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Abstract

In this work, we present a computational method for solving Volterra
integral equations of the second kind with weakly singular kernel which
is based on the use of Haar wavelets and properties of Block-Pulse-
Functions(BPF). Error analysis is worked out that shows efficiency and
the order of convergence of the method. Finally, we also give some
numerical examples.
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1 Introduction

Volterra integral equations arise in many problems pertaining to mathematical

physics like heat conduction problems. Several numerical methods for approx-

imating the solution of Volterra integral equations are known [1-10]. This

paper is focused on the solution of Volterra integral equations of the second

kind with weakly singular kernel via Haar function by taking advantage of the

nice properties of Haar wavelets.

In this paper we consider the following equation

u(x) = f(x) +

∫ x

0

K(x, t)

(x − t)β
u(t)dt, 0 ≤ t < x ≤ 1, 0 < β < 1, (1)
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where functions f ∈ C[0, 1] and K ∈ C[0, 1]2 are assumed to be sufficiently

smooth in order to guarantee the existence and uniqueness of a solution u ∈
C[0, 1], where C[0, 1] denotes the space of all continuous functions defined on

[0, 1]. (see [1], [5]).

2 Haar wavelet

Beginning from 1991 the wavelet method has been applied for solving integral

equations, a short survey on these applications can be found in [10]. The so-

lutions are often quite complicated and the advantages of the wavelet method

get lost, therefore any kind of simplifications are welcome. One possibility for

it is to make use of the Haar wavelets. In fact, Haar wavelets have a number

of advantages, including: simplicity, orthogonality and very compact support.

The main advantages of the Haar wavelets method are sparse representation,

fast transformation and possibility of implementation of fast algorithm in ma-

trix representation. The Haar basis is simplest instance of spline wavelets,

resulting when the polynomial degree is set to zero, so computational costs

with Haar wavelets is very low. So we use them for solving equation (1).

Definition: The Haar wavelet is the function defined on the real line R as:

H(t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t < 1
2

−1, 1
2
≤ t < 1

0, elsewhere

now for n = 1, 2, . . . , write n = 2j +k with j = 0, 1, . . . and k = 0, 1, . . . , 2j −1

and define hn(t) = 2
j
2 H(2jt− k)|[0,1]. Also, define h0(t) = 1 for all t. Here the

integer 2j, j = 0, 1, . . . , indicates the level of the wavelet and k = 0, 1, . . . , 2j−1

is the translation parameter. It can be shown that the sequence {hn}∞n=0 is a

complete orthonormal system in L2[0, 1] and for f ∈ C[0, 1], the series
∑

n <

f, hn > hn converges uniformly to f [12], where < f, hn >=
∫ 1

0
f(x)hn(x)dx.

3 Function Approximation

A function u(t) defined over the interval [0, 1) may be expanded as:

u(t) =
∞∑

n=0

unhn(t), (2)
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in practice, the first k-term of (1) are considered, where k is power of 2, so,

u(t) � uk(t) =
k−1∑
n=0

unhn(t) = uth(t), (3)

where, u = [u0, u1, . . . , uk−1]
t and h(t) = [h0(t), h1(t), . . . , hk−1(t)]

t. Similarly,

K(x, t) ∈ L2[0, 1)2 may be approximated as:

K(x, t) �
k−1∑
i=0

k−1∑
j=0

Kijhi(x)hj(t) = ht(x)Kh(t)

where K = [Kij ]0≤i,j≤k−1 and Kij =< hi(x), < K(x, t), hj(t) >>, approxima-

tion of the kernel K(x, t) by wavelets is known as standard representation. It

is a wavelet image of the kernel and is usually a sparse matrix.

4 Block-Pulse-Functions

We define a k-set of Block-Pulse-Functions (BPF) over the interval [0, T ) as:

Bi(t) =

{
1, (i−1)T

k
≤ t < iT

k
, for i = 1, 2, . . . , k

0, elsewhere
(4)

also, Bi is the i-th Block-Pulse-Function. In this paper, it is assumed that T

= 1, so BPFs are defined over [0, 1). The most important properties of BPFs

are disjointness, orthogonality and completeness. The disjointness property

can be obtained from the definition of BPFs:

Bi(t)Bj(t) =

{
0, i �= j

Bi(t), i = j
(5)

where, i, j = 1, 2, ..., k.

The other property is orthogonality:

< Bi(t), Bj(t) >=

{
0, i �= j
1
k
, i = j

(6)

the third property is completeness. For every u ∈ L2[0, 1), when k approaches

to the infinity, Parseval’s identity holds:∫ 1

0

u2(t)dt =
∞∑
i=1

u2
i ‖Bi(t)‖2.
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Now we present the Haar coefficient matrix H; it is a k × k matrix with the

elements

H = [hn(tj)]0≤n≤k−1,1≤j≤k,

where the points tj are the collocation points

tj =
j − 1

2

k
, j = 1, 2, . . . , k.

It can be shown that h(t) = HB(t) [11], where, B(t) = [B1(t), . . . , Bk(t)]
t, so

u(t) and K(x, t) can be re-approximated as:

u(t) � uth(t)

= Bt(t)Htu, (7)

and

K(x, t) � ht(x)Kh(t)

= Bt(x)HtKHB(t). (8)

Substituting (7) and (8) into (1) we get

Bt(x)Htu = f(x) + Bt(x)HtKH(

∫ x

0

B(t)Bt(t)

(x − t)β
dt)Htu

= f(x) + Bt(x)HtKHG(x)Htu (9)

where,

G(x) =

∫ x

0

B(t)Bt(t)

(x − t)β
dt.

Simply, t ∈ [ j−1
k

, j
k
), j = 1, 2, . . . , k, implies that B(t) = ej , where ej is the

j-th column of the identity matrix of order k. Now by evaluating (9) at the

collocation points xj =
j− 1

2

k
, j = 1, 2, . . . , k we obtain

et
jH

tu = f(xj) + et
jH

tKHG(xj)H
tu, (10)

now we have to evaluate G(xj), j = 1, 2, . . . , k. Simply, the disjointness

property of BPFs implies that

B(t)Bt(t) =

⎡
⎢⎢⎢⎣

B1(t) O

B2(t)
. . .

O Bk(t)

⎤
⎥⎥⎥⎦
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therefore,

G(xj) =

∫ j−1/2
k

0

B(t)Bt(t)

( j−1/2
k

− t)β
dt

=

∫ 1
k

0

B(t)Bt(t)

( j−1/2
k

− t)β
dt + · · ·+

∫ j−1
k

j−2
k

B(t)Bt(t)

( j−1/2
k

− t)β
dt +

∫ j−1/2
k

j−1
k

B(t)Bt(t)

( j−1/2
k

− t)β
dt

=

⎡
⎢⎢⎢⎣
∫ 1

k
0

( j−1/2
k

− t)−βdt 0

0
. . .

0 0

⎤
⎥⎥⎥⎦ + · · ·+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
. . .

0∫ j−1
k

j−2
k

( j−1/2
k

− t)−βdt

0
. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
. . .

0

0∫ j−1/2
k

j−1
k

( j−1/2
k

− t)−βdt

0
. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

(1 − β)(2k)1−β
Dj,

where,

Dj = Diag[(2j − 1)1−β − (2j − 3)1−β, (2j − 3)1−β − (2j − 5)1−β, . . . , 31−β − 1, 1, 0, . . . , 0]k×k,

in fact, the diagonal matrix Dj, j = 1, 2, ..., k is defined as follows:

Dj
mn =

⎧⎪⎨
⎪⎩

(2j − (2m − 1))1−β − (2j − (2m + 1))1−β, m = n = 1, 2, . . . , j − 1,

1, m = n = j,

0, m = n = j + 1, . . . , k.

Substituting evaluated G(xj) into (10) gives

et
jH

tu = f(xj) +
1

(1 − β)(2k)1−β
et

jH
tKHDjHtu,



3206 A. Shahsavaran

or

Aju = f(xj), j = 1, 2, ..., k, (11)

where,

Aj = et
jH

t{I − 1

(1 − β)(2k)1−β
KHDjHt}.

Solving linear system of equations (11) gives column vector u, therefore from

(3) we can obtain desired approximation uk(t) for u(t) at every point t ∈ [0, 1).

5 Error Analysis

In this section we assume that u(t) is a differentiable function with bounded

first derivative on (0,1), that is,

∃M > 0; ∀t ∈ (0, 1) : |u′(t)| ≤ M.

We may proceed as follows:

uk(t) =

k−1∑
n=0

unhn(t)

where, k = 2α+1, α = 0, 1, 2, . . . , then

‖u(t) − uk(t)‖2
E =

∫ 1

0

(u(t) − uk(t))
2dt

=

∞∑
n=2α+1

∞∑
n′=2α+1

unun′

∫ 1

0

hn(t)hn′(t)dt

=

∞∑
n=2α+1

u2
n

substituting hn(t) = 2
j
2 H(2jt − k), k = 0, 1, . . . , 2j − 1, j = 0, 1, . . . , implies

un =

∫ 1

0

2
j
2 u(t)H(2jt − k)dt,

but

H(2jt − k) =

⎧⎪⎨
⎪⎩

1, k.2−j ≤ t < (k + 1
2
)2−j

−1, (k + 1
2
)2−j ≤ t < (k + 1)2−j

0, elsewhere

(12)
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which implies that

un = 2
j
2

{∫ (k+ 1
2
)2−j

k.2−j

u(t)dt −
∫ (k+1)2−j

(k+ 1
2
)2−j

u(t)dt

}

using mean value theorem we have:

∃t1, t2 : k2−j ≤ t1 < (k +
1

2
)2−j, (k +

1

2
)2−j ≤ t2 < (k + 1)2−j

such that

un = 2
j
2

{
((k +

1

2
)2−j − k.2−j)u(t1) − ((k + 1)2−j − (k +

1

2
)2−j)u(t2)

}
= 2−

j
2
−1(u(t1) − u(t2)).

Using the mean value theorem

u2
n = 2−j−2(t2 − t1)

2u
′2(t0) (t1 < t0 < t2)

≤ 2−j−2.2−2j .M2

= 2−3j−2M2.

Therefore,

‖u(t) − uk(t)‖2
E =

∞∑
n=2α+1

u2
n

=
∞∑

j=α+1

(
2j+1−1∑
n=2j

u2
n)

≤ M2

∞∑
j=α+1

2−3j−2(2j+1 − 1 − 2j + 1)

=
M2

3

1

k2
,

hence, ‖u(t) − uk(t)‖E = O( 1
k
).

6 Numerical Examples

Example 1 [7]:

u(x) = x7(1 − 4096

6435

√
x) +

∫ x

0

u(t)√
x − t

dt,

with exact solution y(x) = x7.
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Example 2 [9]:

u(x) =
1√

x + 1
+

π

8
− 1

4
arcsin(

1 − x

1 + x
) − 1

4

∫ x

0

u(t)√
x − t

dt,

with exact solution u(x) = 1√
x+1

.

Table 1 and Table 2 shows the analytic and approximated solution for the

example 1 and example 2 at t = 0.1i for i = 0, 1, ..., 9 with k = 64 respectively.

Table 1
t Approximated solution Analytic solution

0.0 0.00000 0.00000

0.1 0.00000 0.00000

0.2 0.00001 0.00001

0.3 0.00024 0.00021

0.4 0.00160 0.00163

0.5 0.00877 0.00781

0.6 0.02870 0.02799

0.7 0.07907 0.08235

0.8 0.21977 0.20971

0.9 0.47522 0.47829

Table 2
t Approximated solution Analytic solution

0.0 0.98088 1.00000

0.1 0.95282 0.95346

0.2 0.91469 0.91287

0.3 0.87548 0.87705

0.4 0.84562 0.84515

0.5 0.81438 0.81649

0.6 0.79019 0.79056

0.7 0.76803 0.76696

0.8 0.74439 0.74535

0.9 0.72758 0.72547
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7 Conclusion

In [4] we used Haar wavelets for solving nonlinear Fredholm integral equations.

In present paper, Haar wavelets were used to solve linear integral equations

with weakly singular kernels. The benefits of the Haar wavelet method are

sparse matrices of representation, fast transformation and possibility of imple-

mentation of fast algorithms. Therefore, we apply the fast, local and multi-

plicative properties of Haar wavelets for solving linear Volterra integral equa-

tions with weakly singular kernels. Example 1 is solved in [7] using Bernstein

polynomials and example 2 is solved in [9] using the application of transfor-

mations of Korobov, Laurie and Sidi type in combination with the trapezoidal

quadrature rule, evidently, in both cases, the methods are somewhat more ac-

curate than our method. However, haar wavelet method is simplest and needs

less computations. In this article detailed error analysis is carried out that

shows high order convergence can be obtain easily by increasing the value of

parameter k, for obtaining the desired approximation.
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