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Online game players’ action sequences, while impor-
tant to understand their behavior, usually contain
noise and/or redundancy, making them unnecessar-
ily long. To acquire briefer sequences representa-
tive of players’ features, we apply the Haar wavelet
transform to action sequences and reconstruct them
from selected wavelet coefficients. Results indicate
that this approach is effective in classification when the
k-nearest neighbor classifier is used to classify players
based on dynamic time warping distances between re-
constructed sequences.
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1. Introduction

Keeping online game players playing requires finding
and fulfilling players’ demands and tailoring appropri-
ately contents to each player or group of players. In vir-
tual worlds such as online games, players are typically
identified by performance type such as killer, achiever, ex-
plorer, and socializer [1]. Such types should be exploited
to provide game contents that players favor. Examples
of content include more hunting opportunities for killers,
a wider variety of collectable items for achievers, longer
missions for explorers, and a higher frequency of social
events for socializers.

Online game players’ action sequences are crucial for
classifying player types, but noise or redundancy makes
them needlessly long. Rather than directly using action
sequences in classifying players, we previously used nor-
malized action frequency vectors (NAFV) [2] and hid-
den markov models (HMM) [3]. The NAFV requires no
parameter settings, costs relatively little, and effectively
classifies players whose action frequency distinctly dif-
fers. It is less effective, however, when differences are
less apparent despite dissimilar action sequences. The
HMM [4] classifies sequence data well, but its perfor-
mance depends on the initial structure and parameters.

We proposed a parameter-free approach [5] using ac-
tion transition probability and considering action infor-
mation in frequency and order. However, we found this

approach unsuitable for classifying players with similar
local behaviors but with different global structures, such
as classification of Type-I players performing mission A
before mission B and Type-II players vice versa. This is
because the action transition probability represents only
local changes in the sequence of interest.

In this paper, we apply Haar wavelet transform [6]
to action sequences and reconstruct them from selected
wavelet coefficients. By this, more compact sequences
are obtained representing important player features cover-
ing both local and global information. We employ the k-
nearest neighbor classifier [7] to classify unknown players
and dynamic time warping [8] to calculate distances be-
tween the reconstructed sequence of an unknown player
and those of known players. We evaluate this approach
with action sequences from an online game, “The ICE”
we are developing.

Related work in the literature focuses on players’ trails
or time series of locations visited, such as using trails
to determine the distance over time among members of
a social group [9] or a visualization tool for visualizing
player flows in virtual environments such as virtual mu-
seums [10]. Other work focuses on visualizing impor-
tant parts of trails [11] and on player clustering based on
trails [12].

This paper is organized as follows: Section 2 discusses
the Haar wavelet transform, Section 3 details dynamic
time warping, Sections 4 and 5 propose selecting wavelet
coefficients and evaluate performance, and Section 6 sum-
marizes the paper and mentions future work.

2. Haar Wavelet Transform

In the Haar wavelet transform concept, decomposition
involves obtaining Haar wavelet coefficients from an ac-
tion sequence. Reconstruction involves recovering the
original sequence from obtained coefficients. Our pro-
posal for selecting coefficients to achieve more compact
sequences representing important features is detailed in
Section 4.

We assume that length L of a sequence is a power of
2 and q � log2�L�. The ith Haar wavelet coefficient at
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Table 1. Example of Haar wavelet transform.

Resolution Averages x�k�i� Coefficients d�k�i�

k � 4 (9, 7, 1, 2, 4, 8, 5, 2) -
k � 3 (8, 1.5, 6, 3.5) (1, -0.5, -2, 1.5)
k � 2 (4.75, 4.75) (3.25, 1.25)
k � 1 (4.75) (0)

resolution order k, d�k�i�, is derived by

d�k�i� �
x�k�1�2i�1�� x�k�1�2i�

2
. . . . . . . (1)

where x�k�i��
x�k�1�2i�1��x�k�1�2i�

2 is the ith average at order k
between two corresponding adjacent values in order k�1.
Note that with this representation, kmax � q, and the orig-
inal sequence is represented by x � x�q�1��x�q�2�� � � � �x�q�L�.
An example of Haar wavelet decomposition of the se-
quence 9, 7, 1, 2, 4, 8, 5, 2 is shown in Table 1.

Reconstruction of a given sequence from its Haar
wavelet coefficients and averages is done using the fol-
lowing formulas:

x�k�2i�1� � x�k�1�i��d�k�1�i� . . . . . . . . (2)

x�k�2i� � x�k�1�i��d�k�1�i�� . . . . . . . . (3)

3. Dynamic Time Warping for Action Se-
quences

3.1. Action Coding

Let O denote the set of action symbols of interest
and �O� their number. As in [8], action sequence S �
S�1��S�2�� � � ��S�L� is numerically coded into �O� � L
time-series matrix X � �X�1��X�2�� � � � �X�L��, where X�i�
is a column vector with the element indexing the action
symbol of S�i� being 1 and other elements 0.

Consider, for example, the set of action symbols O �
�A�B�C�, and thus �O�� 3, where symbols A, B, andC are
represented by column vectors �100�t , �010�t , and �001�t .
In an action sequence such as S � A�B�C�C, it is coded to
X � ��100�t � �010�t � �001�t� �001�t �.

3.2. Dynamic Time Warping

Two time series of interest are considered similar if they
have the same structures, i.e., rise and fall patterns, al-
though they might have different scales on the time axis.
A good measurement for deriving the distance between
such series is the dynamic time warping (DTW) distance.
The DTW distance between time-series matrices X and
Y , D�X �Y �, having lengths LX and LY , is defined as fol-
lows [8]:

D�X �Y � � g�LX �LY � . . . . . . . . . . (4)

Fig. 1. Time-series matrices X and Y .

Fig. 2. Derivation of dynamic time warping distance be-
tween X and Y .

where

g�i� j� � min

��
�

g�i� j�1��d�i� j�
g�i�1� j�1��d�i� j�
g�i�1� j��d�i� j�

. . . (5)

g�i�0� �

�
0 i � 0
∞ i � 0 . . . . . . . . . (6)

g�0� j� �

�
0 j � 0
∞ j � 0 . . . . . . . . . (7)

and d�i� j� is the Euclidean distance between X�i� and
Y � j�.

Consider, for example, the set of symbols
O � �A�B�C�D�E�F� and two action sequences
x � C�D�F�E�B and y � C�A�D�D�F�E�B. The DTW
distance between corresponding time-series matrices X
and Y (Fig. 1), D�X �Y �, is 1.4, derived as shown in Fig. 2.

4. Reduction of Action Sequences

Given the set of action symbols O, below, we describe
our procedure for reducing the length of an action
sequence of interest. As an example, we use action
sequence x � A�B�C�C�A�B�C�C�A�A�A�B�B�B�A�A,
where O � �A�B�C� and thus �O�� 3.

� Derive corresponding time-series matrix X for action
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Fig. 3. Time-series matrix X .

Fig. 4. X after decomposition.

Fig. 5. X after coefficient selection.

Fig. 6. Reconstructed X .

sequence of interest x having length L1. In our exam-
ple, time-series matrix X is shown in Fig. 3.

� Decompose each row in X to obtain Haar wavelet
coefficients. Resulting coefficients for X are given in
Fig. 4.

� Reconstruct each row in X with selected Haar
wavelet coefficients as follows:

Following the same recipe in [6], the number of Haar
wavelet coefficients used to evaluate performance is
heuristically set to min�L�1��log2 L�4��. Recon-
struction of each row in X is started from the coef-
ficient at the lowest resolution order, i.e., d�1�1�, to
those at the next higher order, etc. At a given reso-
lution order, when the number of remaining coeffi-
cients that must be selected for reconstruction is less
the number of coefficients in that order, we propose
selecting remaining coefficients based on their total
energy value in decreasing order, where total energy

1. We assume that length L of each action sequence is adjusted so that L is
a power of 2.

of d�k�i�, E�k�i�, is defined as

E�k�i� �
�O�

∑
n�1

d2
�n�k�i� . . . . . . . . . . (8)

where d�n�k�i� is d�k�i� decomposed at row n of X . Re-
maining coefficients are then reset to zero. Assume
that four coefficients are selected in our example; X
resulting after selection of coefficients is shown in
Fig. 5.

� Reconstruct the action sequence with the above co-
efficients (Fig. 6).

� Reduce the size of X by sampling down a group of
repetitive and consecutive elements at each recon-
structed row to one element [6]. The reduced X is
given in Fig. 7.
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Fig. 7. Reduced X .

Fig. 8. A screen shot of The ICE.

5. Performance Evaluation

5.1. Players’ Logs
We obtained players’ logs from the online game The

ICE, now being developed at our laboratory, a screen shot
of which is shown in Fig. 8. The main game objects in-
volved in the study were the mission master (MM), who
assigned a mission to a player character (PC); three non-
player characters (NPCs), Ceris, Rodth, and Gelec, stat-
ically located at different locations and with whom PC
must interact -(chat, help, trade)- to complete the assigned
mission; the item-shop NPC from which PC bought items;
and monster ants, randomly located throughout the map,
that PC must exterminate. Actions available in The ICE
are summarized in Table 2, where for Talk the initial letter
of a corresponding NPC is used.

A group of 30 male test-players, on average 20 years
of age, participated. These players consisted of third-year
and fourth-year computer science undergraduate students
with no experience in playing The ICE. They were equally
divided into three subgroups G1, G2, and G3. Subgroup
members were then asked to complete three mission ses-
sions in the following order:

G1: M1 session � M2 session � M3 session,

G2: M3 session � M1 session � M2 session,

G3: M2 session � M3 session � M1 session.

During a mission session, players were asked to repeat
their missions but permitted to quit on their own will.

Table 2. Action list of The ICE.

Action Symbol
Attack with a snow ball a
Chat c
Walk w
Trade t
Talk (*)
Pick up potion p
Use potion u
Dead d
Warp r

Table 3. Action-sequence length statistics before and after
reduction.

MEAN VAR
Before 885.8 286504.7
After 30.1 13.9

They could move freely and attempt any command, but
were not allowed to do any unassigned mission. A brief
description of each mission is given as follows:

M1: Item Delivery. PC must deliver an item from MM
to a specific NPC and then deliver an item from that
NPC to another NPC, etc.

M2: Item Trade. PC must trade with NPCs to increase
the amount of money initially provided by MM. PC
uses the initial money to buy one of the three items
from the item-shop NPC and sells the item at a
higher price to one of the three NPCs, who only buy
a particular item.

M3: Monster Ant Extermination. PC must help Rodth
by exterminating five monster ants.

After checking players’ logs, we found, not surpris-
ingly, that most players soon dropped their game missions
to play the game on their own. This made it difficult to
correctly classify them based on their logs. To classify
players, below, we selected four players from each sub-
group who played the assigned missions. Table 3 shows
the mean and variance of lengths before and after action
sequence are shorten.

5.2. Player Classification
As a classifier, we use the k nearest neighbor (k-nn)

classifier. We determined classification performance in
three cases, mutually differing in the calculation of the
distance between a pair of players, i.e.,

Case 1: The sum of DTW distances between rows of
the reduced time-series matrices was used.

Case 2: The sum of DTW distances between rows of
original time-series matrices was used.
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Table 4. Case 1 classification performance.

G1 G2 G3
G1 3 1 0
G2 1 3 0
G3 0 0 4

G1 G2 G3
G1 3 0 1
G2 1 3 0
G3 0 0 4

G1 G2 G3
G1 2 1 1
G2 1 3 0
G3 1 0 3

k � 1 k � 3 k � 5

Table 5. Case 2 classification performance.

G1 G2 G3
G1 4 0 0
G2 0 4 0
G3 3 1 0

G1 G2 G3
G1 4 0 0
G2 0 4 0
G3 2 2 0

G1 G2 G3
G1 4 0 0
G2 1 3 0
G3 3 1 0

k � 1 k � 3 k � 5

Table 6. Case 3 classification performance.

G1 G2 G3
G1 2 1 1
G2 1 0 3
G3 0 2 2

G1 G2 G3
G1 3 0 1
G2 1 0 3
G3 2 2 0

G1 G2 G3
G1 3 0 1
G2 2 0 2
G3 1 3 0

k � 1 k � 3 k � 5

Case 3: The sum of Euclidean distances between rows
of action-transition-probability matrices [5] was
used.

Tables 4-6 show the classification performance for
each case over three variations of k, in which indi-
vidual results were obtained by leave-one-out cross-
validation [7]. The i� jth element indicates the number of
times the k-nn classifier labels an unknown player of sub-
group Gi to subgroup Gj. The k-nn classifier performance
in case 1 outperforms those of other cases.

Analyzing results, we found that the k-nn in case 2 had
difficulty in identifying G3 because partial sequences of
multiple attacks typically seen in M3 were also seen in
M2. The k-nn in case 1 presented no such difficulty indi-
cating that the proposed distance measure is more reliable.
The k-nn in case 3 had the worst performance because
the distance measure in [5] could not cope with global
structures, i.e., mission sequences. However, it could well
classify the players in G1 because they walked a lot dur-
ing play, making their transition probability from walk to
walk relative high and easily classifiable.

6. Conclusions and Future Work

We have described how to calculate the distance be-
tween players’ action sequences for classifying online-
game players. The described distance measure is the dy-
namic time warping distance between the reduced time-
series matrices of a pair of players of interest. We applied
the Haar wavelet transform to decompose time-series ma-
trices derived from action sequences and to reconstruct
them based on a set of Haar wavelet coefficients selected

by our energy-based proposal. We evaluated performance
using the online game The ICE, indicating that the k-nn
classifier using the aforementioned distance measure out-
performs those using conventional distance measures. We
plan to apply the distance measure to online-game player
clustering and visualization.
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