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We show Hj-regularity of the Cauchy stress tensor and H{ -regularity of the infinitesimal strain tensor and the plastic
strain tensor in infinitesimal Cosserat plasticity with monotone flow rule. We use energy estimates for difference quotients.
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1 Introduction: Plasticity and Cosserat models

The regularity question for small strain models of elasto-plastic behavior has recently found renewed interest [4, 5,8, 9,
18-20], in part motivated by the need for qualitative statements on the rate of convergence of finite element methods in
elasto-plasticity. There it is necessary to know precisely the regularity of the function to be approximated, see [17]. This
article addresses the regularity question for time-continuous formulations of geometrically linear elasto-plasticity. As a
representative model problem we consider generalized continua of Cosserat-micropolar type. The basic difference of a
Cosserat model as compared with classical continuum models is the appearance of a nonsymmetric stress tensor which is
augmented by a generalized balance of angular momentum equation allowing to model interaction of particles not only by
surface forces (classical Cauchy continuum) but also through surface couples (Cosserat continuum). For an introduction
to the theory of Cosserat and micropolar models we refer to [11-13, 16, 17, 21]. The second author has also proposed an
elasto-plastic Cosserat model [13] in a finite strain framework, for alternative variants see [7]. A geometrical linearization
of this model has been investigated in [3, 14—16] and is shown to be well-posed also in the rate-independent limit for both
quasistatic and dynamic processes.

Time-incremental formulations for this and other models have already been shown to posses smooth updates, see [18]
and the references therein. However, the employed method did not allow to pass to the continuous time limit and it was
not clear what kind of regularity to expect for the time-continuous setting. An early statement can be found in [6]. A
first major breakthrough regarding global spatial regularity was obtained recently by Alber and Nesenenko [1] where
L>=(0,T; HY3-9(Q))-regularity is shown for stresses and plastic strains for classical rate-dependent viscoplasticity and
rate-independent models with linear kinematic hardening. This is followed by Knees [10] where viscosity is replaced by
the linear hardening assumption together with the subdifferential structure of the flow rule. She obtains the improved
L>®(0,T; H/?79(Q))-regularity.

Local regularity results for elasto-plasticity with linear hardening and variants thereof have been derived by several
authors [2,4,5,22,23]. Typically, one gets L>(0,T; Hlloc(Q)) This is also what we will obtain for the Cosserat model,
however, without any hardening and for both the quasistatic and dynamic case and without using a subdifferential structure.

Our focus on Cosserat models is justified by the fact that the Cosserat type models are today increasingly advocated as
a means to regularize the pathological mesh size dependence of localization computations where shear failure mechanisms
play a dominant role.

This contribution is now organized as follows: first, we recall the time-continuous geometrically linear elasto-plastic
Cosserat model as introduced in [13] and investigated mathematically in [14—16] together with the major statements ob-
tained for this model. Then we prove that for initial plastic strain €)) € H,\ () and body force f € L*(0,T’; H}. () the
solution obtained in the existence theorem is more regular. In Sects. 4 and 5 we repeat the regularity procedure defined in
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258 K. Chetminski and P. Neff: H.L . regularity in Cosserat plasticity

Sect. 3 in the dynamical setting of the problem and for general flow rules of monotone type. Our notation is that of previous
papers, e.g., [16], suffice it to say that 1 denotes the second order identity tensor and (X, Y’) is the scalar product on second
order tensors.

2 The infinitesimal Cosserat elasto-plastic model

We consider the infinitesimal Cosserat elasto-plastic model as introduced in [ 14—16]. The goal is to prove a higher regularity
of the stress tensor and the strain tensors assuming that the external force and the initial plastic strain are more regular. In
the quasistatic setting of the problem the system of equations is in the form

Dive = —f,
o =2u(e—ep) + 2 pe (skew(Vu) — A) + Atrfe] - 1,
—Div(l. Vaxl(A)) = p. axl(skew(Vu) — A), (2.1)

ép € f(Tp), To=2u(e—gp),
’LL|6Q = U4 , A\an = Ad, Ep(O) = Eg.

Here w is the displacement vector, o is the Cauchy stress tensor, which for yi. > 0 is not necessary symmetric, ¢ = sym(Vu)
is the infinitesimal strain tensor, ¢, is the symmetric plastic strain tensor, A € so(3) is the infinitesimal skew-symmetric
microrotation matrix, axl : s0(3) — 3 is the canonical identification of the Lie-algebra of skew-symmetric real 3 x 3-
matrices 50(3) and vectors in R3, T is the reduced Eshelby tensor, f is the density of the external force acting on the
material, f : D(f) C Sym(3) — sl(3) N Sym(3) is supposed to be a maximal monotone mapping with trace free, sym-
metric image and {0} € f(O), sg is the initial plastic strain and uq, A4 are given boundary data. In this article, in extension
of [14], we assume that the coefficients i, A, pi., [ depend also on x € . We require that x, A, it are positive, continu-
ous on £, locally Lipschitz and additionaly I. € C*(f2). The parameter /. abbreviates . = u L? with an internal length
scale L. In all of the following we assume € C R? is a bounded, open domain with smooth boundary 9€2. (Note, that
the regularity assumption on the boundary is necessary in the existence theorem only. In the main result of the article the
smoothness of the boundary is not important.)

In [14] the following existence and uniqueness theorem for system (2.1) with constant coefficients p, A, fic, lc > ¢ > 0is
proved:!

Theorem 2.1 (Existence for the infinitesimal elasto-plastic Cosserat model). Suppose that the given data f,uq, Ag
satisfy: for all times T > 0

fe i ([o,T], L*(Q,R?)), feL*((0,T) x Q,R?),
ug € C2([0,T), H= (9Q,R?)), g € L2((0,T) x 9Q,R3),
Aq € C2([0,T], H2 (89, 50(3))), Bqe L2((0,T) x 99, 50(3)),

where vy = tig and By = A, Moreover, assume that the initial data 62 € L2(9,Sym(3)) is chosen such that the

initial value of the reduced Eshelby tensor Tp(0) = 24 (¢(0) — €3) defined by the initial data &} belongs to the domain

of the maximal monotone operator f Then system (2.1) possesses a global in time, unique solution (u,¢c,e,, A) with the
regularity: for all times T' > 0

u e HI,OO((()’T%Hl(Q’RS))’ €,&p € HLOC((O?T)7L2(Q’ Sym(3))),
A€ HY>((0,T), H*(Q,50(3))) .

In Theorem 2.1 Sym(3) denotes the set 3 x 3 real-valued symmetric matrices. If the coefficients of the model are locally
Lipschitz, positive and I, € C*(£2) Theorem 2.1 can be proved using the same technics as in [14].

3 H}!

oc-regularity in the quasistatic case

The goal of this section is to prove that for €9 € HJ| (Q) and f € L*(0,T; H}, .(Q)) with f(0) € Hy, () the solution of

system (2.1) is more regular. We are using the difference quotient method. Let V, U C {2 be open sets such thatV € U & (.

! Note that in contrast to linear elasticity, A > 0 is mandatory, but is verified for metals.
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Let n € C§°(2) be a cutoff function such that n(x) € [0, 1] foreach z € Q, 77 = 1 on V and suppn C U. Let us observe
that using the standard regularity theory of linear elliptic systems if ) € H{ (Q) and f(0) € H] () then the initial

loc loc
stress, the initial strain tensors and the initial microrotation are more regular as obtained in [14]. Namely, these initial

functions are solutions to the system

Dive(0) = —f,

0(0) =21 (£(0) — €(0)) + 2 pre (skew(Vu(0)) — A(0)) + Atr[e(0)] - 1,
—Div(l.Vaxl(A(0))) = —pucax1(A(0)) + u. axl(skew(Vu(0))),

w(0)),, =ua, AQ0),, =44,

3.1)

‘BQ ‘BQ

where £(0) = sym(Vu(0)). Hence, we have that 0(0),(0) € H_(2;Sym(3)). Moreover, if additionally . € C?()
then the initial microrotation A(0) € H; (£2;50(3)). Let us recall the energy function associated with system (2.1)

A
E(u,e,ep, A)(2) :/ (u\l& — &7 + Str[el? + pellskew(Vu) — AJ* 421, ||Vax1(A)H2) dx.
Q

The following coerciveness property of the energy function is proved in [14]

Theorem 3.1 (Coerciveness of the energy). The energy function is elastically coercive with respect to NV u. This means
that3Cp >0,Vu€ H}(Q),VAe HYQ), Ve, € L?(Q)

E(ue,ep, A) = Cp(llullin ) + 141 @) -

Moreover, 3 C > 0,Y ug, Ag € H2(89Q), 3 Cy > 0,V e, € L2(Q), Y u € H'(Q),V A € H'(Q) with up,,, = uq and
A‘m = A, it holds that

E(u,e,ep, A) + Ca > Cp(|lullf ) + 1Al o)) -

This theorem was proved for constant coefficients only. Nevertheless, a simple modification of the proof from [14]
allows to conclude the same result for locally Lipschitz and positive coefficients.

Let us denote by &y (u, €, ¢,, A) the energy calculated on the set V' only. Let us also choose a basis ey, &k = 1,...,n of
R™. Forh € Randafixed k € {1,...,n} we denote by D} the difference quotient in the direction ej, with the step h. This
means that for a function w defined on 2
her) —
Diw(z) = w(z + e;z) w(@) defined for x + hey € Q2.
Theorem 3.2 (Main estimate). Let us assume that € € Hy, (Q; P(Sym(3))), f € L*(0,T; H, (% R?)) with f(0) €
HE (5 R3) and i, \, . are positive and continuous on §Q, locally Lipschitz and additionaly I. € C?(2) N CY (). Then
forallk € {1,...,n}, t € [0,T) and sufficiently small h € R the solution of system (2.1) satisfies

SV(UDZ%WDZ&??DZ%WDZA)@) < C(SU* (uwmgwmgp,ImAwk)(O)

t
+ ||f||2L?(H1(Q) +/O (EU* (u,a,ep,A) +5U* (u,a,ap,A)) dr

+ - (u,2, 250 A) + il ) + I A1 2o o) + 1) - (3.2)

where U* = U + B(0,r) with r = 1/2dist (U, 92) and the constant C > 0 does not depend on h.

Proof. Letus fix k and assume that i # 0 and |h| < 1/2dist (U, 99). For x € U the difference operator D! is well
defined. For 2 ¢ U the products D% (-) are equal to zero. From the definition of the energy function we have

A
(Dl nDje nDiey nDEANO) = [ (iulDhs = Diey | + o Gt [Dhe’
Q

+ pte||n skew(VDlu) — nDY A 4 skew(Vn @ Diu)||?
+ 21, ||yVaxl(D! A) + Vi ® axl(D! A) HQ) dx.
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Calculating the time derivative of the energy we obtain

ED}u.nDjenDley DLANO) = [ o ((2u(Dle = Dhe,). Dfe = D<)
+Atr [Die]tr [D,’;Le}) + 2pt¢(nskew(VDpu) — nDI A + skew(Vn ® Diu),

nskew(VDYi) — nDR A + skew(Vn @ D))
+41,(nVaxl(DIA) + Vi @ axl(D} A), nVaxl(DIA) + Vi @ axl(D} A)) dx

_ /Q i ((2u(Dfte — Ditey) + Ax [Dffe] + 2puo(skew(VDJw) — DY), VD)) dx
— /Q n*(2u(Dpe — Die,), Dié,)dx — 2 /Q pen? (skew(VDRu) — DA, D A) dx
+4 /Q n*1.(Vaxl(DI'A), Vaxl(DIA)) dx (3.3)
+2 /Q te(nskew(V Dru) — nDI A + skew(Vn @ Di'u), skew(Vn @ D)) dx
+2 /Q tie (skew (V) @ D), nskew(VDRa) — nDRA) dx
+4 /Q l.(nVaxl(DPA) + Vi ® axl(DIFA), Vip @ axl(D} A)) dx
+4 /Q I.(Vn @ axl(D}A), nVaxl(DFA)) dx .

In the first integral on the right hand side of (3.3) we are using the balance of forces. Unfortunately, the term 2u(DJ'e —
Diey) + Mr [Die] + 2puc(skew(V D w) — DI A) is not equal to the difference quotient D} o because the coefficients are
not constant. By the property of the operator D,’; similar to the product rule we have

Dho = 2u(DPe — Dlie,) 4+ Mtr [Dle] + 2pc(skew(VDfu) — DI A)
+2Dpp(e" — el) + DitAtr [€"] + 2D e (skew (Vu™) — A" | (3.4)

where the superscript (-)" denotes the shifted function (-)(x + hey). In a similar manner we transform the integrand
from the second integral on the right hand side of (3.3)

DpTg = D (2u(e — &p)) = 2uDj (e — p) + 2Dy pu(e" — €] . (3.5)
In the same manner calculating D} of the both sides of the equation for the microrotation we obtain that

— Div(I.Vaxl(D} A)) — Div(D}1.Vaxl(A"))
= peaxl(skew(VDIu) — DI A) + DI i.ax](skew(Vul) — A").

In the fourth integral on the right hand side of (3.3) we integrate by parts to obtain
/ n?1.(Vaxl(DI'A), Vaxl(DIA)) dx = — / n?(Div(l.Vaxl(D}A)), axI(DIF A) dx
Q Q

— / n(Vaxl(DIA), ax1(DF A ® 21.Vn)) dx . (3.6)
Q
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Inserting (3.4)—(3.6) into (3.3) and using the balance of forces we obtain

& (D, nDpe,nDey, nDEA) (1) = / 72 (D} f, Dl dx — / on(Dlo, Dlis ® Vi) dx

Q

— / n* (2D (e — el) + Dptr [€"] 4 2D} pe(skew (Vu') — AM), VD) dx
Q

- / n° (DT, Diéy) dx + / 7° (2D} (e — &), Dijép) dx
Q — Q

flow-rule>0

|
S

pen? (axl(skew (VDu) — DRA), ax1(DRA)) dx

|
~

n?(Div(l.Vaxl(DI'A)), axI(DIF A) dx

|
i~

n(Vaxl(DIFA), ax1(DIF A @ 21.Vn)) dx (3.7)
tie(n skew (VD) — nDR A + skew(Vn @ D), skew(Vn @ D)) dx

tie (skew (Vn @ D), nskew(VDRa) — nDPEA) dx

+
[N}

l.(nVaxl(DIA) + V@ ax1(DI' A), Vip @ ax1(DI A)) dx

+
S

_|_
b\b\:oib\:o\b\

+4 / I.(Vn @ axl(D} A), nVax1(DFA)) dx .
Q

Next, using the balance of angular momentum equation for the microrotation and the monotonicity of the flow rule after
integration over the time interval (0, ¢) we arrive at the inequality

E(nDju,nDje,nDiey, nDEA)(t) < E(nDjiu, nDje, nDjiey, nD}A)(0)
t t
+ / / (DR f, D) dx dr — / / 2n(Dho, D @ V) dx dr
0o Jo 0o Ja
t
— / / n? (2D (e — eg) + DiMtr [€M] + 2D} e (skew (Vu™) — AM), VD) dx dr
0o Ja
t
—|—/ / n? (2D (e — 6;),D2ép> dx dr
0o Ja
t .
—4 / / n(Vaxl(DpA), axl(Dy A ® 21.Vn) dx dr (3.8)
0o Jo
t .
+ 4/ / n*(Div(DR.Vaxl(A")) + D} poaxl(skew (Vu') — AM), ax1(DIA)) dx dr
0o Jo
t
+2 / / te(nskew(VDru) — nDRA + skew(Vn @ Di'w), skew(Vn @ D)) dx dr
0o Jo
t .
+ 2/ / Lo (skew (V) @ Dlu), nskew(VDRa) — nDIA) dx dr
0o Jo
t .
+4 / / l.(nVaxl(DIFA) + Vi @ axI(DI' A), Vi @ ax1(D} A)) dx dr
0o Jo

t
+4 / / 1.(Vn @ axl(D} A), nVaxl(DIA)) dx dr .
0 JQ
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By the regularity of ) and f(0) we conclude that the initial value &(nD}u,nD}'e, nDje,,nDjA)(0) is bounded by
CEu(Ugy, s Exy»Ep,zry Az, )(0), where C' > 0 does not depend on h. Next, we are going to estimate all integrals in the
right hand side on (3.8). To estimate the first integral we use the regularity of f and L?(H") regularity of the velocity 1.
Hence, we obtain

t
/ / 72 (DI, DIy dx dr < O fan | z2(0.0yx) e | 20 ) - (3.9)
0 Q

The second integral can be estimated as follows

t
- / / 2n(Dfio, Dl @ Vi) dxdr < CUIDLo 22 0.0t + e | 20,00

t

t
<C (/ E(DMu,nDYe,nDle,, nDEAY dr + [ Ep-(u,e,ep, A)dr + |1'LI,C||2LZ((O¢)XQ)> ,  (3.10)
0 0

where C' > 0 does not depend on h. In the last estimate we have used (3.4) and the regularity of y, A, 1. and /.. To estimate
the third integral we integrate by parts with respect to 7 and get

t
- / / n* (2D (e — el + DEAtr "] + 2D pe(skew(Vu™) — A"), VD) dx dr
0 Q
t
= / / n*(2Dp (e — €l + D tr "] + 2D pe(skew (Vi) — A), VD) dx dr

0 Q

—/ (2D (el — EZ) + DI tr "] 4 2D} e (skew(Vu) — AM), V D) dx

Q

+ / (2D (e — el) + DEAtr [€"] + 2D} pe(skew (V') — A™), VDJu) =0 dx
Q
t .
<C (/ Eu~(u,é,ep, A)dr + HT]DZVU”%Q((OJ‘)XU) + C(a)éu- (u,e,ep, A) (1)
0

+ a|[nDEVullfz ) + Eu- (u, &, 85, A)(0) + IInDZVu(O)lia(U)> : (3.11)

where o > 0 is an arbitrary constant and C'(«) depends on « only. By the regularity of the initial data the last two terms
on the right hand side of (3.11) are bounded by a constant which is independent of /. Using the coerciveness of the energy
function we have

InDEVulZzy < InDrell iz + InDiskewVull7z

< C(é(nDZu, nDe,nDyey,nDRA) + Eu-(u, €, &p, A)) : (3.12)

Inserting (3.12) into (3.11) we arrive at the inequality
t
_ / / 72 (2D} (" — ) + DEAtx [67] + 2D] s (skew (V) — AR), VDl dx dr
0 Jo

t
<C (/ £(nDju,nDje,nDjey, nD A) dT + o€ (nDju,nDjie, nDjep, 1D} A)
0

t
+/ Eu-(,€,6p, A) dr 4+ C(a)Eu- (u, &, 6p, A) + 1> . (3.13)
0
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In the same manner we estimate the fourth integral from the right hand side of (3.8)

t t
[ [ #ebiute by, Deyy axar =~ [ [ qpenlut! - eb). Diey) axdr
0 Q 0 Q

+ /Q 2 @D0p(e" — ), Dlte,) dx — /Q @D (" — ), D, o dx

t
<C (/ E(nDjtu,nD}e,nDjiep, Dy A) d7 + BE(nDju, nDje, nDjey, nDA)
0

t
+/ Eu-(1,€,€p, A) dT+C(ﬁ)SU*(u,5,5p,A)+1> , (3.14)
0

where 3 > 0 is an arbitrary constant, C'(3) > 0 depends on § only and C does not depend on h. The fifth integral from the
right hand side of (3.8) can be estimated as follows

t
— / / n(Vaxl(DI'A), ax1(DI' A ® 21.Vn)) dx dr
0 JQ

t
<C ( /O £(nDju,nDye, nDyey, nDRA) dr + || Ay, |%2((07t)m)> : (3.15)

where again the constant C' > 0 does not depends on h. For the sixth integral from the right hand side of (3.8) using that
l. € C?(£2) and that A" satisfies the equation for microrotation shifted by h we conclude that

t
/ / n? (Div(D!.Vaxl(A")) + D} p.(axlskew(Vul) — A"), axl(DF A)) dx dr
0 JQ

t
<C [ (-5 A) + E- (w2, A) (3.16)
0

where the positive constant C' does not depend on h. Next, the seventh integral from the right hand side of (3.8) can be
estimated immediately using the energy

t
/ / fre(n skew(VDpu) — nDR A + skew(Vn @ D), skew(Vn @ D)) dx
0o Jo

t
<C (/0 5(77D1];Lu,77DZ€,77D26p»77DZA) dr + |’L.693k||%2((0,t)><0)> , (3.17)

where the constant C' does not depend on h. Integrating by parts with respect to time in the eighth integral from the right
hand side of (3.8) we have

¢
/ / fe(skew (V) @ Dhu), nskew(V D) — nDPA) dx dr
0o Ja
¢
=— / / tie (skew(Vn @ DIi), nskew(V D) — nDi A) dx dr
0o Jo
—|—/ pie (skew(Vn @ Ditu), nskew(V DI'u) — nDp A) dx
Q
- / pie (skew(Vn @ Di'u), nskew(V Dlu) — WDZAM:O dx
Q
¢
< C(/O 5(77DZU» UDZE» UDZE;:» WDZA) + Eu- (uv €,Eps A) dr + Huaik ||2L?((O,t)><Q) + 1)
+YE(nDju,nDye, nD}ey, DR A) + C(7)Eu- (u e, p, A) (3.18)
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where the constant v > 0 is arbitrary, C'(y) depends on ~y only and C' does not depend on h. The last two integrals from the
right hand side of (3.8) can be estimated in the same manner as the seventh and the eighth integral respectively. Hence, we
obtain

t
/ / l.(nVaxl(DIA) + Vi @ axl(D}A), Vi @ axl(DIF A)) dx dr
0 Ja

¢
< [ etptn Dt D kAt + V) a9
where C' > 0 does not depend on h and finally
¢
/ / 1.(Vn ® axl(D} A), nVaxl(DFA)) dx dr
0 Jo

t
< C(/O E(DIu,nDre, nDle,, nDEA) + Ep- (u,e,6p, A) dr + || As, H%2((o,t)xg) + 1)

+6E(Dju, nDye, nDyey, DI A) + C(6)Eu-(u, €, p, A) (3.20)

where § > 0 is arbitrary, C(6) depends on § only and C' does not depend on h. Let us choose now «, 3, v and ¢ such that
Ca+ CB + 2y + 46 < 1 where the constants C' and C' are from inequality (3.13) and (3.14) respectively. On inserting
(3.9)-(3.10) and (3.13)-(3.20) into (3.8) we obtain

E(mDju, nDjte,nDitey, nDEA)(E) < C(Eu+ (s Eaps Epiaes Az )(0)
t t
—|—/ S(nDZu,nDﬁs,nDﬁsp,nDﬁA) dr —|—/ (Eu=(u,e,ep, A) + Eu= (U, €,€p, A)) dT
0 0

+ Eu- (u, €, 8p, A) + || f|I” + ||7lzk||2LZ((o,t)xQ) + ||Axk\|2L2((o,t)xQ) + 1) . (3.21)
Finally, using the Gronwall Lemma and the inequality
EV(Dl}clua Dl}cLea Dl}chval}clA) < E(WDZUWDZ&UDZ%WDZA) )

we easily complete the proof. O

Corollary 3.3. Assuming that the initial plastic strain sg and the external force f satisfy all requirements of Theorem
3.2 the solution to system (2.1) is more regular: u € L>(0,T; HZ .(;R?)), a,e, € L>(0,T; HL .(;Sym(3)), A €
L>(0,T; Hyp, (2;50(3)))-

Proof. By Theorem 3.2 we immediately have that for all subsets V' & 2 all functions appearing in the energy
function have the regularity e — ¢, € L°(0,T; H*(V;Sym(3)), tre € L>(0,T; H'(V;R)) and skew(Vu — A) €
L>(0,T; H'(V;50(3))). From the definition of o we obtain immediately that ¢ € L°(0,T; H'(V;Sym(3)).
Using the coerciveness of the energy function we conclude that ¢ € L°°(0,7; H'(V;Sym(3)), which implies that
u € L*(0,T; HE .(;R3)). The H} -regularity of A follows by H? -regularity of u and the standard regularity the-

loc
ory of elliptic equations. U

4 H] -regularity in the dynamic case

In the dynamical setting the system of equations is in the form

ii — Dive = f,
o =2u(e—¢ep) + 2 pte (skew(Vu) — A) + Atrfe] - 1,
axl(A) — Div(l. Vaxl(A)) = p.axl(skew(Vu) — A), 4.1
€p € f(TE) . Te=2u(e—c¢gp),
Upo = Uds  Alpg = Ad,
w(0)=u’, w(0)=u', A®0)=A% A®0)=A4", £,(0) =¢),

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM - Z. Angew. Math. Mech. 89, No. 4 (2009) / www.zamm-journal.org 265

where f is a given volume force uq, Ay are given boundary data and u®,u', A, A", &) are given initial data. This initial
boundary-value problem was studied in [16] and the Main Theorem from [16] yields an existence and uniqueness result
similar to Theorem 2.1. The energy function associated with system (4.1) is in the form

Sl e A = [ (%W + 2axl(A)

+plle—epl* + 5

A

“tr[e]? + pelskew(Vu) — A||? + 2L ||Vax1(A)|2> dx.

This function is also coercive which means that £ satisfies the statements of Theorem 3.1. Using the same methods as in
Sect. 2 we can conclude the following regularity result for the initial boundary-value problem (4.1).

Theorem 4.1. Let us assume that u® € HY (4 R?), u' € H) (Q;R?) e) € H (Q;Sym(3)), A° € H?*(Q;50(3)),
Al € HY(;50(3)) and f € L*(0,T; HL (Q;R3)). If p, \, 1 are continuous, positive on Q, locally Lipschitz and 1. €
C%(Q)NCL () then the solution to (4.1) is more regular: u € L>(0,T; HZ (Q;R?)), 0,¢, € L>=(0,T; HL (Q; Sym(3)).

5 Quasistatic case with a general flow rule

In [3] the quasistatic problem was studied with the following general flow rule of monotone type

Zt S f(—vzw(gv ZvA)) 9

where z = (g, Z) is the vector of internal variables, Bz = ¢, is the projector on the direction of the plastic strain, f isa

maximal monotone mapping satisfying {0} € f(O) and 1) is the free energy function. The free energy considered in this
article is in the form

A
V(e 2, A) = plle = epll* + Str[e]” + pellskew(Vu) — AI* + 21| VaxI(A) | + (Lz, 2),
where L is a symmetric and semi-positive matrix. Using the same procedure as in Sect. 3 the following regularity result
can be obtained

Theorem 5.1. If the initial value z2° € HL _(Q;RY) and f € L*(0,T; HL (Q;R3)) then the solution to the
quasistatic problem in the Cosserat plasticity with a general flow rule of monotone type is more regular:
o € L>(0,T; HL (Q;Sym(3)) and Lz € L>(0,T; HL (;RYN). Moreover, the coerciveness of the energy function
yields additionally that u € L>(0,T; HZ, (Q;R?)) and &, € L>(0,T; H}, .(Q; Sym(3)).
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