma|),$$

where $j_{a_{\varepsilon}}(\xi) = \frac{\xi - a_{\varepsilon}}{|\xi - a_{\varepsilon}|} : S^1 \to S^1$. This proves (5.47) with

$$\gamma(z) = j_{a_{\varepsilon}}^{-1} \left(\frac{\mathrm{M}z}{|\mathrm{M}z|} \right), z \in \mathrm{T}_{\sigma}(\Omega).$$

Clearly, γ is a smooth diffeomorphism from the unit circle in $T_{\sigma}(\Omega)$ onto S¹. We will present in Appendix B a more precise statement.

Remark **5.2.** — The averaging process over *a* in the proof of Lemma 23 can be done on any ball B_{ρ} , $0 < \rho \leq 1/10$, with ρ possibly depending on ε . In particular, when $g_{\varepsilon} \rightarrow g$ in $\mathrm{H}^{1/2}$, one may choose some special $\rho_{\varepsilon} \rightarrow 0$ and obtain a corresponding a_{ε} with $a_{\varepsilon} \rightarrow 0$. Then

$$\tilde{h}_{a_{\varepsilon},\varepsilon} = \frac{g_{\varepsilon}^{1} - a_{\varepsilon}}{|g_{\varepsilon}^{1} - a_{\varepsilon}|}$$

has all the desired properties without having to consider

$$h_{a_{\varepsilon},\varepsilon}=j_{a_{\varepsilon}}^{-1}\tilde{h}_{a_{\varepsilon},\varepsilon}.$$

The argument is similar, with a minor modification in Step 3.

Proof of Theorem 6'. — Let $k_{\varepsilon} \in \mathrm{H}^{1/2}(\Omega; \mathbf{R}^2)$ with $|k_{\varepsilon}| \leq 1$. We claim that

(5.48)
$$e_{\varepsilon,k_{\varepsilon}} \leq C_{\Omega} \left(|k_{\varepsilon}|_{\mathrm{H}^{1/2}}^2 + \frac{1}{\varepsilon} ||k_{\varepsilon} - 1||_{\mathrm{L}^2}^2 \right).$$

Indeed, let $u = u_{\varepsilon}$ be the solution of (5.13), (5.14) corresponding to $\varphi = k_{\varepsilon} - 1$. Using the function $(u_{\varepsilon} + 1)$ as a test function in the definition of $e_{\varepsilon,k_{\varepsilon}}$, we find

(5.49)
$$e_{\varepsilon,k_{\varepsilon}} \leq \frac{1}{2} \int_{G} |\nabla u_{\varepsilon}|^{2} + \frac{1}{4\varepsilon^{2}} \int_{G} (|u_{\varepsilon}+1|^{2}-1)^{2}.$$

From (5.15), we have

(5.50)
$$\int_{G} |\nabla u_{\varepsilon}|^{2} \leq C \left(|k_{\varepsilon}|_{\mathrm{H}^{1/2}}^{2} + \frac{1}{\varepsilon} \|k_{\varepsilon} - 1\|_{\mathrm{L}^{2}}^{2} \right).$$

On the other hand, by the maximum principle, we have

$$\|u_{\varepsilon}\|_{\mathcal{L}^{\infty}(\mathcal{G})} \leq \|k_{\varepsilon} - 1\|_{\mathcal{L}^{\infty}(\Omega)} \leq 2,$$

and thus, by (5.15),

(5.51)
$$\int_{G} (|u_{\varepsilon} + 1|^{2} - 1)^{2} = \int_{G} (|u_{\varepsilon} + 1| - 1)^{2} (|u_{\varepsilon} + 1| + 1)^{2} \le 16 \int_{G} |u_{\varepsilon}|^{2} \le C\varepsilon^{2} \left(|k_{\varepsilon}|^{2}_{H^{1/2}} + \frac{1}{\varepsilon} ||k_{\varepsilon} - 1||^{2}_{L^{2}} \right).$$

Combining (5.49), (5.50) and (5.51) yields (5.48).

Next, we write, using h_{ε} from Lemma 23,

$$g_{\varepsilon} = (g_{\varepsilon}\bar{h}_{\varepsilon})(h_{\varepsilon}\bar{g})g$$

and apply (5.1) to find

(5.52)
$$e_{\varepsilon,g_{\varepsilon}} \leq (1+\delta)e_{\varepsilon,g} + C(\delta)(e_{\varepsilon,h_{\varepsilon}\bar{g}} + e_{\varepsilon,g_{\varepsilon}\bar{h}_{\varepsilon}}).$$

We deduce from (5.48) (applied to $k_{\varepsilon}=g_{\varepsilon}\bar{h}_{\varepsilon})$ that

$$(5.53) \qquad e_{\varepsilon,g_{\varepsilon}\bar{h}_{\varepsilon}} \leq C\left(|g_{\varepsilon}\bar{h}_{\varepsilon}|^{2}_{\mathrm{H}^{1/2}} + \frac{1}{\varepsilon}\|g_{\varepsilon}\bar{h}_{\varepsilon} - 1\|^{2}_{\mathrm{L}^{2}}\right) \\ \leq C\left(|g_{\varepsilon}|^{2}_{\mathrm{H}^{1/2}} + |h_{\varepsilon}|^{2}_{\mathrm{H}^{1/2}} + \frac{1}{\varepsilon}\|g_{\varepsilon} - h_{\varepsilon}\|^{2}_{\mathrm{L}^{2}}\right) \leq C.$$

Applying (5.4) (with g replaced by $h_{\varepsilon}\bar{g}$) yields

(5.54)
$$e_{\varepsilon,h_{\varepsilon}\bar{g}} \leq C|h_{\varepsilon}\bar{g}|_{\mathrm{H}^{1/2}}^{2}(1+\log(1/\varepsilon)).$$

Recall that $|h_{\varepsilon}\bar{g}|_{\mathrm{H}^{1/2}} \to 0$ as $\varepsilon \to 0$ (by (5.24)). By Theorem 6, we know that

(5.55)
$$e_{\varepsilon,g} = \pi L(g) \log(1/\varepsilon) + o(\log(1/\varepsilon)).$$

Combining (5.52)–(5.55) we finally obtain

$$\limsup_{\varepsilon \to 0} \frac{\ell_{\varepsilon,g_{\varepsilon}}}{\log(1/\varepsilon)} \le \pi \mathcal{L}(g)(1+\delta), \quad \forall \, \delta > 0.$$

The lower bound

$$\liminf_{\varepsilon \to 0} \frac{e_{\varepsilon,g_{\varepsilon}}}{\log(1/\varepsilon)} \ge \pi \mathcal{L}(g)(1-\delta), \quad \forall \, \delta > 0,$$

is deduced in the same way via (5.2). This completes the proof of Theorem 6'.

6. $W^{1,p}(G)$ compactness for p < 3/2 and $g \in H^{1/2}$. Proof of Theorem 7'

Proof of Theorem 7'. — The estimate

$$\|u_{\varepsilon}\|_{\mathrm{W}^{1,p}(\mathrm{G})} \leq \mathrm{C}_{p}, \quad \forall 1 \leq p < 3/2,$$

was established in [5]. We will now show that a simple adaptation of the argument there yields compactness. We rely on the following Lemma **24.** — The family $(u_{\varepsilon} \wedge du_{\varepsilon})$ is compact in $L^{p}(G)$, $1 \leq p < 3/2$.

Proof of Lemma 24. — Let $X_{\varepsilon} = u_{\varepsilon} \wedge du_{\varepsilon}$. Since div $(X_{\varepsilon}) = 0$, we may write $X_{\varepsilon} = \operatorname{curl} H_{\varepsilon}$. As explained in Section 3 of [5], we may choose H_{ε} of the form $H_{\varepsilon} = H_{\varepsilon}^{1} + H^{2}$. Here $H^{2} \in W^{1,p}(G)$, $1 \leq p < 3/2$, depends only on g, while H_{ε}^{1} is a linear operator acting on X_{ε} satisfying the estimate

$$\left\|\mathbf{H}_{\varepsilon}^{1}\right\|_{\mathbf{W}^{1,p}(\mathbf{G})} \le \mathbf{C}_{p} \left\|d\mathbf{X}_{\varepsilon}\right\|_{\left[\mathbf{W}^{1,q}(\mathbf{G})\right]^{*}}, \ 1 \le p < 3/2, \ \frac{1}{p} + \frac{1}{q} = 1$$

Therefore, it suffices to prove that (dX_{ε}) is relatively compact in $[W^{1,q}(G)]^*$.

For $1 \le p \le 3/2$ and $\frac{1}{p} + \frac{1}{q} = 1$, let $0 \le \beta \le \alpha = 1 - \frac{3}{q}$. Then the imbedding $W^{1,q}(G) \subset C^{0,\beta}(\overline{G})$ is compact. Hence the imbedding $(C^{0,\beta}(\overline{G}))^* \subset (W^{1,q}(G))^*$ is compact. The conclusion of Lemma 24 follows now easily from the bound $\|dX_{\varepsilon}\|_{[C^{0,\beta}(\overline{G})]^*} \le C$ derived in [5]; *see* Theorem 2bis in [5].

Proof of Theorem 7' completed. — Let $A = A_{\varepsilon} = \{x \in G; |u_{\varepsilon}(x)| \leq 1/2\}$. Since $E_{\varepsilon}(u_{\varepsilon}) \leq C \log(1/\varepsilon)$, we have $|A_{\varepsilon}| \leq C\varepsilon^2 \log(1/\varepsilon)$. In $G \setminus A_{\varepsilon}$, we have

(6.1)
$$du_{\varepsilon} = \frac{\iota u_{\varepsilon}}{|u_{\varepsilon}|^2} u_{\varepsilon} \wedge du_{\varepsilon} + \frac{u_{\varepsilon}}{|u_{\varepsilon}|} d|u_{\varepsilon}|.$$

We may thus write in G

$$du_{\varepsilon} = \chi_{A_{\varepsilon}} du_{\varepsilon} + \chi_{G \setminus A_{\varepsilon}} \Big(\frac{\iota u_{\varepsilon}}{|u_{\varepsilon}|^2} u_{\varepsilon} \wedge du_{\varepsilon} + \frac{u_{\varepsilon}}{|u_{\varepsilon}|} d|u_{\varepsilon}| \Big).$$

Note that

$$\int_{\mathcal{A}_{\varepsilon}} |du_{\varepsilon}|^{p} \leq \left(\int_{\mathcal{A}_{\varepsilon}} |du_{\varepsilon}|^{2}\right)^{p/2} |\mathcal{A}_{\varepsilon}|^{1-p/2} \xrightarrow{\varepsilon} 0, \quad 1 \leq p < 2.$$

Recall the following estimate (see [9], Proposition VI. 4):

$$\int_{G} |d|u_{\varepsilon}||^{p} \xrightarrow{\varepsilon} 0, \quad 1 \le p \le 2.$$

Applying (6.1) and Lemma 24 we see that (u_{ε}) is bounded in $W^{1,p}$, p < 3/2. In particular, up to a subsequence, we have $u_{\varepsilon} \xrightarrow{\varepsilon} u_0$ a.e. for some u_0 . Moreover, we see that $|u_{\varepsilon}| \xrightarrow{\varepsilon} 1$ a.e., since

$$\frac{1}{\varepsilon^2} \int_{\mathcal{G}} (1 - |u_{\varepsilon}|^2)^2 \le \operatorname{C}\log(1/\varepsilon),$$

so that $|u_0| = 1$. Thus, up to a subsequence, we find

$$du_{\varepsilon} - \iota u_0(u_{\varepsilon} \wedge du_{\varepsilon}) \xrightarrow{\varepsilon} 0 \text{ in } \mathbf{L}^p, \quad 1 \leq p \leq 2.$$

Finally, Lemma 24 implies that, up to a further sequence, (du_{ε}) converges in $L^{p}(G)$, $1 \le p \le 3/2$.

The proof of Theorem 7' is complete.

As in the case of Theorem 6, Theorem 7' generalizes to the situation where the boundary data is not fixed anymore:

Theorem **7**". — Assume that the maps $g_{\varepsilon} \in H^{1/2}(\Omega; \mathbf{R}^2)$ are such that:

$$|g_{\varepsilon}|_{\mathrm{H}^{1/2}} \leq \mathrm{C},$$

$$|g_{\varepsilon}| \leq 1 \quad on \ \Omega,$$

and

$$\||g_{\varepsilon}| - 1\|_{L^2} \leq C\sqrt{\varepsilon}.$$

Let u_{ε} be a minimizer of E_{ε} in $H^1_{g_{\varepsilon}}(G; \mathbf{R}^2)$. Then $E_{\varepsilon}(u_{\varepsilon}) \leq C \log(1/\varepsilon)$ and (u_{ε}) is relatively compact in $W^{1,p}(G)$, $1 \leq p \leq 3/2$.

An easy variant of the proof of Theorem 6' yields the bound $E_{\varepsilon}(u_{\varepsilon}) \leq C \log(1/\varepsilon)$. To establish compactness in $W^{1,p}$ we rely on the following variant of Lemma 24:

Lemma **24'.** — The family $(u_{\varepsilon} \wedge du_{\varepsilon})$ is compact in $L^{p}(G)$, $1 \le p \le 3/2$.

Proof of Lemma 24'. — With $X_{\varepsilon} = u_{\varepsilon} \wedge du_{\varepsilon}$, we may write $X_{\varepsilon} = \text{ curl } H_{\varepsilon}$, where H_{ε} is a linear operator acting on $(X_{\varepsilon}, g_{\varepsilon} \wedge d_T g_{\varepsilon})$ and satisfying the estimate

$$\begin{aligned} \|\mathbf{H}_{\varepsilon}\|_{\mathbf{W}^{1,p}} &\leq \mathbf{C}(\|d\mathbf{X}_{\varepsilon}\|_{[\mathbf{W}^{1,q}(\mathbf{G})]^{*}} + \|g_{\varepsilon} \wedge d_{\mathbf{T}}g_{\varepsilon}\|_{[\mathbf{W}^{1-1/q,q}(\Omega)]^{*}}), \\ 1 &\leq p < 3/2, \ \frac{1}{p} + \frac{1}{q} = 1 \end{aligned}$$

(see [5]). Here, $d_{\rm T}$ stands for the tangential differential operator on Ω .

The proof of Lemma 2 in [5] implies that $(g_{\varepsilon} \wedge d_{\mathrm{T}}g_{\varepsilon})$ is bounded in $[\mathrm{W}^{\sigma,q}(\Omega)]^*$ provided $\sigma > 1/2$ and $\sigma q > 2$. If we choose $\sigma > 1/2$ such that $\frac{2}{q} < \sigma < 1 - \frac{1}{q}$, we find that $(g_{\varepsilon} \wedge d_{\mathrm{T}}g_{\varepsilon})$ is compact in $[\mathrm{W}^{1-1/q,q}(\Omega)]^*$.

It remains to prove that (dX_{ε}) is compact in $[W^{1,q}(G)]^*$. As in the proof of Lemma 24, it suffices to prove that (dX_{ε}) is bounded in $[C^{0,\alpha}(\overline{G})]^*$ for $0 < \alpha < 1$.

For this purpose, we construct an appropriate extension of u_{ε} to a larger domain. Let, for $0 < \varepsilon < \varepsilon_0(G)$, Π_{ε} be the projection onto Ω of the set

$$\Omega_{\varepsilon} = \{ x \in \mathbf{R}^3 \setminus \Omega ; \text{ dist } (x, \Omega) = \varepsilon \}.$$

Set $\widetilde{h}_{\varepsilon} = h_{\varepsilon} \circ \Pi_{\varepsilon} \in \mathrm{H}^{1/2}(\Omega_{\varepsilon})$ (where h_{ε} is defined in Lemma 23) and let K_{ε} be the harmonic extension of $\widetilde{h}_{\varepsilon}$ to

$$G \cup \{x \in \mathbf{R}^3; \text{ dist } (x, \Omega) < \varepsilon \}.$$

By standard estimates, we have

$$\|h_{\varepsilon} - \mathcal{K}_{\varepsilon|\Omega}\|_{\mathrm{L}^2} \leq \mathcal{C}_{\mathrm{G}} \|h_{\varepsilon}\|_{\mathrm{H}^{1/2}} \varepsilon^{1/2},$$

so that

$$\|g_{\varepsilon} - \mathbf{K}_{\varepsilon|\Omega}\|_{\mathrm{L}^2} \leq \mathrm{C}\varepsilon^{1/2}.$$

By Lemma 22' applied to $\varphi = g_{\varepsilon} - K_{\varepsilon|\Omega}$, we may find a map $v_{\varepsilon} : G_{\varepsilon} \to \mathbb{C}$ such that

$$\begin{split} & \int_{\mathcal{G}_{\varepsilon}} |\nabla v_{\varepsilon}|^2 + \frac{1}{\varepsilon^2} \int_{\mathcal{G}_{\varepsilon}} |v_{\varepsilon}|^2 \leq \mathcal{C}, \\ & v_{\varepsilon} = g_{\varepsilon} - \mathcal{K}_{\varepsilon \mid \Omega} \quad \text{on } \Omega, \quad v_{\varepsilon} = 0 \quad \text{on } \Omega_{\varepsilon} \end{split}$$

and

$$|v_{\varepsilon}| \leq 2$$
 in G_{ε} .

Set

$$\mathbf{U}_{\varepsilon} = \begin{cases} u_{\varepsilon}, & \text{in } \mathbf{G} \\ v_{\varepsilon} + \mathbf{K}_{\varepsilon}, & \text{in } \mathbf{G}_{\varepsilon} \end{cases},$$

which satisfies $U_{\varepsilon} = \tilde{h}_{\varepsilon}$ on Ω_{ε} . Since, for $0 < \delta < \varepsilon$, we have

$$\begin{split} \int_{\Omega_{\delta}} (1 - |\mathbf{U}_{\varepsilon}|^2)^2 &\leq \int_{\Omega_{\delta}} (|1 - |\mathbf{K}_{\varepsilon}|| + |v_{\varepsilon}|)^2 (1 + |\mathbf{K}_{\varepsilon}| + |v_{\varepsilon}|)^2 \\ &\leq 32 \int_{\Omega_{\delta}} (|h_{\varepsilon} \circ \Pi_{\delta} - \mathbf{K}_{\varepsilon}|^2 + |v_{\varepsilon}|^2), \end{split}$$

we find by standard estimates that

(6.5)
$$\int_{\Omega_{\delta}} (1 - |\mathbf{U}_{\varepsilon}|^2)^2 \leq \mathbf{C} \bigg(\varepsilon |h_{\varepsilon}|_{\mathbf{H}^{1/2}}^2 + \int_{\Omega_{\delta}} |v_{\varepsilon}|^2 \bigg).$$

Integration of (6.5) over δ combined with the obvious bound

 $\|K_{\epsilon}\|_{H^1(G\cup G_{\epsilon})} \leq C$

yields

(6.6)
$$E_{\varepsilon}(U_{\varepsilon}; G_{\varepsilon}) \leq C.$$

As we already mentioned, an easy variant of the proof of Theorem 6' gives

$$E_{\varepsilon}(u_{\varepsilon}; G) \leq C \log(1/\varepsilon)$$

and thus

(6.7)
$$E_{\varepsilon}(U_{\varepsilon}; G \cup G_{\varepsilon}) \leq C \log(1/\varepsilon).$$

Let now R > 0 be such that

$$\overline{\mathrm{G}\cup\mathrm{G}_{\varepsilon_0(\mathrm{G})}}\subset\mathrm{B}_{\mathrm{R}}.$$

A straightforward adaptation of Proposition 4 in [5] implies that, for $0 < \varepsilon < \varepsilon_0(G)$, there is a map $w_{\varepsilon} \in H^1(B_R \setminus (G \cup G_{\varepsilon}))$ such that

(6.8)
$$w_{\varepsilon} = \widetilde{h}_{\varepsilon}$$
 on Ω_{ε} , $w_{\varepsilon} = 1$ on ∂B_{R} ,

(6.9)
$$E_{\varepsilon}(w_{\varepsilon}) \leq C \log(1/\varepsilon),$$

and

(6.10)
$$\int_{B_R\setminus (G\cup G_{\varepsilon})} |\operatorname{Jac} w_{\varepsilon}| \leq C.$$

Set

$$\mathbf{V}_{\varepsilon} = \begin{cases} \mathbf{U}_{\varepsilon}, & \text{in } \mathbf{G} \cup \mathbf{G}_{\varepsilon} \\ w_{\varepsilon}, & \text{in } \mathbf{B}_{\mathbf{R}} \setminus (\mathbf{G} \cup \mathbf{G}_{\varepsilon}) \end{cases}$$

By (6.7) and (6.9), we have

$$E_{\varepsilon}(V_{\varepsilon}; B_R) \leq C \log(1/\varepsilon),$$

so that $\operatorname{Jac} V_{\varepsilon}$ is bounded in $[C^{0,\alpha}_{\operatorname{loc}}(B_R)]^*$ for $0 < \alpha < 1$ (see [33]). As in the proof of Theorem 2bis in [5], we may now establish the boundedness of dX_{ε} in $[C^{0,\alpha}(\overline{G})]^*$ for

•

 $0 < \alpha < 1$. Indeed, let $\delta > 0$ be sufficiently small. For $\zeta \in C^{0,\alpha}(\overline{G}; \wedge^1(\mathbf{R}))$, let ψ be an extension of ζ to \mathbf{R}^3 such that $\|\psi\|_{C^{0,\alpha}(\mathbf{R}^3)} \leq C \|\zeta\|_{C^{0,\alpha}(\overline{G})}$ and Supp $\psi \subset \overline{B}_{\mathbf{R}-\delta}$. Then

$$\begin{split} \left| \int\limits_{\mathbf{G}} d\mathbf{X}_{\varepsilon} \wedge \zeta \right| &\leq \left| \int\limits_{\mathbf{B}_{\mathbf{R}}} d(\mathbf{V}_{\varepsilon} \wedge d\mathbf{V}_{\varepsilon}) \wedge \psi \right| + \int\limits_{\mathbf{B}_{\mathbf{R}} \setminus \mathbf{G}} \left| d(\mathbf{V}_{\varepsilon} \wedge d\mathbf{V}_{\varepsilon}) \wedge \psi \right| \\ &\leq \mathbf{C}_{\alpha} \|\psi\|_{\mathbf{C}^{0,\alpha}(\overline{\mathbf{G}})} + \|\psi\|_{\mathbf{L}^{\infty}} \int\limits_{\mathbf{B}_{\mathbf{R}} \setminus \mathbf{G}} |\operatorname{Jac} \, \mathbf{V}_{\varepsilon}| \leq \mathbf{C} \|\zeta\|_{\mathbf{C}^{0,\alpha}(\overline{\mathbf{G}})}, \end{split}$$

by (6.6) and (6.10).

The proof of Lemma 24' is complete.

Proof of Theorem 7''. — An inspection of the proof of Theorem 7' shows that it suffices to establish the estimate

(6.11)
$$\int_{G} |\nabla |u_{\varepsilon}||^{p} \to 0 \text{ as } \varepsilon \to 0, \quad \forall \ 1 \le p \le 2.$$

We adapt the proof of Proposition VI.4 in [9]. Set $\eta = \eta_{\varepsilon} = 1 - |u_{\varepsilon}|^2$, which satisfies

(**6.12**)
$$-\Delta \eta + \frac{2}{\varepsilon^2} |u_{\varepsilon}|^2 \eta = 2|\nabla u_{\varepsilon}|^2 \quad \text{in G},$$

$$(6.13) \eta \ge 0 on \ \Omega.$$

Let $\widetilde{\eta}$ be the solution of

(**6.14**)
$$-\Delta \widetilde{\eta} + \frac{2}{\varepsilon^2} |u_{\varepsilon}|^2 \widetilde{\eta} = 2|\nabla u_{\varepsilon}|^2 \quad \text{in G},$$

$$(\textbf{6.15}) \hspace{1cm} \widetilde{\eta} = 0 \hspace{1cm} \text{on } \Omega,$$

so that

$$(6.16) 1 - |u_{\varepsilon}|^2 = \eta \ge \widetilde{\eta} \ge 0,$$

by the maximum principle. Set $\overline{\eta} = Min \ (\widetilde{\eta}, \varepsilon^{1/2})$. Multiplying (6.14) by $\overline{\eta}$, we find

(6.17)
$$\int_{\{\widetilde{\eta} < \varepsilon^{1/2}\}} |\nabla \widetilde{\eta}|^2 \le 2\varepsilon^{1/2} \int_{G} |\nabla u_{\varepsilon}|^2 \to 0 \text{ as } \varepsilon \to 0.$$

On the other hand, we have

(**6.18**)
$$\{x; \, \widetilde{\eta}(x) \ge \varepsilon^{1/2}\} \subset \{x; \, |u_{\varepsilon}(x)|^2 \le 1 - \varepsilon^{1/2}\}.$$

Set $\zeta = \eta - \tilde{\eta}$, which satisfies

(6.19)
$$-\Delta\zeta + \frac{2}{\varepsilon^2}|u_{\varepsilon}|^2\zeta = 0 \quad \text{in G},$$

$$(6.20) \qquad \qquad \zeta = \varphi_{\varepsilon} \quad \text{on } \Omega,$$

where $\varphi_{\varepsilon} = 1 - |g_{\varepsilon}|^2$. Clearly, we have $|\varphi_{\varepsilon}|_{\mathrm{H}^{1/2}} \leq \mathrm{C}$ and by (6.4)

$$(6.21) \qquad \|\varphi_{\varepsilon}\|_{\mathrm{L}^2} \leq \mathrm{C}\varepsilon^{1/2}.$$

By the proof of Lemma 22, we find that

(6.22)
$$\int_{G} |\nabla \zeta|^2 \leq C.$$

We claim that

(**6.23**)
$$\int_{G} |\nabla \zeta|^{p} \to 0 \text{ as } \varepsilon \to 0, \quad \forall p < 2.$$

Indeed, by the maximum principle, $0 \le \zeta \le \hat{\zeta}$ where $\hat{\zeta}$ is the solution of

$$\begin{aligned} -\Delta \hat{\zeta} &= 0 \quad \text{ in } \mathbf{G}, \\ \hat{\zeta} &= \varphi_{\varepsilon} \quad \text{ on } \Omega. \end{aligned}$$

In particular, from (6.21) we see that

(**6.24**)
$$\int_{G} |\hat{\boldsymbol{\zeta}}|^2 \to 0 \text{ as } \varepsilon \to 0.$$

Let $\chi \in C_0^\infty(G)$ with $0 \le \chi \le 1$ on G. Multiplying (6.19) by $\zeta \chi$ and integrating we obtain

$$\int_{G} |\nabla \zeta|^2 \chi \leq \frac{1}{2} \int_{G} \zeta^2 |\Delta \chi| \leq \frac{1}{2} \int_{G} \hat{\zeta}^2 |\Delta \chi|.$$

Combining this with (6.24) yields

(6.25)
$$\int_{G} |\nabla \zeta|^2 \chi \to 0 \quad \forall \chi \in C_0^{\infty}(G), 0 \le \chi \le 1.$$

From (6.22) and (6.25) we deduce (6.23).

We now claim that

(**6.26**)
$$\int_{G} |\nabla \eta|^{p} \to 0 \text{ as } \varepsilon \to 0, \quad \forall p < 2.$$

Since $\eta = \zeta + \tilde{\eta}$, in view of (6.17) and (6.23) it suffices to prove that

$$\int\limits_{Z_{\varepsilon}} |\nabla \tilde{\eta}|^{p} \to 0.$$

where $Z_{\varepsilon} = \{x; |u_{\varepsilon}(x)|^2 \le 1 - \varepsilon^{1/2}\}$. But

$$\int_{\mathbf{G}} (1 - |u_{\varepsilon}|^2)^2 \leq \mathbf{C}\varepsilon^2 \log(1/\varepsilon),$$

and thus

$$(6.27) |Z_{\varepsilon}| \le C\varepsilon \log(1/\varepsilon),$$

so that, by Hölder and (6.14)–(6.15),

(6.28)
$$\begin{split} \int\limits_{Z_{\varepsilon}} |\nabla \tilde{\eta}|^{p} &\leq \|\nabla \tilde{\eta}\|_{L^{2}}^{p} |Z_{\varepsilon}|^{(2-p)/2} \\ &\leq C \|\nabla u_{\varepsilon}\|_{L^{2}}^{p} |Z_{\varepsilon}|^{(2-p)/2} \leq C \varepsilon^{(2-p)/2} (\log(1/\varepsilon)) \to 0 \text{ as } \varepsilon \to 0. \end{split}$$

Hence we have established (6.26). Similarly,

(6.29)
$$\int_{Z_{\varepsilon}} |\nabla u_{\varepsilon}|^{p} \leq \|\nabla u_{\varepsilon}\|_{L^{2}}^{p} |Z_{\varepsilon}|^{(2-p)/2} \leq C\varepsilon^{(2-p)/2} \log(1/\varepsilon)) \to 0 \text{ as } \varepsilon \to 0.$$

Finally, we note that, for ε sufficiently small, we have

(6.30)
$$|\nabla |u_{\varepsilon}|| \leq |\nabla u_{\varepsilon}| \chi_{Z_{\varepsilon}} + |\nabla \eta|,$$

so that (6.11) follows by combining (6.26), (6.29) and (6.30).

The proof of Theorem 7" is complete.

7. Improved interior estimates. $W_{loc}^{1,p}(G)$ compactness for $p \le 2$ and $g \in H^{1/2}$. Proof of Theorem 8

Remark **7.1.** — As in the proof of Theorems 7' and 7", it suffices to establish the estimate

(7.1)
$$||u_{\varepsilon} \wedge du_{\varepsilon}||_{L^{p}(\mathbf{K})} \leq \mathbf{C}, \quad 3/2 \leq p < 2, \quad \mathbf{K} \text{ compact in } \mathbf{G}.$$

Estimate (7.1) will be proved under the following assumptions:

$$E_{\varepsilon}(u_{\varepsilon}) \leq C \log(1/\varepsilon)$$

and

$$u_{\varepsilon}$$
 is bounded in W^{1,r}(G), for some $4/3 < r < 3/2$.

In view of Theorems 6, 7 and of their variants, we find that Theorem 8 extends to minimizers u_{ε} of E_{ε} when the variable boundary conditions satisfy (6.1)–(6.3).

Proof of Theorem 8. — In what follows, we establish (7.1) when K is any compact subset of the unit ball B.

Fix some $3/2 \le p \le 2$ and $0 \le \gamma \le 1$. Fix

$$(7.2) 4/3 < r < 3/2.$$

Denote $u = u_{\varepsilon}$. Since, by Theorems 6 and 7, we have

$$\|u\|_{W^{1,r}(B)} \le C$$
 and $\|u\|_{H^1(B)} \le C(\log(1/\varepsilon))^{1/2}$,

we may choose

$$1 - \gamma < \rho < 1 - \gamma/2$$

such that

$$\|u\|_{\mathrm{W}^{1,r}(\partial \mathrm{B}_{\rho})} \leq \mathrm{C}_{\gamma}$$

and

(7.4)
$$||u||_{\mathrm{H}^{1}(\mathrm{B}_{\rho})} \leq \mathrm{C}_{\gamma}(\log(1/\varepsilon))^{1/2}.$$

Set now p = 2 - s, so that s > 0 and the conjugate exponent of p is

(7.5)
$$2 < q = \frac{2-s}{1-s} \le 3.$$

Perform on B_{ρ} a Hodge decomposition

$$\frac{u \wedge du}{|u \wedge du|^s} = d^*k + d\,\mathcal{L},$$

where

(7.6)
$$\mathbf{L} = 0$$
-form, $\mathbf{L} = 0$ on $\partial \mathbf{B}_{\rho}$

and

(7.7)
$$k = 2 \text{-form}, \quad \|k\|_{W^{1,q}} \le C \left\| \frac{u \wedge du}{|u \wedge du|^s} \right\|_q = C \|u \wedge du\|_p^{1-s} = C \|u \wedge du\|_p^{p-1};$$

here, we use the notation $\| \|_{p} = \| \|_{L^{p}(B_{\rho})}$.

Recalling the fact that $div(u \wedge du) = 0$, we find that

(7.8)
$$\|u \wedge du\|_{\rho}^{\rho} = \int_{B_{\rho}} (d^*k) \cdot (u \wedge du) + \int_{B_{\rho}} dL \cdot (u \wedge du) = \int_{B_{\rho}} (d * k) \wedge (u \wedge du).$$

since, by (7.6), we have L = 0 on ∂B_{ρ} .

Let

$$(7.9) \qquad \qquad \delta = \varepsilon^{10^{-3}}.$$

Assuming, for simplicity, ∂B to be flat near some point, consider a partition of B_ρ in $\delta\text{-cubes}~Q$

(we will average over translates of this grid in later estimates).

Define

$$\mathscr{F} = \left\{ \mathbf{Q} | \mathbf{Q} \cap \left[|u| < \frac{1}{2} \right] \neq \emptyset \right\}.$$

We are going to estimate the number of cubes in \mathscr{F} with the help of the η -ellipticity property of T. Rivière [37], that we state in a more precise form, proved in [8]:

Lemma **25.** — Let u_{ε} be a minimizer of E_{ε} in B_R with respect to its own boundary condition. Then there is a universal constant C such that, for every $\eta > 0$, $0 < \varepsilon < 1$ and R > 0 we have

$$\mathbf{E}_{\varepsilon}(u_{\varepsilon}; \mathbf{B}_{\mathbf{R}}) \leq \eta \mathbf{R} \log(\mathbf{R}/\varepsilon) \Rightarrow |u_{\varepsilon}(0)| \geq 1 - \mathbf{C}\eta^{1/60}.$$

Let, for $Q \in \mathscr{F}$, \widetilde{Q} be the cube having the same center as Q and the size twice the one of Q. From the η -ellipticity property, we have

(7.10)
$$\int_{\widetilde{Q}} e_{\varepsilon}(u) \ge C\delta \log(\delta/\varepsilon) \sim \delta \log(1/\varepsilon), \quad \forall Q \in \mathscr{F},$$

so that

(7.11)
$$\#\mathscr{F} \leq C\delta^{-1}$$
 and $\left| \bigcup_{Q \in \mathscr{F}} Q \right| \leq C\delta^2$.

Define

(7.12)
$$\Omega = \mathbf{B}_{\rho} \setminus \bigcup_{\mathbf{Q} \in \mathscr{F}} \mathbf{Q},$$

on which |u| > 1/2.

We have, by (7.8),

(7.13)
$$\begin{aligned} \|u \wedge du\|_{\rho}^{\rho} &= \int_{\Omega} (d * k) \wedge (u \wedge du) + \int_{B_{\rho} \setminus \Omega} (d * k) \wedge (u \wedge du) \\ &\leq \int_{\Omega} (d * k) \wedge (u \wedge du) + 2\|k\|_{W^{1,q}} \|\nabla u\|_{2} (B_{\rho} \setminus \Omega)^{1/2 - 1/q}. \end{aligned}$$

By (7.7) and (7.11), the second term of (7.13) is bounded by

(7.14)
$$\operatorname{C}(\log(1/\varepsilon))^{1/2} \cdot \delta^{1-2/q} \| u \wedge du \|_{p}^{1-s} \leq \| u \wedge du \|_{p}^{1-s},$$

provided ε is sufficiently small.

For the first term of (7.13), we use the identity

$$u \wedge du = \frac{u}{|u|} \wedge \left(d\left(\frac{u}{|u|}\right)\right) + \left(1 - \frac{1}{|u|^2}\right)(u \wedge du) \quad \text{in } \Omega$$

and the fact that

$$d\left(\frac{u}{|u|} \wedge \left(d\left(\frac{u}{|u|}\right)\right)\right) = 0,$$

to get

(7.15)
$$\int_{\Omega} (d * k) \wedge (u \wedge du) = \int_{\partial \Omega} (*k) \wedge \left(\frac{u}{|u|} \wedge d\left(\frac{u}{|u|}\right)\right) + O(\|k\|_{W^{1,q}} \|\nabla u\|_2 \|1 - |u|^2\|_{2q/(q-2)}).$$

Since $|u| \leq 1$ and

$$\|1-|u|^2\|_2 \leq 2\varepsilon(\mathrm{E}_{\varepsilon}(u_{\varepsilon}))^{1/2} \leq \mathrm{C}\varepsilon(\log(1/\varepsilon))^{1/2},$$

the second term of (7.15) bounded by

(7.16)
$$C \|u \wedge du\|_p^{1-s} (\log(1/\varepsilon))^{1-1/q} \varepsilon^{1-2/q} \le \|u \wedge du\|_p^{1-s},$$

provided ε is sufficiently small.

Let φ : D = $[|z| \le 1] \rightarrow$ D be a smooth map such that $\varphi(\overline{z}) = \overline{\varphi(z)}$ and $\varphi(z) = z/|z|$ if |z| > 1/10. Thus

$$\int_{\partial\Omega} *k \wedge \left(\frac{u}{|u|} \wedge d\left(\frac{u}{|u|}\right)\right) = \int_{\partial B_{\rho}} *k \wedge (\varphi(u) \wedge d\varphi(u))$$
$$-\sum_{Q \in \mathscr{F}_{\partial Q}} \int_{\partial Q} *k \wedge (\varphi(u) \wedge d\varphi(u))$$
$$= (7.17) - (7.18).$$

Using (7.3) and the fact that, by (7.5), we have $q \ge 2$, we find that

(7.19)
$$(7.19) \qquad (7.17) \leq C \|u\|_{W^{1,r}(\partial B_{\rho})} \|k\|_{L^{r'}(\partial B_{\rho})} \leq C \|k\|_{L^{r'}(\partial B_{\rho})} \leq C \|k\|_{H^{1-2/r'}(\partial B_{\rho})} \\ \leq C \|k\|_{H^{3/2-2/r'}(B_{\rho})} \leq C \|k\|_{W^{1,q}(B_{\rho})} \leq C \|u \wedge du\|_{p}^{1-s}.$$

In order to estimate the term (7.18) we replace, on each cube Q, k by its mean $k_{\rm Q}$. The error is of the order of

$$\begin{split} \sum_{\mathbf{Q}\in\mathscr{F}} \int_{\partial \mathbf{Q}} |k - \mathbf{k}_{\mathbf{Q}}| |\nabla u| &\leq \int_{\partial \mathbf{B}_{\rho}} |k| \cdot |\nabla u| + \sum_{\substack{\mathbf{Q}\in\mathscr{F}\\\mathbf{Q}\cap\partial \mathbf{B}_{\rho}\neq\emptyset}} |\mathbf{k}_{\mathbf{Q}}| \int_{\partial \mathbf{Q}\cap\partial \mathbf{B}_{\rho}} |\nabla u| \\ &+ \sum_{\mathbf{Q}\in\mathscr{F}_{\partial \mathbf{Q}\setminus\partial \mathbf{B}_{\rho}}} \int_{|k - \mathbf{k}_{\mathbf{Q}}| |\nabla u| \\ &= (7.20) + (7.21) + (7.22). \end{split}$$

70

As for (7.17), we find that

$$(7.23) (7.20) \le C \| u \wedge du \|_p^{1-s}.$$

Since

$$|k_{\mathbf{Q}}| \leq \delta^{-3} \int_{\mathbf{Q}} |k| \leq \delta^{-3/r'} \left(\int_{\mathbf{Q}} |k|^{r'} \right)^{1/r'}$$

and

$$\int_{\partial Q \cap \partial B_{\rho}} |\nabla u| \leq \delta^{2/r'} \left(\int_{\partial Q \cap \partial B_{\rho}} |\nabla u|^r \right)^{1/r},$$

we have

$$(7.21) \leq C\delta^{-1/r'} \sum_{\substack{Q \in \mathscr{F} \\ Q \cap \partial B_{\rho} \neq \emptyset}} \left(\int_{Q} |k|^{r'} \right)^{1/r'} \left(\int_{\partial Q \cap \partial B_{\rho}} |\nabla u|^{r} \right)^{1/r}$$
$$\leq C\delta^{-1/r'} \|u\|_{W^{1,r}(\partial B_{\rho})} \cdot \left(\int_{\substack{\cup Q \\ Q \in \mathscr{F} \\ Q \cap \partial B_{\rho} \neq \emptyset}} |k|^{r'} \right)^{1/r'}$$
$$\leq C\delta^{-1/r'} \left| \bigcup_{Q \in \mathscr{F}, Q \cap \partial B_{\rho} \neq \emptyset} Q \right|^{1/r'-1/6} \cdot \|k\|_{6}.$$

In view of (7.11) one may clearly choose $1 - \gamma < \rho < 1 - \gamma/2$ such that

(7.24)
$$\#\{\mathbf{Q}\in\mathscr{F}|\mathbf{Q}\cap\partial\mathbf{B}_{\rho}\neq\emptyset\}\lesssim 1/\gamma,$$

and therefore

$$\bigcup_{\mathbf{Q}\in\mathscr{F},\mathbf{Q}\cap\partial\mathbf{B}_{\rho}\neq\emptyset}\mathbf{Q}\Big|\leq\mathbf{C}\delta^{3}.$$

This gives

(7.21)
$$\leq C\delta^{-1/r'}\delta^{3/r'-1/2} \|k\|_{W^{1,q}} \leq C\delta^{2/r'-1/2} \|k\|_{W^{1,q}} \leq \|u \wedge du\|_{p}^{1-s},$$

provided ε is sufficiently small.

To bound (7.22), we use averaging over the grids. For $\lambda \in \mathbf{R}^3$ with $|\lambda| < \delta$, consider the grid of δ -cubes having λ as one of the vertices and let \mathscr{F}_{λ} be the corresponding collection of bad cubes. Then

$$\begin{split} \delta^{-3} & \int_{|\lambda| < \delta} (7.22) \leq \delta^{-3} \int_{|\lambda| < \delta} \delta^{-3} \sum_{\mathbf{Q} \in \mathscr{F}_{\lambda}} \int_{\partial \mathbf{Q} \setminus \partial \mathbf{B}_{\rho}} dx \int_{\mathbf{Q}} dy |k(x) - k(y)| |\nabla u(x)| \\ & \leq \mathbf{C} \delta^{-4} \sum_{\mathbf{Q} \in \mathscr{F}_{0}} \iint_{\widetilde{\mathbf{Q}} \times \widetilde{\mathbf{Q}}} dx dy |k(x) - k(y)| |\nabla u(x)| \\ & \leq \mathbf{C} \delta^{1/2 - 6/q} \sum_{\mathbf{Q} \in \mathscr{F}_{0}} \|\nabla u\|_{\mathbf{L}^{2}(\widetilde{\mathbf{Q}})} \|k(x) - k(y)\|_{\mathbf{L}^{q}(\widetilde{\mathbf{Q}} \times \widetilde{\mathbf{Q}})} \\ & \leq \mathbf{C} \delta^{-5/q} \|\nabla u\|_{\mathbf{L}^{2}(\mathbf{B}_{\rho})} \bigg[\sum_{\mathbf{Q} \in \mathscr{F}_{0}} \iint_{\widetilde{\mathbf{Q}} \times \widetilde{\mathbf{Q}}} |k(x) - k(y)|^{q} dx dy \bigg]^{1/q} \\ & \leq \mathbf{C} \delta^{1 - 2/q} (\log(1/\varepsilon))^{1/2} \bigg[\sum_{\mathbf{Q} \in \mathscr{F}_{0}} \iint_{\widetilde{\mathbf{Q}}} |\nabla k|^{q} \bigg]^{1/q} \\ & \leq \|u \wedge du\|_{\rho}^{1 - s}, \end{split}$$

provided ε is sufficiently small. Therefore, by choosing the proper grid, we may assume that

(7.26)
$$(7.22) \leq C \|u \wedge du\|_p^{1-s}.$$

Combining (7.23), (7.25) and (7.26), it follows that

$$(7.27) (7.20) + (7.21) + (7.22) \le C \|u \wedge du\|_b^{1-s}.$$

By (7.13), (7.14), (7.16) and (7.27), we have

(7.28)
$$||u \wedge du||_p^p = (7.29) + O(||u \wedge du||_p^{1-s}),$$

where

$$(7.29) = -\sum_{\mathbf{Q}\in\mathscr{F}_{\partial\mathbf{Q}}} \int *\mathbf{k}_{\mathbf{Q}} \wedge (\varphi(u) \wedge d\varphi(u)).$$

For i = 1, 2, 3, let π_i be the projection onto the axis $0x_i$. For $x_i \in \pi_i(\partial \mathbf{Q})$, let

$$\Gamma_{x_i} = (\pi_i)^{-1}(x_i) \cap \partial \mathbf{Q}.$$
Then

(7.30)
$$|(7.29)| \leq \sum_{i=1}^{3} \sum_{Q \in \mathscr{F}} |k_Q| \int_{\pi_i(Q)} \left| \int_{\Gamma_{x_i}} \varphi(u) \wedge \partial \varphi(u) / \partial \tau \right| dx_i.$$

Denote $\widetilde{\Gamma}$ the δ -square with $\partial \ \widetilde{\Gamma} = \Gamma$ and let

$$(7.31) \qquad \qquad \delta_1 = \delta^3, \, \delta_2 = \delta^4.$$

Consider "good" sections Γ , i.e., such that

(7.32) dist
$$(\Gamma, [|u| < 1/2]) > \delta_1$$

and, with

$$e_{\varepsilon}(u) = e_{\varepsilon}(u)(x) = |\nabla u(x)|^2 + \frac{1}{\varepsilon^2}(1 - |u|^2)^2(x),$$

(7.33)
$$\int_{\widetilde{\Gamma}} e_{\varepsilon}(u) < \delta_2 \varepsilon^{-1}.$$

Condition (7.33) implies that

(7.34)
$$\frac{1}{\varepsilon^2} \int_{\widetilde{\Gamma}} (1-|u|^2)^2 < \delta_2 \varepsilon^{-1}.$$

Since $|\nabla u| \leq C/\varepsilon$, it follows that the set $\widetilde{\Gamma} \cap [|u| < 1/2]$ may be covered by a family \mathscr{G} of ε -squares such that

$$\#\mathscr{G} \leq \mathrm{C}_0 \delta_2 / \varepsilon$$

and

(7.35)
$$\sum_{S \in \mathscr{G}} \text{ length}(S) \leq C_0 \varepsilon \delta_2 / \varepsilon = C_0 \delta_2.$$

We next invoke the following estimate (see the proposition in Section 1 in [39]):

Lemma **26** (Sandier [39]). — Under the assumptions (7.32) and (7.35) we have, with C_0 the constant in (7.35),

$$\int_{\widetilde{\Gamma}\cap[|u|\geq 1/2]} \left| \nabla \left(\frac{u}{|u|} \right) \right|^2 dx \ge \mathbf{K} |d| \log(\delta_1/(2\mathbf{C}_0 \delta_2)),$$

where d is the degree of $u_{|\Gamma}$ and K is some universal constant.

By Lemma 26 and our choice of δ_1 , δ_2 , we find that

(7.36)
$$\left| \int_{\Gamma} \varphi(u) \wedge d\varphi(u) \right| = \left| \deg\left(\frac{u}{|u|}, \Gamma\right) \right| \le C \int_{\widetilde{\Gamma}} |\nabla u|^2 / \log(1/\varepsilon)$$

On the other hand, recall the monotonicity formula of T. Rivière (see Lemma 2.5 in [37]):

Lemma 27 (Rivière [37]). — Let $x \in G$. Then, for $0 < r < dist(x, \Omega)$, the map $\frac{1}{2} \int \left(\int_{\Omega} \frac{1}{2\pi i r^2} + \frac{3}{2\pi i r^2} + \frac{3}{2\pi i r^2} \right)$

$$r \mapsto \frac{1}{r} \int_{B_r(x)} \left(|\nabla u_{\varepsilon}(x)|^2 + \frac{3}{2\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right)$$

is non-increasing.

By combining (7.36) and Lemma 27, we see that the collected contribution of the good sections in the r.h.s. of (7.30) is bounded by

(7.37)
$$C\sum_{Q\in\mathscr{F}}|k_{Q}|\int_{Q}|\nabla u|^{2}/\log(1/\varepsilon) \leq C\delta\sum_{Q\in\mathscr{F}}|k_{Q}| \lesssim \delta^{-2}\int_{B_{\rho}}|k|\Big(\sum_{Q\in\mathscr{F}}\chi_{Q}\Big).$$

We consider an extension, denoted by h, of |k| to \mathbf{R}^3 , such that

 $||h||_{\mathrm{W}^{1,q}(\mathbf{R}^3)} \leq \mathrm{C}|||k|||_{\mathrm{W}^{1,q}(\mathrm{B}_{\rho})}.$

We estimate the integral in (7.37) using the $(\mathbf{B}_{q,q}^1, \mathbf{B}_{p,p}^{-1})$ -duality (for the definition of the Besov spaces $\mathbf{B}_{p,q}^{\sigma}$, see e.g. H. Triebel [45]), where

(7.38)
$$\|f\|_{\mathbf{B}_{r,r}^{\sigma}} = \left[2^{\sigma r} \|f * \mathbf{P}_{1}\|_{r}^{r} + \sum_{j \ge 2} (2^{\sigma j} \|f * \mathbf{P}_{2^{-j}} - f * \mathbf{P}_{2^{-j+1}}\|_{r})^{r}\right]^{1/r}.$$

We let here $P_1 \ge 0$ be a suitable L¹-normalized smooth bump function supported in the unit cube of **R**³, and denote $P_h(x) = h^{-3}P_1(h^{-1}x)$.

On the one hand, since q > 2 we have

(**7.39**)
$$\|h\|_{\mathrm{B}^{1}_{q,q}} \leq C \|h\|_{\mathrm{W}^{1,q}} \leq C \|k\|_{\mathrm{W}^{1,q}} \leq C \|u \wedge du\|_{p}^{1-s}.$$

Letting $f = \sum_{Q \in \mathscr{F}} \chi_Q$, we estimate next $||f||_{B^{-1}_{p,p}}$. Without any loss of generality, we may assume that $B_6 \subset G$.

Assume first that j is such that $1 \ge 2^{-j} \ge \delta$. If $Q_1 \subset B_3$ is a 2^{-j} -cube, then

(7.40)
$$\int_{Q_1} e_{\varepsilon}(u) \leq C2^{-j} \log(1/\varepsilon),$$

by Lemma 27. On the other hand, if $\mathbf{Q}\in \mathscr{F},$ then (7.10) holds. Therefore

$$(7.41) \qquad \#\{\mathbf{Q}\in\mathscr{F};\mathbf{Q}\subset\mathbf{Q}_1\}\leq\mathbf{C}2^{-j}\delta^{-1}.$$

Also, if $\mathbf{Q}_1 \cap \mathscr{F} \neq \emptyset$, the η -ellipticity lemma implies

(7.42)
$$\int_{\widetilde{Q}_1} e_{\varepsilon}(u) \ge C2^{-j}\log(1/\varepsilon),$$

and hence the set $[|u| \le 1/2]$ intersects at most $C2^{j}$ cubes Q_1 of size 2^{-j} . Thus

$$\|(f * \mathbf{P}_{2^{-j}}) - (f * \mathbf{P}_{2^{-j+1}})\|_{p} \lesssim \|f * \mathbf{P}_{2^{-j}}\|_{p}$$

$$\lesssim \left\|\sum_{Q_{1},Q_{1}\cap\mathscr{F}\neq\emptyset}\frac{1}{|Q_{1}|}\chi_{\widetilde{Q}_{1}}\int_{\widetilde{Q}_{1}}f\right\|_{p}$$

$$\lesssim \left[\sum_{Q_{1},Q_{1}\cap\mathscr{F}\neq\emptyset}2^{-3j}(2^{3j}|\widetilde{Q}_{1}\cap\mathscr{F}|)^{p}\right]^{1/p}$$

$$\lesssim \left[\sum_{Q_{1}\cap\mathscr{F}\neq\emptyset}2^{-3j}(2^{3j}\cdot\delta^{3}\cdot2^{-j}\delta^{-1})^{p}\right]^{1/p} \text{ by (7.41)}$$

$$\lesssim 2^{-2j/p}2^{2j}\delta^{2} = \delta^{2}4^{j/q}.$$

Assume now that $2^{-j} < \delta$. Estimate then

$$|f * (\mathbf{P}_{2^{-j}} - \mathbf{P}_{2^{-j+1}})| \le \sum_{\mathbf{Q} \in \mathscr{F}} |\chi_{\mathbf{Q}} * (\mathbf{P}_{2^{-j}} - \mathbf{P}_{2^{-j+1}})|.$$

In this case, it is easy to see that

$$|\chi_{\mathbf{Q}} * (\mathbf{P}_{2^{-j}} - \mathbf{P}_{2^{-j+1}})| \le C\chi_{\mathbf{A}},$$

where

$$A = \{x; dist(x, \partial Q) \le 2^{-j}\}.$$

In particular, each point in \mathbf{R}^3 belongs to at most 8 A's. Thus

(7.44)
$$\|\sum_{\mathbf{Q}\in\mathscr{F}}\chi_{\mathbf{Q}}*(\mathbf{P}_{2^{-j}}-\mathbf{P}_{2^{-j+1}})\|_{p}^{p} \leq C\sum_{\mathbf{Q}\in\mathscr{F}}\|\chi_{\mathbf{Q}}*(\mathbf{P}_{2^{-j}}-\mathbf{P}_{2^{-j+1}})\|_{p}^{p} \leq C\delta 2^{-j}.$$

From (7.43), (7.44)

(7.45)
$$\|f\|_{\mathbf{B}_{p,p}^{-1}} \leq \mathbf{C} \Big[\sum_{2^{-j} \geq \delta} (2^{-j} \delta^2 4^{j/q})^p + \sum_{2^{-j} < \delta} (2^{-j} \delta^{1/p} 2^{-j/p})^p \Big]^{1/q'} \\ \lesssim (\delta^{2p} + \delta^{2+p})^{1/p} < \delta^2.$$

Here, we have used the fact that p < 2 < q.

From (7.37), (7.39) and (7.45), we find that

(7.46)
$$(7.37) \leq C \|u \wedge du\|_p^{1-s}.$$

Next, we analyze the contribution of the "bad" sections Γ_{x_i} in (7.30). A bad section $\Gamma_{x_i} = \Gamma$ fails either (7.32) or (7.33).

Fix i = 1, 2, 3 and $Q \in \mathscr{F}$. Define

(7.47)
$$J'_{Q} = \{x_i \in \pi_i(Q); \Gamma_{x_i} \text{ fails } (7.32)\},\$$

(**7.48**)
$$J''_{Q} = \{x_i \in \pi_i(Q); \Gamma_{x_i} \text{ fails } (7.33)\},\$$

and the surfaces

(7.49)
$$\mathfrak{S}' = \mathfrak{S}'_i = \bigcup_{Q} \bigcup_{x_i \in J'_O} \Gamma_{x_i}$$

(7.50)
$$\mathfrak{S}'' = \mathfrak{S}''_i = \bigcup_{Q} \bigcup_{x_i \in J'_Q} \Gamma_{x_i}.$$

Estimate the contribution of the bad sections in (7.30) by

(7.51)
$$\left(\max_{\mathbf{Q}\in\mathscr{F}}|\mathbf{k}_{\mathbf{Q}}|\right)\sum_{i=1}^{3}\int_{\mathfrak{S}_{i}^{\prime}\cup\mathfrak{S}_{i}^{\prime\prime}}|\nabla u|.$$

Estimate

(7.52)
$$\begin{aligned} |\tilde{k}_{\mathbf{Q}}| &\leq \delta^{-3} \int_{\mathbf{Q}} |k| \leq \delta^{-3} |\mathbf{Q}|^{5/6} \|k\|_{\mathrm{L}^{6}(\mathrm{B}_{\rho})} \lesssim \delta^{-1/2} \|k\|_{\mathrm{W}^{1,q}(\mathrm{B}_{\rho})} \\ &\lesssim \delta^{-1/2} \|u \wedge du\|_{\rho}^{1-s}. \end{aligned}$$

Consider, for $\lambda \in \mathbf{R}^3$, the grid of δ -cubes having λ as one of the edges and let \mathscr{G}_{λ} be the grid defined by the boundaries of these cubes. For each λ , we have

(7.53)
$$\int_{\mathfrak{S}'_{i}\cup\mathfrak{S}''_{i}} |\nabla u| \leq \left(\int_{\mathscr{G}_{\lambda}} |\nabla u|^{2}\right)^{1/2} (|\mathfrak{S}'_{i}| + |\mathfrak{S}''_{i}|)^{1/2} \leq C \left(\int_{\mathscr{G}_{\lambda}} |\nabla u|^{2}\right)^{1/2} \left(\delta \sum_{Q \in \mathscr{F}_{\lambda}} (|J'_{Q}| + |J''_{Q}|)\right)^{1/2}.$$

Since (7.33) fails for $x_i \in J''_Q$, we have

$$\int_{\mathbf{Q}} e_{\varepsilon}(u) \geq \int_{\substack{\cup \widetilde{\Gamma}_{x_i} \\ x_i \in \mathbf{J}'_{\mathbf{Q}}}} e_{\varepsilon}(u) \geq |\mathbf{J}''_{\mathbf{Q}}| \delta_2 \varepsilon^{-1}$$

Thus

(7.54)
$$\sum_{\mathbf{Q}\in\mathscr{F}_{\lambda}} |\mathbf{J}''_{\mathbf{Q}}| \lesssim \varepsilon \delta_2^{-1} \log(1/\varepsilon).$$

To estimate (7.53), we use again an average over the grids \mathscr{G}_{λ} . Denote this averaging by Av_{τ} (τ refers to the translation).

Thus, taking (7.54) into account, we obtain

(7.55)
$$(7.53) \lesssim \left[\operatorname{Av}_{\tau} \int_{\mathscr{G}_{\lambda}} |\nabla u|^{2} \right]^{1/2} \left[\delta \delta_{2}^{-1} \varepsilon \log(1/\varepsilon) + \delta \operatorname{Av}_{\tau} \left(\sum_{\mathbf{Q} \in \mathscr{F}_{\lambda}} |\mathbf{J}_{\mathbf{Q}}'| \right) \right]^{1/2}$$

Notice that the J'_Q -intervals of points x_i such that dist $(\Gamma_{x_i}, [|u| < \frac{1}{2}]) < \delta_1$ do depend on the grid translation – a fact that will be exploited next.

First, recalling (7.4), we have

(7.56)
$$\operatorname{Av}_{\tau} \int_{\mathscr{G}_{\tau}} |\nabla u|^{2} \leq \int_{\partial B_{\rho}} |\nabla u|^{2} + \frac{1}{\delta} \int_{B_{\rho}} |\nabla u|^{2} \lesssim \frac{\log 1/\varepsilon}{\delta}.$$

By the η -ellipticity lemma, we may cover $[|u| < 1/2] \cap B$ with at most $C\delta_1^{-1} \delta_1$ -cubes $q_{\alpha}, \alpha \leq C\delta_1^{-1}$. We fix such a covering (independent of λ). Fix *i*, Q. If dist ($\Gamma_{x_i}, [|u| < 1/2]$) $< \delta_1$, then clearly $x_i \in \pi_i(\widetilde{q}_{\alpha})$ for some $q_{\alpha} \subset \widetilde{Q}$ with dist $(q_{\alpha}, \mathscr{G}_{\lambda}) < \delta_1$.

Hence

(7.57)
$$|\mathbf{J}'_{\mathbf{Q}}| \le 2\delta_1 \cdot \#\{\alpha; q_\alpha \subset \widetilde{\mathbf{Q}}, \text{ dist } (q_\alpha, \mathscr{G}_\lambda) < \delta_1\}$$

and

(7.58)
$$\sum_{Q} |J'_{Q}| \leq C\delta_1 \cdot \#\{\alpha; \operatorname{dist}(q_{\alpha}, \mathscr{G}_{\lambda}) < \delta_1\}.$$

We now average over the grid translation. On the one hand, for fixed α , the inequality

dist
$$(q_{\alpha}, \mathscr{G}_{\lambda} \setminus \partial B_{\rho}) < \delta_1$$

holds with τ -probability $\sim \delta_1/\delta$. On the other hand, for fixed α and $1 - \gamma < \rho < 1 - \gamma/2$, the inequality

dist
$$(q_{\alpha}, \partial \mathbf{B}_{\rho}) < \delta_1$$

holds with ρ -probability $\sim \delta_1/\gamma$.

Hence, by choosing ρ properly, we may assume that

$$#\{\alpha; \operatorname{dist}(q_{\alpha}, \partial \mathbf{B}_{\rho}) < \delta_1\} \leq \mathbf{C}.$$

For any such ρ , we have

(**7.59**)
$$\operatorname{Av}_{\tau}(7.58) \lesssim \delta_1 \cdot \frac{1}{\delta_1} \cdot \frac{\delta_1}{\delta} + \mathrm{C} \lesssim \frac{\delta_1}{\delta}.$$

Hence

(7.60)
$$\operatorname{Av}_{\tau}\left(\sum |J'_{Q}|\right) \leq C\frac{\delta_{1}}{\delta}.$$

Substitution of (7.56), (7.60) into (7.55) yields, for small ε ,

(7.61) (7.55)
$$\lesssim \left(\frac{\log(1/\varepsilon)}{\delta}\right)^{1/2} \left(\delta \delta_2^{-1} \varepsilon \log(1/\varepsilon) + \delta_1\right)^{1/2} < \delta^{3/4},$$

by (7.9) and (7.31).

From (7.52) and (7.61),

(7.62)
$$(7.51) \le \delta^{3/4} \delta^{-1/2} \| u \wedge du \|_p^{1-s} \le \mathbf{C} \| u \wedge du \|_p^{1-s}.$$

This completes the analysis. Indeed, by collecting the estimates (7.28), (7.30), (7.37), (7.46), (7.51) and (7.62), it follows that

(7.63)
$$\|u \wedge du\|_{\mathrm{L}^{p}(\mathrm{B}_{\rho})}^{p} \leq \mathrm{C}_{\gamma} \|u \wedge du\|_{\mathrm{L}^{p}(\mathrm{B}_{\rho})}^{1-s},$$

and thus

$$\|u \wedge du\|_{\mathcal{L}^{p}(\mathcal{B}_{1-\gamma})} \leq \mathcal{C}_{\gamma}.$$

Since $0 < \gamma < 1$ and $3/2 \le p < 2$ are arbitrary, the proof of Theorem 8 is complete.

78

8. Convergence for $g \in Y$. Proof of Theorem 9

Proof of Theorem 9. — We already know that a subsequence of (u_{ε}) converges in $W^{1,p}(G)$, $1 \le p \le 3/2$. The main novelties in Theorem 9 are:

a) the identification of the limit

$$u_*=e^{i\tilde{\varphi}},$$

where $g = e^{i\varphi}$, $\varphi \in H^{1/2} + W^{1,1}$ and $\tilde{\varphi}$ is the harmonic extension of φ ; b) $u_{\varepsilon} \to u_{\ast}$ in $C^{\infty}(G)$.

We first discuss b), which is easier. In view of a), it suffices to prove that (u_{ε}) is bounded in $C^{k}(K)$ for every integer k and every compact subset K of G. Since $E_{\varepsilon}(u_{\varepsilon}) = o(\log 1/\varepsilon)$, by Theorem 6, we find, with the help of the η -ellipticity Lemma 24 that, for every compact K in G, we have

$$|u_{\varepsilon}| \ge \frac{1}{2}$$

in K for small ε .

We next recall Theorem IV.1 in [9].

Lemma 28. — Let
$$u_{\varepsilon}$$
 be a solution of
 $-\Delta u_{\varepsilon} = \frac{1}{\varepsilon^2} u_{\varepsilon} (1 - |u_{\varepsilon}|^2)$ in B_1

such that

$$(8.1) E_{\varepsilon}(u_{\varepsilon}; B_1) \leq C.$$

Then (u_{ε}) is bounded in $C^{k}(B_{1/2})$, for every $k \in \mathbf{N}$.

We now complete the proof of b) by establishing (8.1) on every ball B compactly contained in G.

We write $u_{\varepsilon} = \rho_{\varepsilon} e^{i\varphi_{\varepsilon}}$ in B. Let ζ be a cutoff function with $\zeta \equiv 1$ in B. We start by multiplying the equation for φ_{ε}

$$\operatorname{div}(\rho_{\varepsilon}^2 \nabla \varphi_{\varepsilon}) = 0$$

by $\zeta^{2}(\varphi_{\varepsilon} - \int_{B} \varphi_{\varepsilon})$. We find that $\int \rho_{\varepsilon}^{2} |\nabla \varphi_{\varepsilon}|^{2} \zeta^{2} \leq 2 \int \rho_{\varepsilon}^{2} |\nabla \varphi_{\varepsilon}| |\zeta| |\nabla \zeta| |\varphi_{\varepsilon} - \int_{B} \varphi_{\varepsilon}|$ $\leq C \left(\int \rho_{\varepsilon}^{2} |\nabla \varphi_{\varepsilon}|^{2} \zeta^{2} \right)^{1/2} \left(\int |\nabla \varphi_{\varepsilon}|^{6/5} \right)^{5/6},$

by the Sobolev imbedding $W^{1,6/5} \subset L^2$,

We obtain that φ_{ε} is bounded in H^1_{loc} , since $|\nabla \varphi_{\varepsilon}| \leq 2|\nabla u_{\varepsilon}|$ in B and u_{ε} is bounded in $W^{1,6/5}$ by Theorem 7.

Next consider the equation for ρ_{ε} ,

$$-\Delta
ho_arepsilon +
ho_arepsilon |
abla arphi_arepsilon|^2 = rac{1}{arepsilon^2}
ho_arepsilon ig(1-
ho_arepsilon^2ig).$$

Multiplying by $(1 - \rho_{\varepsilon})\zeta$, we find that

$$\int |\nabla \rho_{\varepsilon}|^{2} \zeta + \frac{1}{\varepsilon^{2}} \int \left(1 - \rho_{\varepsilon}^{2}\right)^{2} \zeta \leq C \left(\int |\nabla \rho_{\varepsilon}| + \int |\nabla \varphi_{\varepsilon}|^{2}\right).$$

We conclude by noting that

$$\mathbf{E}_{\varepsilon}(u_{\varepsilon};\mathbf{B}) \leq \int_{\mathbf{B}} |\nabla \rho_{\varepsilon}|^{2} + \int_{\mathbf{B}} |\nabla \varphi_{\varepsilon}|^{2} + \frac{1}{\varepsilon^{2}} \int_{\mathbf{B}} \left(1 - \rho_{\varepsilon}^{2}\right)^{2} \leq \mathbf{C}_{\mathbf{B}}.$$

We now turn to the proof of a).

We start by constructing an appropriate domain $G_{\varepsilon} \subset G$ on which $|u_{\varepsilon}| \sim 1$. For simplicity, we assume Ω flat near some point. Fix some $0 < \delta_0 < 1$ to be determined later. Let $0 < \delta < \delta_0$ and $u = u_{\varepsilon}$. Set

(8.2)
$$A_{\delta} = \{x \in G; \operatorname{dist}(x, \Omega) \ge \sqrt{\varepsilon}, |u(x)| \le 1 - \delta\}.$$

For $x \in A_{\delta}$, let Q be the cube centered at x such that one of its faces is contained in Ω and let \widetilde{Q} be the conical domain

Let also $Q^{\#}$ be the cube centered at x having the size a third the one of Q. By Vitali's lemma, we may choose a finite family $(Q^{\#}_{\alpha})$ of disjoint cubes such that $A_{\delta} \subset \cup Q_{\alpha}$. By the η -ellipticity property, there is some $\eta(\delta) > 0$ such that we have, with δ_{α} the size of Q_{α} ,

(8.3)
$$E_{\varepsilon}(u, \mathbf{Q}_{\alpha}^{\#}) \geq \eta(\delta)\delta_{\alpha}\log(\delta_{\alpha}/\varepsilon) \geq 1/2\eta(\delta)\delta_{\alpha}\log(1/\varepsilon),$$

since $\delta_{\alpha} \geq \sqrt{\varepsilon}$. Thus

(8.4)
$$\sum \delta_{\alpha} < \frac{2}{\eta(\delta)} \frac{\mathrm{E}_{\varepsilon}(u, \mathrm{G})}{\log(1/\varepsilon)}.$$

Since, by Theorem 6, we have $E_{\varepsilon}(u, G) = o(\log(1/\varepsilon))$, we find that

$$(8.5) \qquad \sum \delta_{\alpha} < \delta,$$

provided ε is sufficiently small.

We now set

$$G_{\varepsilon} = \{x \in G; \operatorname{dist}(x, \Omega) \ge \sqrt{\varepsilon}\} \setminus \bigcup \widetilde{Q}_{\alpha},$$

so that $|u_{\varepsilon}| \geq 1 - \delta$ in G_{ε} .

By (8.5) and the construction of $G_{\epsilon},$ there is a Lipschitz homeomorphism $\Phi_{\epsilon}:G_{\epsilon}\to G$ such that

(8.6)
$$\|D\Phi_{\varepsilon}\|_{L^{\infty}} \leq C, \|D(\Phi_{\varepsilon}^{-1})\|_{L^{\infty}} \leq C, \\ \Phi_{\varepsilon|\partial G_{\varepsilon}} = \Pi_{|\partial G_{\varepsilon}}, \Phi_{\varepsilon|\{x \in G; \operatorname{dist}(x,\Omega) \geq 2\delta\}} = \operatorname{id},$$

provided δ_0 is sufficiently small, with constants C independent of ε .

Here, Π is the projection on $\Omega.$ In particular, G_{ϵ} is simply connected. We may thus write in G_{ϵ}

(8.7)
$$u = \rho e^{i\psi}, \rho = |u|, \psi \in \mathbf{C}^{\infty}.$$

Assuming further that $\delta_0 < 1/2$, we have $\rho \ge 1/2$ in G_{ε} and thus

(8.8)
$$|\psi|^2_{\mathrm{H}^1(\mathrm{G}_{\varepsilon})} \le 4|u|^2_{\mathrm{H}^1(\mathrm{G}_{\varepsilon})} \le 4|u|^2_{\mathrm{H}^1(\mathrm{G})} \le \delta \log(1/\varepsilon),$$

provided ε is sufficiently small. Moreover, by Theorem 7, we have

$$(\mathbf{8.9}) \qquad |\psi|_{W^{1,p}(G_{\varepsilon})} \le 2|u|_{W^{1,p}(G_{\varepsilon})} \le 2|u|_{W^{1,p}(G)} \le C_{p}, 1 \le p < 3/2.$$

We are now going to prove that $\psi|_{\partial G_{\varepsilon}}$ is almost equal to $\varphi \circ \Pi_{|\partial G_{\varepsilon}}$, where $\varphi \in H^{1/2} + W^{1,1}(\Omega; \mathbf{R})$ is such that $g = e^{i\varphi}$.

Let $\eta > 0$ be to be determined later. Since $g \in Y$, we may find some $h \in C^{\infty}(\Omega; S^1)$ such that $||g - h||_{H^{1/2}} < \eta$. Let $\zeta \in C^{\infty}(\Omega; \mathbf{R})$ be such that $h = e^{i\zeta}$. Let $T_{\varepsilon} = \Phi_{\varepsilon}|_{\partial G_{\varepsilon}}$ and $U_{\varepsilon} = T_{\varepsilon}^{-1} : \Omega \to \partial G_{\varepsilon}$. Fix a smooth map $\pi : \mathbf{C} \to \mathbf{C}$ such that $\pi(z) = z/|z|$ if $|z| \ge 1/2$ and let

$$\xi(x) = g(x) - e^{i\psi(U_{\varepsilon}(x))}, \ x \in \Omega,$$

so that

(8.10)
$$\xi(x) = \pi(g(x)) - \pi(e^{i\psi(U_{\varepsilon}(x))}), x \in \Omega \setminus \bigcup \widetilde{Q}_{\alpha}.$$

Therefore, we have

(8.11)
$$\int_{\Omega \setminus \cup \widetilde{Q}_{\alpha}} |\xi(x)| dx \leq C(G) \int_{\{x; \operatorname{dist}(x, \partial \Omega) \leq \sqrt{\varepsilon}\}} |Du| \leq C ||Du||_{L^{2}} \varepsilon^{1/4}$$
$$\leq C \varepsilon^{1/4} (\log 1/\varepsilon)^{1/2} \leq 1/2 \varepsilon^{1/5},$$

provided ε is sufficiently small. It follows that

(8.12)
$$\int_{\Omega\setminus\cup\widetilde{Q}_{\alpha}}|h(x)-e^{i\psi(U_{\varepsilon}(x))}|dx<\varepsilon^{1/5},$$

provided η is sufficiently small. Thus, with $\lambda = \zeta - \psi \circ U_{\varepsilon}$, we have

$$(8.13) \|e^{i\lambda}-1\|_{\mathrm{L}^{1}(\Omega\setminus\cup\widetilde{\mathrm{Q}}_{\alpha})}<\varepsilon^{1/5}.$$

By combining (8.6) and (8.8) (resp. (8.6) and (8.9)), we find that

$$(8.14) \qquad |\lambda|_{\mathrm{H}^{1/2}(\Omega)} \le \|\zeta\|_{\mathrm{H}^{1/2}(\Omega)} + C\|\psi\|_{\mathrm{H}^{1}(G_{\varepsilon})} \le \delta^{1/2} (\log(1/\varepsilon))^{1/2}$$

and

$$\|\lambda\|_{W^{1/4,4/3}(\Omega)} \le \|\zeta\|_{W^{1/4,4/3}(\Omega)} + C\|\psi\|_{W^{1,4/3}(G_{\varepsilon})} \le C,$$

provided ε is sufficiently small. In particular, we have

(8.16)
$$\|\lambda\|_{L^{4/3}(\Omega)} \le C.$$

By Lemma C.1 in Appendix C, if δ_0 is sufficiently small and λ satisfies (8.13), (8.14) and (8.15), while the squares $\tilde{Q}_{\alpha} \cap \Omega$ satisfy (8.5), then there is some integer *a* such that

$$(8.17) \|\lambda - 2\pi a\|_{L^1(\Omega)} < \delta^{1/18}.$$

Without restricting the generality, we may assume that a = 0, so that

$$(8.18) \|\xi - \psi \circ \mathbf{U}_{\varepsilon}\|_{\mathbf{L}^{1}(\Omega)} < \delta^{1/18}.$$

We actually claim that

$$(8.19) \qquad \qquad \|\varphi - \psi \circ \mathbf{U}_{\varepsilon}\|_{\mathbf{L}^{1}(\Omega)} < \delta^{1/20},$$

if we choose the lifting φ of g properly. Indeed, by estimate (1.9) in Theorem 3, the map $g\bar{h} \in Y$ has a lifting $\chi \in H^{1/2} + W^{1,1}$ such that

(8.20)
$$|\chi|_{\mathrm{H}^{1/2}+\mathrm{W}^{1,1}} \leq \mathrm{C}(\mathrm{G})|g\bar{h}|_{\mathrm{H}^{1/2}}(1+|g\bar{h}|_{\mathrm{H}^{1/2}}).$$

Since

$$|g\bar{h}|_{\mathrm{H}^{1/2}} = |\bar{h}(g-h)|_{\mathrm{H}^{1/2}} \to 0 \text{ as } h \to g_{2}$$

we may choose η sufficiently small in order to have

(8.21)
$$\|\chi - \int \chi\|_{L^1(\Omega)} < \delta^{1/18}.$$

Using the fact that

$$\|g\bar{h} - e^{if\chi}\|_{L^{1}} = \|e^{i\chi} - e^{if\chi}\|_{L^{1}} \le \|\chi - f\chi\|_{L^{1}} < \delta^{1/18}$$

and

$$\|g\bar{h}-1\|_{L^1} < \delta^{1/18},$$

provided η is sufficiently small, we find that, modulo $2\pi \mathbf{Z}$, we may assume that

(8.22)
$$\| \oint \chi \|_{L^1(\Omega)} < 2\delta^{1/18}.$$

Since $g = e^{\iota(\chi+\xi)}$, inequality (8.19) follows by combining (8.20)–(8.22), provided δ_0 is sufficiently small.

We now prove that ψ and $\tilde{\varphi}$ are close on compact sets of G. Set $\tilde{\psi} = \psi \circ \Phi_{\varepsilon}^{-1}$, $\tilde{\rho} = \rho \circ \Phi_{\varepsilon}^{-1}$, so that $\tilde{\psi}$, $\tilde{\rho}$ are defined on G and, in the set

$$\mathbf{M} = \{ x \in \mathbf{G}; \operatorname{dist}(x, \Omega) \ge 2\delta \},\$$

we have $\tilde{\psi} = \psi$ and $\tilde{\rho} = \rho$.

Recall that ψ satisfies the equation div $(\rho^2 \nabla \psi) = 0$ in G_{ε} . Transporting this equation on G and using (8.6), we see that ψ satisfies

(8.23)
$$\begin{cases} \operatorname{div}(\mathbf{A}(x)\tilde{\rho}^2\nabla\tilde{\psi}) = 0 & \text{in } \mathbf{G} \\ \tilde{\psi} = \psi \circ \mathbf{U}_{\varepsilon} & \text{on } \Omega \end{cases},$$

with

(8.24)
$$C^{-1}|\xi|^2 \le A(x)\xi, \xi \ge C|\xi|^2, \ \tilde{\rho}(x) = \rho(x) \text{ and } A(x) = I \text{ if } x \in M.$$

Therefore, the function

$$f = \tilde{\varphi} - \tilde{\psi}$$

satisfies

(8.25)
$$\begin{cases} \Delta f = \operatorname{div} \left((\mathbf{I} - \mathbf{A}(x)\tilde{\rho}^2)\nabla\tilde{\psi} \right) & \text{in } \mathbf{G} \\ f = \varphi - \psi \circ \mathbf{U}_{\varepsilon} & \text{on } \partial \mathbf{G} \end{cases}.$$

Thus, for $1 \le p \le 3/2$ and K compact in G, we have

$$(8.26) ||f||_{\mathrm{W}^{1,p}(\mathrm{K})} \leq \mathrm{C}_{\mathrm{K}}(||(\mathrm{I} - \mathrm{A}(x)\tilde{\rho}^2)\nabla\psi||_{\mathrm{L}^{p}(\mathrm{G})} + ||\varphi - \psi \circ \mathrm{U}_{\varepsilon}||_{\mathrm{L}^{1}(\Omega)}).$$

As we already observed in the proof of part b) of the theorem, we have $\rho \rightarrow 1$ uniformly on the compacts of G. Thus

(8.27)
$$\|(\mathbf{I} - \mathbf{A}(x)\tilde{\rho}^2)\nabla\tilde{\psi}\|_{\mathbf{L}^{p}(\mathbf{M})} \to 0.$$

as $\varepsilon \to 0$. On the other hand, we have

(8.28)
$$\|(\mathbf{I} - \mathbf{A}(x)\tilde{\rho}^2)\nabla\tilde{\psi}\|_{\mathbf{L}^{p}(\mathbf{G}\setminus\mathbf{M})} \leq \mathbf{C}\|\nabla\tilde{\psi}\|_{\mathbf{L}^{p}(\mathbf{G}\setminus\mathbf{M})} \leq \mathbf{C}\|\nabla u\|_{\mathbf{L}^{p}(\mathbf{G}\setminus\mathbf{M})}.$$

If we choose some r with p < r < 3/2, we find that

(8.29)
$$\|(\mathbf{I} - \mathbf{A}(x)\tilde{\rho}^2)\nabla\tilde{\psi}\|_{\mathbf{L}^{p}(\mathbf{G}\setminus\mathbf{M})} \leq \mathbf{C}\|\nabla u\|_{\mathbf{L}^{r}(\mathbf{G}\setminus\mathbf{M})}\|\mathbf{G}\setminus\mathbf{M}\|^{\frac{r-p}{r}} \leq \mathbf{C}\delta^{\frac{r-p}{r}},$$

by Theorem 7. By combining (8.19), (8.26), (8.27) and (8.29) we find that, for some $0 < \alpha < 1$ fixed, we have

(8.30)
$$||f||_{W^{1,p}(K)} \le \delta^{\alpha},$$

provided ε is sufficiently small.

Since, for $\delta_0 = \delta_0(\mathbf{K})$ sufficiently small, we have $f = \varphi - \psi$ in \mathbf{K} , we find that, as $\varepsilon \to 0$, $\tilde{\varphi} - \psi \to 0$ in $W_{\text{loc}}^{1,p}(\mathbf{G})$, $1 \le p \le 3/2$. Using once more the fact that $\rho \to 1$ in $C_{\text{loc}}^k(\mathbf{G})$, we find that $u_{\varepsilon} \to u_*$ in $W_{\text{loc}}^{1,p}(\mathbf{G})$. This proves Theorem 9.

Remark **8.1.** — Under the assumptions of Theorem 9 it is not true in general that $|u_{\varepsilon}| \rightarrow 1$ uniformly on \overline{G} . Indeed, if this were true, then $u_{\varepsilon}/|u_{\varepsilon}|$ would belong to $H^{1}(G; S^{1})$ for ε sufficiently small. Thus $u_{\varepsilon}/|u_{\varepsilon}|$ admits a lifting $\varphi_{\varepsilon} \in H^{1}(G; \mathbf{R})$ and $g = e^{i\varphi_{\varepsilon}|\Omega}$. Hence g must necessarily belong to X. But, even when $g \in X$ it is unlikely that $|u_{\varepsilon}| \rightarrow 1$ uniformly on \overline{G} .

Remark **8.2.** — Let $g \in H^{1/2}(\Omega; S^1)$ with L(g) = 0 and write $g = e^{i\varphi}$ with $\varphi \in H^{1/2} + W^{1,1}$. Let $\tilde{\varphi}$ be the harmonic extension of φ . One may wonder whether

(8.31)
$$||u_{\varepsilon}e^{-i\tilde{\varphi}}||_{W^{1,p}} \leq C \quad \forall p < 2 \text{ as } \varepsilon \to 0?$$

The answer is negative. The argument relies on the following

Lemma **29.** — Fix ε and let u_{ε} be a minimizer for E_{ε} , with $u_{\varepsilon} = g$ on Ω . Then

$$(8.32) u_{\varepsilon} = \tilde{g} + \psi$$

where \tilde{g} is the harmonic extension of g and

$$|\psi(x)| \le C\varepsilon^{-1} \operatorname{dist}(x, \Omega).$$

Proof. — Clearly $\psi = 0$ on Ω , $|\psi| \le 2$, and $|\Delta \psi| \le C\varepsilon^{-2}$ on G. By interpolation one deduces that $|\nabla \psi| \le C\varepsilon^{-1}$ (see e.g. [7]) and the conclusion follows.

1. Using (8.32), write

(8.34)
$$\begin{aligned} |\nabla(u_{\varepsilon}e^{-i\tilde{\varphi}})| &\geq |u_{\varepsilon}| \ |\nabla\tilde{\varphi}| - |\nabla u_{\varepsilon}| \\ &\geq |\tilde{g}| \ |\nabla\tilde{\varphi}| - |\psi| \ |\nabla\tilde{\varphi}| - |\nabla u_{\varepsilon}|. \end{aligned}$$

We have

$$\|\nabla u_{\varepsilon}\|_{\mathrm{L}^{2}(\mathrm{G})} \lesssim \left(\log \frac{1}{\varepsilon}\right)^{1/2} < \infty$$

and, by (8.33)

$$\begin{split} \int_{\mathcal{G}} (|\psi| \ |\nabla \tilde{\varphi}|)^2 &\leq \mathcal{C}\varepsilon^{-2} \sum_{s \geq 0} 4^{-s} \int_{\operatorname{dist}(x,\Omega) \sim 2^{-s}} |(\nabla \tilde{\varphi})(x)|^2 \\ &\leq \mathcal{C}\varepsilon^{-2} \sum_{s \geq 0} 4^{-s} \cdot 4^s \cdot 2^{-s} \|\varphi\|_{\mathcal{L}^2(\Omega)}^2 \leq \mathcal{C}\varepsilon^{-2} < \infty. \end{split}$$

Consequently, assuming (8.31) were true for some p < 2, we necessarily must have, by (8.34), that

$$(8.35) \qquad \qquad |\tilde{g}| \ |\nabla \tilde{\varphi}| \in \mathcal{L}^{p}(\mathcal{G})$$

whenever $g = e^{i\varphi} \in \mathrm{H}^{1/2}(\Omega, \mathrm{S}^1)$.

This statement relates only to g and we show next that (8.35) *cannot* hold for p > 3/2.

2. Let $0 < \delta < 1$ be small and take $0 \le \varphi \le (\frac{1}{\delta})^{1-}$ such that

(8.36)
$$\operatorname{supp} \varphi \subset B(0, 2\delta) \subset \Omega$$
 (identified with the x_1, x_2 -plane),

(8.37)
$$\varphi = \left(\frac{1}{\delta}\right)^{1-}$$
 on B(0, δ),

$$(8.38) |\nabla \varphi| \le \left(\frac{1}{\delta}\right)^{2-}.$$

Hence

$$||e^{i\varphi}||_{\mathrm{H}^{1/2}} < \mathrm{C}.$$

Also, from (8.1)

$$\|1-e^{i\varphi}\|_{\mathrm{L}^1}\leq \mathrm{C}\delta^2.$$

Hence for $x_3 > C\delta$

$$(8.39) |1 - \tilde{g}(x_1, x_2, x_3)| \le \int |1 - e^{i\varphi}|(x_1', x_2') \mathbf{P}_x(x_1', x_2') dx_1 dx_2 \le \mathbf{C}\delta^2 \|\mathbf{P}_x\|_{\infty} < \frac{1}{10}.$$

Thus from (8.39)

$$\|\tilde{g}. \|\nabla\tilde{\varphi}\| \|_{L^{p}} \gtrsim \|\nabla\tilde{\varphi}\|_{L^{p}(x_{1},x_{2};x_{3}>C\delta)} \sim \left\| \int_{\mathbf{R}^{2}} |\xi| \hat{\varphi}(\xi) e^{i(x_{1}\xi_{1}+x_{2}\xi_{2})} e^{-x_{3}|\xi|} d\xi \right\|_{L^{p}(x_{1},x_{2};x_{3}>C\delta)} \geq \left\| \| \|\xi| \hat{\varphi}(\xi) e^{-x_{3}|\xi|} \|_{L^{p'}_{\xi}} \right\|_{L^{p}(x_{3}>C\delta)} \geq c \left[\| |\xi| \hat{\varphi}(\xi) \|_{L^{p'}_{|\xi|\sim \frac{1}{10\delta}}} \right] \cdot \delta^{\frac{1}{p}} \sim \delta^{-1} \hat{\varphi}(0) \cdot \left(\frac{1}{\delta}\right)^{\frac{2}{p'}} \delta^{1/p} \sim \delta^{\frac{1}{p}-\frac{2}{p'}+}.$$
(8.41)

In (8.40), we use Hausdorff–Young inequality and (8.41) follows from (8.36), (8.37).

Since $\frac{1}{p} - \frac{2}{p'} < 0$ for p > 3/2, a gluing construction with the preceding as building block and $\delta \to 0$ will clearly violate (8.35).

As in the previous sections and with some more work, we may prove the following variant of Theorem 9:

Theorem **9**'. — Assume $g \in Y$, and let g_{ε} be as in Theorem 6' of Section 5. Let u_{ε} be a minimizer of E_{ε} in $H^1_{g_{\varepsilon}}$. Then

$$u_{\varepsilon} \to u_*$$
 in W^{1.p}(G) $\cap C^{\infty}(G), \quad \forall p < 3/2,$

where u_* is the same as in Theorem 9.

86

9. Further thoughts about p = 3/2

Let $g \in H^{1/2}(\Omega; S^1)$ and let (u_{ε}) be a minimizer for E_{ε} in H_g^1 . In Section 6 we have established that (u_{ε}) is relatively compact in $W^{1,p}(G)$ for every p < 3/2. It is plausible that (u_{ε}) is bounded and possibly even relatively compact in $W^{1,3/2}$; see Open Problem 2 in Section 10.

There are two directions of evidence suggesting that, indeed, (u_{ε}) is bounded in $W^{1,3/2}$.

The first one relies on a conjectured strengthening of the Jerrard–Soner inequality mentioned below.

The second one is a complete proof of the fact that any limit (in $W^{1,p}$, p < 3/2) of (u_{ε}) belongs to $W^{1,3/2}$; see Theorem 12.

9.1. Jerrard-Soner revisited

First recall the following immediate consequence of a result in [33]:

Proposition 1 (Jerrard and Soner [33]). — Let (v_{ε}) be a sequence in $H^1(Q; \mathbb{R}^2)$, $Q \subset \mathbb{R}^3$ a cube, satisfying

(9.1)
$$E_{\varepsilon}(v_{\varepsilon}; \mathbf{Q}) = \int_{\mathbf{Q}} \left[\frac{1}{2} [\nabla v_{\varepsilon}]^2 + \frac{1}{4\varepsilon^2} ||v_{\varepsilon}|^2 - 1|^2 \right] \le C \log 1/\varepsilon$$

for all $\varepsilon < \varepsilon_0$. Then for $\zeta \in C_0^{\infty}(\omega), \, \bar{\omega} \subset Q$, we have the inequality

$$(9.2) \qquad \left| \int J(v_{\varepsilon})\zeta \right| \leq K \|\zeta\|_{W^{1,q}(Q)}$$

where $J(v_{\varepsilon})$ is any 2 × 2 facobian determinant of v_{ε} , q > 3, and K = K(C, q, ω).

Remark **9.1.** — In fact in [33] one obtains a stronger estimate with the norm $\|\zeta\|_{W^{1,q}}$ replaced by any $\|\zeta\|_{C^{0,\alpha}}$ -norm, $\alpha > 0$.

In this subsection, we will show that:

- a) The conclusion of Proposition 1 fails for any q < 3.
- b) The validity of Proposition 1 for q = 3 (which we conjecture) would imply the boundedness in W^{1,3/2} of the minimizers (u_{ε}) of the Ginzburg–Landau problem in G with boundary data g controlled in H^{1/2}(Ω ; S¹), $\Omega = \partial G$.

A basic tool is the following construction of an extension of g outside G.

Lemma **30.** — Assume $\overline{G} \subset Q$ and $g \in H^{1/2}(\Omega; S^1)$. Then there is $w_{\varepsilon} \in H^1(Q \setminus G; \mathbb{R}^2)$ satisfying

- (9.3) $w_{\varepsilon} = g \text{ on } \partial G \text{ and } w_{\varepsilon} \equiv 1 \text{ in some fixed neighborhood of } \partial Q$,
- (9.4) $E_{\varepsilon}(w_{\varepsilon}; Q \setminus G) \leq C \|g\|_{H^{1/2}} \log 1/\varepsilon,$
- (9.5) $\|w_{\varepsilon}\|_{W^{1,p}(Q\setminus G)} \leq C_{p}\|g\|_{H^{1/2}}$ for every p < 2,

(9.6)
$$w_{\varepsilon_n} \to w \text{ in } W^{1,p}(Q \setminus G) \text{ for every } p < 2 \text{ with } w \in W^{1,p}(Q \setminus G), \forall p < 2$$

 $|w_{\varepsilon}| \leq 1 \text{ in } \mathbf{Q} \setminus \mathbf{G}.$

Proof. — We follow the same construction as in [5] which we briefly recall here. First, let H be any smooth function in Q\G with $H \in H^1(Q \setminus G; \mathbb{R}^2)$ satisfying the boundary conditions H = g on $\Omega = \partial G$, $H \equiv 1$ near ∂Q , and $||H||_{H^1} \leq C||g||_{H^{1/2}}$.

Using the same notation as in the proof of Lemma 23, define

$$w_{\varepsilon,a}(x) = \psi\left(\frac{|\mathbf{H}(x) - a|}{\varepsilon}\right)\pi_a(\mathbf{H}(x)).$$

It may be shown as in [5] (or as in the proof of Lemma 23) that for some $a = a_{\varepsilon} \in \mathbf{C}$, $|a_{\varepsilon}| < 1/10$, the functions $(w_{\varepsilon,a_{\varepsilon}})$ satisfy all the required properties.

Next, we establish the following

Proposition **2.** — Assume that the conclusion of Proposition 1 is valid for some $2 \le q \le 3$. Let (u_{ε}) be a sequence of minimizers of E_{ε} in G as above. Then (u_{ε}) is bounded in $W^{1,q'}(G)$ with q' = q/(q-1).

Proof. — As in Section 6, it suffices to establish the boundedness of $u_{\varepsilon} \wedge du_{\varepsilon}$ in the space $L^{q'}(G)$. Proceeding by duality, consider $\zeta \in L^{q}(G; \mathbb{R}^{3})$, $\|\zeta\|_{q} \leq 1$ and take its Hodge decomposition as

(9.8)
$$\begin{cases} \zeta = \operatorname{curl} k + \nabla \mathrm{L} \text{ in } \mathrm{G} \\ \mathrm{L} = 0 \text{ on } \Omega, \\ \text{with } \|k\|_{\mathrm{W}^{1,q}(\mathrm{G})} + \|\mathrm{L}\|_{\mathrm{W}^{1,q}(\mathrm{Q})} \leq \mathrm{C} \end{cases}$$

(see e.g. [30] or [27]). Recall that, with the notations of differential forms we used earlier, curl = d^* and $\nabla = d$. Let Q be a cube with $\overline{G} \subset Q$ and let ω be an open set such that

$$\overline{\mathbf{G}} \subset \omega$$
 and $\overline{\omega} \subset \mathbf{Q}$.

88

Next, extend k to \tilde{k} on Q, $\tilde{k} = 0$ on Q \ ω , with control of $\|\tilde{k}\|_{W^{1,q}(Q)}$. We extend u_{ε} to Q defining

$$v_{\varepsilon} = \begin{cases} u_{\varepsilon} \text{ in } \mathbf{G} \\ w_{\varepsilon} \text{ in } \mathbf{Q} \backslash \mathbf{G} \end{cases}$$

where w_{ε} is provided by Lemma 30.

Recall that $\operatorname{div}(u_{\varepsilon} \wedge du_{\varepsilon}) = 0$, and thus

$$\int_{\mathcal{G}} (u_{\varepsilon} \wedge du_{\varepsilon}) \cdot \zeta = \int_{\mathcal{G}} (u_{\varepsilon} \wedge du_{\varepsilon}) \cdot \operatorname{curl} k.$$

Hence

(9.9)
$$\left| \int_{G} (u_{\varepsilon} \wedge du_{\varepsilon}) \cdot \zeta \right| \leq \left| \int_{Q} (v_{\varepsilon} \wedge dv_{\varepsilon}) \cdot \operatorname{curl} \tilde{k} \right| + \int_{Q \setminus G} |\nabla w_{\varepsilon}| |\nabla \tilde{k}|.$$

From (9.5), the last term in (9.9) is bounded by $C \|w_{\varepsilon}\|_{W^{1,q'}(\mathbb{Q}\setminus G)}$, hence by $C' \|g\|_{H^{1/2}}$, since q' < 2.

For the first term, perform an integration by part ($\tilde{k} = 0$ on ∂Q) to get

(**9.10**)
$$\left| \int_{Q} (v_{\varepsilon} \wedge dv_{\varepsilon}) \cdot \operatorname{curl} \tilde{k} \right| = 2 \left| \int_{Q} J(v_{\varepsilon}) \cdot \tilde{k} \right|$$

and this quantity is bounded, by assumption, by $C \|\tilde{k}\|_{W^{1,q}(\Omega)}$ (since supp $\tilde{k} \subset \overline{\omega}$).

This proves Proposition 2.

Remark **9.2.** — The proof of Proposition 2 also provides an alternative quick proof of Theorem 7.

Corollary **4.** — The conclusion of Proposition 1 fails for every q < 3.

Proof. — By Proposition 2, one would otherwise obtain the boundedness of the Ginzburg–Landau minimizers in $W^{1,p}(G)$ for some p > 3/2. This is not true in general, even for certain $g \in Y$. Arguing by contradiction, one would otherwise obtain that the limit u_* obtained in Theorem 9 belongs to $W^{1,p}$ with p > 3/2. However, this is false. Indeed

Remark **9.3.** — In general $u_* \notin W^{1,t}$ for t > 3/2. Here is an example (*see* [5]): Suppose Ω is flat near 0 and choose $g(r) = e^{t/r^{\alpha}}$ with $\alpha < 1$, α close to 1 and g smooth away from 0. This g belongs to Y. It is easy to see that the harmonic extension of $1/r^{\alpha}$ does not belong to $W^{1,t}$, for $t > 3/(\alpha + 1)$. Thus $u_* \notin W^{1,t}$.

Remark **9.4.** — The preceding also shows that the improved interior estimates from Section 7 can not be established via a strengthening of Jerrard–Soner but requires additional structure (in particular the monotonicity formula).

9.2. $W^{1,3/2}$ – estimate of the limit

We start with the simple case when $g \in Y$.

Theorem 11. — Assume $g \in Y$ and let u_* be as in Theorem 9. Then $u_* \in W^{1,3/2}$.

Proof of Theorem 11. — Recall that $u_* = e^{i\tilde{\varphi}}$ where $\tilde{\varphi}$ is the harmonic extension of $\varphi \in \mathrm{H}^{1/2} + \mathrm{W}^{1,1}$. Therefore, it suffices to apply the following imbedding result, which is an immediate consequence of Theorem 1.5 in Cohen, Dahmen, Daubechies and DeVore [23]:

Lemma **31.** — In 2-dimensions we have $W^{1,1}(\Omega) \subset W^{\frac{1}{3},\frac{3}{2}}(\Omega)$.

For completeness we will prove a slightly more general form of this result in Appendix D.

We now turn to the case of a general $g \in H^{1/2}(\Omega; S^1)$.

Theorem 12. — Let $g \in H^{1/2}(\Omega; S^1)$ and let (u_{ε}) be a minimizer of E_{ε} in $H^1_g(G; \mathbb{R}^2)$. In view of Theorem 7' we may assume that (modulo a subsequence)

$$u_{\varepsilon_n} \to U \text{ in } W^{1,p}(G), \quad \forall p < 3/2.$$

Then

$$\mathbf{U} \in \mathbf{W}^{1,3/2}(\mathbf{G}).$$

Proof of Theorem 12. — In the proof we will not fully use the fact that u_{ε} is a minimizer. We will only make use of the properties

- (**9.0.1**) $\operatorname{div}(u_{\varepsilon} \wedge du_{\varepsilon}) = 0$ in G,
- (**9.0.2**) $e_{\varepsilon} = \mathbf{E}_{\varepsilon}(u_{\varepsilon}) \leq C \log 1/\varepsilon,$
- (**9.0.3**) $u_{\varepsilon_n} \to U \text{ in } W^{1,p}(G), \quad \forall p < 3/2,$
- $(9.0.4) u_{\varepsilon|\Omega} = g \in \mathrm{H}^{1/2}(\Omega; \mathrm{S}^1).$

Claim.

(9.0.5)
$$U \wedge dU$$
 belongs to $L^{3/2}(G)$.

This implies that $U \in W^{1,3/2}$. Indeed we have

$$|b|^{2} = |a \wedge b|^{2} + |a \cdot b|^{2}$$

for any vectors a, b in \mathbf{R}^2 with |a| = 1; applying this with a = U and $b = \frac{\partial U}{\partial x_i}$ yields $|d\mathbf{U}| = |\mathbf{U} \wedge d\mathbf{U}|$ since $\mathbf{U} \cdot \frac{\partial U}{\partial x_i} = 0$.

In order to prove the Claim (9.0.5) we will check that, for every $\vec{\zeta} \in L^3(G; \mathbf{R}^3)$, we have

(9.0.6)
$$\left| \int_{\mathbf{G}} \vec{\zeta} \cdot (\mathbf{U} \wedge d\mathbf{U}) \right| \leq \mathbf{C} \| \vec{\zeta} \|_{\mathbf{L}^3}.$$

Clearly, it suffices to verify (9.0.6) when $\vec{\zeta} \in C_0^{\infty}$. Consider the Hodge decomposition of $\vec{\zeta}$ as above, i.e.,

- $(9.0.8) L = 0 on \ \partial G,$

(**9.0.9**)
$$\|\vec{k}\|_{W^{1,3}(G)} \leq C\|\vec{\zeta}\|_{L^3}$$

Then, by (9.0.1) and (9.0.8),

$$\int_{\mathcal{G}} \nabla \mathbf{L} \cdot (\mathbf{U} \wedge d\mathbf{U}) = 0$$

and thus

(9.0.10)
$$\int_{G} \vec{\zeta} \cdot (U \wedge dU) = \int_{G} (\operatorname{curl} \vec{k}) \cdot (U \wedge dU).$$

We will establish the bound

(**9.0.11**)
$$\left| \int_{\mathbf{G}} (\operatorname{curl} \vec{k}) \cdot (\mathbf{U} \wedge d\mathbf{U}) \right| \leq \mathbf{C} \|\vec{k}\|_{\mathbf{W}^{1,3}}$$

in 5 steps. The desired estimate (9.0.6) will be consequence of (9.0.10) and (9.0.11).

Step 1. — Extensions.

Let Q be a cube such that $\overline{G} \subset Q$. Let $\tilde{k} \in W^{1,3}(Q; \mathbb{R}^3)$ be such that supp \tilde{k} is contained in a fixed compact subset of Q,

$$\tilde{k} = \vec{k}$$
 in G,

and

$$\|\tilde{k}\|_{W^{1,3}(\mathbf{Q})} \le \mathbf{C} \|\tilde{k}\|_{W^{1,3}(\mathbf{G})}$$

Next, we extend g to $Q \setminus G$ using Lemma 30. Thus, we obtain a family $w_{\varepsilon} \in H^1(Q \setminus G; \mathbb{R}^2)$ satisfying

- $(9.1.1) \qquad \qquad w_{\varepsilon|\partial G} = g,$
- (9.1.2) $w_{\varepsilon} \equiv 1$ in some fixed neighborhood of ∂Q ,
- $(9.1.3) E_{\varepsilon}(w_{\varepsilon}; Q \setminus G) \le C \log 1/\varepsilon$
- $(9.1.4) \qquad \|w_{\varepsilon}\|_{\mathrm{W}^{1,p}(\mathbf{Q}\setminus\mathbf{G})} \leq \mathrm{C}_{p}, \quad \forall p < 2$
- $(9.1.5) w_{\varepsilon_n} \longrightarrow w \text{ in } W^{1,p}(Q \setminus G), \quad \forall p < 2,$

for some $w \in W^{1,p}(\mathbb{Q} \setminus G; \mathbb{S}^1), \quad \forall p < 2.$ Set

$$\tilde{u}_{\varepsilon} = \begin{cases} u_{\varepsilon} & \text{ in } \mathbf{G} \\ w_{\varepsilon} & \text{ in } \mathbf{Q} \setminus \mathbf{G}, \end{cases}$$

so that $\tilde{u}_{\varepsilon} \in H^1(\mathbf{Q}; \mathbf{R}^2)$ and

$$(9.1.6) \qquad \tilde{u}_{\varepsilon_n} \longrightarrow \tilde{U} \text{ in } W^{1,p}(Q), \quad \forall p < 3/2,$$

where

$$\widetilde{\mathbf{U}} = \begin{cases} u & \text{in G} \\ w & \text{in } \mathbf{Q} \setminus \mathbf{G} \end{cases}$$

and $\widetilde{U} \in W^{1,p}(Q; S^1)$, $\forall p \le 3/2$. Clearly,

 $(9.1.7) E_{\varepsilon}(\tilde{u}_{\varepsilon}; \mathbf{Q}) \leq C \log 1/\varepsilon.$

It is convenient to introduce the following distribution denoted $\widetilde{\mathrm{U}}_{x_i} \wedge \widetilde{\mathrm{U}}_{x_j}, i \neq j$

$$\widetilde{\mathrm{U}}_{x_i} \wedge \widetilde{\mathrm{U}}_{x_j} = \frac{1}{2} (\widetilde{\mathrm{U}}_{x_i} \wedge \widetilde{\mathrm{U}})_{x_j} + \frac{1}{2} (\widetilde{\mathrm{U}} \wedge \widetilde{\mathrm{U}}_{x_j})_{x_i}$$

acting on functions $C_0^{\infty}(Q; \mathbf{R})$.

An immediate computation shows that

$$(9.1.8) \qquad -\frac{1}{2} \int_{\mathcal{Q}} (\operatorname{curl} \tilde{k}) \cdot \widetilde{\mathcal{U}} \wedge d\widetilde{\mathcal{U}} = \langle \widetilde{\mathcal{U}}_{x_2} \wedge \widetilde{\mathcal{U}}_{x_3}, \tilde{k}_1 \rangle + \langle \widetilde{\mathcal{U}}_{x_3} \wedge \widetilde{\mathcal{U}}_{x_1}, \tilde{k}_2 \rangle \\ + \langle \widetilde{\mathcal{U}}_{x_1} \wedge \widetilde{\mathcal{U}}_{x_2}, \tilde{k}_3 \rangle.$$

We will prove e.g. that

$$(9.1.9) \qquad | < \widetilde{\mathbf{U}}_{x_1} \land \widetilde{\mathbf{U}}_{x_2}, k > | \le \mathbf{C} ||k||_{\mathbf{W}^{1,3}}.$$

for every $k \in C_0^{\infty}(\mathbf{Q}; \mathbf{R})$ and similarly for the other terms. Assuming (9.1.9) we then have

(9.1.10)
$$\left| \int_{\mathbf{Q}} (\operatorname{curl} \tilde{k}) \cdot (\widetilde{\mathbf{U}} \wedge d\widetilde{\mathbf{U}}) \right| \leq \mathbf{C} \|\tilde{k}\|_{\mathbf{W}^{1,3}(\mathbf{Q})}$$

and thus

$$(9.1.11) \qquad \left| \int_{G} (\operatorname{curl} \vec{k}) \cdot (U \wedge dU) \right| \leq \left| \int_{Q \setminus G} (\operatorname{curl} \tilde{k}) \cdot w \wedge dw \right| + C \|\tilde{k}\|_{W^{1,3}(Q)}$$
$$\leq \|\tilde{k}\|_{W^{1,3}(Q \setminus G)} \|w\|_{L^{3/2}(Q \setminus G)} + C \|\tilde{k}\|_{W^{1,3}(Q)}$$

Finally we obtain, by (9.1.4),

(9.1.12)
$$\left| \int_{\mathbf{G}} (\operatorname{curl} \vec{k}) \cdot (\mathbf{U} \wedge d\mathbf{U}) \right| \leq \mathbf{C} \|\vec{k}\|_{\mathbf{W}^{1,3}(\mathbf{G})}$$

which is the desired estimate (9.0.11).

The rest of the argument is devoted to the proof of (9.1.9).

Step 2. — Use of a result of Jerrard–Soner.

For any $\bar{x}_3 \in \mathbf{R}$ set

$$\Sigma_{\bar{x}_3} = \mathbf{Q} \cap (\mathbf{R}^2 \times \{\bar{x}_3\}).$$

Consider \bar{x}_3 such that

(9.2.1)
$$\liminf_{\varepsilon \to 0} \frac{\mathrm{E}_{\varepsilon}(\tilde{u}_{\varepsilon} | \Sigma_{\bar{x}_{3}})}{\log 1/\varepsilon} < \infty$$

and

$$(9.2.2) \qquad \widetilde{\mathrm{U}}_{\varepsilon_{n}|\Sigma_{\bar{x}_{3}}} \longrightarrow \widetilde{\mathrm{U}}_{|\Sigma_{\bar{x}_{3}}} \text{ in } \mathrm{W}^{1,\frac{3}{2}-}(\Sigma_{\bar{x}_{3}}).$$

From (9.1.6), (9.1.7), this is the case for almost all \bar{x}_3 .

It follows then from Theorem 3.1 in [33] that $(\tilde{u}_{\varepsilon_n})_{x_1} \wedge (\tilde{u}_{\varepsilon_n})_{x_2}$ converges in $\mathscr{D}'(\Sigma_{\tilde{x}_3})$ to $\widetilde{U}_{x_1} \wedge \widetilde{U}_{x_2}$ and that

$$(9.2.3) \qquad \qquad \widetilde{\mathbf{U}}_{x_1} \wedge \widetilde{\mathbf{U}}_{x_2} = \pi \sum_i d_i \delta_{a_i}$$

where $d_i = d_i(\bar{x}_3) \in \mathbf{Z}$, $a_i = a_i(\bar{x}_3) \in \sum_{\bar{x}_3}$ satisfy

$$(9.2.4) \qquad \pi \sum_{i} |d_i(\bar{x}_3)| \leq \liminf_{\varepsilon \to 0} \frac{\mathrm{E}_{\varepsilon}(\tilde{u}_{\varepsilon} | \Sigma_{\bar{x}_3})}{\log 1/\varepsilon}.$$

Thus, from (9.1.7)

$$(9.2.5) \qquad \sum_{i} \int |d_i(x_3)| dx_3 \leq C$$

and we may write

$$(9.2.6) \qquad \qquad < \widetilde{\mathcal{U}}_{x_1} \wedge \widetilde{\mathcal{U}}_{x_2}, k > = \pi \int dx_3 \bigg\{ \sum_i d_i(x_3) k \big(a_i(x_3) \big) \bigg\}.$$

To bound (9.2.6), we will need, besides (9.2.5), also certain cancellations that have to do with the sign of d_i 's.

Step 3. — Use of minimal connections.

Take \bar{x}_3 as in Step 2 and consider the domain

$$\Omega_{\bar{x}_3} = \mathbb{Q} \cap [x_3 \leq \bar{x}_3] \quad \text{(or } x_3 \geq \bar{x}_3).$$

Since $\tilde{u}_{\varepsilon_n} \to \tilde{U}$ in $W^{1,\frac{3}{2}-}(\partial \Omega_{\tilde{x}_3})$, $\tilde{u}_{\varepsilon_n} \to \tilde{U}$ in $H^{1/2}(\partial \Omega_{\tilde{x}_3})$. Remark also that, since $\tilde{U} = 1$ on ∂Q , the singularities of \tilde{U} on $\partial \Omega_{\tilde{x}_3}$ are necessarily in $\Sigma_{\tilde{x}_3}$.

Invoke next Theorem 6' to claim that

$$(9.3.1) \qquad \pi L(\widetilde{U}_{|\Sigma_{\tilde{x}_3}}) = \pi L(\widetilde{U}_{|\partial\Omega_{\tilde{x}_3}}) \leq \liminf_{\varepsilon \to 0} \frac{E_{\varepsilon}(\tilde{u}_{\varepsilon|\Omega_{\tilde{x}_3}})}{\log 1/\varepsilon} \leq \sup \frac{E_{\varepsilon}(\tilde{u}_{\varepsilon})}{\log 1/\varepsilon} \leq C.$$

Note that assumption (5.11) is satisfied since

$$\frac{1}{\varepsilon^2} \int\limits_{\mathbf{Q}} (|\tilde{u}_{\varepsilon}|^2 - 1)^2 \le \mathbf{C} \log 1/\varepsilon$$

implies

$$\frac{1}{\varepsilon} \int_{Q} (|\tilde{u}_{\varepsilon}|^2 - 1)^2 = \frac{1}{\varepsilon} \int dx_3 \int_{\Sigma_{x_3}} (|\tilde{u}_{\varepsilon}|^2 - 1)^2 \longrightarrow 0$$

and then

$$\frac{1}{\varepsilon_n}\int_{\Sigma_{x_3}}(|\tilde{u}_{\varepsilon_n}|-1)^2 \le h(x_3)$$

for some fixed function $h \in L^1$.

Thus, by (9.3.1), there is a reordering

$$\{a_i(d_i)\} = \{p_1, ..., p_\ell\} \cup \{n_1, ..., n_\ell\}$$

with possible repetition, such that

(**9.3.2**)
$$\sum_{j} |p_{j}(\bar{x}_{3}) - n_{j}(\bar{x}_{3})| \leq C$$

and (9.2.5), (9.2.6) may be rewritten as

$$(9.3.3) \qquad \int \ell(x_3) dx_3 \leq C$$

(where $2\ell(x_3) = \sum |d_i(x_3)|$) and

$$(9.3.4) \qquad \qquad < \widetilde{\mathbf{U}}_{x_1} \wedge \widetilde{\mathbf{U}}_{x_2}, k > = \pi \int dx_3 \bigg\{ \sum_j [k(p_j(x_3)) - k(n_j(x_3))] \bigg\}.$$

We will now establish the desired bound (9.1.9) with the help of the following

Proposition **3.** — Assume (9.3.3) and (9.3.4), then, for every $k \in C_0^{\infty}(Q; \mathbf{R})$,

$$(9.3.5) \qquad \left| \int dx_3 \left\{ \sum_j \left[k(p_j(x_3)) - k(n_j(x_3)) \right] \right\} \right| \le C ||k||_{W^{1,3}(Q)}.$$

Step **4.** — Decomposition of $W^{1,3}(\mathbf{R}^3)$ -function.

Let $k \in W^{1,3}(\mathbf{R}^3)$, $||k||_{W^{1,3}} \le 1$ and let

$$k = \sum_{s \ge 0} \Delta_s k$$

be a usual Littlewood–Paley decomposition (we assume $\mathrm{supp}\,k\subset \mathbf{Q}).$ Thus

(**9.4.1**)
$$\sum 8^{s} \|\Delta_{s}k\|_{3}^{3} < C.$$

Denote

$$(9.4.2) \qquad \lambda_s = 8^s \|\Delta_s k\|_3^3;$$

hence

$$(9.4.3) \qquad \sum \lambda_s < C.$$

First we estimate for fixed $\rho > 0$

(**9.4.4**) meas
$$[x_3; \sup_{x_1, x_2} |\Delta_s k(x_1, x_2, x_3)| > \rho].$$

Clearly, for fixed x_3 ,

$$\|\Delta_{s}k(x_{3})\|_{\mathrm{L}^{\infty}_{x_{1},x_{2}}} \leq \mathrm{C}4^{s/3}\|\Delta_{s}k(x_{3})\|_{\mathrm{L}^{3}_{x_{1},x_{2}}}$$

so that

$$(9.4.5) \qquad (9.4.4) \le \rho^{-3} \int (\|\Delta_s k(x_3)\|_{\mathrm{L}^{\infty}_{x_1,x_2}})^3 dx_3 \le \mathrm{C}\rho^{-3}4^s \|\Delta_s k\|_3^3 \le \mathrm{C}\rho^{-3}2^{-s}\lambda_s.$$

Denote ζ_{ρ} the function on **R**

Fix s_0 and decompose for $s \ge s_0 + 1$

$$\Delta_{s}k = k_{s,s_{0}}^{1} + k_{s,s_{0}}^{2} \quad \text{with} \quad k_{s,s_{0}}^{1} = \Delta_{s}k(1 - \zeta_{1/(s-s_{0})^{2}})(\Delta_{s}k).$$

Hence

$$\begin{split} k_{s,s_0}^1 &\leq |\Delta_s k| \ \chi_{\left[|\Delta_s k| < (s-s_0)^{-2}\right]} \\ k_{s,s_0}^2 &\leq |\Delta_s k| \ \chi_{\left[|\Delta_s k| > \frac{1}{2}(s-s_0)^{-2}\right]}. \end{split}$$

Therefore

$$(9.4.6) \qquad \sum_{s \ge s_0 + 1} \left| k_{s, s_0}^1 \right| < C$$

and by (9.4.5)

$$(9.4.7) \qquad \text{meas } _{x_3}\left(\operatorname{Proj}_{x_3}\left(\operatorname{supp} k_{s,s_0}^2\right)\right) \leq \operatorname{C}(s-s_0)^6 \ 2^{-s}\lambda_s.$$

Step **5.** — Estimation of (9.3.5).

Using the decomposition of Step 4, estimate

$$(9.3.5) \leq \int dx_3 \left\{ \sum_{s_0} \sum_{j \mid |p_j - n_j| \sim 2^{-s_0}} \left| k(p_j(x_3)) - k(n_j(x_3)) \right| \right\}$$

and

$$(9.5.1) |k(p_j) - k(n_j)| \le \sum_{s \le s_0} |\Delta_s k(p_j) - \Delta_s k(n_j)|$$

$$(9.5.2) \qquad + \sum_{s>s_0} \left(\left| k_{s,s_0}^1(p_j) \right| + \left| k_{s,s_0}^1(n_j) \right| \right)$$

$$(9.5.3) \qquad + \sum_{s>s_0} \left(\left| k_{s,s_0}^2(p_j) \right| + \left| k_{s,s_0}^2(n_j) \right| \right).$$

Contribution of (9.5.1)

Estimate

$$|\Delta_s k(p_j) - \Delta_s k(n_j)| \leq \|\Delta_s k\|_{\operatorname{Lip}} |p_j - n_j| \leq C 2^{s-s_0}.$$

Thus the contribution in (9.5.0) is bounded by

$$\int dx_3 \left[\sum_{s_0, s \le s_0} 2^{s-s_0} (\#\{j \mid |p_j(x_3) - n_j(x_3)| \sim 2^{-s_0}\}) \right]$$

$$\leq \int \ell(x_3) dx_3 < C$$

by (9.3.3).

Contribution of (9.5.2)

Same, since (9.5.2) < C from (9.4.6).

Contribution of (9.5.3)

This is the crux of the argument. Estimate, using (9.3.2) and the fact that $|k_{s,so}^2| \leq C$,

$$\sum_{j \mid |p_j - n_j| \sim 2^{-s_0}} |k_{s,s_0}^2(p_j(x_3))| \le ||k_{s,s_0}^2||_{\infty} \cdot \chi_{\Pr_{\text{Proj}_{x_3}(\text{supp } k_{s,s_0}^2)}}(x_3) \\ \cdot [\#\{j \mid |p_j(x_3) - n_j(x_3)| \sim 2^{-s_0}\}] \\ < C2^{s_0} \chi_{\Pr_{\text{Proj}_{x_3}(\text{supp } k_{s,s_0}^2)}}(x_3).$$

Integration in x_3 gives therefore, using (9.4.7),

(**9.5.4**)
$$C(s-s_0)^6 2^{-(s-s_0)}\lambda_s$$

which, by (9.4.3), is summable in $\sum_{s_0, s>s_0}$.

This completes the proof of (9.3.5), and thus of Theorem 12.

9.3. A geometric estimate related to Proposition 3

With the same technique as in the proof of Proposition 3 we may derive the following estimate which has an interesting geometric flavour. It may be used to provide an alternative proof of Theorem 12 as in [BOS1].

Proposition **4.** — Let Γ be a closed, oriented, rectifiable curve in \mathbf{R}^3 , and denote by \vec{t} the unit tangent vector along Γ ; let $\vec{k} \in W^{1,3}(\mathbf{R}^3; \mathbf{R}^3)$. Then

$$\left|\int\limits_{\Gamma} \vec{k} \cdot \vec{t}\right| \leq \mathbf{C} \|k\|_{\mathbf{W}^{1,3}} |\Gamma|.$$

Proof. — Part of the argument is a repetition of the proof of Proposition 3, but we have kept it for the convenience of the reader who wishes to concentrate on Proposition 4 independently of the rest of the paper. Assume $|\Gamma| = 1$ and let γ : [0, 1] $\rightarrow \Gamma$ be the arclength parametrization $(|\dot{\gamma}| = 1)$.

We need to bound

(**9.6.1**)
$$\int_{\Gamma} k_3(\gamma(s))\dot{\gamma}_3(s)ds = \int dx_3 \left[\sum_{x\in\Gamma_{x_3}} \sigma(x)k_3(x)\right],$$

where $\Gamma_{x_3} = \Gamma \cap [x = x_3]$ is assumed finite (by choice of coordinate system) and $\sigma(\gamma(s)) = \operatorname{sign} \dot{\gamma}_3(s)$.

Thus $\Gamma_{x_3} = \{P_1, ..., P_r\} \cup \{N_1, ..., N_r\}$, where $\sigma(P_i) = 1$ and $\sigma(Q_i) = -1$. Also,

$$r = r(x_3) = \frac{1}{2} \operatorname{card}(\Gamma_{x_3})$$

and

$$\int r(x_3) dx_3 = \frac{1}{2} \int |\dot{\gamma}_3(s)| ds < 1,$$

(**9.6.3**)
$$\sum_{i} |\mathbf{P}_{i} - \mathbf{N}_{i}| \le |\Gamma| = 1.$$

Write k for k_3 and assume $||k||_{W^{1,3}} \leq 1$. Write, for fixed x_3 ,

(9.6.4)
$$\left| \sum_{x \in \Gamma_{x_3}} \sigma(x) k(x) \right| \leq \sum_{i=1}^{r(x_3)} |k(\mathbf{P}_i) - k(\mathbf{N}_i)| \\ = \sum_{s_0} \sum_{|\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}} |k(\mathbf{P}_i) - k(\mathbf{N}_i)|.$$

To estimate (9.6.4), we perform again the same decomposition of $k \in W^{1,3}$. Thus, for fixed s_0 ,

$$k = k_{s_0} + \sum_{s > s_0} k_{s_0,s}^1 + \sum_{s > s_0} k_{s_0,s}^2$$

satisfying

- (9.6.5) $|\nabla k_{s_0}| \lesssim 2^{s_0}$
- (**9.6.6**) $|k_{s_0,s}^1| \lesssim (s-s_0)^{-2}$

(9.6.7)
$$\begin{cases} |k_{s_0,s}^2| \lesssim 1 \text{ and} \\ \operatorname{supp} k_{s_0,s}^2 \text{ contained in the union of } \lesssim \sigma_s (s-s_0)^6 \text{ cubes of size } 2^{-s} \end{cases}$$

with

$$(9.6.8) \qquad \sum \sigma_s < C$$

(in fact $\sigma_s^{1/3} = \|\Delta_s k\|_{W^{1,3}}, k = \sum \Delta_s k$, Littlewood-Paley decomposition).

Returning to (9.6.4), we get for fixed s_0 ,

(9.6.9)
$$\sum_{\substack{|\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}}} |k_{s_0}(\mathbf{P}_i) - k_{s_0}(\mathbf{N}_i)| + \sum_{i=1}^{|\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}} |k_{s_0}(\mathbf{P}_i) - k_{s_0}(\mathbf{N}_i)|$$

(9.6.10)
$$\sum_{s>s_0} \sum_{|\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}} \left| k_{s_0,s}^1(\mathbf{P}_i) \right| + \left| k_{s_0,s}^1(\mathbf{N}_i) \right| +$$

$$(9.6.11) \qquad \sum_{s>s_0} \sum_{|\mathbf{P}_i-\mathbf{N}_i|\sim 2^{-s_0}} |k_{s_0,s}^2(\mathbf{P}_i)| + |k_{s_0,s}^2(\mathbf{N}_i)|.$$

Contribution of (9.6.9)

$$(9.6.5) \Rightarrow (9.6.9) \lesssim \#\{i \mid |\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}\}.$$

Sum in $s_0 \Rightarrow r(x_3)$ satisfying (9.6.2).

Contribution of (9.6.10)

$$(9.6.6) \Rightarrow \sum_{s>s_0} \left| k_{s_0,s}^1 \right| < \mathrm{C}.$$

Hence

$$(9.6.10) \lesssim \# \{ i | |\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0} \}.$$

Contribution of (9.6.11)

For fixed $s > s_0$, we need to restrict x_3 to $\operatorname{Proj}_{x_3}(\operatorname{supp} k_{s_0,s}^2) \subset \mathbf{R}$ of measure $\lesssim \sigma_s(s-s_0)^6 2^{-s}$ by (9.6.7). By (9.6.3), $\#\{i | |\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}\} \le 2^{s_0}, \quad \forall x_3.$

Thus,

$$\int dx_3 \left[\sum_{|\mathbf{P}_i - \mathbf{N}_i| \sim 2^{-s_0}} \left| k_{s_0,s}^2(\mathbf{P}_i) \right| + \dots \right] \le \sigma_s(s - s_0)^6 2^{-(s - s_0)},$$

summable in $s, s_0, s > s_0$, taking also (9.6.8) into account.

10. Open problems

 $OP \ \mathbf{1}$. — Let u_{ε} be a minimizer of E_{ε} in H^1_g with $g \in H^{1/2}(\Omega; S^1)$. Is it true that

$$\int_{G} |u_{\varepsilon x_i} \wedge u_{\varepsilon x_j}| \leq C \quad \forall i, j \text{ as } \varepsilon \to 0 ?$$

OP **2.** — Let u_{ε} be a minimizer of E_{ε} in H_g^1 with $g \in H^{1/2}(\Omega; S^1)$. ue that

Is it true that

$$||u_{\varepsilon}||_{W^{1,3/2}(G)} \leq C \text{ as } \varepsilon \to 0?$$

Is (u_{ε}) relatively compact in W^{1,3/2}?

OP **3.** — Assume $u_{\varepsilon} : B \rightarrow \mathbf{R}^2$ (B unit ball in \mathbf{R}^3) is smooth and satisfies

$$\int_{B} |\nabla u_{\varepsilon}|^{2} + \frac{1}{\varepsilon^{2}} \int_{B} (|u_{\varepsilon}|^{2} - 1)^{2} \leq C \log(1/\varepsilon).$$

100

Is it true that for every compact subset $K \subset B$,

$$\left|\int\limits_{B} (u_{\varepsilon x} \wedge u_{\varepsilon y})\varphi\right| \leq C_{K} \|\varphi\|_{W^{1,3}} \quad \forall \varphi \in C_{0}^{\infty}(K)?$$

(As explained in Section 9.1 a positive solution of OP3 yields a positive answer to the first question in OP2)

 $OP \ \mathbf{4.}$ — Let u_{ε} be a minimizer of E_{ε} in H_g^1 with $g \in H^{1/2}(\Omega; S^1)$. Is it true that

$$|u_{\varepsilon}|$$
 is bounded in H¹(G)?

11. Appendices

Appendix A. The upper bound for the energy

With G and $\Omega = \partial G$ as in Section 1, consider the following distinguished classes in $H^{1/2}(\Omega; S^1)$:

$$\mathscr{R} = \begin{cases} g \in g \in W^{1,p}(\Omega; S^1), \forall p < 2; g \text{ is smooth away from} \\ \text{a finite set } \Sigma \text{ of singularities} \end{cases} \end{cases},$$
$$\mathscr{R}_0 = \begin{cases} g \in \mathscr{R}; |\nabla g(x)| \le C/|x - \sigma| \text{ near each } \sigma \in \Sigma \\ \text{and } \deg(g, \sigma) = \pm 1, \forall \sigma \in \Sigma \end{cases},$$
$$\mathscr{R}_1 = \begin{cases} g \in \mathscr{R}_0 | \text{for each } \sigma \in \Sigma, \text{ there is some } R \in \mathscr{O}(3) \text{ such that} \\ |z(v)| = R \left(\frac{x - \sigma}{v} \right) | \le C|v| = \sigma \text{ (for } v \text{ prop} \ \sigma \end{cases} \end{cases},$$

where
$$\mathcal{O}(3)$$
 denotes the group of linear isometries of \mathbf{R}^3 . Here, we identify $S^1 \subset \mathbf{R}^2$
with $S^1 \times \{0\}$ viewed as a subset of \mathbf{R}^3 . From the definition of \mathcal{R}_1 we see that R must

map the tangent plane $T_{\sigma}(\Omega)$ into $\mathbf{R}^2 \times \{0\}$ and thus $R(n(\sigma)) = (0, 0, \pm 1)$, where $n(\sigma)$ is the outward unit normal to Ω . Clearly, $\deg(g, \sigma) = +1$ if R is orientation-preserving and -1 otherwise.

This appendix is devoted to the proof of the following

Lemma **A.1.** — Let $g \in \mathscr{R}_1$ and let L_G be the length of a minimal connection corresponding to the geodesic distance in G. Then

(A.1)
$$\begin{aligned} \min \left\{ \mathrm{E}_{\varepsilon}(u); \, u \in \mathrm{H}^{1}_{g}(\mathrm{G}; \mathbf{R}^{2}) \right\} \\ & \leq \pi \mathrm{L}_{\mathrm{G}}(g) \log(1/\varepsilon) + o(\log(1/\varepsilon)) \, \text{ as } \varepsilon \to 0 \end{aligned}$$

The proof we present below uses some arguments from [40], Section 1.

Proof. — Given $\delta > 0$ small, we first construct a domain G_{δ} and a diffeomorphism ξ_{δ} : G \rightarrow G_{δ} (with ξ_{δ} : ∂ G \rightarrow ∂ G_{δ}) such that

$$||\mathbf{A.2}\rangle \qquad ||\mathbf{D}\xi_{\delta} - \mathbf{I}|| \le \mathbf{C}\delta \text{ on } \mathbf{G}$$

and ∂G_{δ} is flat in a δ -neighborhood of each singularity $\xi_{\delta}(a_i)$ of $g_{\delta} = g \circ \xi_{\delta}^{-1}$.

The construction of ξ_{δ} is standard. Assume, for simplicity, that 0 is a singular point of g on Ω and that, near 0, the graph of Ω is given by $x_3 = \psi(x_1, x_2)$ with ψ smooth and $\nabla \psi(0) = 0$. Set

$$\eta(x_1, x_2, x_3) = (x_1, x_2, x_3 - \psi(x_1, x_2))$$

so that $||D\eta(x) - I|| \le C|x|$ near 0. Let $\zeta \in C_0^{\infty}(B_1)$ with $\zeta = 1$ on $B_{1/2}$. Then

$$\xi_{\delta}(x) = x + \zeta(x/\delta)(\eta(x) - x), x \in \mathbf{G}$$

has all the required properties relative to one singularity. We proceed similarly for the other singularities.

We now write G and g instead of G_{δ} and g_{δ} , so that we may assume that Ω is flat in a δ -neighborhood of each singularity.

After relabeling the singularities of g, we may assume that $L_G(g) = \sum_{i=1}^{k} \text{length}$ (γ_i) , where γ_i connects (in G) P_i and N_i . We now introduce a second parameter λ , 0 < 1 $\lambda < \delta$, and we choose some disjoint smooth curves Γ_i having the following properties:

- a) $\sum_{j=1}^{k}$ length $(\Gamma_j) \leq L_G(g) + \lambda$; b) Γ_j is a simple curve;
- c) Γ_i is contained in G except for its endpoints P_i and N_i ;
- d) the curve Γ_i is orthogonal to Ω in a λ -neighborhood of its endpoints.

Moreover, we may assume that Γ_i is parametrized in such a way that the tangent vector at P_i is outward and the one at N_i is inward. We take the arclength as parameter. We may thus write $\Gamma_i = \{X_i(t); t \in [0, T_i]\}$, with $X_i(0) = N_i, X_i(T_i) = P_i$, where X_j is smooth, into and an immersion, and $T_j = \text{length}(\Gamma_j)$.

We consider the unit tangent vector to Γ_i , $e(X_i(t)) = X'_i(t)$. We may find two smooth vector fields f, g on Γ_j such that $\{f(\mathbf{X}_j(t)), g(\mathbf{X}_j(t)), e(\mathbf{X}_j(t))\}$ is a direct orthonormal basis for each t.

We now define the map $\Phi_i : [0, T_i] \times \overline{B}_{\lambda} \to \mathbf{R}^3$ by

$$\Phi_i(t, u, v) = \mathbf{X}_i(t) + uf(\mathbf{X}_i(t)) + vg(\mathbf{X}_i(t)),$$

where $B_{\lambda} = \{(u, v) \in \mathbf{R}^2; u^2 + v^2 \le \lambda^2\}.$

Clearly,

$$\|\mathbf{D}\Phi_j(t, u, v) - \mathbf{M}(t)\| \le C\lambda \text{ on } [0, \mathbf{T}_j] \times \mathbf{B}_{\lambda},$$

where $M(t) \in \mathcal{O}(3)$. Thus, for λ sufficiently small, Φ_j is a diffeomorphism from $[0, T_j] \times \overline{B}_{\lambda}$ onto a λ -tubular neighborhood U_j of Γ_j . Moreover $U_j \subset \overline{G}$ for λ small.

It is easy to see that the restriction of g to $\Omega \setminus \bigcup_j \bigcup_j$ has a smooth S¹-valued extension, \tilde{g} , to $\overline{G} \setminus \bigcup_j \bigcup_j$. Indeed, let $\zeta_j : G \to \mathbb{R}^3$ be a diffeomorphism onto $\zeta_j(G)$ with $\zeta_j(G) \subset B_{\mathbb{R}} \times [0, T_j]$ and $\zeta_j(\bigcup_j) = \overline{B}_{\lambda} \times [0, T_j]$. Consider the function $k : \mathbb{R}^3 \to S^1$ defined by

$$k(x, y, z) = (x, y) / (x^2 + y^2)^{1/2}.$$

Then

$$k_j = k \circ \zeta_j : \mathbf{G} \setminus \mathbf{U}_j \to \mathbf{S}^1$$

is smooth and

$$q = \prod_{j=1}^{k} k_j : \mathbf{G} \setminus \bigcup_j \mathbf{U}_j \to \mathbf{S}^1$$

is also smooth. Moreover

$$\deg\left(q, \mathbf{C}_{i}^{\pm}\right) = \pm 1 \quad \forall j$$

where $C_j^+ = \{x \in \Omega; |x - P_j| = \lambda\}$ and $C_j^- = \{x \in \Omega; |x - N_j| = \lambda\}$. Therefore

$$\deg\left(g/q, \mathbf{C}_{i}^{\pm}\right) = 0 \quad \forall j.$$

Hence the function g/q restricted to $\Omega \setminus \bigcup_{j} U_{j}$ admits a smooth extension $f : \Omega \to S^{1}$. Then f extends to a smooth map $\tilde{f} : \overline{\mathbf{G}} \to S^{1}$. Finally, the map $\tilde{g} = \tilde{f}q$ has the desired properties.

Clearly we have

$$(\mathbf{A.4}) \qquad \qquad \mathbf{E}_{\varepsilon}(\tilde{g}; \mathbf{G} \setminus \bigcup_{j} \mathbf{U}_{j}) \leq \mathbf{C}_{\lambda}.$$

Consider the map $h_j: \partial([0, T_j] \times \overline{B}_{\lambda}) \to S^1$ defined by

$$h_j = \begin{cases} \tilde{g} \circ \Phi_j, & \text{ on } [0, \mathrm{T}_j] \times \partial \overline{\mathrm{B}}_{\lambda} \\ g \circ \Phi_j, & \text{ on } \{0\} \times \overline{\mathrm{B}}_{\lambda} \text{ and on } \{\mathrm{T}_j\} \times \overline{\mathrm{B}}_{\lambda} \end{cases}.$$

Then h_j is smooth on $\partial([0, T_j] \times B_\lambda)$ except at the points (0, 0, 0) and $(T_j, 0, 0)$. From the construction in [40] we know that

(**A.5**)
$$\min \left\{ \mathbf{E}_{\varepsilon}(u; (0, \mathbf{T}_j) \times \mathbf{B}_{\lambda})); u \in \mathbf{H}^1_{h_j}((0, \mathbf{T}_j) \times \mathbf{B}_{\lambda}; \mathbf{R}^2) \right\} \\ \leq \pi \mathbf{T}_j \log(1/\varepsilon) + \mathbf{C}_{\lambda}.$$

Using (A.5) and (A.3) we return to U_i via Φ_i and obtain a map

$$v = v_{j,\varepsilon,\lambda} : \mathbf{U}_j \to \mathbf{R}^2$$

such that v = g on $(\partial \mathbf{U}_i) \cap \Omega$ and

(**A.6**)
$$E_{\varepsilon}(v; U_j) \le (\pi T_j \log(1/\varepsilon) + C_{\lambda})(1 + C\lambda).$$

Gluing the maps $v_{j,\varepsilon,\lambda}$ defined above with the map $\tilde{g}_{|\overline{G} \setminus \cup_j U_j}$, we obtain a map $w_{\varepsilon,\lambda} : \mathbf{G} \to \mathbf{R}^2$ satisfying

$$w_{\varepsilon,\lambda} = g \text{ on } \Omega$$

and (by (A.4) and (A.6)),

(A.7)
$$E_{\varepsilon}(w_{\varepsilon,\lambda}; G) \leq \left(\pi \left(\sum T_{j}\right) \log(1/\varepsilon) + C_{\lambda}\right) (1 + C\lambda) + C_{\lambda}.$$

Returning to the original notation G_{δ} and $\Omega_{\delta} = \partial G_{\delta}$, we have just constructed a map $w_{\varepsilon,\lambda} : G_{\delta} \to \mathbf{R}^2$ satisfying

$$w_{\varepsilon,\lambda} = g_{\delta} = g \circ \xi_{\delta}^{-1}$$
 on Ω_{δ}

and

$$(\mathbf{A.8}) \qquad \qquad \mathbf{E}_{\varepsilon}(w_{\varepsilon,\lambda};\mathbf{G}_{\delta}) \leq \pi(\mathbf{L}_{\mathbf{G}_{\delta}}(g_{\delta}) + \lambda)\log(1/\varepsilon)(1+\mathbf{C}\lambda) + \mathbf{C}_{\lambda}'.$$

Finally, coming back to the original domain G via ξ_{δ} , we obtain some $\tilde{w}_{\varepsilon,\lambda,\delta} \in H^1_g(G; \mathbf{R}^2)$ such that

$$(\mathbf{A.9}) \qquad \qquad \mathbf{E}_{\varepsilon}(\tilde{w}_{\varepsilon,\lambda,\delta};\mathbf{G}) \leq \left[\pi(\mathbf{L}_{\mathbf{G}_{\delta}}(g_{\delta})+\lambda)\log(1/\varepsilon)(1+\mathbf{C}\lambda)+\mathbf{C}_{\lambda}'\right](1+\mathbf{C}\delta).$$

It is easy to see that

$$\left| \mathcal{L}_{\mathcal{G}_{\delta}}(g_{\delta}) - \mathcal{L}_{\mathcal{G}}(g) \right| \le C\delta$$

and thus we arrive at

$$(\mathbf{A.10}) \qquad \qquad \mathbf{E}_{\varepsilon}(\tilde{w}_{\varepsilon,\lambda,\delta};\mathbf{G}) \le \pi \mathbf{L}_{\mathbf{G}}(g) \log(1/\varepsilon)(1 + \mathbf{C}\lambda + \mathbf{C}\delta) + \mathbf{C}'_{\lambda,\delta},$$

which yields the desired conclusion (A.1) since $\lambda < \delta$ are arbitrarily small.

104

Appendix B. A variant of the density result of T. Rivière

We use the same notation as in Appendix A for $\mathscr{R}, \mathscr{R}_0$ and \mathscr{R}_1 . Recall that \mathscr{R}_0 is dense in $\mathrm{H}^{1/2}(\Omega; \mathrm{S}^1)$; see Rivière [38], quoted as Lemma 11, and see Remark 5.1 for a proof. This appendix is devoted to the following improvement:

Lemma **B.1.** — The class \mathscr{R}_1 is dense in $\mathrm{H}^{1/2}(\Omega; \mathrm{S}^1)$.

Proof. — Given $g \in H^{1/2}(\Omega; S^1)$ and $\varepsilon > 0$ we first use the density of \mathscr{R}_0 to construct a map $h \in \mathscr{R}_0$ such that $\|h - g\|_{H^{1/2}} < \varepsilon$.

Next, write, as usual, the singular set Σ of h as

$$\Sigma = \{P_1, P_2, ..., P_k, N_1, N_2, ..., N_k\}.$$

For every $\sigma \in \Omega$, let $T_{\sigma}(\Omega)$ denote the tangent plane to Ω at σ ; we orient it using the outward normal $n(\sigma)$ to G. Let P_{Ω} denote the projection onto Ω defined in a tubular neighborhood of Ω in \mathbb{R}^3 .

For each i = 1, 2, ..., k, fix two smooth maps:

$$\begin{split} &\gamma_i^+: \{\xi\in \mathrm{T}_{\mathrm{P}_i}(\Omega); \, |\xi|=1\} \to \mathrm{S}^1, \\ &\gamma_i^-: \{\xi\in \mathrm{T}_{\mathrm{N}_i}(\Omega); \, |\xi|=1\} \to \mathrm{S}^1, \end{split}$$

such that

(**B.1**)
$$\deg(\gamma_i^+) = +1 \text{ and } \deg(\gamma_i^-) = -1.$$

The conclusion of Lemma B.1 is an immediate consequence of the following more general:

Claim. — With h as above, there is a sequence (h_n) in $H^{1/2}(\Omega; S^1)$ such that:

$$(\mathbf{B.2}) \qquad h_n \to h \text{ in } \mathrm{H}^{1/2}$$

$$(\mathbf{B.3}) h_n \in \mathbf{C}^{\infty}(\Omega \setminus \Sigma; \mathbf{S}^1), \quad \forall n,$$

$$(\mathbf{B.4}) \qquad \qquad h_n \in \mathrm{W}^{1,p}(\Omega \setminus \Sigma; \mathrm{S}^1), \quad \forall n, \quad \forall p < 2,$$

$$|\nabla h_n(x)| \leq C_n/\text{dist}(x, \Sigma), \quad \forall n, \quad \forall x \in \Omega \setminus \Sigma,$$

for all $0 < t < t_0$ (sufficiently small, depending only on Ω) and all i = 1, 2, ...k, we have:

$$(\mathbf{B.6}) \qquad |h_n(\mathbf{P}_{\Omega}(\mathbf{P}_i + t\xi)) - \gamma_i^+(\xi)| \le \mathbf{C}_n t, \quad \forall n, \forall \xi \in \mathbf{T}_{\mathbf{P}_i}(\Omega), |\xi| = 1,$$

$$|h_n(\mathbf{P}_{\Omega}(\mathbf{N}_i + t\xi)) - \gamma_i^{-}(\xi)| \le \mathbf{C}_n t, \quad \forall n, \forall \xi \in \mathbf{T}_{\mathbf{N}_i}(\Omega), |\xi| = 1.$$

Proof of the Claim. — Fix an arbitrary function $k \in C^{\infty}(\Omega \setminus \Sigma; S^1) \cap W^{1,p}(\Omega, S^1)$, $\forall p < 2$ satisfying

$$(\mathbf{B.8}) \qquad |\nabla k(x)| \leq C \operatorname{dist}(x, \Sigma), \quad \forall x \in \Omega \setminus \Sigma,$$

$$|k(\mathbf{P}_{\Omega}(\mathbf{P}_{i}+t\xi))-\gamma_{i}^{+}(\xi)|\leq \mathbf{C}t,$$

$$|k(\mathbf{P}_{\Omega}(\mathbf{N}_{i}+t\xi))-\gamma_{i}^{-}(\xi)|\leq \mathbf{C}t,$$

for all t, i, ξ as in (B.6)–(B.7).

The existence of k is proved as in Appendix A. First we define it on $\partial B_1 \times [0, T]$ using the parameter t to homotopy γ_i^+ to the complex conjugate of γ_i^- . We then extend it to $B_1 \times [0, T]$ by homogeneity of degree 0 and transfer it to a "tube-like" region U_i in G connecting P_i to N_i . Finally, we extend these functions smoothly to $G \setminus U_i$, take their complex product, and restrict it to Ω .

To complete the proof of the claim, note that $T(h) = T(k) = 2\pi \sum_{i=1}^{k} (\delta_{P_i} - \delta_{N_i})$. Thus $T(h\bar{k}) = 0$ and, by Theorem 2, there exists a sequence $r_n \in C^{\infty}(\Omega; S^1)$ such that $r_n \to h\bar{k}$ in $H^{1/2}$. Using the fact that points have zero H^1 -capacity in 2 - d (and thus zero $H^{1/2}$ - capacity), we may also assume that $r_n(P_i) = r_n(N_i) = 1, \forall n, \forall i$. Clearly, the sequence $h_n = kr_n$ has all the desired properties (B.2)–(B.7).

Lemma B.1 is obtained by choosing, in the claim, as γ_i^+ and γ_i^- any isometries from $T_{P_i}(\Omega)$ and $T_{N_i}(\Omega)$ onto **R**².

Appendix C: Almost Z-valued functions

The purpose of this section is to prove the following fact used earlier in Section 8.

Lemma **C.1.** — Assume $\varphi \in H^{1/2}((0, 1) \times (0, 1))$ and $\{Q_{\alpha}\}$ a collection of squares in $(0, 1)^2$ such that

 $(\mathbf{C.1}) \qquad \|\varphi\|_{\mathrm{L}^{4/3}} \leq \mathrm{C}$

$$(\mathbf{C.2}) \qquad \|e^{i\varphi} - 1\|_{\mathrm{L}^{1}([0,1]^{2} \setminus \cup \mathrm{Q}_{\alpha})} \leq \varepsilon$$

$$|\varphi|_{\mathrm{H}^{1/2}} \leq \delta (\log(1/\varepsilon))^{1/2}$$

$$(\mathbf{C.4}) \qquad \qquad \sum_{\alpha} \sigma_{\alpha} \leq \delta,$$

where $\varepsilon < \delta \ll 1$ and σ_{α} denotes the size of Q_{α} . Then there is some $a \in \mathbb{Z}$ such that

$$\|\varphi - 2\pi a\|_{L^1} \le C\delta^{1/8}.$$

The proof will rely on the following inequality (see also [15] and [35] for related results).

Lemma **C.2.** — Let $\mathbf{Q} = (0, 1)^2, f \in L^1(\mathbf{Q})$. Then for all $0 < \rho < \rho_0, \rho_0$ sufficiently small,

(**C.6**)
$$\left\| f - \int f \right\|_{L^1} \le C |\log \rho|^{-1} \iint_{Q \times Q} \frac{|f(x) - f(y)|}{|x - y|(|x - y| + \rho)^2} dx dy$$

with C some constant.

Proof of Lemma C.1. — It follows from (C2) that we may write Q as a disjoint union

$$\mathbf{Q} = \bigcup \mathbf{Q}_{\alpha} \cup \mathbf{Z}_0 \cup \bigcup_{j \in \mathbf{Z}} \mathbf{A}_j.$$

where

(C.7)
$$A_j \subset [|\varphi - 2\pi j| < \varepsilon^{1/8}]$$

(**C.8**)
$$|Z_0| < \varepsilon^{3/4}$$
.

Apply Lemma C.2 to $f = \chi_{A_j}$ with $\rho = \varepsilon^{1/20}$. Hence, denoting $Z = Z_0 \cup \bigcup_{\alpha} Q_{\alpha}$,

$$\begin{split} |\mathbf{A}_{j}|(1-|\mathbf{A}_{j}|) &\leq \mathbf{C}|\log\varepsilon|^{-1} \iint_{\mathbf{A}_{j}\times(\mathbf{Q}\setminus\mathbf{A}_{j})} |x-y|^{-1}(|x-y|+\rho)^{-2} \\ &\leq \mathbf{C}|\log\varepsilon|^{-1} \sum_{\substack{k\neq j}} \iint_{\mathbf{A}_{j}\times\mathbf{A}_{k}} |x-y|^{-3} + \mathbf{C}|\log\varepsilon|^{-1} \\ &\times \iint_{\mathbf{A}_{j}\times\mathbf{Z}} |x-y|^{-1}(|x-y|+\rho)^{-2} \\ &\leq \mathbf{C}|\log\varepsilon|^{-1} \iint_{\substack{A_{j}\times\cup\mathbf{A}_{k}\\k\neq j}} \frac{|\varphi(x)-\varphi(y)|^{2}}{|x-y|^{3}} + \mathbf{C}|\log\varepsilon|^{-1} \\ &\times \iint_{\mathbf{A}_{j}\times\mathbf{Z}} |x-y|^{-1}(|x-y|+\rho)^{-2}. \end{split}$$

Summation over j gives

$$\begin{split} \sum_{j} |\mathbf{A}_{j}|(1-|\mathbf{A}_{j}|) &\leq \mathbf{C} |\log \varepsilon|^{-1} \|\varphi\|_{\mathrm{H}^{1/2}}^{2} \\ &+ \mathbf{C} |\log \varepsilon|^{-1} \iint_{\mathbf{Z} \times (\mathbf{Q} \setminus \mathbf{Z})} |x-y|^{-1} (|x-y|+\rho)^{-2} \\ &\overset{\mathrm{by}(\mathbf{C}.3)}{\leq} \mathbf{C} \delta^{2} + \mathbf{C} |\log \varepsilon|^{-1} \\ &\times \left[\sum_{\alpha} \iint_{\mathbf{Q} \alpha \times (\mathbf{Q} \setminus \mathbf{Q} \alpha)} |x-y|^{-1} (|x-y|+\rho)^{-2} \right] \\ &+ \mathbf{C} |\mathbf{Z}_{0}|. \varepsilon^{-\frac{1}{10}}. \end{split}$$

For fixed α , estimate

(C.10)
$$\iint_{\mathbf{Q}_{\alpha}\times(\mathbf{Q}\setminus\mathbf{Q}_{\alpha})}|x-y|^{-1}(|x-y|+\rho)^{-2}.$$

Since for fixed $x \in \mathbf{Q}_{\alpha}$, $|x - y| > \text{dist}(x, \partial \mathbf{Q}_{\alpha})$, we get easily

$$(C.10) \le C \int_{Q_{\alpha}} [dist(x, \partial Q_{\alpha}) + \rho]^{-1} dx \le C |\log \varepsilon| \sigma_{\alpha}$$

with σ_{α} the size of Q_{α} . Substitute in (C.9) and use (C.4), (C.8) to bound

(C.11)
$$\sum_{j} |\mathbf{A}_{j}| (1 - |\mathbf{A}_{j}|) \le C\delta^{2} + C \sum \sigma_{\alpha} + \varepsilon^{\frac{3}{4} - \frac{1}{10}} \le C\delta + \varepsilon^{3/5}.$$

Take j_0 with $|A_j| = \max |A_j|$. Thus $|A_j| \le \frac{1}{2}$ for $j \ne j_0$ and by (C.11)

(C.12)
$$\sum_{j \neq j_0} |\mathbf{A}_j| \le \mathbf{C}(\delta + \varepsilon^{3/5}).$$

Taking $a = j_0$, finally estimate using (C.1), (C.7)

$$\begin{split} \|\varphi - 2\pi a\|_{1} &\leq \|\varphi - 2\pi j_{0}\|_{L^{1}(A_{j_{0}})} + \|\varphi\|_{L^{1}(Q\setminus A_{j_{0}})} + 2\pi |a| \ |Q\setminus A_{j_{0}}| \\ &\leq \varepsilon^{\frac{1}{8}} + C|Q\setminus A_{j_{0}}|^{\frac{1}{4}} + 2\pi |a| \ |Q\setminus A_{j_{0}}| \end{split}$$

where, by (C.4), (C.8), (C.12)

$$\begin{split} |\mathbf{Q} \setminus \mathbf{A}_{j_0}| &\leq \sum |\mathbf{Q}_{\alpha}| + |\mathbf{Z}_0| + \sum_{j \neq j_0} |\mathbf{A}_j| \leq \sum \sigma_{\alpha}^2 + \varepsilon^{3/4} + \mathbf{C}(\delta + \varepsilon^{3/5}) \\ &\leq \mathbf{C}(\delta + \varepsilon^{3/5}). \end{split}$$

108
Hence

$$\|\varphi - 2\pi a\|_1 \le \mathbf{C}(\varepsilon^{1/8} + \delta^{1/4}) + \mathbf{C}|a|(\delta + \varepsilon^{3/5})$$

implying

$$2\pi |a| \le \|\varphi\|_1 + 1 + |a|$$

so that

$$|a| \le C \text{ and } \|\varphi - 2\pi a\|_1 \le C(\delta^{1/4} + \varepsilon^{1/8}) \le C\delta^{1/8}$$

which is (C.5).

Proof of Lemma C.2. — We will derive the inequality by contradiction, using Theorem 4 in [14]. Let thus (f_n) be a sequence in $L^1(\mathbb{Q})$ and $(\varepsilon_n) \downarrow 0$ such that

(C.13)
$$|\log \varepsilon_n|^{-1} \iint_{Q \times Q} \frac{|f_n(x) - f_n(y)|}{|x - y|(|x - y| + \varepsilon_n)^2} dx dy \le 1$$

and

$$(\mathbf{C.14}) \qquad \|f_n - \int f_n\|_{\mathrm{L}^1} \to \infty.$$

Denote by ρ_n the radial mollifier on \mathbf{R}^2

(**C.15**)
$$\rho_n(x) = c_n |\log \varepsilon_n|^{-1} (|x| + \varepsilon_n)^{-2}$$

with c_n such that $\int \rho_n = 1$ (hence $c_n \sim 1$). Applying Theorem 4 from [14], with p = 1, it follows that (f_n) is relatively compact in L¹(Q), contradicting (C.14). This proves (C.6).

Appendix D. Sobolev imbeddings for BV

It is well-known that, if p > 1 and 0 < s < 1, then

$$\mathrm{W}^{1,p}(\Omega)\subset\mathrm{W}^{s,q}(\Omega),\ \Omega\subset\mathbf{R}^{d}$$

with

$$\frac{1}{q} = \frac{1}{p} - \frac{(1-s)}{d}.$$

This imbedding fails for p = 1 and d = 1, i.e., $W^{1,1}$ is not contained in $W^{1/q,q}$ for q > 1. Surprisingly, the imbedding holds when p = 1 and $d \ge 2$.

Lemma **D.1.** — Assume $d \ge 2$ and 0 < s < 1. Then

$$BV(\mathbf{R}^d) \subset W^{s,p}(\mathbf{R}^d)$$

with

(**D.1**)
$$\frac{1}{p} = 1 - \frac{1-s}{d}$$
.

When d = 2, this result is an immediate consequence of an interpolation result of Cohen, Dahmen, Daubechies and DeVore [23]. It also seems to be contained in an earlier work of V. A. Solonnikov [44] although the condition $d \ge 2$ does not appear in his paper. We thank V. Maz'ya and T. Shaposhnikova for calling our attention to the paper of Solonnikov and for confirming that the assumption $d \ge 2$ is indeed used there implicitly; they have also devised another proof of Solonnikov's inequality (personal communication).

Our proof relies on the following one-dimensional elementary inequality:

$$Lemma \ \mathbf{D.2.} - Let \ 1
$$(\mathbf{D.2}) \qquad |f|_{W^{s,p}(\mathbf{R})}^{p} \le \mathcal{C} ||f||_{L^{p}(\mathbf{R})}^{p(1-sp)} ||f'||_{L^{1}(\mathbf{R})}^{sp^{2}},$$$$

where C depends only on p and s.

Here, $||_{W^{s,p}(\mathbf{R})}$ denotes the canonical semi-norm on $W^{s,p}(\mathbf{R})$, i.e.,

$$|f|_{W^{s,p}(\mathbf{R})}^{p} = \int_{\mathbf{R}} dx \int_{0}^{\infty} \frac{|f(x+h) - f(x)|^{p}}{h^{1+sp}} dh.$$

Proof. — Write, for $\lambda > 0$,

$$\begin{split} |f|_{W^{s,p}}^{p} &= \int_{\mathbf{R}} dx \int_{0}^{\lambda} \cdots dh + \int_{\mathbf{R}} dx \int_{\lambda}^{\infty} \cdots dh \\ &\leq 2^{p-1} \|f\|_{L^{\infty}}^{p-1} \|f'\|_{L^{1}} \frac{\lambda^{1-sp}}{1-sp} + 2^{p-1} \|f\|_{L^{p}}^{p} \frac{\lambda^{-sp}}{sp} \\ &\leq 2^{p-1} \left(\|f'\|_{L^{1}}^{p} \frac{\lambda^{1-sp}}{1-sp} + \|f\|_{L^{p}}^{p} \frac{\lambda^{-sp}}{sp} \right), \end{split}$$

since sp < 1. Minimizing in λ yields (D.2) with $C = 2^{p-1}/sp(1-sp)$.

Proof of Lemma D.1. — Let $u \in C_0^{\infty}(\mathbb{R}^d)$. We will use the following equivalent norm on $W^{s,p}$ (see e.g. Adams [1], Lemma 7.44)

(**D.3**)
$$||u||_{W^{s,p}}^{p} \sim ||u||_{L^{p}}^{p} + \sum_{j=1}^{d} \int_{\mathbf{R}^{d}} dx \int_{0}^{\infty} \frac{|u(x+he_{j})-u(x)|^{p}}{h^{1+sp}} dh.$$

Note that $BV \subset L^1 \cap L^{d/(d-1)}$ and thus we may estimate (via Hölder)

$$\|u\|_{\mathrm{L}^p} \leq \mathrm{C} \|u\|_{\mathrm{BV}},$$

since

(**D.4**)
$$\frac{1}{p} = 1 - \frac{(1-s)}{d} = \frac{s}{1} + \frac{1-s}{d/(d-1)}.$$

We now turn to the second term in (D.3); without loss of generality we may take j = 1. We apply Lemma D.1 to the function

$$f(\cdot) = u(\cdot, x_2, x_3, \ldots, x_d)$$

(note that, by (D.4), sp < 1) and we obtain

(**D.5**)
$$\int_{\mathbf{R}}^{\infty} dx_1 \int_0^{\infty} \frac{|u(x_1 + h, x_2, \dots, x_d) - u(x_1, x_2, \dots, x_d)|^p}{h^{1+sp}} dh$$
$$\leq C \|f\|_{L^p(\mathbf{R})}^{p(1-sp)} \|f'\|_{L^1(\mathbf{R})}^{sp^2} \leq C \|f\|_{L^1}^{sp(1-sp)} \|f\|_{L^{d/(d-1)}}^{(1-s)p(1-sp)} \|f'\|_{L^1}^{sp^2}.$$

On the one hand, we have

(**D.6**)
$$\int_{\mathbf{R}^{d-1}} \|f'\|_{\mathrm{L}^{1}(\mathbf{R})} dx_{2} dx_{3} \dots dx_{d} \leq \int_{\mathbf{R}^{d}} |\nabla u| dx.$$

On the other hand, the imbedding $BV \subset L^{d/(d-1)}$ gives, with q = d/(d-1),

$$(\mathbf{D.7}) \qquad \int_{\mathbf{R}^{d-1}} \|f\|_{\mathbf{L}^{q}(\mathbf{R})}^{q} dx_{2} dx_{3} \dots dx_{d} = \|u\|_{\mathbf{L}^{q}(\mathbf{R}^{d})}^{q} \leq \mathbf{C} \left(\int_{\mathbf{R}^{d}} |\nabla u| dx\right)^{q}.$$

Finally we claim that

(**D.8**)
$$\int_{\mathbf{R}^{d-1}} \|f\|_{\mathrm{L}^{1}(\mathbf{R})}^{(d-1)/(d-2)} dx_{2} dx_{3} \dots dx_{d} \leq \mathrm{C} \left(\int_{\mathbf{R}^{d}} |\nabla u| dx\right)^{(d-1)/(d-2)};$$

when d = 2, inequality (D.8) reads

$$\|f\|_{\mathrm{L}^{\infty}_{x_{2}}(\mathrm{L}^{1}_{x_{1}})} \leq \int_{\mathbf{R}^{2}} |\nabla u|.$$

To prove (D.8) we use once more the imbedding $BV \subset L^r$, but this time in \mathbb{R}^{d-1} , with r = (d-1)/(d-2), and we obtain

$$(\mathbf{D.9}) \qquad \|f(x_1,\cdot)\|_{\mathrm{L}^{r}(\mathbf{R}^{d-1})} \leq \mathrm{C} \int_{\mathbf{R}^{d-1}} |\nabla u(x_1,\cdot)| dx_2 dx_3 \dots dx_d.$$

Next, we have

$$\|f\|_{L^{r}(\mathbf{R}^{d-1};L^{1}(\mathbf{R}))} = \left\| \int_{\mathbf{R}} |f(x_{1},\cdot)| dx_{1} \right\|_{L^{r}(\mathbf{R}^{d-1})}$$

$$\leq \int_{\mathbf{R}} \|f(x_{1},\cdot)\|_{L^{r}(\mathbf{R}^{d-1})} dx_{1} \qquad \text{by the triangle inequality}$$

$$\leq C \int_{\mathbf{R}^{d}} |\nabla u(x)| dx \qquad \text{by (D.9)}.$$

Finally, we return to (D.5), integrate in $dx_2dx_3...dx_d$, and apply Hölder with exponents P, Q, R such that

$$Psp(1 - sp) = (d - 1)/(d - 2),$$

$$Q(1 - s)p(1 - sp) = d/(d - 1),$$

$$Rsp^{2} = 1.$$

[A straightforward computation shows that $\frac{1}{P} + \frac{1}{Q} + \frac{1}{R} = 1$]. From (D.8), (D.7) and (D.6) we deduce that

$$|u|_{\mathrm{W}^{s,p}(\mathbf{R}^d)}^p \leq \mathrm{C}\left(\int\limits_{\mathbf{R}^d} |\nabla u| dx\right)^p.$$

Acknowledgments

The first author (J. B.) is partially supported by NSF Grant 9801013. The second author (H. B.) is partially sponsored by an EC Grant through the RTN Program "Fronts-Singularities", HPRN-CT-2002-00274. He is also a member of the Institut Universitaire de France. Part of this work was done during a visit of the third author (P. M.) at Rutgers University; he thanks the Mathematics Department for its support and hospitality. We thank the referee for a careful reading of our paper.

REFERENCES

- 1. R. A. ADAMS, Sobolev spaces, Acad. Press, 1975.
- 2. F. ALMGREN, W. BROWDER, and E. H. LIEB, Co-area, liquid crystals and minimal surfaces, in: *Partial differential equations* (Tianjin, 1986), Lect. Notes Math. **1306**, Springer, 1988.
- F. BETHUEL, A characterization of maps in H¹(B³, S²) which can be approximated by smooth maps, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 7 (1990), 269–286.
- F. BETHUEL, Approximations in trace spaces defined between manifolds, Nonlinear Anal. Theory Methods Appl., 24 (1995), 121–130.
- F. BETHUEL, J. BOURGAIN, H. BREZIS, and G. ORLANDI, W^{1,ρ} estimate for solutions to the Ginzburg-Landau equation with boundary data in H^{1/2}, C. R. Acad. Sci., Paris, Sér. I, Math., 333 (2001), 1069–1076.
- F. BETHUEL, H. BREZIS, and J.-M. CORON, Relaxed energies for harmonic maps, in: H. Berestycki, J.-M. Coron, and I. Ekeland (eds.), *Variational Problems*, pp. 37–52, Birkhäuser, 1990.
- F. BETHUEL, H. BREZIS, and F. HÉLEIN, Asymptotics for the minimization of a Ginzburg–Landau functional, Calc. Var. Partial Differ. Equ., 1 (1993), 123–148.
- 8. F. BETHUEL, H. BREZIS, and G. ORLANDI, Small energy solutions to the Ginzburg-Landau equation, C. R. Acad. Sci., Paris, Sér. I, 331 (2000), 763-770.
- F. BETHUEL, H. BREZIS, and G. ORLANDI, Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions, *J. Funct. Anal.*, 186 (2001), 432–520.
- F. BETHUEL and X. ZHENG, Density of smooth functions between two manifolds in Sobolev spaces, *J. Funct. Anal.*, 80 (1988), 60-75.
- 11. J. BOURGAIN and H. BREZIS, On the equation div Y = f and application to control of phases, *J. Am. Math. Soc.*, **16** (2003), 393–426.
- 12. J. BOURGAIN, H. BREZIS, and P. MIRONESCU, Lifting in Sobolev spaces, J. Anal. Math., 80 (2000), 37-86.
- J. BOURGAIN, H. BREZIS, and P. MIRONESCU, On the structure of the Sobolev space H^{1/2} with values into the circle, C. R. Acad. Sci., Paris, Sér. I, 310 (2000), 119–124.
- J. BOURGAIN, H. BREZIS, and P. MIRONESCU, Another look at Sobolev spaces, in: J. L. Menaldi, E. Rofman, and A. Sulem (eds.), Optimal Control and Partial Differential Equations, pp. 439–455, IOS Press, 2001.
- J. BOURGAIN, H. BREZIS, and P. MIRONESCU, Limiting embedding theorems for W^{s, p} when s ∧ 1 and applications, *J. Anal. Math.*, 87 (2002), 77–101.
- 16. J. BOURGAIN, H. BREZIS, and P. MIRONESCU, Lifting, degree and distibutional Jacobian revisited, to appear in Commun. Pure Appl. Math.
- 17. A. BOUTET DE MONVEL, V. GEORGESCU, and R. PURICE, A boundary value problem related to the Ginzburg-Landau model, *Commun. Math. Phys.*, **142** (1991), 1–23.
- H. BREZIS, Liquid crystals and energy estimates for S²-valued maps, in: J. Ericksen and D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals, pp. 31–52, Springer, 1987.
- 19. H. BREZIS, J.-M. CORON, and E. LIEB, Harmonic maps with defects, Commun. Math. Phys., 107 (1986), 649-705.
- H. BREZIS, Y. Y. LI, P. MIRONESCU, and L. NIRENBERG, Degree and Sobolev spaces, *Topol. Methods Nonlinear Anal.*, 13 (1999), 181–190.
- H. BREZIS and P. MIRONESCU, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, *J. Evolution Equ.*, 1 (2001), 387–404.
- H. BREZIS and L. NIRENBERG, Degree Theory and BMO, Part I: Compact manifolds without boundaries, Sel. Math., 1 (1995), 197–263.
- A. COHEN, W. DAHMEN, I. DAUBECHIES, and R. DEVORE, Harmonic analysis of the space BV, Rev. Mat. Iberoam., 19 (2003), 235–263.
- F. DEMENGEL, Une caractérisation des fonctions de W^{1,1}(Bⁿ, S¹) qui peuvent être approchées par des fonctions régulières, C. R. Acad. Sci., Paris, Sér. I, 310 (1990), 553–557.
- M. ESCOBEDO, Some remarks on the density of regular mappings in Sobolev classes of S^M-valued functions, *Rev. Mat. Univ. Complut. Madrid*, 1 (1988), 127–144.
- 26. H. FEDERER, Geometric measure theory, Springer, 1969.
- 27. M. GIAQUINTA, G. MODICA, and J. SOUCEK, Cartesian Currents in the Calculus of Variations, vol. II, Springer, 1998.
- 28. F. B. HANG and F. H. LIN, A remark on the Jacobians, Comm. Contemp. Math., 2 (2000), 35-46.
- R. HARDT, D. KINDERLEHRER, and F. H. LIN, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 5 (1988), 297–322.

- T. IWANIEC, C. SCOTT, and B. STROFFOLINI, Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl., 157 (1999), 37–115.
- R. L. JERRARD and H. M. SONER, Rectifiability of the distributional Jacobian for a class of functions, C. R. Acad. Sci., Paris, Sér. I, 329 (1999), 683–688.
- 32. R. L. JERRARD and H. M. SONER, Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677.
- R. L. JERRARD and H. M. SONER, The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., 14 (2002), 151–191.
- 34. F. H. LIN and T. RIVIÈRE, Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents, *J. Eur. Math. Soc.*, 1 (1999), 237–311; *Erratum* 2 (2002), 87–91.
- 35. V. MAZYA and T. SHAPOSHNIKOVA, On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, *J. Funct. Anal.*, **195** (2002), 230–238.
- 36. A. PONCE, On the distributions of the form $\sum_i (\delta_{p_i} \delta_{n_i})$, *J. Funct. Anal.*, **210** (2004), 391–435; part of the results were announced in a note by the same author: On the distributions of the form $\sum_i (\delta_{p_i} \delta_{n_i})$, *C. R. Acad. Sci., Paris Sér. I, Math.*, **336** (2003), 571–576.
- 37. T. RIVIÈRE, Line vortices in the U(1)-Higgs model, Control Optim. Calc. Var., 1 (1996), 77-167.
- 38. T. RIVIÈRE, Dense subsets of H^{1/2}(S²; S¹), Ann. Global Anal. Geom., 18 (2000), 517–528.
- E. SANDIER, Lower bounds for the energy of unit vector fields and applications, *J. Funct. Anal.*, 152 (1998), 379-403.
- 40. E. SANDIER, Ginzburg-Landau minimizers from \mathbf{R}^{n+1} to \mathbf{R}^n and minimal connections, *Indiana Univ. Math. J.*, **50** (2001), 1807–1844.
- R. SCHOEN and K. UHLENBECK, Boundary regularity and the Dirichlet problem for harmonic maps, *J. Differ. Geom.*, 18 (1983), 253–268.
- 42. L. SIMON, Lectures on geometric measure theory, Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
- 43. D. SMETS, On some infinite sums of integer valued Dirac's masses, C. R. Acad. Sci., Paris, Sér. I, 334 (2002), 371-374.
- 44. V. A. SOLONNIKOV, Inequalities for functions of the classes $\vec{W}_{\rho}(\mathbf{R}^n)$, *J. Soviet Math.*, **3** (1975), 549–564.
- H. TRIEBEL, Interpolation theory. Function spaces. Differential operators, Johann Ambrosius Barth, Heidelberg, Leipzig, 1995.

Added in proof:

1) After our work was completed some of our results were generalized to higher dimensions in [ABO].

2) F. Bethuel, G. Orlandi and D. Smets have solved our Open Problem 3 (and thereby also the first part of Open Problem 2) in Section 10; see [BOS1] and [BOS2].

3) J. Van Schaftingen [VS] has given an elementary proof of our Proposition 4, which extends easily to higher dimensions. His proof follows the same strategy as ours, except that he uses the Morrey-Sobolev imbedding in place of a Littlewood Paley decomposition.

4) An alternative approach to Proposition 4 is to use a new estimate for the div-curl system (see [BB]), namely

 $||u||_{L^{3/2}} \leq C ||curl u||_{L^1}, \forall u \text{ with div } u = 0.$

5) An interesting extension of Lemma C.2 may be found in [P].

- [ABO] G. ALBERTI, S. BALDO, and G. ORLANDI, Variational convergence for functionals of Ginzburg–Landau type, to appear.
- [BOS1] F. BETHUEL, G. ORLANDI, and D. SMETS, On an open problem for Jacobians raised by Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 337 (2003), 381–385.
- [BOS2] F. BETHUEL, G. ORLANDI, and D. SMETS, Approximation with vorticity bounds for the Ginzburg–Landau functional, to appear in *Contemp. Math.*
- [BB] J. BOURGAIN and H. BREZIS, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 539–543.
- [FF] H. FEDERER and W. H. FLEMING, Normal and integral currents, Ann. Math., 72 (1960), 458-520.
- [P] A. PONCE, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., 6 (2004), 1–15.
- [VS] J. VAN SCHAFTINGEN, On an inequality of Bourgain, Brezis and Mironescu, C. R. Acad Sci., Paris, Sér. I, 338 (2004), 23–26.

J. B.

Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

H. B.

Laboratoire J.-L. Lions, Université P. et M. Curie, B.C. 187, 4, place Jussieu, 75252 Paris Cedex 05, France brezis@ccr.jussieu.fr

H. B.

Rutgers University, Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA brezis@math.rutgers.edu

P. M.

Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France Petru.Mironescu@math.u-psud.fr

Manuscrit reçu le 16 octobre 2002.