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Abstract— With the increasing growth of technology and the 
entrance into the digital age, we have to handle a vast amount of 
information every time which often presents difficulties. So, the 
digital information must be stored and retrieved in an efficient 
and effective manner, in order for it to be put to practical use. 
Wavelets provide a mathematical way of encoding information in 
such a way that it is layered according to level of detail. This 
layering facilitates approximations at various intermediate 
stages. These approximations can be stored using a lot less space 
than the original data. Here a low complex 2D image 
compression method using wavelets as the basis functions and the 
approach to measure the quality of the compressed image are 
presented. The particular wavelet chosen and used here is the 
simplest wavelet form namely the Haar Wavelet. The 2D discrete 
wavelet transform (DWT) has been applied and the detail 
matrices from the information matrix of the image have been 
estimated. The reconstructed image is synthesized using the 
estimated detail matrices and information matrix provided by the 
Wavelet transform. The quality of the compressed images has 
been evaluated using some factors like Compression Ratio (CR), 
Peak Signal to Noise Ratio (PSNR), Mean Opinion Score (MOS), 
Picture Quality Scale (PQS) etc.  
 
Index Terms— Fourier Transform, Haar Wavelet, Image 
Compression, Multiresolution Analysis. 

I. INTRODUCTION 

The computer is becoming more and more powerful day by 
day. As a result, the use of digital images is increasing rapidly. 
Along with this increasing use of digital images comes the 
serious issue of storing and transferring the huge volume of 
data representing the images because the uncompressed 
multimedia (graphics, audio and video) data requires 
considerable storage capacity and transmission bandwidth. 
Though there is a rapid progress in mass storage density, 
speed of the processor and the performance of the digital 
communication systems, the demand for data storage capacity 
and data transmission bandwidth continues to exceed the 
capabilities of on hand technologies. Besides, the latest growth 
of data intensive multimedia based web applications has put 
much pressure on the researchers to find the way of using the 
images in the web applications more effectively. Internet 
teleconferencing, High Definition Television (HDTV), 
satellite communications and digital storage of movies are not  
feasible without a high degree of compression. As it is, such 
applications are far from realizing their full potential largely 
due to the limitations of common image compression 
techniques [1]. 
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    The image is actually a kind of redundant data i.e. it 
contains the same information from certain perspective of 
view. By using data compression techniques, it is possible to 
remove some of the redundant information contained in 
images. Image compression minimizes the size in bytes of a 
graphics file without degrading the quality of the image to an 
unacceptable level. The reduction in file size allows more 
images to be stored in a certain amount of disk or memory 
space. It also reduces the time necessary for images to be sent 
over the Internet or downloaded from web pages. 
    The scheme of image compression is not new at all. The 
discovery of Discrete Cosine Transform (DCT) in 1974 [2] is 
really an important achievement for those who work on image 
compression. The DCT can be regarded as a discrete time 
version of the Fourier Cosine series. It is a close relative of 
Discrete Fourier Transform (DFT), a technique for converting 
a signal into elementary frequency components. Thus DCT 
can be computed with a Fast Fourier Transform (FFT) like 
algorithm of complexity O(nlog2 n). Unlike DFT, DCT is real-
valued and provides a better approximation of a signal with 
fewer coefficients.  
    There are a number of various methods in which image files 
can be compressed. There are two main common compressed 
graphic image formats namely Joint Photographic Experts 
Group (JPEG, usually pronounced as JAY-pehg) [3] and 
Graphic Interchange Format (GIF) for the use in the Internet. 
The JPEG method established by ISO (International Standards 
Organization) and IEC (International Electro-Technical 
Commission) is more often used for photographs, while the 
GIF method is commonly used for line art and other images in 
which geometric shapes are relatively simple. 
    In 1992, JPEG established the first international standard 
for still image compression where the encoders and decoders 
are DCT-based. The JPEG standard specifies three modes 
namely sequential, progressive, and hierarchical for lossy 
encoding, and one mode of lossless encoding. The 
performance of the coders for JPEG usually degrades at low 
bit-rates mainly because of the underlying block-based 
Discrete Cosine Transform (DCT) [4]. The baseline JPEG 
coder [5] is the sequential encoding in its simplest form. Fig. 1 
and 2 show the key processing steps in such an encoder and 
decoder respectively for grayscale images. Color image 
compression can be approximately regarded as compression of 
multiple grayscale images, which are either compressed 
entirely one at a time, or are compressed by alternately 
interleaving 8x8 sample blocks from each in turn. 
    The DCT-based encoder can be thought of as essentially 
compression of a stream of 8x8 blocks of image samples. Each 
8x8 block makes its way through each processing step, and 
yields output in compressed form into the data stream. 
Because adjacent image pixels are highly correlated, the 
Forward DCT (FDCT) processing step lays the basis for 
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gaining data compression by concentrating most of the signal 
in the lower spatial frequencies. For a typical 8x8 sample 
block from a typical source image, most of the spatial 
frequencies have zero or near-zero amplitude and need not to 
be encoded. Generally, the DCT introduces no loss to the 
source image samples; it merely transforms them to a domain 
in which they can be more efficiently encoded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
       After output from the Forward DCT (FDCT), each of the 
64 DCT coefficients is uniformly quantized in conjunction 
with a carefully designed 64-element Quantization Table 
(QT). At the decoder, the quantized values are multiplied by 
the corresponding QT elements to pick up the original 
unquantized values. After quantization, all the quantized 
coefficients are ordered into zig-zag sequence.  This ordering 
helps to facilitate entropy encoding by placing low frequency 
non-zero coefficients before high-frequency coefficients. The 
DC coefficient, which contains a significant fraction of the 
total image energy, is differentially encoded.  
    Entropy Coding (EC) achieves additional compression 
losslessly through encoding the quantized DCT coefficients 
more compactly based on their statistical characteristics. The 
JPEG proposal specifies both Huffman coding and arithmetic 
coding.   
    More recently, the wavelet transform has emerged as a 
cutting edge technology, within the field of image analysis. 
Wavelets are a mathematical tool for hierarchically 
decomposing functions. Though rooted in approximation 
theory, signal processing, and physics, wavelets have also 
recently been applied to many problems in Computer Graphics 
including image editing and compression, automatic level-of-
detail control for editing and rendering curves and surfaces, 
surface reconstruction from contours and fast methods for 
solving simulation problems in 3D modeling, global 
illumination, and animation [6]. Wavelet-based coding [7] 
provides substantial improvements in picture quality at higher 
compression ratios. Over the past few years, a variety of 
powerful and sophisticated wavelet-based schemes for image 
compression have been developed and implemented. Because 
of the many advantages of wavelet based image compression 

as listed below, the top contenders in the JPEG-2000 standard 
[8] are all wavelet-based compression algorithms. 

•  Wavelet coding schemes at higher compression avoid 
blocking artifacts.  

•  They are better matched to the HVS (Human Visual 
System) characteristics.  

•  Compression with wavelets is scalable as the 
transform process can be applied to an image as 
many times as wanted and hence very high 
compression ratios can be achieved. 

•  Wavelet based compression allow parametric gain 
control for image softening and sharpening. 

•  Wavelet-based coding is more robust under 
transmission and decoding errors, and also facilitates 
progressive transmission of images.  

•  Wavelet compression is very efficient at low bit rates. 
•  Wavelts provide an efficient decomposition of 

signals prior to compression.      

II. BACKGROUND 

Before we go into details of the method, we present some 
background topics of image compression which include the 
principles of image compression, the classification of 
compression methods and the framework of a general image 
coder and wavelets for image compression. 
       
A. Principles of Image Compression 
An ordinary characteristic of most images is that the 
neighboring pixels are correlated and therefore hold redundant 
information. The foremost task then is to find out less 
correlated representation of the image. Two elementary 
components of compression are redundancy and irrelevancy 
reduction. Redundancy reduction aims at removing 
duplication from the signal source image. Irrelevancy 
reduction omits parts of the signal that is not noticed by the 
signal receiver, namely the Human Visual System (HVS). In 
general, three types of redundancy can be identified:  (a) 
Spatial Redundancy or correlation between neighboring pixel 
values, (b) Spectral Redundancy or correlation between 
different color planes or spectral bands and (c) Temporal 
Redundancy or correlation between adjacent frames in a 
sequence of images especially in video applications. Image 
compression research aims at reducing the number of bits 
needed to represent an image by removing the spatial and 
spectral redundancies as much as possible.  
 
B. Classification of Compression Technique  
There are two ways that we can consider for classifying 
compression techniques-lossless vs. lossy compression and 
predictive vs. transform coding. 
Lossless vs. Lossy compression: In lossless compression 
schemes, the reconstructed image, after compression, is 
numerically identical to the original image. However lossless 
compression can only achieve a modest amount of 
compression. An image reconstructed following lossy 
compression contains degradation relative to the original. 
Often this is because the compression scheme completely 
discards redundant information. However, lossy schemes are 
capable of achieving much higher compression. Under normal 
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viewing conditions, no visible loss is perceived (visually 
lossless).  
Predictive vs. Transform coding: In predictive coding, 
information already sent or available is used to predict future 
values, and the difference is coded. Since this is done in the 
image or spatial domain, it is relatively simple to implement 
and is readily adapted to local image characteristics. 
Differential Pulse Code Modulation (DPCM) is one particular 
example of predictive coding. Transform coding, on the other 
hand, first transforms the image from its spatial domain 
representation to a different type of representation using some 
well-known transform and then codes the transformed values 
(coefficients). This method provides greater data compression 
compared to predictive methods, although at the expense of 
greater computation.  
 
C. Framework of General Image Compression Method   
A typical lossy image compression system is shown in Fig. 3. 
It consists of three closely connected components namely (a) 
Source Encoder, (b) Quantizer and (c) Entropy Encoder. 
Compression is achieved by applying a linear transform in 
order to decorrelate the image data, quantizing the resulting 
transform coefficients and entropy coding the quantized 
values. 
 
 

 
 

Fig. 3: A Typical Lossy Image Encoder 
 
Source Encoder (Linear Transformer)  
A variety of linear transforms have been developed which 
include Discrete Fourier Transform (DFT), Discrete Cosine 
Transform (DCT), Discrete Wavelet Transform (DWT) and 
many more, each with its own advantages and disadvantages.  
 
Quantizer  
A quantizer is used to reduce the number of bits needed to 
store the transformed coefficients by reducing the precision of 
those values. As it is a many-to-one mapping, it is a lossy 
process and is the main source of compression in an encoder. 
Quantization can be performed on each individual coefficient, 
which is called Scalar Quantization (SQ). Quantization can 
also be applied on a group of coefficients together known as 
Vector Quantization (VQ) [9]. Both uniform and non-uniform 
quantizers can be used depending on the problems. 
 
Entropy Encoder 
An entropy encoder supplementary compresses the quantized 
values losslessly to provide a better overall compression. It 
uses a model to perfectly determine the probabilities for each 
quantized value and produces an appropriate code based on 
these probabilities so that the resultant output code stream is 
smaller than the input stream. The most commonly used 
entropy encoders are the Huffman encoder and the arithmetic 
encoder, although for applications requiring fast execution, 
simple Run Length Encoding (RLE) is very effective [10].  
    It is important to note that a properly designed quantizer 
and entropy encoder are absolutely necessary along with 

optimum signal transformation to get the best possible 
compression.  

 
D.  Wavelets for image compression 
Wavelet transform exploits both the spatial and frequency 
correlation of data by dilations (or contractions) and 
translations of mother wavelet on the input data. It supports 
the multiresolution analysis of data i.e. it can be applied to 
different scales according to the details required, which allows 
progressive transmission and zooming of the image without 
the need of extra storage. Another encouraging feature of 
wavelet transform is its symmetric nature that is both the 
forward and the inverse transform has the same complexity, 
building fast compression and decompression routines. Its 
characteristics well suited for image compression include the 
ability to take into account of Human Visual System’s (HVS) 
characteristics, very good energy compaction capabilities, 
robustness under transmission, high compression ratio etc.  
     The implementation of wavelet compression scheme is 
very similar to that of subband coding scheme: the signal is 
decomposed using filter banks. The output of the filter banks 
is down-sampled, quantized, and encoded. The decoder 
decodes the coded representation, up-samples and recomposes 
the signal.  
     Wavelet transform divides the information of an image into 
approximation and detail subsignals. The approximation 
subsignal shows the general trend of pixel values and other 
three detail subsignals show the vertical, horizontal and 
diagonal details or changes in the images. If these details are 
very small (threshold) then they can be set to zero without 
significantly changing the image. The greater the number of 
zeros the greater the compression ratio. If the energy retained 
(amount of information retained by an image after 
compression and decompression) is 100% then the 
compression is lossless as the image can be reconstructed 
exactly. This occurs when the threshold value is set to zero, 
meaning that the details have not been changed. If any value is 
changed then energy will be lost and thus lossy compression 
occurs. As more zeros are obtained, more energy is lost. 
Therefore, a balance between the two needs to be found out. 

 

III. HAAR WAVELET TECHNIQUE 

A. Haar Wavelet Transform 
To understand how wavelets work, let us start with a simple 
example. Assume we have a 1D image with a resolution of 
four pixels, having values [9 7 3 5]. Haar wavelet basis can be 
used to represent this image by computing a wavelet 
transform. To do this, first the average the pixels together, 
pairwise, is calculated to get the new lower resolution image 
with pixel values [8 4]. Clearly, some information is lost in 
this averaging process. We need to store some detail 
coefficients to recover the original four pixel values from the 
two averaged values. In our example, 1 is chosen for the first 
detail coefficient, since the average computed is 1 less than 9 
and 1 more than 7. This single number is used to recover the 
first two pixels of our original four-pixel image. Similarly, the 
second detail coefficient is -1, since 4 + (-1) = 3 and 4 - (-1) = 
5. Thus, the original image is decomposed into a lower 
resolution (two-pixel) version and a pair of detail coefficients. 
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Compressed 
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Repeating this process recursively on the averages gives the 
full decomposition shown in Table I:  
 
 
 
 
 
 
 
 
 
Thus, for the one-dimensional Haar basis, the wavelet 
transform of the original four-pixel image is given by [6 2 1 -
1]. We call the way used to compute the wavelet transform by 
recursively averaging and differencing coefficients, filter 
bank. We can reconstruct the image to any resolution by 
recursively adding and subtracting the detail coefficients from 
the lower resolution versions.  
 
B.Compression of 2D image with Haar Wavelet Technique  
It has been shown in previous section how one dimensional 
image can be treated as sequences of coefficients. 
Alternatively, we can think of images as piecewise constant 
functions on the half-open interval [0, 1). To do so, the 
concept of a vector space is used. A one-pixel image is just a 
function that is constant over the entire interval [0, 1). Let V0 

be the vector space of all these functions. A two pixel image 
has two constant pieces over the intervals [0, 1/2) and [1/2, 1). 
We call the space containing all these functions V1. If we 
continue in this manner, the space Vj will include all 
piecewise-constant functions defined on the interval [0, 1) 
with constant pieces over each of 2j equal subintervals. We 
can now think of every one-dimensional image with 2j pixels 
as an element, or vector, in Vj. Note that because these vectors 
are all functions defined on the unit interval, every vector in Vj 
is also contained in Vj+1. For example, we can always describe 
a piecewise constant function with two intervals as a 
piecewise-constant function with four intervals, with each 
interval in the first function corresponding to a pair of 
intervals in the second. Thus, the spaces Vj are nested; that is, 
V 0⊂  V 1⊂  V 2⊂  …… This nested set of spaces Vj is a necessary 
ingredient for the mathematical theory of multiresolution 
analysis [6]. It guarantees that every member of V0 can be 
represented exactly as a member of higher resolution space V1. 
The converse, however, is not true: not every function G(x) in 
V1 can be represented exactly in lower resolution space V0; in 
general there is some lost detail [11]. 
    Now we define a basis for each vector space V j. The basis 
functions for the spaces V j are called scaling functions, and 
are usually denoted by the symbol φ. A simple basis for Vj is 
given by the set of scaled and translated box functions [7]: 

 

φi
j (x) : = φ (2jx – i)    i = 0, 1, 2…..2j -1 where 

 
                                     1   for 0≤x<1 

                     0  otherwise  
 
The wavelets corresponding to the box basis are known as the 
Haar wavelets, given by- 

 
Ψi

j (x) : = Ψ (2jx – i)    i = 0, 1, 2…..2j -1 where 

                        1   for 0≤x<1/2 
                      -1 for 1/2≤x<1 

                    0  otherwise  
Thus, the DWT for an image as a 2D signal will be obtained 
from 1D DWT. We get the scaling function and wavelet 
function for 2D by multiplying two 1D functions. The scaling 
function is obtained by multiplying two 1D scaling functions: 
φ(x,y)=φ(x)φ(y). The wavelet functions are obtained by 
multiplying two wavelet functions or wavelet and scaling 
function for 1D. For the 2D case, there exist three wavelet 
functions that scan details in horizontal Ψ(1)(x,y)= φ(x)Ψ(y), 
vertical Ψ(2)(x,y)= Ψ(x)φ(y) and diagonal directions: Ψ(3)(x,y)= 
Ψ(x) Ψ(y). This may be represented as a four channel perfect 
reconstruction filter bank as shown in Fig. 4. Now, each filter 
is 2D with the subscript indicating the type of filter (HPF or 
LPF) for separable horizontal and vertical components. By 
using these filters in one stage, an image is decomposed into 
four bands. There exist three types of detail images for each 
resolution: horizontal (HL), vertical (LH), and diagonal (HH). 
The operations can be repeated on the low low (LL) band 
using the second stage of identical filter bank. Thus, a typical 
2D DWT, used in image compression, generates the 
hierarchical structure shown in Fig. 5. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The transformation of the 2D image is a 2D generalization 
of the 1D wavelet transformed already discussed. It applies the 
1D wavelet transform to each row of pixel values. This 
operation provides us an average value along with detail 
coefficients for each row. Next, these transformed rows are 
treated as if they were themselves an image and apply the 1D 
transform to each column. The resulting values are all detail 
coefficients except a single overall average co-efficient.  In 
order to complete the transformation, this process is repeated 
recursively only on the quadrant containing averages.  
    Now let us see how the 2D Haar wavelet transformation is 
performed. The image is comprised of pixels represented by 
numbers [12]. Consider the 8×8 image taken from a specific 
portion of a typical image shown in Fig. 6. The matrix (a 2D 
array) representing this image is shown in Fig. 7.  

Resolution Averages Detail Coefficients 
4 [9 7 3 5]  
2 [8 4] [1 -1] 
1 [6] [2] 

Table I: Decomposition to lower resolution 

Image 
corres. to 
resolution 
level i-1 

Fig. 4. One Filter Stage in 2D DWT 
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Fig. 5. Structure of wavelet decomposition 

Ψ (x) : =

             φ (x) : =  



    Now we perform the operation of averaging and 
differencing to arrive at a new matrix representing the same 
image in a more concise manner. Let us look how the 
operation is done. Consider the first row of the Fig. 7.  

Averaging: (64+2)/2=33, (3+61)/2=32, (60+6)/2=33, 
(7+57)/2=32 

Differencing: 64–33 =31, 3–32= –29, 60–33=27 and 
7–32= –25 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So, the transformed row becomes (33 32 33 32 31 –29 27 –
25). Now the same operation on the average values i.e. (33 32 
33 32) is performed. Then we perform the same operation on 
the averages i.e. first two elements of the new transformed 
row. Thus the final transformed row becomes (32.5 0 0.5 0.5 
31 –29 27 –25). The new matrix we get after applying this 
operation on each row of the entire matrix of Fig. 7 is shown 
in Fig. 8. Performing the same operation on each column of 
the matrix in Fig. 8, we get the final transformed matrix as 
shown in Fig. 9. This operation on rows followed by columns 
of the matrix is performed recursively depending on the level 
of transformation meaning the more iteration provides more 
transformations. Note that the left-top element of the Fig. 9 i.e. 
32.5 is the only averaging element which is the overall 
average of all elements of the original matrix and the rest all 
elements are the details coefficients. The main part of the C 
program used to transform the matrix is shown in Fig. 10. The 
2D array mat holds the values which represent the image. 
    The point of the wavelet transform is that regions of little 
variation in the original image manifest themselves as small or 
zero elements in the wavelet transformed version. The 0’s in 
the Fig. 9 are due to the occurrences of identical adjacent 
elements in the original matrix. A matrix with a high 
proportion of zero entries is said to be sparse. For most of the 
image matrices, their corresponding wavelet transformed 
versions are much sparser than the originals. Very sparse 
matrices are easier to store and transmit than ordinary matrices 
of the same size. This is because the sparse matrices can be 
specified in the data file solely in terms of locations and values 
of their non-zero entries.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
     It can be seen that in the final transformed matrix, we find 
a lot of entries zero. From this transformed matrix, the original 
matrix can be easily calculated just by the reverse operation of 
averaging and differencing i.e. the original image can be 
reconstructed from the transformed image without the loss of 
information. Thus, it yields a lossless compression of the 
image. However, to achieve more degree of compression, we 
have to think of the lossy compression. In this case, a 
nonnegative threshold value say ε is set. Then any detail 
coefficient in the transformed data whose magnitude is less 
than or equal to ε  is set to zero. It will increase the number of 
0’s in the transformed matrix and thus the level of 
compression is increased. So, ε =0 is used for a lossless 
compression. If the lossy compression is used, the 
approximations of the original image can be built up. The 
setting of the threshold value is very important as there is a 
tradeoff between the value of ε and the quality of the 
compressed image. The different thresholding methods we 
have used are: hard thresholding, soft thresholding and 
universal thresholding. These thresholding methods are 
defined as follows: 
                     
           T(ε,x)= 

 
       

           T(ε,x)= 
                                                       
 
           T(ε,x)= 
 
where σ is the standard deviation of the wavelet coefficients and 
N is is the number of wavelet coefficients.  
   Loosely saying, the compression ratio of the image is 
calculated by- the number of nonzero elements in original 
matrix : the number of nonzero elements in updated transformed 
matrix [13]. 

 
Fig. 6: A 8×8 image 

Fig. 7 : 2D array representing the Fig. 6 

64 2 3 61 60 6 7 57 
9 55 54 12 13 51 50 16 
17 47 46 20 21 43 42 24 
40 26 27 37 36 30 31 33 
32 34 35 29 28 38 39 25 
41 23 22 44 45 19 18 48 
49 15 14 52 53 11 10 56 
8 58 59 5 4 62 63 1 

32.5 0 0.5 0.5 31 –29 27 –25 
32.5 0 –0.5 –0.5 –23 21 –19 17 
32.5 0 –0.5 –0.5 –15 13 –11 9 
32.5 0 0.5 0.5 7 –5 3 –1 
32.5 0 0.5 0.5 –1 3 –5 7 
32.5 0 –0.5 –0.5 9 –11 13 –15 
32.5 0 –0.5 –0.5 17 –19 21 –23 
32.5 0 0.5 0.5 –25 27 –29 31 

Fig. 8.: Transformed array after operation 
on each row of  Fig. 7 

32.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 
0 0 0 0 4 –4 4 –4 
0 0 0 0 4 –4 4 –4 
0 0 0.5 0.5 27 –25 23 –21 
0 0 –0.5 –0.5 –11 9 –7 5 
0 0 0.5 0.5 –5 7 –9 11 
0 0 –0.5 –0.5 21 –23 25 –27 

Fig. 9.: Final Transformed Matrix after one step 

0,    if |x|<ε 

 
…… (Soft Thresholding) 

Sign(x)(|x|-ε),    otherwise 

………….. 

0,    if x<σ(2log2 N)1/2              

x,    otherwise 
…… 

0,    if |x|<ε 

x,   otherwise (Hard Thresholding) 

(Universal  
Thresholding) 



    In summary, the main steps of the 2D image compression 
using Haar Wavelet as the basis functions are: (a) Start with 
the matrix P representing the original image, (b) Compute the 
transformed matrix T by the operation averaging and 
differencing (First for each row, then for each column) (c) 
Choose a threshold method and apply that to find the new 
matrix say D (e) Use D to compute the compression ratio and 
others values and to reconstruct the original image as well. 
    Now we see the effect of one step averaging and 
differencing of an image. The Fig. 11 (a) is the original image 
and the Fig. 11 (b) is the transformed image after applying the 
one step averaging and differencing. The more steps produce 
more decomposition.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 
 
 

 
 
 

 
 
 
 

IV. QUALITY MEASUREMENT 
 

A database of twenty gray scale images each with size 256×256 
is used in the experiment. 
     We define the compression ratio (CR) as the ratio of the 
number of nonzero elements in original matrix to the number of 
nonzero elements in updated transformed matrix. The 
enthusiastic CR values for different thresholding methods and 
different ε is tabulated below in Table II: 
 
 

ε CR (Hard Threshold) CR (Soft Threshold) 
15 15.74 14.1 
20 17.11 15.87 
25 18.47 16.95 

 
The universal thresholding method generates the CR as 14.375. 
It is noted here that the hard thresholding provides the best CR. 
The soft thresholding gives better CR in comparison to 
universal thresholding method but it depends on choosing the 
value of ε. 
     The PSNR for gray scale image (8 bits/pixel) is defined by-  

)255(log20)( 10 MSE
dBPSNR ×=  

where MSE is the Man Squared Error defined by- 
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where I is original image, I1 is approximation of decompressed 
image and m, n are dimensions of the image. The PSNR values 
for different threshold values and techniques are shown in Fig. 
12. The soft thresholding method performs better than hard 
thresholding. The universal method reports PSNR as 24.875. 
These results are very much acceptable in most cases except in 
medical application where no loss of information is to be 
guaranteed. 
     However, the PSNR is not adequate as a perceptually 
meaningful measure of picture quality, because the 
reconstruction errors generally do not have the characteristic 
of signal independent additive noise and the seriousness of the 
impairments cannot be measured by a simple power 

 
 
/*row transformation*/ 
for(i=0;i<row;i++){w=col; 
 do{ k=0; 
/*averaging*/     for(j=0;j<w/2;j++) 
                             a[j]=((mat[i][j+j]+mat[i][j+j+1])/2); 
/*differencing*/ for(j=w/2;j<w;j++,k++)  
                                a[j]=mat[i][j-w/2+k]-a[k]; 
            for(j=0;j<row;j++) mat[i][j]=a[j]; 
            w=w/2; 
 }while(w!=1); 
} 
/*column transformation*/ 
for(i=0;i<col;i++){ w=row; 
 do{k=0; 
/*averaging*/    for(j=0;j<w/2;j++) 
                              a[j]=((mat[j+j][i]+mat[j+j+1][i])/2); 
/*differencing*/for(j=w/2;j<w;j++,k++)  
                              a[j]=mat[j-w/2+k][i]-a[k]; 
           for(j=0;j<w;j++) mat[j][i]=a[j]; 
           w=w/2; 
 }while(w!=1); 
} 
 

Fig. 10.: Code for the transformation 

Table II: Compression Ratio 

Fig. 11 (a): 1-level decomposition 

Fig. 11 (b): 2-level decomposition 



measurement. Small impairment of an image can lead to a 
very small PSNR in lieu of the fact that the perceived image 
quality can be acceptable. So, the perceptual quality 
measurement method quantified by MOS and PQS has been 
applied. The reference and test conditions are arranged in pairs 
such that the first is the unimpaired reference and the second is 
the same sequence impaired. The original image without com- 
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pression was used as the reference condition. The viewers are 
asked to vote on the second, keeping in mind the first. The 
method uses the five grade impairment scale: 5 (Excellent), 4 
(Good), 3 (Slightly annoying), 2 (Annoying) and 1 (Very 
annoying). At the end, the MOS is calculated as- 
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where i is grade and p(i) is grade probability. PQS defined by-  
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uses some properties of HVS relevant to global image 
impairments such as random errors and emphasizes the 
perceptual importance of structured and localized errors. Here, 
a linear combination of uncorrelated principal distortion 
measures Zi combined by partial regression coefficients bi are 
used. PQS is constructed by regressions with MOS. The MOS 
and PQS values obatined are tabulated below in Table III 
which are very much encouraging. 
 
 

ε=15 MOS PQS 
Hard Thresholding 4.675 4.765 
Soft Thresholding 4.80 4.875 

Universal 
Thresholding 

4.865 4.957 

      
V. DISCUSSION  

 
The number of decompositions determines the quality of 
compressed image. The number of decompositions also 
determines the resolution of the lowest level in wavelet 
domain. If a larger number of decompositions is used, it will 
provide more success in resolving important DWT coefficients 
from less important coefficients. The HVS is less sensitive to 
removal of smaller details. After decomposing the image and 

representing it with wavelet coefficients, compression can be 
performed by ignoring all coefficients below some threshold. 
In our experiment, compression is obtained by wavelet 
coefficient thresholding using different thresholding 
techniques like hard thresholding, soft thresolding and 
universal thresholding. All coefficients below some threshold 
are neglected and compression ratio is computed. 
Compression algorithm provides two modes of operation: 1) 
compression ratio is fixed to the required level and threshold 
value has been changed to achieve required compression ratio; 
after that, PSNR is computed; 2) PSNR is fixed to the required 
level and threshold values has been changed to achieve 
required PSNR; after that, CR is computed. It is noted that 
image quality is better for a larger number of decompositions. 
On the contrary, a larger number of decompositions causes the 
loss of the coding algorithm efficiency. Therefore, adaptive 
decomposition is required to achieve balance between image 
quality and computational complexity. PSNR tends to saturate 
for a larger number of decompositions. For each compression 
ratio, the PSNR characteristic has “threshold” which 
represents the optimal number of decompositions. Below and 
above the threshold, PSNR decreases. 
    At present, the most widely used objective distortion 
measures are the MSE and the related PSNR. They can easily 
be computed to represent the deviation of the distorted image 
from the original image in the pixelwise sense. However, in 
practical viewing situations, human beings are usually not 
concentrated on pixel differences alone, except for particular 
applications such as medical imaging, where pixelwise 
precision can be very important. The subjective perceptual 
quality includes surface smoothness, edge sharpness and 
continuity, proper background noise level, and so on. Image 
compression techniques induce various types of visual 
artifacts that affect the human viewing experience in many 
distinctways, even if the MSE or PSNR level is adjusted to be 
about equal. It is generally agreed that MSE or PSNR does not 
correlate well with the visual quality perceived by human 
beings, since MSE is computed by adding the squared 
differences of individual pixels without considering the spatial 
interaction among adjacent pixels. Some work tries to modify 
existing quantitative measures to accommodate the factor of 
human visual perception. One approach is to improve MSE by 
putting different weights to neighboring regions with different 
distances to the focal pixel [14]. Most approaches can be 
viewed as curve-fitting methods to comply with the rating 
scale method. In order to obtain an objective measure for 
perceived image fidelity, models of the human visual system 
(HVS) should be taken into account. It is well known that the 
HVS has different sensitivities to signals of different 
frequencies. Since the detection mechanisms of the HVS have 
localized responses in both the space and frequency domains, 
neither the space-based MSE nor the global Fourier analysis 
provides a good tool for the modeling. So, here the perceptual 
quality measurement method quantified by MOS and PQS has 
been applied and the results are encouraging. 
     The fundamental difficulty in testing an image compression 
system is how to decide which test images to use for 
evaluation. The image content being viewed influences the 
perception of quality irrespective of technical parameters of 
the compression system. A series of pictures which are 

Fig. 12.: PSNR values for various thresholding 

Table III: MOS and PQS values  



average in terms of how difficult they are for system being 
evaluated, has been selected. 
     In this paper, only the gray-scale images are considered. 
However, wavelet transforms and compression techniques are 
equally applicable to color images with three color 
components. We have to perform the wavelet transform 
independently on each of the three color components of the 
images and have to treat the results as an array of vectored-
valued wavelet co-efficients. In this case, in lieu of using the 
absolute value of the scalar co-efficient, a vector-valued co-
efficient is to be used. Furthermore, a number of ways can be 
used in which the color information can be used to obtain a 
wavelet transform that is even sparser. For example, by first 
converting the pixel values in an image from RGB colors to 
YIQ colors [15], we can separate the luminance information 
(Y) from chromatic information (I and Q). Once the wavelet 
transform is computed, the compression method can be 
applied to each of the components of the image separately. 
Since the human perception is most sensitive to variation in Y 
and least sensitive in Q, the compression scheme may be 
permitted to tolerate a larger error in the Q component of the 
compressed image, thereby increasing the scale of 
compression.  

 
VI. CONCLUSION 

 
A picture can say more than a thousand words. However, 
storing an image can cost more than a million words. This is 
not always a problem because now computers are capable 
enough to handle large amounts of data. However, it is often 
desirable to use the limited resources more efficiently. For 
instance, digital cameras often have a totally unsatisfactory 
amount of memory and the internet can be very slow. In these 
cases, the importance of the compression of image is greatly 
felt. The rapid increase in the range and use of electronic 
imaging justifies attention for systematic design of an image 
compression system and for providing the image quality 
needed in different applications. Wavelet can be effectively 
used for this purpose. A low complex 2D image compression 
method using Haar wavelets as the basis functions along with 
the quality measurement of the compressed images have been 
presented here. As for the further work, the tradeoff between 
the value of the threshold ε and the image quality can be 
studied  and  also  fixing  the correct  threshold value is also of   

great interest. Furthermore, finding out the exact number of 
transformation level required in case of application specific 
image compression can be studied. Also, more thorough 
comparison of various still image quality measurement 
algorithms may be conducted. Though many published 
algorithms left a few parameters unspecified, here good 
estimates of them for implementation have been provided. All 
these metrics, including ours, did very well in estimating the 
perceptual error, so that it is difficult to conclude any decisive 
advantage of one algorithm over another. 
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