
Subscriber access provided by Caltech Library

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course

of their duties.

Article

H2 Evolution from a Thiolate-Bound Ni(III) Hydride
Nina X. Gu, Paul H. Oyala, and Jonas C. Peters

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.0c00712 • Publication Date (Web): 04 Apr 2020

Downloaded from pubs.acs.org on April 6, 2020

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



H2 Evolution from a Thiolate-Bound Ni(III) Hydride 

Nina X. Gu, Paul H. Oyala, and Jonas C. Peters* 

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United 

States 

 

Supporting Information Placeholder

ABSTRACT: Terminal NiIII hydrides are proposed inter-
mediates in proton reduction catalyzed by both molecu-
lar electrocatalysts and metalloenzymes, but well-
defined examples of paramagnetic nickel hydride com-
plexes are largely limited to bridging hydrides. Herein, 
we report the synthesis of an S = ½, terminally bound 
thiolate-NiIII-H complex. This species, and its terminal 
hydride ligand in particular, have been thoroughly char-
acterized by vibrational and EPR techniques, including 
pulse EPR studies. Corresponding DFT calculations 
suggest appreciable spin leakage onto the thiolate ligand. 
The hyperfine coupling to the terminal hydride ligand of 
the thiolate-NiIII-H species is comparable to that of the 
hydride ligand proposed for the Ni-C hydrogenase in-
termediate (NiIII-H-FeII). Upon warming, the featured 
thiolate-NiIII-H species undergoes bimolecular reductive 
elimination of H2. Associated kinetic studies are dis-
cussed and compared with a structurally related FeIII-H 
species that has been recently reported to also undergo 
bimolecular H-H coupling. 

INTRODUCTION 

Hydrogen is a promising alternative to carbon-based 
fuel, and homogenous electrocatalysts for the H2 evolu-
tion reaction (HER) have been scrutinized for possible 
practical applications and especially as well-defined sys-
tems for mechanistic studies.1 Although metal hydrides 
may not be required intermediates of HER,2 terminally 
bound NiIII hydride intermediates have been implicated 
in both stoichiometric3 and catalytic4 proton reduction5 
mediated by Ni-based systems. Additionally, paramag-
netic NiIII hydride intermediates have been proposed in 
enzymatic H2 evolution (Fig. 1, top). A bridging hydride 
has been identified in the S = ½ [NiFe] hydrogenase in-
termediate (NiIII-H-FeII) assigned as the Ni-C state,6 and 
computational data suggest that the hydride is bound 
more tightly to Ni than to Fe (Ni-H: 1.61 Å, Fe-H: 1.72 
Å).7,8 Additionally, EPR data support an estimated Ni-H 
bond length of ~1.6 Å.6a The possible role of a [NiFe] 
hydrogenase state featuring a terminal NiIII-H has also 
been computationally investigated for the related case of 

H2 oxidation.9 Furthermore, studies on Ni-substituted 
rubredoxin, a model enzyme for [NiFe] hydrogenase 
bearing a single Ni center in the active site, support the 
intermediacy of a terminal NiIII-H species in proton re-
duction catalysis.10 

 

 

Figure 1. (top) Proposed hydrogenase intermediates 
featuring a NiIII hydride motif (bottom) Accessible 
pathways for H2 evolution from the Ni hydride com-
plexes described in this work. 

 

Owing to their posited role as intermediates in HER 
catalysis, well-characterized paramagnetic nickel hy-
dride model complexes are needed for detailed study, 
but examples are lacking, whereas examples of related 
terminally bound NiI/III-Me species are available.11 For 
hydride cases, such species largely feature bridging hy-
drides bound to two metal centers (Ni-H-Ni),12 three 
metal centers (Ni3-(H)),12d,13 or as borohydride adducts 
(Ni-H-BR3).14 Characterization data for terminally 
bound NiI/III hydride complexes are scant. In previous 
work, irradiation of a matrix-isolated sample containing 
Ni(CO)4 and HI yielded several EPR-active compounds, 
including a species assigned as H-NiI(CO)4.15 Related 
solid-state experiments employing Ni(CN)4

2- generated a 
[H-Ni(CN)n]x species as one of the EPR-active prod-
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ucts.16 Additionally, the NiIII hydride [(PS3)NiIIIH][PPN] 
has been reported in solution by treatment of the analo-
gous NiIII-OPh complex with pinacolborane.17,18 Charac-
terization data for this species was limited; in particular, 
the inferred hydride ligand was not confirmed by spec-
troscopic analysis (vide infra).   

Herein, we generate and spectroscopically character-
ize a thiolate-supported, terminally-bound NiIII-H spe-
cies at low temperature. Direct identification of the ter-
minal hydride ligand is confirmed by both vibrational 
and pulse EPR data. Of note, bimolecular reductive 
elimination of H2 proceeds upon warming this NiIII-H 
species, followed with N2 binding to quantitatively gen-
erate a NiII-N2

 product. Stoichiometric reactivity studies 
from the NiII-H- and NiIII-H species featured herein 
demonstrate the viability of both a heterolytic and homo-
lytic pathway for H2 evolution. 

 

RESULTS AND DISCUSSION 

Synthesis and characterization of Ni precursors. 

Following a recent study of a ferric Fe(H)(N2) species 
featuring a tetradentate bis(phosphine)(silyl)(thiolate) 
ligand (Scheme 1),19 we targeted the generation of a tri-
valent Ni-H species supported by this ligand framework. 
Treatment of HSiP2SiPr (1)19 with Ni(COD)2 (COD = 1,5-
cyclooctadiene) yields a thioether-bound Ni(II) hydride, 
(SiP2SiPr)NiIIH (2, Scheme 1a; see Fig. 2A for solid-state 
structure) with a Ni-H stretch at 1737 cm-1 and a 1H 
NMR hydride signal at -6.90 ppm (t, 2JH, P = 46.3 Hz, in 
C6D6). Addition of KC8 to 2 results in the reductive 
cleavage of the S-iPr bond to furnish a thiolate-bound 
Ni(II) hydride, [(SiP2S)NiIIH]K (3, see Fig. 2B for solid-
state structure; n(Ni-H) at 1677 cm-1; hydridic resonance 
at -8.10 ppm (t, 2JH, P = 43.0 Hz) in C6D6). 

Protonation of hydride 3 with [H(OEt2)2][BArF
4] un-

der an N2 atmosphere affords a nickel(II)  complex, 
(SiP2S)NiII(N2) (4), which crystallizes as the dimeric, 
dinitrogen-bridged species, [(SiP2S)NiII]2(N2) (4’) 
(Scheme 1B). XRD data confirms the structure of 4’ 
(Fig. 2C; Table 1) and reveals an N-N bond length of 
1.115(2) Å. Solid-state IR data of crystals of 4’ do not 
show an N2 stretch, consistent with the inversion center 
gleaned in the solid-state structure. However, an intense 
N2 stretch at 2200 cm-1 is observed in solution under an 
N2 atmosphere, indicating that 4’ dissociates to mono-
meric 4 in solution. Notably, a solid thin-film produced 
by concentration of a solution of 4 under an N2 stream 
does not exhibit the N2 stretch at 2200 cm-1, demonstrat-
ing that 4’ predominates upon concentration and is con-
sistent with an equilibrium between 4 and 4’.  

 

 

Scheme 1. Synthesis and numbering scheme of com-
pounds discussed herein. 

A degassed solution of diamagnetic 4 bears NMR fea-
tures distinct from those acquired under an N2 atmos-
phere, intimating the loss of N2 to generate a diamagnet-
ic four-coordinate Ni species, (SiP2S)NiII (6), under vac-
uum (Scheme 1C). Exposure of 6 to an atmosphere of 
H2 yields the five-coordinate NiII-H2 complex, 
(SiP2S)NiII(H2) (7). XRD data obtained on crystals 
grown under an atmosphere of H2 are consistent with the 
assignment of 7 (Fig. 2D). In particular, the structural 
similarity between 7 and 4’ suggests that 7 bears an in-
tact H-H fragment in the solid state, which disfavors 
alternative assignments as the Ni(H)2 or NiH(SH) spe-
cies in the solid state (Table 1). While the H2 unit could 
not be reliably identified from the XRD data, positive 
residual electron density located trans to the silyl group 
is consistent with a bound H2 ligand (Fig. 2E), as has 
been previously observed in XRD data of related H2-
bound complexes.20 Additionally, the HD analogue, 
(SiP2S)NiII(HD), exhibits a 1JHD of 35 Hz (toluene-d8, 
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−80 °C), indicative of an intact dihydrogen unit in solu-
tion.21 Examples of Ni(H2) complexes are rare,22,23 and 7 
is distinct by virtue of the thiolate donor ligand; H2 acti-
vation across a Ni-thiolate bond has been invoked else-
where.24  

 

 

Figure 2. X-ray structures of 2 (A), 3 (B), 4’ (C), 7 (D), 
and the residual positive electron density plot of 7 
(isovalue: 0.78) (E). C-H hydrogen atoms and solvent 
molecules are omitted for clarity. Ellipsoids are depicted 
at 50% probability. 

 

Table 1. Bond lengths of 4’ and 7. 

 
 

Generation and characterization of a NiIII-H. 

The cyclic voltammogram of 4 in THF reveals a re-
duction event at −2.33 V vs. Cp2Fe/Cp2Fe+, and 4 slowly 
catalyzes HER in the presence of PhOH as a weak acid 
source at a strongly cathodic potential (see Supporting 
Information for details).25 Treatment of the NiII-H- 3 
with PhOH in THF results in quantitative generation of 
H2 and (SiP2S)NiOPh-, demonstrating a heterolytic 

pathway for H-H bond formation within the system. For 
comparison, we also explored the viability of a homolyt-
ic pathway for H2 generation from the corresponding 
NiIII-H species. Examples of Mn/n+1 hydride pairs that 
can access H2 evolution via a homolytic pathway from 
one oxidation state and a heterolytic pathway from an-
other are rare.27e,28a Whereas protonation of a metal hy-
dride complex to release H2 is commonly observed,1,26 
examples of bimolecular reductive elimination of H2 
from two well-defined M-H units is less precedent-
ed,19,27,28,29 although such a pathway has been proposed 
in a number of HER electrocatalysts.1,4f,27e,30  

The cyclic voltammogram of the NiII-H- species 3 ex-
hibits a reversible feature at −1.26 V vs. Cp2Fe/Cp2Fe+ 
in THF that corresponds to the formal NiII/III couple, and 
chemical oxidation using [Cp*2Fe][PF6] at −78 °C in 
THF yields a dark blue-green solution of the desired 
(SiP2S)NiIIIH (5-H) species. Solutions of 5-H are ther-
mally sensitive (vide infra) and were therefore handled 
at low temperatures to obtain spectroscopic data. As ex-
pected for a Kramer’s doublet species, 5-H exhibits par-
amagnetically shifted peaks in its 1H NMR spectrum 
(THF-d8, −40 °C). A characteristic terminal Ni-H stretch 
is observed in the IR spectrum at 1728 cm-1 (THF solu-
tion, −78 °C) that vanishes upon deuteration via the ana-
logue (SiP2S)NiIIID (5-D).31 This Ni-H stretch is in good 
agreement with the DFT-predicted gas-phase value of 
1720 cm-1.32  

The 77 K X-band CW EPR spectrum of 5-H confirms 
the expected S = ½ spin state (Fig. 3) and is simulated 
with a rhombic g tensor of g = [2.166, 2.056, 2.039] and 
hyperfine coupling to two equivalent 31P nuclei (A(31Pα) 
= A(31Pβ) = ±[200, 210, 260] MHz) and a Ni-H nucleus 
(A(1H) = ±[1.63, 1.63, 31.9] MHz; for 5-D, A(2H) = 
±[0.25, 0.25, 4.9] MHz). These simulation parameters 
are consistent with Q-band 1H, 31P Davies ENDOR and 
2H HYSCORE data for 5-H and 5-D (see Supporting 
Information). Notably, the 1H dipolar tensor (T) of 5-H 
is axially symmetric (A(1H) = aiso + T; T = ±[-10.1, -
10.1, 20.2] MHz), as can be anticipated for a terminally 
bound metal hydride (M−H), whereas a rhombic dipolar 
tensor would instead be expected for an approximately 
symmetric bridging hydride (M−H−M).33 By scaling the 
isotropic component of the 1H hyperfine coupling tensor 
(|aiso(1H)| = 11.7 MHz) by the aiso value for a hydrogen 
atom (1420 MHz),34 spin density localized at the hydride 
is estimated as ±0.008 e-. The DFT-optimized structure 
in the gas phase for 5-H (M06l) predicts a Mulliken spin 
density of -0.005 e- on the hydride, consistent with the 
experimental data. 
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Figure 3. (a) X-band CW EPR spectrum of 5-H in 2-
MeTHF with simulation. Simulation parameters: g = 
[2.166, 2.056, 2.039]; A(31Pα) = A(31Pβ) = [200, 210, 
260] MHz); A(1H) = [1.6, 1.6, 31.9] MHz.; Acquisition 
parameters: MW frequency = 9.371 GHz; temperature = 
77 K; MW power =  2 mW; modulation amplitude = 2 
G; conversion time = 82 ms. (b) Field-dependent 31P Q-
band Davies ENDOR spectra of 5-D. (c) Field-
dependent Q-band Davies ENDOR 1H minus 2H differ-
ence spectra of 5-H and 5-D; difference spectra were 
smoothed using a 5-point Savitzky-Golay filter. ENDOR 
samples were prepared in 2-MeTHF, and spectra are 
simulated with the same g-values and hyperfine cou-
pling as Fig. 3A. Experimental conditions for Fig. 3B, 

3C: microwave frequency = 34.040 GHz; MW π pulse 
length = 80 ns; interpulse delay τ = 400 ns; πRF pulse 
length = 15 µs; TRF delay = 2 µs; shot repetition time 
(srt) = 2 ms; temperature = 12 K. 

 
Figure 4. (A) Synthetic route to access compound 9. (B) 
X-ray structure of 9. Hydrogen atoms and disordered 
components are omitted for clarity. Ellipsoids are de-
picted at 50% probability. (C) X-band CW EPR spec-
trum of 9 in 2-MeTHF with simulation. Simulation pa-
rameters: g = [2.255, 2.073, 2.037]; A(31Pα) = [170, 133, 
330] MHz; A(31Pβ) = [260, 257, 130] MHz.; Acquisition 
parameters: MW frequency = 9.388 GHz; temperature = 
77 K; MW power =  0.5 mW; modulation amplitude = 2 
G; conversion time = 82 ms. 
 

Table 2. Bond lengths of 5-H (DFT) and 9 (XRD). 

 
X = H (5-H), CH3 (9) 

 

Complex 5-H could not be obtained in solid-state 
form due to its highly reactive nature. However, an anal-
ogous and more stable NiIII-Me species could be pre-
pared, isolated, and crystallographically characterized. 
Accordingly, treatment of 4 with methyl lithium yields 
diamagnetic [(SiP2S)NiIIMe]Li (8), and its oxidation by 
[Cp*2Fe][PF6] at −78 °C affords a dark blue-green solu-
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tion of (SiP2S)NiIIIMe (9, Fig. 4).35 Structural parameters 
for 9 compare favorably to the gas-phase, DFT-
optimized parameters for 5-H (Table 2). The 77 K X-
band CW EPR spectrum exhibits a rhombic g tensor (g = 
[2.255, 2.073, 2.037]) and hyperfine coupling to two 
similar but distinct 31P nuclei (A(31Pα) = ±[170, 133, 
330] MHz; A(31Pβ) = ±[260, 257, 130] MHz). Com-
pared to that of 5-H, the EPR spectrum of 9 exhibits 
slightly greater g-anisotropy and comparable |aiso(31P)| 
values (5-H: |aiso(31Pα)| = |aiso(31Pβ)| = 223 MHz; 9: 
|aiso(31Pα)| = 211 MHz, |aiso(31Pβ)| = 216 MHz).  

EPR characterization of [(PS3)NiH][PPN]. 

 
Figure 5. Structure of [(PS3)NiH][PPN]. R = SiMe3, 
PPN = (Ph3P)2N- 

Given the potential value for EPR data of model NiIII-
H species to guide reliable assignments of such interme-
diates in Ni-containing hydrogenases, we also undertook 
the generation of the previously reported 
[(PS3)NiH][PPN] species17 and the analogous nickel 
deuteride for related characterization by EPR techniques 
(Fig. 5). As noted above, previously reported vibrational 
and EPR data did not locate the presence of the terminal 
hydride moiety, though its chemical reactivity was con-
sistent with such a formulation. 

Through X-band HYSCORE experiments, the 2H hy-
perfine coupling for [(PS3)NiD][PPN] could be detected: 
A(2H) = ±[1.6, 9.3, 9.3] MHz (See Supporting Infor-
mation for more details). Scaling A(2H) by the ratio of 
the 1H/2H gyromagnetic ratios (1H𝛾/2Hγ= 6.514) ap-
proximates a 1H hyperfine coupling of A(1H) = ±[10.4, 
60.6, 60.6] MHz in [(PS3)NiH][PPN], with |aiso(1H)| = 
43.9 MHz and T = ±[-33.5, 16.7, 16.7] MHz. The 
|aiso(1H)| value corresponds to approximately ±0.03 e- of 
spin density localized on the hydride of 
[(PS3)NiH][PPN], in agreement with a DFT-estimated 
value of -0.05 e- (gas phase, M06l; see SI). There hence 
appears to be greater spin delocalization onto the hy-
dride ligand of [(PS3)NiH][PPN] compared to 5-H. This 
difference presumably arises from an increased metal-
ligand covalency in 5-H; a Mulliken spin density of 0.73 
e- is calculated on Ni in [(PS3)NiH][PPN], compared to 
0.60 e- in 5-H. 

Comparison of NiIII-H species with the Ni-C hydro-

genase state. 

In both systems, spin delocalization onto the ligand 
framework likely stabilizes the NiIII-H species. Con-
sistent with this idea, DFT-calculated Mulliken spin den-
sities (M06-L functional: def2tzvp [Ni] and def2svp [all 
other atoms] basis sets) suggests that there is considera-

ble spin leakage onto the supporting thiolate ligands of 
5-H (0.22 e-) and [(PS3)NiH][PPN] (0.07, 0.07, 0.16 e-). 
For comparison, in the case of the Ni-C hydrogenase 
state, DFT calculations suggest the presence of signifi-
cant spin delocalization onto one of the bridging cyste-
ine groups (Fig. 6, BP86 functional),36 with the majority 
of spin localized on Ni (0.72 e-) rather than Fe (0.01 e-). 
Additionally, a spin density of -0.01 e- is calculated on 
the hydride bridging the Ni and Fe centers; experimental 
data support |aiso(1H)| = ca. 11 MHz for the hydride lig-
and in D. gigas hydrogenase,6c and a value of |aiso(1H)| = 
3.5 MHz is measured for both Ralstonia eutropha6a and 
D. vulgaris Miyazaki F hydrogenases.6d 

It has been noted that the |aiso(1H)| value for the 
hydride of the Ni-C hydrogenase state is significantly 
smaller than that anticipiated for a hydride covalently 
bound to Ni,6a,b,c given that |aiso(1H)| for H-NiI(CO)3 was 
reported to be 293 MHz,15,37 and that of [H-Ni(CN)n]x 
was estimated to be ca. 427 MHz.16 Assuming these 
assignments are reliable, one suggested explanation for 
the discrepancy is the presence of a proximal iron center 
in the Ni-C state, which may in turn perturb the spin 
distribution.6a However, it has been observed that the 
spin density on Fe is very low in the Ni-C state,38 cor-
roborated by DFT calculations.36 In this context, it is 
therefore significant that 5-H and [(PS3)NiH][PPN] are 
measured to have |aiso(1H)| values quite comparable to 
that of the Ni-C hydride. The data presented here 
demonstrates that hydrides covalently bound to a para-
magnetic Ni center can exhibit comparatively small 
|aiso(1H)| values. We attribute the small |aiso(1H)| of these 
complexes in part to the significant spin delocalization 
onto the thiolate ligands of 5-H and [(PS3)NiH][PPN], 
and by extension suggest that the bridging cysteine in 
the Ni-C state mitigates the magnitude of |aiso(1H)| in the 
Ni-C state hydride, likely more so than the proximal Fe 
center.39 Furthermore, although DFT-calculated EPR 
parameters for the hydrogenase structure featuring a 
bridging hydride between NiIII and FeII provide a satis-
factory fit to experimental data for the Ni-C state,6f,g the 
present study demonstrates that terminally bound NiIII 
hydrides can bear |aiso(1H)| values comparable to that 
measured for the Ni-C state. 

 

 
Figure 6. Calculated Mulliken spin densities of the Ni-C 
hydrogenase state and 5-H. 

 

Bimolecular H2 release from thiolate-NiIII-H and 

comparison with H2 release from thiolate-FeIII-H. 
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Our ability to generate and reliably characterize the 
NiIII-H species 5-H enabled us to evaluate its propensity 
to undergo a bimolecular homocoupling process to gen-
erate H2.40 Accordingly, dark blue-green solutions of 5-

H prepared in situ at −78 °C quantitatively convert to 
orange solutions of 4 upon warming to 25 °C under N2. 
H2 production was confirmed by GC analysis (98%). 
The decay of 5-H to 4 monitored by UV-Vis spectrosco-
py exhibits isosbestic behavior and is second-order with 
respect to 5-H (Fig. 7, k = 20 M−1·min−1 at 25 °C). A 
kinetic isotope effect is observed (kH/kD = 1.6 at 25 °C), 
suggesting that the hydride ligand is present in the rate-
determining transition state, and Eyring analysis reveals 
activation parameters of ΔS‡ = −30(7) cal/(mol·K) and 
ΔH‡ = 9(2) kcal/mol. The large and negative entropic 
activation term is consistent with an ordered rate-
determining transition state, and these data support the 
bimolecular reductive elimination of H2 between two 
NiIII-H fragments. Metal hydrides with BDFE(M-H) less 
than half the BDFE of H2 (BDFE(M-H) < ca. 52 
kcal/mol in MeCN)41 are thermodynamically favored to 
undergo bimolecular reductive elimination of H2 (2 M-H 
→ 2 M + H2). Under static vacuum, a THF solution of 5-

H reacts to form the vacant species 6, which is con-
sistent with the DFT-estimated Ni-H gas-phase BDFE of 
57 kcal/mol (5-H → H• + 6). 

 

 
Figure 7. UV-Vis spectra depicting the decay of 5-H to 
4 at 25 °C in THF. Spectra collected in 20 min intervals. 

 

A related S = ½ ferric hydride, (SiP2S)FeIII(H)(N2), 
that we have previously reported,19 has a DFT-estimated 
gas phase Fe-H BDFE of 56 kcal/mol ((SiP2S)Fe(H)(N2) 
→ H• + (SiP2S)Fe(N2)) and also undergoes bimolecular 
reductive elimination of H2 upon warming to yield the 
N2-bridged species [(SiP2S)FeII]2(N2). Compared to the 
Ni system, there is a greater degree of spin delocaliza-
tion onto the hydride ligand in the Fe system, evidenced 
by a greater |aiso(1H)| value of  43 MHz. However, HER 
from the ferric hydride proceeds with a significantly 
smaller second-order rate constant at 25 °C compared to 
the Ni system ([Fe]: k = 0.068 M−1·min−1, Scheme 2). 

Additionally, the bimolecular transformation of the fer-
ric hydride bears a large and positive ΔS‡ of 39(13) 
cal/(mol·K) that we hypothesized to arise from N2 disso-
ciation prior to H-H bond formation (e.g. {N2 (g) + 

[FeIII]−H···H−[FeIII(N2)]}⧧). Such a scenario contrasts 
with the negative ΔS‡ determined for the present Ni sys-
tem, which is consistent with an ordered rate-
determining transition state (e.g. 
{[NiIII]−H···H−[NiIII]}⧧). 

The unobserved, N2-dissociated ferric hydride 
(SiP2S)FeIII(H) would be an electron-deficient 15 e- spe-
cies, favoring N2 binding to yield a 17 e- species 
(SiP2S)FeIII(H)(N2). In contrast, the Ni(III) hydride 5-H 
is a 17 e- species, and N2 binding to form the 19 e- spe-
cies (SiP2S)NiIII(H)(N2) is thus disfavored. Pre-
dissociation of N2 hence does not play a role in the H2 
evolution chemistry of the Ni system, whereas it does in 
the Fe system. This is likely a significant factor in the 
dramatically enhanced rate of H2 formation in the Ni 
system compared to Fe. Additionally, because the termi-
nal product is an N2-bound species, thermodynamic sta-
bilization afforded by N2 binding may also contribute to 
the relative rates of H2 elimination. 

 
Scheme 2. Comparison of 5-H and (SiP2S)Fe(H)(N2), 
which both undergo bimolecular reductive elimination 
of H2 upon warming but with different rates and activa-
tion parameters in accord with the presented pathways. 
Gas-phase BDFEs were calculated with the M06-L func-
tional (def2tzvp [Fe or Ni], def2svp [all other atoms]). 
 

CONCLUSION 

(SiP2S)Ni H
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In closing, we have reported the synthesis and spectro-
scopic characterization of an unusual S = ½, terminal 
NiIII-H species, 5-H, and its propensity to undergo ho-
molytic bimolecular H-H coupling to release H2. Hetero-
lytic H2 evolution via protonation of its 1-electron re-
duced state, NiII-H-, has also been demonstrated. For the 
NiIII-H of most interest, the sulfur donor bears a consid-
erable amount of spin density (0.22 e-) based on DFT 
calculations, stabilizing the system and allowing for the 
first time direct measurement of salient spectroscopic 
parameters, including a terminal Ni-H vibration (1728 
cm-1 in THF) and hyperfine coupling to the terminal hy-
dride ligand (|aiso(1H)| = 11.7 MHz), as detected via 
pulse EPR studies. Importantly, this isotropic hyperfine 
coupling value is similar to that of the hydride ligand in 
the Ni-C hydrogenase state.6a,c,d In contrast, significantly 
larger |aiso(1H)| values, on the order of 102 MHz, were 
reported for H-NiI(CO)4

15 and [H-Ni(CN)n]x 16 (via gen-
eration and detection in a solid matrix), the only previ-
ous examples of terminal Ni-H species with reported 
|aiso(1H)| values. 

The discrepancy between the significantly smaller 
|aiso(1H)| measured for the assigned Ni-H-Fe moiety of 
the Ni-C hydrogenase state, compared to previously re-
ported paramagnetic nickel hydride species, has been 
highlighted previously.6a,b,c The EPR data for the well-
defined NiIII-H species featured herein demonstrates that 
smaller |aiso(1H)| values are compatible with a nickel 
hydride ligand assignment, especially when covalently 
bound to a spin active nickel center with one (or more) 
sulfur donors, as is suggested for the Ni-C hydrogenase 
state. Thus, the NiIII-H species reported here, as well as 
related structures in future studies, can provide valuable 
platforms for constraining spectroscopic assignments in 
enzymatic systems and identifying specific reactivity 
patterns, including H-H bond formation to generate H2. 
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