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Abstract: An H2 filter is derived for time delay systems, where there are time delay terms in the 
state and in the output. A method to compute the H2 norm of time delay systems is proposed. 
Based on the H2 norm computation method, an H2 filter design is formulated as a nonlinear 
optimization problem. 
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1. INTRODUCTION 
 
Many physical systems have time delay elements, 

which reflect sensor process time, computation time 
and communication time. For example, in [1], motor 
speed measurement is time delayed due to 
characteristics of motor encoders. These systems can 
be represented by state space equations, where there 
are time delay terms in the state and in the output. The 
purpose of this paper is to propose a Kalman-filter-
type observer for time delay systems.  

In the case of time delay systems, to design an 
asymptotically stable observer without considering 
estimation performance is not an easy task. There are 
several papers on the design of asymptotically stable 
observers: a modal observer [2], reduced-order 
observer [3], and output-injection based observer [4]. 
Recently, an observer [5] is proposed, where the H∞ 
norm is used as a performance index. The H∞ filter 
using delay independent stability conditions are 
considered in [6,7], where linear matrix inequalities 
are used. 

However, few observers have been proposed using 
the H2 norm despite the utility of the H2 norm as a 
performance index for many problems. In [8], an 
observer for time delay systems has been proposed 
using delay independent stability conditions. In this 
paper, an observer whose performance index is an H2 
norm is proposed, where delay dependent stability 
conditions are used. Note that the optimal H2 norm 
observer is the standard Kalman filter when there are 
no time delay terms. Thus, the proposed filter can be 

considered as a Kalman filter for time delay systems. 
Notation: For a matrix n nM ×∈ given by 
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2. PROBLEM STATEMENT 

 
Consider linear time-invariant systems described by 

0 1 1 2

0 1 2

( ) ( ) ( ) ( ) ( ),
( ) ( ) ( ) ( ),

x t A x t A x t h B t B u t
y t C x t C x t h C v t

ω= + − + +

= + − +
    (1) 

where nx R∈ is the state, pRω∈ is the process noise, 
qu R∈ is the input, ry R∈  is the measurement, and 
rv R∈ is the measurement noise. The h is constant 

known time delay in the states and the outputs. 
It is assumed that v and ω  are uncorrelated white 

Gaussian processes, which satisfy 

{ } { }
{ } { }

( ) 0, ( ) ( ) ( ),

( ) 0, ( ) ( ) ( ).

E t E t s I t s

E v t E v t v s I t s

ω ω ω δ

δ

′= = −

′= = −
       (2) 

The objective of this paper is to derive an H2 filter 
for a time delay system (1), where a filter has the 
following form: 

ˆ( )x t = 0 ˆ( )A x t 1 ˆ( )A x t h+ −                   (3) 
( 0 ˆ( )K C x t− )1 ˆ( ) ( )C x t h y t+ − − 2 ( ).B u t+  

Defining the estimation error ( )e t  as 
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ˆ( ) ( ) ( ),e t x t x t−  

we obtain 

0 1: ( ) ( ) ( ) ( ),eG e t A e t A e t h B tξ= + − +  (4) 

where 

0 0 1 1, ,A A KC A A KC− −  
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( )
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v t
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−  
 

 

The H2 norm of the error system is used as the 
performance index estimate 

2
2

0

1( , ) lim ( ) ( ) .
T

e
T

G J K h E e t e t dt
T→∞

  ′= =  
  
∫  (5) 

If there are no time delay terms (i.e., A1 = 0 and C1 
= 0), then (1) becomes 

0 1 2

0 2

( ) ( ) ( ) ( ),
( ) ( ) ( ),

x t A x t B t B u t
y t C x t C v t

ω= + +

= +
 

and the filter, minimizing the H2 norm (5) for this 
non-delayed system, is the standard Kalman filter. 
Thus we can call the proposed filter minimizing (5) a 
Kalman filter for time delay systems. 

 
3. H2 NORM COMPUTATION 

 
The H2 norm of Ge is expressed in terms of the 

matrix function P(s) in the next theorem. 
Theorem 1: If Ge is stable, then 

( )2
2 (0) ,eG Tr B P B′=    (6) 

where P(s), 0 s h≤ ≤ is continuously differentiable 
and satisfies 

0 1

(0) (0),
( ) ( ) ( ), 0 ,

(0) (0) 0.

P P
P s A P s A P h s s h

P P I

′=

′ ′ ′= + − ≤ ≤

′+ + =

 (7) 

Remark 1: P(s) is related to the Lyapunov functional 
of state delay system (4). Let [ ]( ), ,0V C hφ φ ∈ −  be 
defined by 

10

1 10 0

( ) (0) (0) (0) 2 (0) ( ) ( )

( ) ( ) ( ) ,

h

h h

V P P r A h r dr

h r A P r s A h r dsdr

φ φ φ φ φ

φ φ

′ ′+ − +

′ ′+ − + − − +

∫

∫ ∫
(8) 

where ( ) ( )P s P s′ −  if s < 0. Equation (7) is derived 
from 

( ) ( ) ( ),t
d V x x t x t
dt

′= −    (9) 

where [ ]( ) ( ), ,0 .tx r x t r r h+ ∈ −  
Remark 2: If there are no time delay terms, the 

result in Theorem 1 becomes a standard H2 norm 
computation. See, for example, Theorem 3.3.1 in [9]: 
the H2 norm of a stable non-delay system is given by 

 ( )2
2 ,eG Tr B PB′=    (10) 

where 

0 0 0.A P PA I′ + + =  

Note that conditions (7) are equivalent to those in 
(10) if h = 0, A1 = 0 and C1 = 0. 

The proof of Theorem 1 will be given using Lemma 
1 and 2. 

Lemma 1: If system Ge is stable, then 

 ( )2
2

1 ( ) ( ) .
2e e eG Tr G j G j dω ω ω
π

+∞

−∞
′= −∫  (11) 

Proof: The result is standard (see Chap 3.3 in [9]). 
Lemma 2: If Ge is stable and P(s), 0 s h≤ ≤  

satisfies (7), then 

 1 11(0) ( ) ( ) ,
2

P j j dω ω ω
π

+∞ − −
−∞

′= ∆ ∆∫  (12) 

where 

 0 1( ) .j hj j I A A e ωω ω −∆ − −   (13) 

Proof: See [10]. 
(Proof of Theorem 1) From Lemma 1, 
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Since ( ) ( )f j d f j dω ω ω ω
+∞ +∞

−∞ −∞
= −∫ ∫ , we have 
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Since Tr(AB) = Tr(BA) whenever AB and BA are 
square matrices, we have  

( ) { } 2
2

1(0) ( ) ( ) .
2 e e eTr B P B Tr G j G j d Gω ω ω
π

+∞

−∞
′ ′= − =∫
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  The last equality is from (11). 
If Ge is stable, then 2

2eG  can be computed from 
P(0) in Theorem 1. How to check the stability of Ge 
will be considered later in Theorem 2; first we will 
consider how to compute P(0) in the next lemma. 

Lemma 3: If Ge is stable, then P(0) and P(h) 
satisfying (7) are given by 

0 0 1 1

1 2

( ) ( ) ( ) ( )I A A I I A E A I
R R

′ ′ ′ ′ ⊗ + ⊗ ⊗ + ⊗
 
 

 

   
(0)
( )

csP
csP h
 
⋅  
 

,
0
csI− 

=  
 

   (14) 

where 

[ ] *
1 2 0 .1R R V ∑   

Matrices 1∑ and *V are from the singular value 
decomposition of the following 

 *01( exp( )) ,
0 0

I J Hh U V
∑ 

− =  
 

  (15) 

where U and V are unitary matrices, and 
2 2

1
n nR ×∈∑  

is a diagonal matrix whose diagonal elements are 
nonzero singular values of ( exp( )).I J Hh−  Let Eij 
denote an n n×  matrix with (i, j)-entry equal to 1 

and all other entries equal to zero, and let 
2 2n nE R ×∈  

be the block matrix E, [Eji] (i.e., the (i, j)-block of E is 
Eji). Matrices H and J are defined by 

0 1

0 1

0( ) ( )
, .

0( ) ( )
II A I A E

H J
II A E I A

′ ′ ⊗ ⊗  
   ′ ′− ⊗ − ⊗   

 

Proof: See [11]. 
Note that P(0) can be computed from the matrix 

exponential (15) and a simple linear equation (14). 
Thus if Ge is stable, then we can easily compute H2 
norm: see (6). 

Now the stability of Ge is considered in Theorem 2, 
where a stability condition for interval delay 

)0,h h∈   is provided. 

Theorem 2: Suppose Ge is stable for h = 0. If H has 
imaginary eigenvalues { }1, , kj jω ω  and their corres-
ponding eigenvectors are given by 

2 2

1,1 ,1

1,2 ,2
1

1,2 ,2

, , ,

k

k
k

n k n

v v
v v

v v

v v

   
   
   = =   
   
      

 

then Ge is stable for )0,h h∈   where h  is defined by 

 
2

,

1
,

1min ln( ) ,i l

i k
i l n

v
h

j vω≤ ≤
+

=    (16) 

where 2
, ,0i lv l n≤ ≤  is any nonzero element of .lv  

Theorem 2 is proved using Lemma 4 and 5. Lemma 
4 is based on the fact that if Ge is stable for h = 0 and 
Ge does not have any imaginary poles for )0, ,h h∈   

then Ge is stable for )0, .h h∈   

Lemma 4: Ge is stable for )0,h h∈   if 

• Ge is stable for h = 0. 
• The following equation does not have any roots for 

)0, :h h∈   

 0 1det( ) 0j hj I A A e ωω −− − =   (17) 

Proof: See [12]. 
Stability of Ge for h = 0 can be easily checked from 

eigenvalues of 0 1.A A+  On the other hand, checking 

whether (17) has any roots for )0,h h∈   is not easy: 

(17) should be checked for all 0 ω≤ < ∞  and 
0 .h h≤ <  In the next lemma, it is shown that a root 
jω  of (17) (if any) is an eigenvalue of H. 

Lemma 5: If (17) has a root ,ω  then it is an 
eigenvalue of H. 

Proof: Suppose (17) has a root jω  for h; then 

there exists ( ) 0nx C∈ ≠  such that  

0 1( ) 0.j hx j I A A e ωω −′ − − =  

Taking the transpose (not complex conjugate), we 
obtain 

 0 1( ) 0.j hj I A A e xωω −− − =   (18) 

Let nCα ∈  be defined by 

 

1

2 2 ,
j h

n

xe
ω

α
α

α

α

−

 
 
 =
 
 
  

   (19) 

where ,1i i nα ≤ ≤  is a complex number. Let v be 
defined by ( u is the complex conjugate of u) 

 ,
u

v
u
 
 
 

    (20) 

where  
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2

1

2 .n

n

x
x

u C

x

α
α

α

 
 
 ∈
 
 
  

   (21) 

The theorem is proved if we show that this v  
( 0v ≠  from the construction) satisfies ( )j I H vω − =  
0: that is, jω  is an eigenvalue of H. From the 
definition of H, we obtain 

( )
( )

0 1

1 0

0 1

0 1

( ) ( )
( )

( ) ( )

( ) ( )
.

( ) ( )

j I I A I A E
j I H v v

I A E j I I A

j I I A u I A Eu

j I I A u I A Eu

ω
ω

ω

ω

ω

′ ′ − ⊗ − ⊗
− =  ′ ′⊗ + ⊗ 

 ′ ′− ⊗ − ⊗
 =
 ′ ′+ ⊗ + ⊗ 

(22) 

Partition ( )j I H vω −  into 2n complex vectors and 
let the i-th block of ( )j I H vω −  be denoted by ir ∈  

.nC  Then ,1ir i n≤ ≤  is given by 

0 1 1 1 2 2( ) ( ) .i i i i ni nr j I A x A E E E xω α α α α′ ′= − − + + +  

Noting the following relation 

1 1 2 2

2
1 1 2 2

2
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( )

.

i i ni n
j h

i i ni n
j h

i

E E E x

E E E e

e

ω

ω

α α α

α α α α

α α

−

−

+ + +

= + + +

=

 

We obtain 

2 2
0 1

2
0 1

0 1

( )

( )

( ) 0, 1 .

j h j h

i i i
j h

j h
i

j h
i

r j I A e A e

e j I A A e

j I A A e x i n

ω ω

ω
ω

ω

ω α α α α

α ω α

α ω

−

−

−

′ ′= − −

′ ′= − −

′ ′= − − = ≤ ≤

 

The last equality is from (18). Since ,1i n ir r+ = − ≤  
i n≤  (see (22)), we have 0,ir = 1 2 .n i n+ ≤ ≤  
Hence, ( ) 0,j I H vω − =  where 0v ≠  (since 0x ≠ ).  

Proof of Theorem 2: From the proof of Lemma 5, 
if (17) has a root iω  for (1 ),ih i k≤ ≤  then iω  is 
an eigenvalue of H. Furthermore, the corresponding 
eigenvector of H is of the form: 

2 2 2 2
1 2 1...

i i i i i i i ij h j h j h j h

i nv x xe x xe x xe x xe
ω ω ω ω

−
=


 

2 2
2 ... .

i i i i
Tj h j h

nx xe x xe
ω ω

− − 



 

Thus hi can be computed as follows: 

2

,

,

1 ln( ) ,i l
i

i l n

v
h

j vω
+

=  

where 2
, , 1i lv l n≤ ≤  is any nonzero element of .iv  

If the minimum value of (1 )ih i k≤ ≤  is h , then (17) 

does not have a root for )0,h h∈  . From Lemma 4, 

this proves the theorem. 
Remark 3: Once a filter gain K is determined, we 

can check the stability of the error system (4) 
(Theorem 2) and compute its H2 norm (Theorem 1). 

 
4. FILTER DESIGN 

 
In this section, the synthesis algorithm of an H2 

filter (3) is proposed, where the algorithm is 
formulated as a constrained nonlinear optimization 
problem. When minimizing H2 norm of Ge over K 
using Theorem 1, it should be guaranteed that Ge is 
stable. If the filter gain K is given, the stability of Ge 
can be checked using Theorem 2, which provides a 
upper stability bound ( )h K  (i.e., Ge(K, h) is stable 
as long as h h< ). Thus finding an optimal K, which 
stabilizes Ge and minimizes 2( , ) ,eG K h can be 
formulated as follows: 

 
2
2min ( , ) ( , )

( ).
K eJ K h G K h

subject to h h K<
  (23) 

(23) is a constrained nonlinear optimization problem 
whose global solution is difficult to find. A suboptimal 
approach is proposed to compute K using penalty 
methods [13]. A penalty function is defined by 

2

0 ( )
( , )

( ),( )
if h h K

p K h
if h h Kh hα

 <


≥−
 

where α  is a constant and is chosen so that ( ,p K  
) ( , )h J K h  when ( ).h h K  With this penalty 

function, a constrained optimization problem (23) can 
be replaced by the following unconstrained 
optimization problem: 

 2
2min ( , ) ( , ) ( , ).K p eJ K h G K h p K h+  (24) 

Note that if ( )h h K<  (i.e., Ge is stable), then 
( , ) ( , ).pJ K h J K h=  Also note that if ( ),h h K≥  then 

( , )pJ K h  is dominated by the penalty function 
( , ).p K h  Thus the penalty function ( , )p K h  prevents 



H2 Filter for Time Delay Systems                               543 
 

unstable region searching when the H2 norm is being 
minimized. 

An initial value of K can be chosen by minimizing 
J(K, 0): the initial value corresponds to the Kalman 
filter gain for a non-delayed system. Minimization 
problem (24) can be solved, for example, using an 
unconstrained nonlinear optimization function 
fminunc in MATLAB optimization toolbox. 

 
5. NUMERICAL EXAMPLE 

 
Consider the following system 

2 1 1 0 0.2 1
( ) ( ) ( ) ( ) ( ),

0 1 1 1 0.2 1
x t x t x t h t u tω

− −       
= + − + +       − − −       
[ ] [ ]( ) 0 1 ( ) 1 1 ( ) 0.5 ( ),y t x t x t h v t= + − +      (25) 

where ( )tω  and ( )v t  are zero-mean, uncorrelated 
white Gaussian processes satisfying (2). The time 
delay is set to be h = 0.3. 

Optimization problem (24) was solved using 
Matlab optimization toolbox. The initial value of the 

filter gain K is computed using h = 0, and α  in the 
penalty function is set to 100. The computed values 
are as follows: 

2
2

0.0208
, 1.6309, ( , ) 0.0243.

0.0072 eK h G K h
 

= = = 
 

 

Using the computed filter gain, state estimation 
simulation was done, where a unit step signal was 
applied to the control input u(t) at time 1s. The 
simulation result is given in Fig. 1: it can be seen that 
the proposed H2 filter estimates system states well. 

To see how the time delay affects estimation 
performance, H2 filters were designed for different h 
values. 

As seen in Table 1, computed H2 norm increases as 
time delay h increases. Variance of actual estimation 
error, which was computed from a simulation, also 
increases as time delay h increases. This verifies a 
common belief that the time delay adversely affects 
on estimation performance. 

 
6. CONCLUSION 

 
 In this paper, an H2 observer design method for 

time delay systems has been proposed. The proposed 
filter coincides with the standard Kalman filter when 
there are no time delay terms. As the popularity of a 
Kalman filter proves, in many practical situations an 
H2 norm observer provides most satisfactory results. 
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