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Abstract
Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX,
becomes rapidly phosphorylated at serine 139. This modified form, termed γ-H2AX, is easily
identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review
focuses on the potential clinical applications of γ-H2AX detection in cancer and in response to
other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed.
Recent work indicates that γ-H2AX detection may become a powerful tool for monitoring
genotoxic events associated with cancer development and tumor progression.

Introduction
H2AX is a histone H2A variant that constitutes 2–25% of mammalian histone H2A
depending on the organism and cell type (Redon et al. 2002; Rogakou et al. 1998). Like
most other histone proteins, H2AX is composed of a central globular domain, flanked by N-
terminal and C-terminal tails which possess sites for a variety of post-translational
modifications such as acetylation, biotinylation, phosphorylation, methylation, and
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ubiquitination (Cheung et al. 2000; Chew et al. 2006; Goll and Bestor 2002; Rogakou et al.
1998). H2AX is structurally similar to other H2A species except for the presence of a unique
COOH terminal tail, containing a serine four residues from the C terminus (omega-4). The
omega-4 position of the serine residue as well as the surrounding motif is highly conserved,
being present in the protozoa, Giardia intestinalis (Redon et al. 2002; Fig. 1a). Upon
induction of a DNA double-strand break (DSB), the H2AX omega-4 serine residue becomes
rapidly phosphorylated to form gamma-H2AX (γ-H2AX; Fernandez-Capetillo et al. 2004;
Rogakou et al. 1998).

The proteins responsible for the phosphorylation of the H2AX omega-4 serine are members
of the PI3 kinase family, including ataxia telangiectasia mutated (ATM), ATR (AT and
Rad3-related protein), and DNA-dependent protein kinase (DNA-PK; Fernandez-Capetillo
et al. 2004; Stiff et al. 2004, 2006). Upon DSB induction, one of these kinases
phosphorylates many molecules of H2AX in chromatin regions varying from a few Mbp to
many tens of Mbp flanking the lesion (Pilch et al. 2003; Rogakou et al. 1999). This
phosphorylation event is dynamic, complex, and depends on interactions between MDC1,
H2AX, and ATM and other kinases to persist (Savic et al. 2009). This amplified response is
easily detected using antibodies to γ-H2AX, manifesting discrete nuclear foci that may be
utilized to enumerate the number of DSBs in a cell and/or to examine the co-localization of
other DNA repair proteins to the sites of double-strand damage (Sedelnikova et al. 2003;
Fig. 1b). This sensitive technique for detecting DNA double-strand damage in cells reveals
the presence of γ-H2AX foci in the nuclei of intact primary and cancer cultured cells, as well
as in tissues (Bonner et al. 2008; Fernandez-Capetillo et al. 2003; Rogakou et al. 1999).
These foci are believed to mark lesions resulting from various kinds of endogenous and
exogenous stress (Sedelnikova and Bonner 2006; Sedelnikova et al. 2004a, b). A recent
study by Koike et al. presented evidence that phosphorylation and elimination of H2AX in
vivo is tissue-specific and depends on different kinases (Koike et al. 2008).

Because of the sensitivity and utility of γ-H2AX detection of DNA DSBs, γ-H2AX has
recently been identified as a potentially useful biomarker with clinical implications. This
review will focus on the role of γ-H2AX in homeostasis as well as in disease and on the uses
of γ-H2AX to aid in the understanding of DNA DSB formation and repair in cancer
treatment, and in evaluating various forms of environmental stress. Detailed protocols for γ-
H2AX detection in tissue and cellular samples have been addressed elsewhere (Bhogal et al.
2009; Huang et al. 2004; Nakamura et al. 2006; Qvarnstrom et al. 2004) and are reviewed in
Bonner et al. (Bonner et al. 2008).

H2AX as a key regulator of the DNA damage response
H2AX plays an essential role in the recruitment and accumulation of DNA repair proteins to
sites of DSB damage (Fernandez-Capetillo et al. 2003; Fillingham et al. 2006; Paull et al.
2000) including sites of replication fork collapse (Furuta et al. 2003). These proteins include
53BP1, MDC1, RAD51, BRCA1, and the MRE11/RAD50/NBS1 complex which colocalize
with γ-H2AX foci. γ-H2AX focus formation also results in the recruitment of proteins of the
ubiquitin ligase cascade (RNF8-RNF168-UBC13) which in turn allows the accumulation of
the BRCA1-A complex and 53BP1 to the DNA lesion site (Fig. 2; reviewed in (van Attikum
and Gasser 2009)). Cohesins, which help maintain chromatid cohesion and are involved in
DNA repair, also are localized to DSB sites in a γ-H2AX-dependent manner (Unal et al.
2004). H2AX has also been shown to be a novel component of the Fanconi anemia (FA)/
BRCA pathway. Though not an FA gene, H2AX is functionally connected to the pathway to
resolve stalled replication forks and prevent chromosome instability (Bogliolo et al. 2007;
Lyakhovich and Surralles 2007). The chromatin remodeling complex TIP60-UBC13, which
also participates in DNA repair, is recruited to the DSB site by γ-H2AX, allowing γ-H2AX
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acetylation and ubiquitylation prior to its dephosphorylation/removal from the break site
(Ikura et al. 2007).

The H2AX C-terminal tyrosine residue (Y142) can be also phosphorylated (Cook et al.
2009; Xiao et al. 2009; Fig. 2) by WSTF. Phosphorylation of Y142 regulates γ-H2AX
formation. The phosphorylation is constitutive in unstressed cells and dephosphorylated
after DNA damage by EYA1 or EYA3 is necessary to allow γ-H2AX formation and the
resultant MDC1 binding that leads to the DNA repair response. However, if during the
cellular response to genotoxic stress, the cells undergo Y142 phosphorylation prior to DNA
repair, the cellular response will switch to apoptosis (Cook et al. 2009).

Additionally, though H2AX is not required for cell cycle checkpoint activation after high
doses of ionizing radiation (IR), it is necessary at low doses (Fernandez-Capetillo et al.
2002). Formation of γ-H2AX maintains checkpoint responses while DNA damage is being
repaired (Downey and Durocher 2006; Fillingham et al. 2006). Finally, if DNA damage
cannot be fixed, cells undergo programmed cell death in which H2AX also plays a role (Lu
et al. 2006; Mukherjee et al. 2006). In summary, H2AX with other repair proteins play
synergistic roles in DNA damage responses and tumor suppression by facilitating efficient,
high-fidelity repair of DNA DSBs (Celeste et al. 2003a,b; Kang et al. 2005).

H2AX roles in disease
Analysis of H2AX null mice indicates that H2AX is required for efficient immunoglobulin
class switching, as evidenced by reduced switching to IgG, but not for V(D)J recombination
(Bassing et al. 2002; Celeste et al. 2002). Additionally, mice lacking H2AX are more
sensitive to radiation and cells cultured from these mice are less efficient at DSB repair,
leading to an increased incidence of chromosomal abnormalities (Bassing et al. 2002;
Celeste et al. 2002). This implies a role for H2AX in preventing genomic instability
associated with cancer. Finally, while female null mice are capable of breeding, males are
infertile, indicating a role for H2AX in spermatogenesis (Bassing et al. 2002; Celeste et al.
2002).

Loss of one or both H2AX alleles in mice compromises genomic integrity and increases
cancer susceptibility in a p53 null background (Bassing et al. 2003; Celeste et al. 2003a, b).
These studies suggest that H2AX functions as a genome caretaker and the expression of
both gene alleles is required for optimal protection against tumorigenesis. Cancers to which
H2AX-deficient mice are predisposed include T- and B-cell lymphomas as well as solid
tumors (Bassing et al. 2003; Celeste et al. 2003a, b). In addition, H2AX/p53 double null
mice have shorter life-spans than either single knock-out strain, becoming moribund with
lymphomas as early as 6 weeks of age (Bassing et al. 2003; Celeste et al. 2003a, b). Further
studies showed that lymphomas from H2AX/p53 double null mice have significant
chromosomal abnormalities including complex rearrangements that juxtapose the c-myc
oncogene to antigen receptor loci (Bassing et al. 2003; Celeste et al. 2003a, b). These
findings support the idea that H2AX has a role as a tumor suppressor.

Combined ATM and H2AX deficiency results in embryonic lethality. The embryonic stem
(ES) cells exhibit chromosome aberrations, impaired reactive oxygen species (ROS)
regulation, high sensitivity to oxidative stress, and more severe genomic instability than
either ATM or H2AX single deficient ES cells (Zha et al. 2008). Since H2AX-deficient ES
cells exhibited normal ROS levels, H2AX itself is not essential for the regulation of ROS
levels in cells. However, H2AX might be required for the repair of ROS-induced DNA
damage and preventing oxidative stress-related genomic instability (Zha et al. 2008).
Because a functional H2AX is necessary to ensure genome integrity, its use in therapeutic
intervention may be limited.
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The human H2AX gene maps to chromosome 11q23, a region that exhibits mutations or
deletions in a large number of human cancers and is among the most common cytogenetic
abnormalities observed in hematopoietic malignancies such as acute myeloid leukemias and
acute lymphoblastic leukemia (Kokandakar et al. 2007; Pui et al. 2003; Rubnitz et al. 1996;
Thirman et al. 1993). This chromosome abnormality has also been linked to colorectal
cancers (Takagi et al. 2000). Head and neck squamous cell carcinoma is characterized by
amplification of chromosomal region 11q13 coupled with the frequent loss of distal 11q,
which encodes H2AX as well as other DNA repair factors such as ATM (Parikh et al. 2007).
The increased chromosomal instability seen in these cells indicates that loss of 11q and
H2AX may contribute to tumor development, progression, and resistance to therapy in this
cancer subtype. Additionally, it suggests that other tumors characterized by loss of the distal
region of chromosome 11q should be examined for loss of DNA repair efficiency.

These findings have led to the intriguing proposal that human H2AX may be a good
candidate gene to indicate susceptibility to lymphomas, leukemia, and other cancers. A
study by Novik et al. reported a population-based association of H2AX genetic variants in
non-Hodgkins lymphoma (NHL), one of the most commonly diagnosed cancers worldwide
(Novik et al. 2007). A G/A single nucleotide polymorphism 417 bp upstream of the H2AX
start codon is associated with NHL; the AA genotype is associated with protection from
lymphoma, perhaps because the A allele is less easily silenced, while the GG genotype
increases lymphoma risk. This is the first study establishing a correlation between an H2AX
gene polymorphism and the risk of cancer development in humans. Another recent study has
described alterations of H2AX gene copy number in 37% of breast cancer tumor tissues
tested (Srivastava et al. 2008).

Further evidence of a tumor-suppressing role for H2AX comes from a study involving
human gastrointestinal stromal tumor (GIST) cell lines (Liu et al. 2007). In gastrointestinal
stromal tumors, the most common mesenchymal tumors of the gastrointestinal tract, H2AX
is downregulated (Liu et al. 2007). Imatinib mesylate, a clinically approved protein kinase
inhibitor, has been shown to trigger GIST apoptosis via upregulation of H2AX (Liu et al.
2007). These results imply that increased H2AX expression may help increase tumor
sensitivity to chemo- and radiotherapy in a variety of cancers.

In addition to increases in γ-H2AX levels seen in cancer, cells from aging organisms as well
as senescing cells in culture display an increased γ-H2AX signal in the absence of any
intentional damage. γ-H2AX foci accumulate in senescing human and primate cell cultures
as well as in aging mouse tissues including liver, testes, kidney, and lung (Bakkenist et al.
2004; d’Adda di Fagagna et al. 2003; Jeyapalan et al. 2007; Nakamura et al. 2008;
Sedelnikova et al. 2004a, b). Moreover, human lymphocytes and fibroblasts from healthy
donors exhibit increasing numbers of γ-H2AX foci with increasing age (Sedelnikova et al.
2008). These aging-associated γ-H2AX foci are caused by both dysfunctional telomeres and
non-telomeric DNA double-strand damage that may play a causal role in mammalian aging
(Nakamura et al. 2008).

γ-H2AX as a biomarker
The efficiency of γ-H2AX detection as a biomarker for DNA DSBs makes this protein a
good candidate as a therapeutic marker for improving the efficiency of radiation, drug, and
other therapies (Halicka et al. 2009; Kao et al. 2006; Kuefner et al. 2009). The use of H2AX
in studies examining genome integrity is becoming increasingly common. In addition to
basic research studies, H2AX is now also being used in drug development and translational
studies (Fig. 3). A highly specific antibody recognizing γ-H2AX in cells was first described
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by Bonner and colleagues (Rogakou et al. 1999), and antibodies directed against both H2AX
and γ-H2AX are commercially available from multiple suppliers (Table 1).

γ-H2AX detection provides a considerably more sensitive, efficient, and reproducible
measurement of the amount of DNA damage compared to other techniques such as pulsed
field gel electrophoresis and comet assays (Sedelnikova and Bonner 2006). Induction of γ-
H2AX after exposure to pleiotropic DNA-damaging agents can be measured by
immunofluorescence, flow cytometry, or western blotting (Huang et al. 2005; Kao et al.
2006). Exposure to sources of IR, including X-rays, γ-radiation, α-particles, and heavy ions
leads to the direct induction of DSBs in cellular DNA (Desai et al. 2005; Hanasoge and
Ljungman 2007; Hu et al. 2005; Rogakou et al. 1999; Usami et al. 2006). In addition,
treatment of cells with cytotoxic agents, including but not limited to DNA synthesis
inhibitors, DNA alkylating agents, topoiso-merases I and II inhibitors, bleomycin, and
hydrogen peroxide, also lead to the formation of DSBs which induce γ-H2AX formation
(Furuta et al. 2003; Horikawa et al. 2000; Huang et al. 2003; Liu et al. 2003; Olive et al.
2004; Sedelnikova et al. 2004a, b; Ward and Chen 2001). This DNA damage presumably
occurs during the repair or attempted repair of other non-DSB DNA lesions, many of which
occur because of interference with replication and transcription complex progression. Thus,
the central position of γ-H2AX in DNA DSB detection/repair may give it a significant role
in new cancer drug development and treatment optimization through clinical trials
((Hochhauser et al. 2009; Karagiannis and El-Osta 2006; Karp et al. 2008) reviewed in
(Bonner et al. 2008)).

Persistence of γ-H2AX foci after the initial induction of DNA damage indicates that some of
the damage remains unrepaired, making γ-H2AX an attractive candidate for the rapid
assessment of radiation sensitivity in individuals and cell lines (Hamasaki et al. 2007)
leading to the identification of cell lines and human subjects with defective DNA repair
(Porcedda et al. 2006, 2009; Taneja et al. 2004). Therefore, γ-H2AX may be useful as a
biodosimeter (Marchetti et al. 2006) for exposure to IR and as a predictor of radiosensitivity
(Olive and Banath 2004; Porcedda et al. 2006) making γ-H2AX a potentially useful tool to
enhance the clinical efficacy of radiation treatment, a procedure indicated for approximately
60% of cancer patients (Perez et al. 2004).

It has been found that elevated levels of γ-H2AX are present in a number of human cancer
model systems, including cervical cancer cells (Banath et al. 2004; Yu et al. 2006),
melanoma cells (Warters et al. 2005), colon carcinomas, fibrosarcoma, osteosarcoma,
glioma, and neuroblastoma cells (Sedelnikova and Bonner 2006). These results suggest that
an increased level of DNA damage is a general characteristic of cancer development (Banath
et al. 2004; Bartkova et al. 2005; Gorgoulis et al. 2005; Sedelnikova and Bonner 2006;
Warters et al. 2005; Yu et al. 2006). Moreover, colonocytes from ulcerative colitis patients,
a chronic inflammatory disease that predisposes patients to colorectal cancer show an
increase in γ-H2AX content (Risques et al. 2008). For these reasons, detection of γ-H2AX
through human biopsies and/or aspirates could be used for early cancer screening and to
monitor cancer therapy (Sedelnikova and Bonner 2006).

γ-H2AX as a therapeutic target
While H2AX and the PI3 kinases that phosphorylate H2AX have both been proposed as
potential therapeutic targets, no drugs directed against these targets are known to be
currently in clinical use or development. However, PI3 kinase inhibitors have been
developed for research purposes and are available through AstraZeneca/KuDos (Hickson et
al. 2004; Veuger et al. 2003). Because H2AX is ubiquitous to all cells, serves a structural
role in the integrity of chromatin, and has a relatively long half-life in the cell, the H2AX
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protein itself may be a problematic drug target. Many commercial H2AX and γ-H2AX
peptides and antibodies are available from a variety of companies (listed in Table 1);
however, no therapeutic antibodies or peptides are known to be currently in clinical use or
development. The lack of therapeutic antibodies may also be attributed at least in part to the
strong similarity of H2AX both in structure and sequence to other, essential, H2A histone
species.

Inhibition of the phosphorylation of H2AX is probably a more practical therapeutic strategy
than alteration of H2AX levels. Peptide inhibitors of H2AX phosphorylation may be useful
as chemotherapeutic agents (Kao et al. 2006; Taneja et al. 2004). The effect of H2AX
peptides on IR sensitivity was examined using human squamous cell carcinoma cell lines
that were either radiosensitive (SCC-61) or radioresistant (SQ-20B). The peptide mimics
were found to inhibit γ-H2AX focal formation in both cell lines in response to 3 Gy IR and
to decrease cell survival following irradiation (Taneja et al. 2004). These results indicate that
H2AX could potentially be targeted to enhance the efficiency of radiation therapy.
Additionally, inhibition of H2AX phosphorylation through interference with upstream
kinase activities may be an attractive target for drug development. Caffeine and wortmannin
which inhibit H2AX phosphorylation are also radiosensitizers (Wang et al. 2005). However,
though many tumor cell lines exhibit higher spontaneous levels of γ-H2AX, inhibition of
H2AX phosphorylation may be expected to deleteriously affect all cells, not just cancer cells
(Yu et al. 2006).

Several patents have been filed pertaining to H2AX. A patent describing a method to detect
DNA DSBs using an antibody to γ-H2AX (WO20010104158) was filed by Dr. William M.
Bonner of the National Institutes of Health. In addition to this, several more patents have
been filed dealing with specific applications of DNA DSB detection to ascertain the
genotoxicity of a drug or compound. These include a patent filed by AstraZeneca for the use
of γ-H2AX detection in determining the effectiveness of Chk1 inhibitors (WO2006087557),
a patent filed by Axys Pharmaceuticals for the use of γ-H2AX detection in determining the
effectiveness of HDAC inhibitors (WO2006042035), and a patent filed by Vector Tobacco
and New York Medical University for the use of γ-H2AX in approaches to identify less
harmful tobacco and tobacco products (WO2005113821). There has also been a patent filed
by Dr. Thanos Halazonetis of the University of Geneva, Switzerland for the use of γ-H2AX
in detecting pre-cancerous lesions (WO2006105142). Finally, Dr. David Brenner of
Columbia University of New York has filed a patent for using γ-H2AX in a system and
method for high-throughput radiation biodosimetry (WO2008073168).

γ-H2AX as an indicator of environmental health risks
Induction of γ-H2AX is found following exposure of cells to suspected DNA-damaging
compounds such as cigarette smoke, polycyclic aromatic compounds, dinitrobenzo[e]
pyrene, norethindrone, chromium, crude oil, electromagnetic fields, microwaves from
mobile phones, and extreme heat, all demonstrating a potential role for γ-H2AX detection in
determining potential genotoxics (Albino et al. 2004; Gallmeier et al. 2005; Hunt et al. 2007;
Ibuki et al. 2007; Kawanishi et al. 2009; Luo et al. 2006; Markova et al. 2005; Mattsson et
al. 2009; Peterson-Roth et al. 2005; Shao et al. 2004; Toyooka and Ibuki 2005, 2006, 2009).
The radiation induced bystander effect, which can be monitored through DSB induction, can
also be tracked using γ-H2AX formation (Sokolov et al. 2007). Additionally, outside of
Earth’s atmosphere, the biological effects of high charge and energy ions during space
exploration are a major concern for astronaut health. Toward this end, γ-H2AX may be
useful in elucidating the effects of space travel-induced DNA damage (Desai et al. 2005;
Redon et al. 2009). Finally, γ-H2AX could be used to monitor people exposed to other
sources of radiation, answering growing concerns about terrorism threats from dirty bombs.

Dickey et al. Page 6

Chromosoma. Author manuscript; available in PMC 2011 May 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusions
As discussed above, γ-H2AX is a sensitive indicator of DNA DSBs and is therefore a
potentially useful tool in the detection of genotoxic stress. Such an indicator could be
valuable in monitoring cancer development and progression as well as other instances of cell
stress. Future work in this field will be directed at moving the γ-H2AX detection assay to the
clinic where it will be used as a practical means to detect cancer and monitor therapeutic
progress. Additionally, the γ-H2AX focus formation assay is a powerful tool to further
dissect the cellular response to DNA damage. This technique could be used to identify new
potential target proteins for cancer therapeutics as well as to elucidate additional roles for
proteins known to participate in the maintenance of genome stability.
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Fig. 1.
a (left panel) H2AX is a component of chromatin and its fundamental packaging unit, the
nucleosome. a (right panel) H2AX is composed of a central globular domain, an N-terminal
tail and a unique C-terminal tail consisting of an evolutionarily conserved motif (shown in
red) and connected by a linker of variable sequence and length (green). The conserved motif
contains the omega-4 serine that is phosphorylated upon DNA DSB formation (arrow). b In
response to genotoxic stress and upon DNA DSB formation, the H2AX omega-4 serine is
phosphorylated (γ-H2AX), which can be visualized using an anti-γ-H2AX antibody as
discrete foci that colocalize with other DNA repair proteins. The images depict a HeLa cell
1 h after exposure to 1 Gy of γ-radiation. Red γ-H2AX, green 53BP1, blue DAPI
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Fig. 2.
H2AX is a key component of the DNA damage response. This schematic representation
illustrates the γ-H2AX-MDC1-BRCA1/53BP1cascade in response to DNA DSB formation
after irradiation. Upon DSB formation, the MRN complex (MRE11-RAD50-NBS1) binds to
the ends of the DSB (1) and recruits ATM (2). ATM then phosphorylates H2AX on serine
139 to form γ-H2AX (3). This phosphorylation allows the binding of the mediator protein
MDC1 (4). The constitutive phosphorylation of MDC1 by CK2 (5) permits the binding of
the MRN–ATM complex (via NBS1) to MDC1 (6). The MRN–ATM complex is
preferentially recruited at the DSB site because of the presence of the γ-H2AX–MDC1
complex (7). This recruitment of ATM, in turn, enhances the phosphorylation of other
proteins at the DSB site, including H2AX (3) and MDC1 (8) itself (feedback loop (9)).
MDC1 phosphorylation at the DSB site allows the recruitment of the ubiquitin ligase
machinery (10) that will then permit the ubiquitylation H2A and/or H2AX (11). H2A(X)
ubiquitylation is necessary for the accumulation of the BRCA1-A complex at break sites via
its subunit RAP80 (12). It is generally thought that histone ubiquitylation is necessary for
53BP1 accumulation at the DSB site (13) by providing the chromatin remodeling necessary
to expose constitutive H3 and H4 methylated tails (Me) that in turn are recognized by 53BP1
(14). In the absence of DNA damage, H2AX is constitutively phosphorylated by WSTF on
tyrosine 142 (15). Following DNA damage, if DNA repair occurs, phosphotyrosine 142 is
dephosphorylated by the EYA1/3 phosphatase (16) allowing the binding of MDC1 to γ-
H2AX (4). To simplify, the components of the MRN complex, the ubiquitin ligase complex
and the BRCA1-A complex are represented by one box each and H2A is not shown. The
histones are represented by gray boxes. One isolated node represents another copy of the
molecular species that is at the end of the corresponding line. The feedback loops for H2AX
and MDC1 phosphorylation are underlined in blue and red, respectively. Symbol
conventions (shown at right) are derived from Dr. Kurt Kohn’s molecular interaction maps
(Kohn 1999; for further details see http://discover.nci.nih.gov)
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Fig. 3.
a H2AX is being studied in other areas besides basic research on DNA repair, including
drug development, translational studies, radiation research, and environmental studies. As
cancer cells and tumors often exhibit high levels of γ-H2AX, it is now considered to be a
cancer biomarker. b Since its discovery as a DNA double-strand damage marker in 1998
(arrow), the number of papers published each year since 1992 containing H2AX in the title
and/or abstract has continually increased (source: PubMed)
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Table 1

Commercial availability of human H2AX and γ-H2AX antibodies and peptides

Company Location H2AX antibody γ-H2AX antibody Peptide

Abcam Inc. Cambridge, MA (R) (M) (R) H2AX and γ

AbD Serotec Raleigh, NC (R)

Abgent San Diego, CA (M)

Abnova Corp. Taipei, Taiwan (M) (R) rH2AX

ABR Affinity Bioreagents Inc. Golden, CO (R) (M) (R)

Acris Antibodies, GmbH Hiddenhausen, Germany (M) (R) (M) (R) rH2AX

Active motif Carlsbad, CA (R)

Assay Designs/ Stressgen Bioreagents Inc. Ann Arbor, MI (M) (R) rH2AX

Bethyl Laboratories Inc. Montgomery, TX (R) (R) H2AX and γ

Biolegend San Diego, CA (R) (M)

Biovision Inc Mountain View, CA (R)

Calbiochem San Diego, CA (R) (R)

Cell Sciences Canton, MA (R)

Cell Signaling Tech. Inc. Danvers, MA (R) (R) γ

Epitomics, Inc. Burlingame, CA (R)

GeneTex Inc. San Antonio, TX (M) (R) (M) (R)

GenWay biotech, Inc. San Diego, CA (R) (R)

Hycult Biotechnology Uden, The Netherlands (R)

LifeSpan Biosciences Inc. Seattle, WA (M) (R) (M) (R)

MBL international Woburn, MA (R) (R)

Millipore Billerica, MA (R) (M) rH2AX

Novus Biologicals Inc. Littleton, CO (M) (R) (M) (R) rH2AX

OriGene, Inc. Rockville, MD (R)

Proteintech Group Inc. Chicago, IL (R)

Raybiotech, Inc. Norcross, GA (R)

R&D Systems Minneapolis, MN (M) (R)

Santa Cruz Biotechnologies Inc. Santa Cruz, CA (G) (R)

Sigma-Aldrich Co St. Louis, MO (M) (R)

Signalway Antibody Pearland, TX (R) (R) γ

Trevigen Inc. Gaithersburg, MD (R)

(R) rabbit, (M) mouse, (G) goat polyclonal, H2AX H2AX peptide, γ γ-H2AX peptide, rH2AX recombinant H2A
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