
Habit Formation and Dynamic Demand Functions
Author(s): Robert A. Pollak
Source: Journal of Political Economy, Vol. 78, No. 4, Part 1 (Jul. - Aug., 1970), pp. 745-763
Published by: The University of Chicago Press

Stable URL: http://www.jstor.org/stable/1829929 .

Accessed: 18/11/2013 10:24

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of

content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms

of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Journal
of Political Economy.

http://www.jstor.org 

This content downloaded from 146.186.114.232 on Mon, 18 Nov 2013 10:24:24 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ucpress
http://www.jstor.org/stable/1829929?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Habit Formation and Dynamic Demand 
Functions 

Robert A. Pollak 
University of Pennsylvania 

Most economists would agree that past consumption patterns are an 
important determinant of present consumption patterns, and that one 
ought to distinguish between long-run and short-run demand functions. 
But although the distinction between long-run and short-run behavior is 
traditional in the theory of the firm, it is seldom made in the theory of 
consumer behavior. 

If we regard demand theory as a theory of how a given amount of money 
(expenditure, called income) is allocated among goods, then-in a world 
without consumer durables-there are three reasons why long- and short- 
run demand functions might differ. (i) The consumer may have contrac- 
tually fixed commitments which prevent him from adjusting some portion 
of his consumption (for example, housing) in response to changes in 
prices or income. When these fixed commitments lapse, he is able to 
adjust to his long-run equilibrium. (ii) The consumer may be ignorant of 
consumption possibilities or of his own tastes outside the range of his past 
consumption experience. In this case his adjustment to a new price-income 
situation will involve a time-consuming learning process. (iii) Finally, 
goods may be "habit forming" so that an individual's current preferences 
depend on his past consumption patterns. In this case a change in prices or 
income will cause a change-in consumption which will induce a change in 
tastes, which will cause a further change in consumption. 

In this paper I formulate a model of consumer behavior based on habit 
formation, beginning with a specific class of demand functions derived 
from the "modified Bergson family" of utility functions. The properties of 
these utility functions and the corresponding demand functions are 
briefly summarized in Section 1. I then postulate that the parameters 

The research was supported by grants GS-1462 and GS-2304 from the National 
Science Foundation. I am indebted to J. R. Behrman, M. McCarthy, E. C. Prescott, 
D. B. Wales, and T. J. Wales for helpful comments, but retain sole responsibility for 
errors. 
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746 JOURNAL OF POLITICAL ECONOMY 

of these functions (and hence the corresponding demand functions) 
depend in a specific way on past consumption; I introduce a specific 
habit-formation hypothesis and consider the short-run properties of the 

implied system of dynamic demand functions in Section 2. In the following 
section the long-run properties of the dynamic system are examined, and 

in Section 4 it is shown that the dynamic system is locally stable. In the 

concluding section I survey the literature on dynamic demand func- 

tions and consider several possible directions in which the model can be 

generalized. 

1. A Family of Static Utility Functions 

In an earlier paper (Pollak 1967) 1 considered the family of utility functions 

defined by 

n 

U(X) = : ak log (Xk - bk) ai > 0, (xi - bi) > ,O ak = 1 (1.1) 
k=1 

n 

U(X) = -_ ak(Xk - bk)c C < 0, ai > O,(x, - bi) > 0, (1.2) 

k= 1 
n 

U(X) = - ak(Xk - bkX) < c < 1, ai > 0, (xi - bi) > 0, (1.3) 

n 

U(X) = - ak(bk - Xkc) C > 1, ai > ?, (bi -Xi) > ?, (1.4) 

n 

U(X) = - 2 ake(bk Xk)1ak ai > 0, (1.5) 
k=1 

where xi denotes the level of consumption of the ith good. The demand 

functions corresponding to (1.1) are of the form 

hi(p, [) = bi --a2 bkpk + p , (1.6) 
Pi k Pi 

where pi denotes the price of the ith good and ju denotes total expenditure, 
henceforth referred to as "income." It is convenient to write (1.6) as 

n 
hi(P, ,u) = bi- yi(P) 2 bkPk + Yi(P)P, (1.7) 

k= 1 

where 

yi(P) = ai (1.8) 
Pi 

The demand functions corresponding to (1.2), (1.3), and (1.4) are of the 

form (1.7), where 

yi(P) = 

an ) 1I/ [.- Pk ')ak) (1.9) 
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DEMAND FUNCTIONS 747 

Those corresponding to (1.5) are of the form 

n 

hi(P, [) = - Yi(P) E bkPk + yi(P),l + Wi(P), (1.10) 
k = 1 

where 

Y /(P) = ai akPk) (1.lla) 
and 

Wi(P) = -ai logpi + yi(P) akpk 1ogpk. (I.llb) 
k 

The utility functions (1. 1)-(1.5) are additive; that is, 

n 

F[U(X)] = uk(Xk), 

k=1 

where F' > 0. The corresponding demand functions, (1.7) and (1.10), are 
locally linear in income; that is, they are of the form hi(P, i') = xi(P) + 

yi(p)HUil 

The same paper showed that, under strong regularity conditions, the 
utility functions (1.1)-(1.5) are the only additive direct utility functions 
which yield demand functions locally linear in income.2 

If the b's are all equal to 0, (1.1), (1.2), and (1.3) become 

n 

U(X) = 2 ak log9xk ai > 0 ak = 1, (1.12) 

n 

U(X) = akxk ai > 0 c<0, (1.13) 

n 

U (X) = _ 
2 akXk. ai > 0 < c < 1. (1.14) 

k= 1 

1 The qualification "locally" is necessary because (i) in some cases the utility 
function is not defined over the entire commodity space and hence the demand 
functions are not defined over the entire price-income space, and (ii) nonnegativity 
constraints on the x's were ignored in deriving the demand functions. Therefore, the 
demand functions (1.7) and (1.10) are appropriate only in price-income situations in 
which they imply that optimal consumption of each good is nonnegative, and in 
which the appropriate regularity conditions are satisfied at the implied optimum. 
For example, in the case of (L.1), (1.2), and (1.3), the regularity condition xi - bi > 0 
is satisfied if and only if yi(P)(, - bkpk) > 0. Since yi(P) > 0, this holds if and 
only if tz bkPk > 0. If bi > 0, then the regularity condition xi - bi > 0 implies 
the nonnegativity condition, xi > 0. If bi < 0, then the nonnegativity conditions imply 
an additional constraint on admissible price-income situations: bi- yi(P) 2 bkPk + 

yi(P)/z > 0. The conditions corresponding to (1.4) and (1.5) can be derived in a 
similar manner. We consider only regions of the price-income space in which these 
restrictions hold, so the demand functions (1.7) and (1.10) are appropriate. 

2 By insisting that the utility function be differentiable I ruled out the "fixed 
coefficient" utility function 

U(X) = min 
(Xk- bk) 

ai > 0. 
k ak 
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748 JOURNAL OF POLITICAL ECONOMY 

That is, they reduce to the "Bergson Family" of utility functions whose 

indifference maps correspond to the isoquant maps of the CES class of 

production functions (Bergson 1936; Samuelson 1965, p. 787-88). The 

demand functions corresponding to (1. 12)-(1.14) exhibit "expenditure pro- 

portionality": hi(P, u) = yi(P)tL. The utility function (1.4) is inadmissible 

when all of the b's are 0. 

The demand functions (1.6) correspond to the well-known Klein-Rubin 

linear expenditure system which has been estimated by Stone (1954), 

Powell (1966), Yoshihara (1969), and others. The indifference map of the 

corresponding utility function (1.1) is homothetic to the point (b1, . . ., ba). 

If the b's are all positive and income is greater than E2k bkPk, it is legitimate 

to describe the individual as purchasing necessary quantities of the goods, 

(b, . . ., bj), and then dividing his remaining or " supernumerary" income, 

u- Z bkpk, among the goods in fixed proportions, (a, .. ., a,,,).3 The 

income-consumption curves are straight lines radiating upward from the 

point (b1, . . ., b). If the b's are all negative it makes no sense to describe 

the individual as purchasing a necessary (negative) collection of goods and 

dividing his supernumerary income (which is greater than his actual 

income) in constant proportions (a, . . ., an) among the goods. When the 

b's are all negative, the utility function (1.1) is defined over the entire 

commodity space. But the demand functions (1.6) were derived without 

regard to nonnegativity constraints on consumption and therefore co- 

incide with the true demand functions only when they imply nonnegative 

consumption of all goods. 

When all goods are consumed in positive quantities, the income- 

consumption curves are linear, and the linear extensions of these income- 

consumption curves pass through the point (b1, . . ., b,). Thus, the 

income-consumption curves can be described as radiating upward from 

the point (b1, . . ., b), regardless of the signs of the b's.4 

The indifference maps corresponding to (1.2) and (1.3) are homothetic 

to the point (b1, . .., bn) and the income-consumption curves (or their 

linear extensions) radiate upward from this point. The indifference map 

corresponding to (1.4) is homothetic to (b, . . ., b3), but this point must lie 

in the first quadrant to satisfy the regularity condition (bi - xj) > 0. The 

income-consumption curves may be described as converging to this point, 

which may be interpreted as a "bliss point." 

The indifference map of (1.5) may be thought of as homothetic to the 

point (-oo,. .., -oo); the income-consumption curves are parallel 

straight lines. 

3 The utility function (1.1) is not defined for commodity bundles in which any xi is 
less than the corresponding bi, so the demand functions (1.6) are not appropriate 
when income is less than _ bkpk; in this case, we can say nothing about behavior. 

4 The b's need not all be of the same sign. In (1.6), if bi is positive (negative) the 

demand for the ith good is inelastic (elastic), so if the x's are taken to be broad 
commodity groups, one would expect positive b's. 
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DEMAND FUNCTIONS 749 

2. Habit Formation: Short-Run Utility Functions and Short-Run Demand 
Functions 

In this Section I modify the static utility functions (1. 1)-(I.5) to allow past 
consumption to influence current tastes. 

It is best to begin with a simple example based on the utility function 
(1.1) with positive b's: 

n 

U(X) = ak log(x - bk), ai > O, bi > O, (xi - bi) > O.,ak = 1. 
k=1 k 

Although the b's can be interpreted as a "necessary" collection of goods, 
there is no presumption that they are physiologically rather than psycho- 
logically necessary. Indeed, it seems plausible that the " necessary" 
quantity of a good should depend-at least in part-on past consumption 
of that good. The simplest assumption is that the necessary quantity of 
each good is proportional to consumption of that good in the previous 

period: that is 

bit = ixit2-1, 0 _ /i < 1, (2.1) 

where bit is the value of bi in period t, xit the value of xi in period t, and Pi a 
"habit formation coefficient."5 A more general assumption is that the 
necessary quantity of each good is a linear function of consumption of that 
good in the previous period. That is 

bit = b0 + Pixit 1, ? _ fi < 1. (2.2) 

Here b`* can be interpreted as a "physiologically necessary" component 
of bit and /ixit - 1 as the "psychologically necessary" component. 

If all goods are subject to habit formation of the type described by (2.2), 
the utility function (1.1) becomes 

Ut(Xt) = 2 ak log (xkt - bkt) ai > O, (xit - bit) > ,O ak = 1, 
k=l k 

(2.3) 

where bit is defined by (2.2). 
In period t the individual is supposed to choose x1t,..., xt which 

maximize (2.3) subject to the budget constraint 

n 

Z PktXkt = It 
k=1 

5 The requirement fi < 1 is a stability condition. 
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The resulting demand functions (suppressing the time subscripts of the 
p's and ,u) are of the form 

hit(P, A4, Xt - 1) = b* - (ai/pi) E Pkbk + (ai/pi)p + f3ixit- 1 
k 

- (ailPi) 2 PkgkXkt -1 
6 (2.4) 

k 

These short-run demand functions, like their static counterparts (1.6), are 
locally linear in income. Since the b's are linear in past consumption and 

since current consumption depends linearly on the b's, present consump- 
tion of each good is a linear function of past consumption of all goods. 
Since the /3's are positive, there is a positive relation between past and 

current consumption of each good, [Ohit(P, A, Xt- )]/(xit - ) = i - 

ai/i > 0?7 

The " habit formation " assumptions of (2.1) and (2.2) imply that 

consumption in the previous period influences current preference and 

demand, but that consumption in the more distant past does not. This 

assumption may be generalized by allowing the necessary quantity of each 
good to depend on a geometrically weighted average of all past consump- 
tion of that good. The analogues of (2.1) and (2.2) are 

bit = Fit - 1 (2.5) 
and 

bit = bM + fliyit-i, (2.6) 

where 
00 

Yit-i = (1-8) : 'xjit 1 i, 0 < 8 < 1. (2.7) 

I assume that the "memory" coefficient, 8, is the same for all goods.8 If 
8 = 0, (2.5) and (2.6) reduce to (2.1) and (2.2), respectively. 

If (2.6) is substituted into (2.3) we obtain a dynamic utility function 
which depends on all past levels of consumption, not just on consumption 
in the previous periods. The corresponding demand functions are of the 

same form as (2.4), except that xit-1 is replaced by Yit,-i Since yit-1 
depends linearly on past consumption of the ith good, it is easy to show 

that, ceterisparibus, a higher level of past consumption of a good implies a 

higher level of present consumption of that good. 

6 The regularity conditions for (2.3) and (1.1) are identical, and as in the case of 
(1.1), they imply /t - bktPkt > 0. Hence, a decline in income (price constant) may 
result in an inadmissible price-income situation (for example, one in which the 
demand functions are undefined). Furthermore, with habit formation, an increase in 
income from an initially admissible price-income situation may change the b's in such 
a way that the initial price-income situation becomes inadmissible. 

7 And a negative relation between past consumption of a good and current con- 
sumption of every other good: [ahkt(P, A, Xt - 1)]/xit- = (-akPifl)/pk < 0, i : k. 

8 I have not yet been able to establish stability when different goods have different 
S's. 
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DEMAND FUNCTIONS 751 

The requirement that the b's are positive permits us to interpret them as 

a necessary collection of goods, but the utility function (2.3) and the de- 

mand functions (2.4) are defined for negative as well as positive b's. Even 

if b, and bit are negative, the short-run demand functions retain all of the 

general properties described above. The only casualty is the interpretation 

of bN and bit as components of a necessary basket. But the habit hy- 

pothesis does not require this interpretation. The essence of the habit 

hypothesis is (i) that past consumption influences current preferences and 

hence, current demand and (ii) that a higher level of past consumption of a 

good implies, ceteris paribus, a higher level of present consumption of that 

good. It is easily verified that this is true for (2.4) regardless of the signs of 

bit and bt. 
The four habit-formation hypotheses can be applied to the utility 

functions (1.2)-(1.5) with little further difficulty. The demand functions 

(1.7) and (1.3) can be written as 

hit(P, - bit- yi(P) 2 bktpk + Yi(P)bL, (2.8) 

hit(P, ) = bit - y(P) E bktPk + Yi(P)P + woi(P), (2.9) 

where bit is given in terms of past consumption by the appropriate habit- 

formation hypothesis and time subscripts on prices and income have been 

suppressed. However, regularity conditions make certain habit-formation 

hypotheses incompatible with certain utility functions; the regularity 

conditions specified for (1. I)-(1.5) in terms of the bis must be satisfied by 

the bits implied by past consumption. 

These short run-demand functions are, of course, similar to their static 

counterparts: consumption of each good is an increasing linear function of 

income and its own past consumption, and a decreasing linear function of 

the past consumption of all other goods. 

3. Long-Run Demand Functions and Utility Functions 

This section considers the existence and characteristics of the long-run 

equilibria associated with the habit-formation model of Section 2. The 

dynamics of the model (that is, the stability of equilibrium) are considered 

in Section 4. 

Again I begin with an example based on the utility function (1.1) and the 

habit formation postulate (2.2). The implied short-run demand functions 

(2.4) have already been described in detail. 

Given the consumption vector of period 0, and given prices and income 

of period 1, the short-run demand functions yield a consumption vector 

for period 1. In a "steady state" or " long-run equilibrium," the optimal 

consumption vector for period 1 will be identical with the consumption 
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vector of period 0. And, if prices and income remain constant over time, 

the optimal consumption vector in every subsequent period will also be 

equal to the consumption vector of period 0. 

The long-run equilibrium consumption vector could be found by solving 

the short-run demand functions (2.4) under the assumption that xit = 

xit-1 = xi for all i. But an alternative route is somewhat simpler. The 

first-order maximization conditions corresponding to (2.3) are 

ai(xit - bit) = (-A)pi i = 1, . . ., n, (3.1) 

2 PkXkt = 
k 

In the short run, the utility maximizing x's must satisfy (3.1), where the 

b's are determined by past consumption. But in the long-run equilibrium, 

the b's are given by bi = b* + f3ixi, where xi is the long-run equilibrium 

value of xit. Thus, in the long-run equilibrium the x's must satisfy 

a:/(xbi - b /3Pixi) = (-v)pi i = 1 ... ., n, (3.2) 

PkXk = p.9 
k 

Solving (3.2) for xi yields 

(1pi) (1p -V)(i 

Multiplying (3.3) by Pi, summing over all goods, solving for (1/- v), and 

substituting into (3.3), we obtain the " long-run " or " equilibrium" demand 

functions: 

ht(P,A) = Bi - 
A 

' pkBk + Ai-, (3.4) 
Pi k Pi 

where 

A [ -ai V akl Bi = 1 (3.5) 

Equation (3.4) can be written as 

hi(P,) = Bi - ri(P) 2PkBk + ri(P)I, (3.6) 
k 

where 

Pr(p) = Ai (3.7) 
Pi 

9 In the short run, the value of the Lagrangian multiplier, A, depends on the values 

of the b's and hence on past consumption. Thus, it is necessary to introduce a new 
symbol, v, for the " long-run " value of the Lagrangian multiplier. 
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Tj(P) is the partial derivative of the long-run demand function with respect 
to income, and can be written as 

7(P) [ iP / [) PkYk(Pj, (3.7a) 

where yj(P) is the partial derivative of the short-run demand function with 
respect to income (1.8): y2(P) = ai/pz. 

The " long-run demand functions" (3.6) show the steady-state consump- 
tion patterns consistent with the short-run demand functions (2.4). These 
long-run demand functions were not derived by maximizing a long-run 
utility function, and they are not the demand functions implied by the 
utility function Ek ak log [Xk (b*+ ?kXk)]. 

Demand functions derived from utility functions satisfy the Slutsky 
symmetry conditions. But the long-run demand functions (3.4) were not 
derived from a utility function; they were defined as steady-state or 
equilibrium values corresponding to the short-run demand functions (2.4). 
In general, there is no guarantee that long-run demand functions defined in 
this way will satisfy the Slutsky symmetry conditions, or that they can be 
"rationalized" by a "long-run utility function."10 But in this case it is 
obvious that the long-run demand functions (3.4) can be rationalized by 
the long-run utility function 

U(X) = Aklog(xk-Bk), Ai > 0 (xi - Bi) > 0, Ak 1, (3.8) 
k k 

where Ai and Bi are defined by (3.5).11 And since these long-run demand 
functions (3.5) can be derived from a utility function, they must satisfy 
the Slutsky symmetry conditions. 

The procedure used to find the long-run demand functions correspond- 
ing to (2.4) can be used in the other cases as well. The long-run demand 
functions corresponding to (2.8) are of the form (3.6) where 

(P) =[()( P] I[ k (p) ] (3.9a) 

and 

Asi=(1 Bi -= 1 (3.10) 

These long-run demand functions can be rationalized by the long-run 
utility functions corresponding to (1.2), (1.3), and (1.4) where the a's and 
b's are replaced by the corresponding A's and B's. Equation (3.9a) can be 
written as 

J(P) = [I - f]/[ j4 -PkYk(P) (3.9b) 

10 This is not quite true (see Gorman 1967). 
11 Clearly Ai > 0 and I Ak = 1. If .- is an admissible long-run equilibrium, then 

[i- (be' + gXk)I > 0, so (x - B) > 0. 
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where yi(P) is defined by (1.8). The long-run demand functions correspond- 

ing to (2.9) are of the form 

hi(P, t) = Bi - ri(P) > PkBk + rj(P), + Qi(P), (3.11) 
k 

where 

r1(P) = Ai/ (I PkAk (3.12a) 

Qj(P) = -Ai logpi + rF(P) :pkAk lg Pk, (3.13) 
k 

and 

Ai= i:, Bi= (3.14) 

These long-run demand functions can be rationalized by a long-run 

utility function obtained from (1.5) by replacing the a's and b's by the 

corresponding A's and B's. Equation (3.12a) can be written in the form 

(3.9b) where yi(P) is defined by (1.10).12 

These results can immediately be extended to the habit hypothesis (2.6). 

In this case a long-run equilibrium or steady-state consumption vector is 

one which, if it prevailed in period 0 and in every previous period, would be 

optimal in period 1 (and, hence, in every future period). But if consumption 

of each good has been constant since time out of mind, Yit -1 is equal to 

it_- 1. Therefore, the long-run equilibrium determined for the habit 

hypothesis (2.4) applies to (2.6) as well. 

Thus, the long-run demand functions and utility functions correspond- 

ing to the short-run utility functions and demand functions of Section 2 are 

of the same general form as their short-run counterparts. The value of the 

parameter c is the same in both the long run and the short run, but the 

other parameters differ, and the habit-formation coefficients (the fl's) enter 

into these parameters. The long-run equilibrium does not depend on the 

value of the "memory" coefficient, S. 

Not every habit-formation assumption is compatible with every utility 
function; some combinations necessarily violate the regularity conditions 
and hence are inadmissible. For example, if the utility function is (1.4), 
and habit formation is defined by (2.1), the regularity condition 

12 In the fixed coefficient case described in footnote 2, the long-run demand 
functions are of the form 

h (P. = B [At/(2 PkAk)] 2 PkBk + [Ai/(2 Pk~k)] A, 

where A, and BA are defined by (3.14). These demand functions can be rationalized by 
the long-run utility function 

U(X) = min (Xk-Bk) 
k Ak 
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(bit - xit) > 0 is necessarily violated in the long-run equilibrium, since 

fixi - xi= xi(fi - 1) < 0 for all xi > 0, and 0 < pi < 1. In this case the 
habit-formation assumption (2.1), with /3i < 1, implies that the bliss point 
is less than past consumption, so the system is incompatible with constant 
prices and income. 

4. Dynamics 

This section shows that the system of dynamic demand functions 
introduced in Section 2 are locally stable. To prove this, it is convenient to 
write the demand functions in matrix form. Let bt, b* and Xt denote the 
column vectors whose elements are bit, b0, and xit, respectively, and let: 
denote the diagonal matrix, diag (#i, . . ,A). Then the habit-formation 
hypothesis (2.4) can be written as 

bt = b* + $Xt_1, (4.1) 

and the habit-formation hypothesis (2.6) as 

bt = b* + $Yt11, (4.2) 

where Y,1 denotes the column vector whose elements are Yit-,. The 
vector Yt 1 is defined by the matrix analogue of (2.7): 

Go 

Yt-l = (- 8) :2 sixt-1-3. (4-3) 
j=o 

Let Pt and yt denote the column vectors whose elements are Pit and 

yit(Pt), respectively, and let [tt denote the level of income in period t. Using 
this notation, the system of demand functions (2.8) becomes 

Xt = bt- ytP'b + ytp-t, (4.4) 

where Pt denotes the transpose of Pt, and (2.9) becomes 

Xt = b- ytPtbt + ytI-tt + cot, (4.5) 

where Wt is the column vector whose elements are w2(Pt). 
I first show that the system of dynamic demand function (4.4) and (4.5) 

are locally stable under the habit-formation hypothesis (4.1) and then that 
they are stable under (4.2). 

If X0 (that is, the consumption vector of period 0) is given, then (4.4) 
determines X1 as a function of P1, Bu, and X0. In the same way, X2 is deter- 
mined by (4.4) as a function of P2, ,u2, and X1, or, more conveniently, as a 
function of XO, P1, U, ,P2, t42. Thus, for any initial consumption vector X0 
and any price-income sequence {(P1, g1), (P2, U2), (P3, H3),*** }, (4.4) deter- 
mines the corresponding consumption sequence {X1, X2,... 

Section 3 identified the equilibrium consumption vector X* corre- 
sponding to the price-income situation (P*, fc*). Clearly, if X0 = X* and 
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{P1, ,LD, (P2, 12), ... } = {(P*, At*), (P*, I*), . . . }, then {X1, X2, . . . } = 

{X*, X*,... }. The present Section shows that if X0 is sufficiently close 

of X*, then the consumption sequence corresponding to {(P*, tL*), 

(P*, ,*),... } will converge to X*. The discussion of dynamic stability is 

inevitably complicated by regularity conditions, for example (xit - bit) > 0, 

and nonnegativity conditions which must be satisfied in every time period. 

We begin by ignoring these conditions. 

Since prices and income are assumed constant over time, we drop the 

time subscription on Pt, [tt, and yt. Substituting (4.1) into (4.4) yields 

Xt = MXt-j + d, (4.6) 

where 
M = (I - yP')$ (4.7) 

and 

d = (I - yP')b* + ytz. (4.8) 

It is easily verified that Xt is given by 

t= MtX + [:2 Mi d. (4.9) 

Thus the stability of the system of difference equations (4.6) rests on the 

following theorem. 

Theorem: Let M be the matrix defined by (4.7) where y and P are n x 1 

vectors with positive elements such that P'y = 1, and : is the diagonal 

matrix diag (f, . . ., /3,,) where 0 ? /i < 1; then the characteristic roots of 

M are all less than 1 in modulus. (The proof of this theorem is in the 

Appendix.) 

If the characteristic roots of M are less than 1 in modulus, it is well 

known that 

lim Mt = 0 
t Ad 0 

and 
t-1 

lim M = (I -M)- 
t-+00 j=Q 

so the system of difference equations (4.6) converge to 

X = (I - M)-1d. (4.10) 

But the stability of the system of dynamic demand functions requires 

more than the stability of the difference equation system (4.6). It is also 

necessary to show that the nonnegativity and regularity conditions inherent 

in the consumption problem are satisfied in every time period. For 

example, in the case of the dynamic version of (1.1), (1.2), and (1.3) we 

must have (xit - bit) > 0 and xit > 0 for all i and t. I shall show that 
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corresponding to every admissible price-income situation there exists a 

neighborhood of the long-run equilibrium such that, for initial values of X 

in this neighborhood (i) the system (4.4) converges Ato the long-run 

equilibrium and (ii) the sequence of consumption vectors {X1, X2,... } 
satisfies the nonnegativity and regularity conditions in each time period. 
This is shown only for the regularity conditions relevant to (1.1), (1.2), and 

(1.3), leaving the other cases to the reader. 

With no loss of generality, the initial consumption vector X0 can be 

written as 

X= X* + EZ, (4.11a) 

where X* is the long-run equilibrium consumption vector, Z is an n x 1 

vector satisfying 
n 

Z4 = (4.1lb) 
j=1 

and E is a nonnegative scalar. It is assumed that X* is strictly positive and 

that is satisfies the regularity conditions X* - - X* > 0. It must be 

shown that there exists an E* > 0 such that for all E, 0 < E < E*, both the 

nonnegativity conditions and the regularity conditions are satisfied in each 

time period for all Z satisfying (4.1 lb). 

Substituting (4.1 1) into (4.6) and making use of the identity 

X* = MX* + d, we find 

Xt= X* + EMtZ. (4.12) 

Hence, 

Xt-bt = X* - - X* + E(MtZ - Mt-Z). (4.13) 

The nonnegativity condition requires (4.12) to be nonnegative for all t, and 

the regularity conditions require (4.13) to be strictly positive for all t. 

Let mtj denote the ijth element of Mt. Since 

lim Mt = 0, 

there exists a number m such that Imtj < m for all i, j, and t. Hence, the 

elements of M Z are each less (in absolute value) than mn and the elements 

of M tZ - Mt - 1Z are each less than 2mn. Therefore, for all Z satisfying 
(4.11 b) and all sufficiently small E, (4.12) will be arbitrarily close to X* 

(which is strictly positive), and (4.13) will be arbitrarily close to X*-b *- 

AX* (which is also strictly positive). 
If the demand functions are given by (4.5) rather than (4.6) where M is 

defined by (4.8) and d by 

d = (I - yP')b* + yu + c, (4.14) 

the above stability argument requires no modification. Thus, the dynamic 
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demand functions (4.4) and (4.5) are locally stable under the habit-forma- 

tion hypothesis (4.1). 

If habit formation is described by (4.2) rather than (4.1), the initial 

conditions must specify consumption vectors for period 0 and all previous 

periods. As before, prices and income are supposed to remain at their 

period 1 levels for all subsequent periods. The system of dynamic demand 

functions (4.4) and (4.5) may be written as 

.Xt = MYt-1 + d, t = 12, ..., (4.15a) 

where M is given by (4.7) and d by (4.8) or (4.14). It is convenient to write 

(4.15a) in the equivalent form, 

Xt+l = MYt + d, t = 0,1,.. (4.15b) 

From the definition of Yt, (4.3) 

Yt= (1 - 8)Xt + Yt1, t 1,29.. (4.16) 

Substituting (4.16) into (4.15b), multiplying (4.15a) by 8, and subtracting, 

we obtain 

Xt+1 = NXt + (1 - S)d, t = 1, 2, ... . (4.17) 

where 

N =8I+ (1- 8)M. (4.18) 

Thus, (4.15) determines X1 as a function of Y0 and (4.17) determines 

X2, X3, .... The difference equation system (4.17) is stable if and only if the 

characteristic roots of N lie within the unit circle. But the characteristic 

roots of N are related to characteristic roots of M by 

Aj(N) = 8 + (1 - )Ai(M), 

so-neglecting regularity and nonnegativity conditions-the stability of 

the system of difference equations is guaranteed. The long-run equilibrium 

implied by (4.17) is given by 

X = (I - N)-(l - 8)d, (4.19a) 

and since I - N = (1 - 8)(I - M), this is equivalent to 

X = (I - M)-d. (4.19b) 

That is, the long-run equilibrium is independent of the value of the memory 

coefficient 8. 

It is now necessary to show that, for Y0 sufficiently close to the long-run 

equilibrium, X*, the regularity and nonnegativity conditions are satisfied 

in every time period. 

Substituting (4.15a) into (4.16) and solving for Yt, 

Yt = NYt-1 + (1-8)d, t = 1, 2,.... (4.20) 
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Without loss of generality, we may write YO as 

YO = X* + EZ, (4.21) 

where X* is the long-run equilibrium consumption vector and Z is an 
arbitrary vector satisfying (4.1 lb). Since X* = NX* + (1 - )d, it is 
easily shown that 

Yt=X*+ENtZ, t=O,,.... (4.22) 

Substituting (4.22) into (4.1 5b), 

Xt+1 = X* + EMNtZ, t = 0,1,.... (4.23) 

To show that nonnegativity and regularity conditions are satisfied in every 
time period (provided they are satisfied at the long-run equilibrium), it 
must be shown that for all E smaller than some E*, Xt+ 1 and Xt+I - b* - 

$ Yt are positive for all Z satisfying (4.1 lb). The fact that X,+ 1 is positive 
(provided X* is positive) follows immediately from an argument similar to 
that used for the simpler habit hypothesis (4.1). To show that the regularity, 
conditions are satisfied we observe that 

Xt+ - b*- t = - - b*- X* + (MNt - $Nt)ZE. (4.24) 

Provided the long-run equilibrium satisfies the regularity conditions, 
X*- b* - X* is strictly positive, an argument almost identical with 
that used for (4.1) establishes the required result. 

5. Conclusion 

In conclusion we survey the literature on dynamic demand functions and 
discuss several possible generalizations. 

1. Although it is frequently mentioned in passing that long-run and 
short-run demand functions differ, little has been done to incorporate this 
fact into the theory of demand. In empirical work, a lagged adjustment 
hypothesis is often invoked (Nerlove 1958; Houthakker and Taylor 1966, 
pp. 5-21). But this approach is unsatisfactory from a theoretical viewpoint 
unless it can be justified in a framework of utility maximization. Richard 
Stone, who has worked extensively with the linear expenditure system 
(1.6), has pointed out that it is not reasonable to suppose that the a's and 
b's remain constant over time. He suggests (Stone 1966, pp. 192-93) two 
ways of introducing systematic changes in these parameters. The first is the 
introduction of time trends-either linear or quadratic-for both a's and 
the b's. The second is to allow the a's and b's to depend on "the past 
history of the branch of demand to which they relate." Perhaps because his 
primary interest is empirical rather than theoretical, Stone does not 
investigate the long-run behavior implied by dynamic demand functions of 
the form he suggests. 
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Maurice Peston (1967) considers a "Cobb-Douglas" utility function 

(1.12) of the form 
x aIx1 

- at 

where the parameter at depends on the ratio x2t- /x1t~-. Peston discusses 

the effect of the imposition of a tax on one of the goods and investigates the 

existence and stability of the long-run equilibrium. W. M. Gorman (1967) 

assumes that short-run behavior is determined by a short-utility function, 

f(x, a), where a is a vector whose elements are assumed to be functions of 

past consumption of all goods: ar = ar(X), r = 1, . . ., t. Gorman considers 
the conditions on the utility function, f, and the habit functions, a,(X), 
which imply the existence of a long-run utility function or " choice 

indicator" from which the long-run demand functions could be derived.13 

2. Any utility function can be made dynamic by allowing some or all of 

its parameters to depend on past consumption. Tractable results were 

obtained from the utility functions (1. I)-(I.5) and the four habit-formation 

assumptions used in this paper because (i) the demand functions were 

linear in the b's, and (ii) the b's were linear in past consumption. This 

resulted in dynamic demand functions which were linear in past consump- 

tion. If the a's or c's in (I.1)-(I.5) were allowed to depend on past con- 

sumption, the results would be far less tractable.14 

3. In the theory of demand it is usually assumed that an individual's 

utility function depends on his own consumption, but not on the consump- 
tion of others. By allowing some or all of the parameters of an individual's 

utility function to depend on the consumption of others, interdependence 

can be incorporated into the theory of consumer behavior. In the case of the 

utility functions (1.1)-(1.5), particularly simple results are obtained if the 

b's are assumed to depend linearly on other people's consumption. But if 

everyone behaves in this manner, the derivation of market-demand 

functions is likely to be quite difficult. 

In a dynamic model, it is possible to introduce interdependence in a 

more tractable way by postulating that the parameters of an individual's 

utility function depend on other people's past consumption. Because other 

people's current consumption does not influence current preferences, there 

is no difficulty deriving short-run market demand functions. And presum- 

ably interdependence could be incorporated into the habit-formation 
model by assuming that the parameters of an individual's utility function 

depend on other people's past consumption as well as his own. 

4. In empirical work, and in some theoretical problems as well, it is 

necessary to specify stochastic demand functions. The procedure suggested 

13 As Gorman points out, he does not show that his "choice indicator" is a well- 
behaved utility function, only that it satisfies the appropriate first-order conditions. 

14 The a's appear to enter the demand functions (1.6) linearly, but in fact they do 
not; they have been normalized so that they sum to unity, and if this normalization 
rule is dropped, the a's must be replaced by ajll_ ak. 
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here for making demand functions dynamic can also be used to make them 
stochastic. In general, a system of demand functions derived from a 
utility function can be made stochastic by assuming that some of the 
parameters of the utility function are random variables. This procedure 
yields particularly simple results when the parameters of the utility 
function enter the demand functions linearly. Thus, if the b's are assumed 
to be of the form bi = b* + uj, where ui is a random variable with 0 mean, 
then the demand functions will be stochastic and the disturbance term in 
each demand equation will be a linear combination of the u's. The system 
of stochastic demand functions generated in this way will satisfy both the 
budget constraint and the Slutsky symmetry conditions.15 

5. At first glance it might seem possible to convert the habit-formation 
model of Section 2 into a consumer-durable model by allowing the P's 
to be negative. This procedure has no theoretical standing. A fundamental 
assumption of the habit-formation model is that the individual does not 
take account of the effect of his current purchase on his future preferences 
and future consumption. In the case of habit formation, this assumption is 
plausible; in the case of consumer durables, it is not. A model of demand 
for consumer durables must explicitly recognize the intertemporal nature 
of the problem. 

Appendix6 

0. It is necessary to show that the characteristic roots of the matrix M, (4.7), 

M = (I -YP')P (A.1) 

lie within the unit circle. To show this, we define a matrix S which is similar to 
M, and show that the characteristic roots of S lie within the unit circle. 

Let P denote the diagonal matrix diag(p1, . . ., p,,). We define the matrix S 
by 

S = iMP - 1. (A.2a) 

Then, Py is an n x 1 matrix whose elements sum to unity and P',P- is the 
1 x n row vector (1, 1,..., 1), which we denote by e. We may write (A.2a) as 

S = (I - T)P, (A.2b) 

where T is the n x n matrix fiyp'fi-1 = Pye. Hence. 

tjL ti . * * ti 

T 
t2 t2 t2 

tn tn tn 

15 Wales and I (1969) have estimated the linear expenditure system using this 
procedure to specify the error structure. We estimated a number of dynamic versions 
of the linear expenditure system including proportional habit (2.1) and linear habit 
formation (2.2). 

16 I am grateful to David B. Wales for providing this proof. 
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where tj = ptyi- We remark that the elements of Tare strictly positive and that 
all column sums are unity. 

1. Define the row vectors r1, . .., rn by 

r= e 
r2= (t2, -t1, 0,, * **O) 

r3 = (t3,0, -t1,0... .,0) 

ri= (ti, 01, . . 0,-tl, 0, .. *I* 0) 

rn =O(n 0, 0, * * *, X, 
- 

-ti) 

Then rjT = e and riT = 0, i # 1. Hence [r1,. . ., rn] is a basis of characteristic 
vectors for T. Since r1(I - T) = 0 and r1(I - T) = rj, i : 1, [rl,. . ., rn] is a 
basis of characteristic vectors for I - T. Furthermore, rl(I - T)fl = 0, so r, 
is a characteristic vector of S with characteristic value 0. 

2. Let V be the subspace spanned by [r2,. . ., rn]. Then V is a subspace of 
dimension n - 1 and any vector w in Rn can be written uniquely as 

w= ar, + v, (A.3) 

where a is a scalar and v E V. 
3. Let w be a characteristic vector of S with characteristic value A. 

wS = Aw. (A.4) 

But 

wS = (ar, + v)S = vS= v(I - T)S = 

so 

V = A(ar1 + v)= Aar1 + Av. (A.5) 

Let v = (61,. . ., 6j. Then v1 = (91l1, f2(2,- * MO3,f) = A(a, a,. . ., a) + 

A( .. ,- ), SO 

gtfi = Aa + Afj = A(a + 6j), i = 1,. . ., n. (A.6) 

4. If 6i = 0 for some i, then 0 = Aa. There are two cases: (i) If A = 0, 
Al < 1. (ii) If a = 0, from (A.5), vf = Au so A is a characteristic value of /. 

But the characteristic values of are [3,. . ., /3n] and, by hypothesis, 0 _ pi < 1 
5. If 6i - O for any i, and a = 0, then gi = A 6, so A = Pi and IAI < 1. 

6. If 6i ? 0 for any i and a ? 0, we may multiply w by a scalar changing a 
and v. In particular, we may take a = I without loss of generality, so 3ii = 

A(l + 60. 
7. We now show that if (i) 6i : 0 for any i and (ii) a 0 0 and (iii) IAI > 1; 

then the real part of 6j, Re ej, is negative for all i. 
If = -I; then Re 6i = -1 < 0. 

If ?i -1, then A = fl e 

so 

1 < JAI= -li + ! 

Hence, 

1i i > 11 + 
and 

Re <O < 0, , n. 
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8. In terms of the basis [r2,..., rj] we may write v as 

n 

v= Evtri. 
t=2 

Then 
n 

61 = V2t2 + V3t3 + ... ntn = Vt, 

{i =viti, i=2, . . ., n. So Re et -ti Re vf < O. i = 2, . . ,n, and, hence, 
Re vi > 0, i 2, . . ., n. But 

n 

Res1 = 2 tt Re v >0, 

which contradicts the result established in 7. 
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