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Abstract

Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors.

Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future

environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’

niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the

potential impact of climate change on the American pika using a replicated place-based approach that incorporates

climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–

absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmen-

tal niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units

representing the habitat and climatic breadth of the species across the western United States. We then predicted

occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities

and the relative importance of predictor variables varied widely among study areas, revealing important local-scale

differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly

divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to

stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM pro-

jections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables.

Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-

scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions

are intended to manage and conserve species of concern within individual protected areas.
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Introduction

Ecological niche theory provides the basis for explaining

patterns of species occurrence (Chase & Leibold, 2003).

Concern about climate change impacts on reduced or

shifting species distributions has heightened the need to

characterize species’ niches in comprehensive, ecologi-

cally relevant terms to inform conservation action

(Peters & Lovejoy, 1994). Although the multidimension-

ality of the niche makes this a challenging task, a more

achievable goal centers on investigating the ‘realized’

niche of a species constrained by biotic interactions,

habitat connectivity, and other limitations (Guisan &

Thuiller, 2005). Such investigations have relied primarily

on species distribution models (SDMs), widely used to

estimate potential future impacts of climate change on

species distributions and to assess population vulnera-

bility (Guisan & Thuiller, 2005). In theory, SDMs model

a species’ niche by investigating the relationship

between occupancy and a suite of biotic and abiotic vari-

ables, then extrapolating to predict the species’ distribu-

tion (Sober�on & Peterson, 2005). In practice, many SDMs

predict distributions based only on climate-occupancy

relationships, limiting inference to the climatic dimen-

sion of the realized niche (Pearson & Dawson, 2003).
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At broad spatial scales, climate is a dominant factor

influencing a species’ niche and range (Thomas, 2010),

but at finer spatial scales representing populations

within a species’ range, niche and distribution are

shaped spatially and temporally by local factors (Aus-

tin & Van Niel, 2011; Stewart-Koster et al., 2013). Recent

studies have argued that local effects on niche breadth

and plasticity are key to climate change forecasting

(Quintero & Wiens, 2013; Valladares et al., 2014), allow-

ing for novel responses in portions of the species’

range. While SDMs provide critical predictions at the

scale of a species’ range, they may poorly predict site-

specific patterns of change (Gillingham et al., 2012).

Conservation actions, typically implemented at the

local scale (Theobald 2005), are best supported by an

understanding of the complex relationships that influ-

ence species distributions in separate localities. Yet, the

incorporation of local-scale, non-climatic predictors in

SDMs has lagged (Pearson & Dawson, 2003; Guisan &

Thuiller, 2005), as has consideration of the dynamic nat-

ure of variables such as habitat configuration. Extend-

ing SDMs to include non-climate dynamic variables

that more fully describe niche complexity (Guisan &

Thuiller, 2005; Franklin, 2010; Barve et al., 2011) at

appropriate scales for generating conservation solu-

tions (Guisan et al., 2013) remains a pressing need.

Functional connectivity (i.e., the extent to which indi-

vidual movement is facilitated or impeded by the land-

scape; Taylor et al., 1993) is one important example of a

dynamic non-climatic factor critical to the formation of

the realized niche and species distribution (Sober�on &

Peterson, 2005; Barve et al., 2011). Measures of func-

tional connectivity have been included with increasing

frequency in studies of how species may respond to cli-

mate change (Bateman et al., 2013; Vasudev et al., 2015).

However, most studies focus on dispersal conduits

(Vasudev et al., 2015) and employ an ‘all or nothing’

dispersal assumption (Bateman et al., 2013) rather than

projecting the dynamics of functional connectivity. A

practical approach to projecting functional connectivity

is to measure habitat characteristics, such as patch size

and configuration, in terms of gene flow. As the iden-

tity and relative importance of factors that influence

functional connectivity often vary between regions

(Short Bull et al., 2011), investigating the interplay

between functional connectivity and species distribu-

tions may best be explored at a local scale.

As an example, the American pika is predicted to

experience dramatic range reductions due to climate

change (Galbreath et al., 2009; Beever et al., 2010; Calk-

ins et al., 2012; Johnston et al., 2012; Stewart et al., 2015),

given the low heat tolerance exhibited by captured

pikas (Smith, 1974) and observed extirpations in some

warmer portions of the species’ range (Beever et al.,

2003, 2011). However, the relationship between pika

occurrence and climate can be highly variable and even

counterintuitive (Erb et al., 2011; Jeffress et al., 2013;

Varner & Dearing, 2014). Pikas persist at low elevations

and in warm climates, in places where rocky substrates

mediate ambient temperatures at fine scales (Rodhouse

et al., 2010; Millar et al., 2013; Varner & Dearing, 2014).

Recent SDMs have investigated the potential impact of

climate change on the American pika at broad spatial

scales (Galbreath et al., 2009; Calkins et al., 2012; John-

ston et al., 2012; Stewart et al., 2015), but have been

unable to address the influence of fine-scale microcli-

mates on pika occurrence. In addition, habitat configu-

ration was not incorporated in these models (but see

Stewart et al., 2015), despite its apparent influence on

pika occurrence (Beever et al., 2003; Millar et al., 2013).

How does local variation in the interdependencies

between climate, connectivity, and microhabitat shape

the American pika’s realized niche? Do idiosyncrasies

in the pika’s realized niche (Jeffress et al., 2013) under-

mine the generality of projected climate change

impacts? We investigate these questions for pika popu-

lations inhabiting eight landscapes across the western

United States in two unique ways: first, we incorporate

estimates of functional connectivity, as measured by

gene flow, directly into the SDM framework; second,

we use a replicated place-based approach to develop

SDMs for each spatially disjunct population. Thus, we

explore dynamic local variation in the pika’s realized

niche and evaluate how this variation affects forecasted

distributional trajectories for the species at scales rele-

vant to site-based conservation.

Methods

Study areas and occupancy surveys

We assessed contemporary and future pika occupancy pat-

terns in eight US National Park Service units (Fig. 1): Craters

of the Moon (CRMO), Crater Lake (CRLA), Grand Teton

(GRTE), Great Sand Dunes (GRSA), Lava Beds (LABE), Lassen

Volcanic (LAVO), Rocky Mountain (ROMO), and Yellowstone

(YELL). These study areas were chosen to represent the major-

ity of habitat types (montane talus, boulder fields, and lava

flows) and climatic conditions inhabited by the species.

Among study areas, average annual precipitation ranged

33.4–206.4 cm and mean temperatures in the warmest quarter

ranged 8.72°–18.0 °C (Fig. 2; PRISM averages, 1981–2010;

PRISM Climate Group, 2014). We defined four categories of

contemporary temperature-precipitation climate regimes

based on mean annual precipitation and summer temperature

(Fig. 2): warm-wet, warm-dry, cold-wet, and cold-dry.

Pika presence–absence data were obtained from occupancy

surveys described in Jeffress et al. (2013; details in

Appendix S1). Additional presence-only data were obtained
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from targeted genetic sampling locations described in Castillo

et al. (in prep). To reduce the influence of uneven spatial

sampling, which can introduce bias especially in presence

only datasets (Phillips et al., 2009), we omitted data from

genetic sampling locations within 100 m of occupancy survey

areas. The total number of presence and absence records

retained per study area ranged from 121 to 329 (Table 1).

Variable selection and calculation

We selected 21 predictor variables based on observed or

expected relationships with heat stress (Beever et al., 2010;

Wilkening et al., 2011), cold stress (Beever et al., 2010; Erb

et al., 2011), growing season (Jeffress et al., 2013) and habitat

configuration (Moilanen et al., 1998) (Table 2). Values for each

predictor variable were extracted from raster data sets at each

record of pika presence or absence using ARCGIS 10.0 (ESRI,

Redlands, CA USA) and the point intersect tool in the Geospa-

tial Modelling Environment (available online at spatialecol-

ogy.com). For each study site, all predictor variables were

tested for multicolinearity using QR-matrix decomposition

(Murphy et al., 2010). Where correlated variables were

observed (P < 0.05), a single variable was retained based on

published relationships or expert opinion.

Contemporary climate data were obtained from PRISM Cli-

mate Group (2014). Future climate projections were obtained

from the NASA Earth Exchange (NEX) Downscaled Climate

Projections (DCP) for the conterminous US (NEX-DCP30;

Thrasher et al., 2013), generated from the Coupled Model

Intercomparison Project Phase 5 projections (CMIP5). We

calculated 13 climate variables (Table 2) at 800 9 800 m reso-

lution for one contemporary (1981–2010) and three future

(2011–2040, 2041–2070 and 2071–2099) intervals. For each

future, we evaluated one ensemble and eight global climate

models (BCC-CSM1.1, CCSM4, CSIRO-Mk3.6.0, GISS-E2-R,

HadGEM2-AO, HadGEM2-ES, IPSL-CM5A-LR, MIROC5)

driven by two Representative Concentration Pathway (RCP)

greenhouse gas scenarios, which bracketed climate response

under relatively modest (RCP 4.5 W m�2) and high ‘business

as usual’ (RCP 8.5 W m�2) emissions. Pika occupancy is influ-

enced by persistence of the subnivium (sensu Pauli et al.,

2013), which provides refuge from extreme winter tempera-

tures (Beever et al., 2010; Pauli et al., 2013) and predation.

Unfortunately, future estimates of snow depth, density and

duration, which drive subnivium conditions, were unavailable

from NEX-DCP30. Therefore, we estimated potential snow

accumulation using the cumulative precipitation across

months with mean temperatures <0 °C. We also derived mea-

sures of growing season duration and growing season precipi-

tation. These metrics are traditionally calculated using daily

climate data; however, PRISM and NEX-DCP30 are monthly.

Therefore, we estimated growing season duration as the total

Fig. 1 Geographic location of eight federally managed units used as study areas for pika occupancy modeling. Full property names are

followed by their 4-letter designation code (figure reproduced from Jeffress et al., 2013). The current distribution map was provided by

The International Union for Conservation of Nature (IUCN).
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number of months with minimum temperatures >5 °C, while

we estimated growing season precipitation as cumulative pre-

cipitation for all months with minimum temperatures >5 °C.

We also considered habitat configuration and functional

connectivity using an empirically derived measure of connec-

tivity derived from genetic data. We characterized functional

connectivity using a measure of genetic neighborhood dis-

tance; that is, the distance across which gene flow occurs

within a given population. This metric has the advantage of

integrating connectivity over time across the study site and

population of interest, reflecting the cumulative effects of

multiple individual dispersal events. We calculated habitat

metrics based on genetic neighborhood distance as follows.

First, multilocus microsatellite genotypes were obtained for

individual pikas in each study area using scat samples (sam-

ple numbers, allelic richness, and heterozygosity provided in

Supporting Information Table S1; further details provided in

Castillo et al., 2014). Second, we estimated genetic neighbor-

hood distance within each study site using a Mantel correlo-

gram approach in program SPAGeDi (Hardy & Vekemans,

2002). This approach allowed us to assess the correlation

between genetic distance (Rousset’s â; Rousset, 2000) and

Euclidean geographic distance among all individuals segre-

gated into distance intervals. Break points between distance

intervals were optimized to equalize the number of individu-

als among intervals. We repeated this process starting with 10

intervals and increased the number of intervals by 5 until

there were fewer than 100 individuals per distance interval, or

up to 50 distance classes, whichever came first. We then esti-

mated genetic neighborhood distance as the point at which

genetic distance and Euclidean distance were no longer signif-

icantly correlated (P > 0.05; e.g., Fig. S1). This method was

robust to choice of individual genetic distance measure, as an

alternate metric (PCA, Castillo et al., 2014) showed nearly

identical results (data not shown). Finally, we used FRAGSTATS

4.1 (McGarigal et al., 2012) to calculate habitat configuration

metrics parameterized by the genetic neighborhood for each

study area. For each habitat metric (Table 2), we used a mov-

ing window with a radius equal to the site-specific genetic

neighborhood distance to generate continuous surfaces.

To capture changing habitat connectivity and availability in

future time periods, we established a threshold value based

on occupancy probability (see below). This value (40%) was

selected as the lowest occupancy probability value at which

>99% of contemporary occupied pika locations were retained.

At each future 30-year interval, we first removed all habitats

below this threshold in the previous time step and then recal-

culated FRAGSTATS metrics for use in occupancy prediction, gen-

erating shifting habitat metrics for each future time step.

In two study areas where complete 1 m resolution LiDAR

data were available (CRLA and GRSA), we also generated two

measures of surface complexity to address our hypothesis that

Fig. 2 Contemporary (1981–2010; ‘current’) and future (2070–

2099; ‘final’) climate regimes, based on mean temperature in the

warmest quarter (a measure of chronic heat stress) and annual

precipitation (important for both warm season and cold season

stressors), for pika survey locations in each of eight study areas.

For 2070–2099, the ensemble model at RCP 4.5 is shown.

Ellipses represent the 95% CI for each metric; dashed lines rep-

resent contemporary temperature and precipitation means

across all eight study areas and divide the plot into four temper-

ature-precipitation climate regime quadrants: I = cool-wet,

II = warm-wet, III = cool-dry, and IV = warm-dry.

Table 1 Samples sizes and genetic neighborhood distance estimates for American pika localities at each of eight study areas, sepa-

rated by survey type (i.e., occupancy or genetic) and occupancy record (i.e., presence or absence)

Site ID Total records

# Occupancy

survey records

# Genetic survey

records

# Presence

records

# Absence

records

Genetic neighborhood

distance (km)*

CRLA 204 153 51 157 47 2.5

CRMO 201 158 43 70 131 1.2

GRSA 121 80 41 88 33 1.1

GRTE 329 184 145 240 89 4.3

LABE 160 160 0 65 95 3.5

LAVO 122 151 51 109 93 4.5

ROMO 164 106 58 116 48 3.5

YELL 185 185 0 89 96 3.4

*The distance at which gene flow occurs within the focal population.
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surface complexity, as a proxy for favorable microclimates,

may predict pika site occupancy (Millar & Westfall, 2010). We

calculated roughness and the surface relief ratio within a

moving window with a 30 m radius using the Geomorphome-

try and Gradient Metrics toolbox (Evans & Oakleaf, 2012) in

ARCGIS 10.0.

Modelling contemporary and future pika distribution and
occupancy probability

For an earlier investigation of place-based occupancy-climate

relationships in the American pika (Jeffress et al., 2013), we

constructed models using Bayesian hierarchical logistic

regression (BHLR; Royle & Dorazio, 2008) that provided us

flexibility for pooling data across all study sites and making

global and park-specific parameter estimates (via hyperpa-

rameters). For the present work, we investigated a second

modeling approach, Random Forest (Brieman, 2001). In all

study sites, we found that Random Forest models outper-

formed BHLR (as measured by AUC, data not shown);

further, the Random Forest approach was much less computa-

tionally intensive and produced more stable results. Thus, we

chose to use Random Forest as our final modeling approach.

We built Random Forest models using the R package

randomForest (Liaw & Wiener, 2002; R Core Team 2013). We

generated replicated, bootstrapped classification trees, ran-

domly withholding 30% of data in each replicate as an out-of-

bag (OOB) sample to measure misclassification error (i.e., the

incorrect classification of a presence as an absence or vice

versa; lower values indicate higher classification accuracy).

The number of replicates for each site was chosen at the point

where OOB error stabilized (range = 1000–2500 replicates). As

a second measure of model performance, we used the area

under the receiver operating characteristic curve (AUC) to

measure predictive accuracy and discriminative power. We

categorized model discrimination as poor (AUC < 0.70),

acceptable (0.70 ≤ AUC < 0.80), excellent (0.80 ≤ AUC < 0.90),

or outstanding (AUC ≥ 0.90) (Gogol-Projurat, 2011). We built

models using the model improvement ratio (MIR; Murphy

et al., 2010), which creates a parsimonious model by selecting,

Table 2 Variable name, description, and ecological justification for inclusion for 21 predictor variables used to assess current and

future pika occupancy patterns in eight study areas

Variable Variable description Ecological justification

tmax Ave max temp, July (Bioclim 5) Acute heat stress

tmin Ave min temp, January (Bioclim 6) Acute cold stress

meantwq Mean temperature warmest quarter (Bioclim 10) Chronic heat stress

meantcq Mean temperature coldest quarter (Biolclim 11) Chronic cold stress

tempseas Temperature seasonality (Bioclim 4) Extremity of seasonal differences in temp

precip Annual precipitation (Bioclim 12) Multiple influences across seasons

precipwq Precipitation, warmest quarter (Bioclim 18) Forage availability and quality

precipcq Precipitation, coldest quarter (Bioclim 19) Potential subnivium insulation or rainfall

precseas Precipitation seasonality (Bioclim 15) Extremity of seasonal differences in precip

hmr Heat to moisture ration. Calculated as

[Mean temp May –Sep]/[(sum of monthly

precip May – Sep)*(1000)]

Relationship with genetic connectivity

(Henry et al., 2012)

gs_dur Duration of growing season; # months with temp >0 C Available time for vegetation

growth and haypile activity

gsp Summed precipitation for months with mean min temp >0 C Forage availability and quality

potsnow Summed monthly precipitation for pixels with mean temp ≤ 0 Potential subnivium insulation

scosa Potential solar insolation; as in Jeffress et al., 2013 Solar/heat exposure

resid Pika-adjusted elevation; as in Jeffress et al., 2013 Associated with temperature and

precipitation gradients

clumpy* Measure of habitat aggregation; ranges from 1

(maximum aggregation) to �1(maximum disaggregation)

within a site-specific, genetically derived measure of dispersal

Spatial aggregation of habitat influences

population persistence and colonization

lpi* Largest habitat patch within genetic neighborhood distance Proximity to potential source population

pland* Percent of the landscape that is pika habitat within

genetic neighborhood distance

Influences pop size and habitat connectivity

within the dispersal radius

prox* Size and proximity of habitat patches within

genetic neighborhood distance

Size and proximity of habitat on the landscape

influences population persistence colonization

srr Surface relief ratio, calculated for CRLA and GRSA only In-site shelter; between site traversability

rough Surface roughness; calculated for CRLA and GRSA only In-site shelter; between site traversability

*Calculated using a moving window approach based on site (park)-specific estimates of the genetic neighborhood distance as a

proxy for dispersal distance.
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from the full suite of variables, those predictors that decrease

OOB error above a pre-defined threshold (0.03 in this instance;

the default value).

Finally, we predicted pika occupancy for current and future

time steps as a continuous gradient of occurrence probability

(as opposed to binary presence/absence; Cushman et al.,

2010). We then clipped these prediction surfaces to include

only known pika habitat with occupancy probability >40%.

This threshold reflects the pattern of occurrence in contempo-

rary habitats: occupancy probability exceeds 40% in 99% of

patches in which pikas currently occur. We recorded the range

of values along the gradient of occurrence probability in pika

habitat (hereafter ‘occupancy probability’) and calculated the

proportion of total habitat with predicted occupancy probabil-

ity >40% (hereafter ‘distribution’) for each contemporary and

future prediction.

Results

Changing climate regimes

We predicted shifts in temperature-precipitation

regimes in all study areas (Fig. 2). Temperature was

predicted to increase similarly across all study areas

except CRMO, where more pronounced warming was

projected. Wet study areas were predicted to become

drier while dry study areas were predicted to become

wetter, excepting the two most arid areas (CRMO and

LABE), which showed little change. Climate models

predicted three study areas will transition from cool to

warm temperature regimes (CRLA, GRTE, and YELL)

and a fourth (GRSA) will approach this shift, while no

study areas will transition from warm to cool regimes.

No study areas were predicted to transition to a

different precipitation regime, although ROMO will

approach the shift from dry to wet.

Site-specific model structure and performance

The performance of site-specific SDMs varied widely

among study areas (Table 3). We observed acceptable

to outstanding model predictive power, based on AUC

values (range: 0.70–0.94; Table 3), for all study areas

except LABE (AUC = 0.58). We observed varying rates

of model classification accuracy based on OOB misclas-

sification error. Classification accuracy was often

skewed, usually against absence, but overall accuracy

was good to moderate for all study areas (range: 15.69–

34.05; Table 3) except LABE (OOB = 42.94). Perfor-

mance of the LABE model implied low power for

predicting pika occupancy, so we did not include LABE

in further analyses.

The importance of predictor variables and fre-

quency of their selection varied widely among study

areas, although elements of heat stress, cold stress,

growing season and habitat configuration were sup-

ported in models for almost every study area (Table 3

and Fig. S2). We detected evidence of cold stress driv-

ing pika occupancy patterns in two study areas

(CRLA and ROMO), heat stress in three study areas

(CRMO, GRSA, and YELL), growing season in one

Table 3 Random Forest models predicting occupancy probability of American pikas, with associated measures of model discrimi-

natory power (AUC) and model precision (out-of-bag or OOB error), for each of eight study areas

Site ID Model variables (ranked most to least important) OOB overall OOB presence OOB absence AUC

CRLA potsnow, precip, scosa, hmr,

precipcq, resid, tmax, tmin, pland, meantcq

15.69 5.73 48.94 0.83

CRMO tmax, lpi, gsp, precip, pland,

precipwq, resid, tmin, clumpy

21.39 34.80 14.62 0.84

GRSA resid, precipwq, precseas, scosa, clumpy,

pland, lpi, precip, precipcq, potsnow, gsp, srr, prox

16.10 5.81 43.75 0.90

GRTE pland, resid, prox, scosa, lpi, hmr, tmax,

meantwq, tempseas, clumpy

23.94 9.92 62.50 0.70

LABE clumpy, pland, lpi, resid, hmr, tmin, meantwq,

tempseas, meantcq, precip, precipcq, precseas

42.94 48.19 38.30 0.58

LAVO resid, lpi, clumpy, pland, tempseas,

gsp, tmin, meantwq, tmax, scosa

31.82 30.19 33.70 0.94

ROMO prox, tmin, meantcq, precipwq, precipcq,

tmax, precip, pland, resid, potsnow

31.10 15.51 68.75 0.70

YELL meantwq, hmr, precipwq, pland,

resid, lpi, meantcq, potsnow

34.05 34.09 34.02 0.72

Model precision (OOB) is shown for records of presence, absence and overall; the lower the value, the higher the precision. Variable

names are provided in Table 2. Variable relationship with heat stress, cold stress, and habitat configuration are shown in bold, itali-

cized, or underlined text, respectively; plain-type text indicates variables with relationships to more than one factor.
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site (CRMO), and habitat connectivity in five study

areas (CRMO, GRTE, LAVO, ROMO, and YELL).

Residual elevation (resid) and proportion of habitat

on the landscape (pland) were included in models for

all eight study areas (Table 3). Other variables

included in over half of the models were: maximum

and minimum temperature (tmax and tmin; seven

models), annual precipitation (precip; six models),

and potential snow accumulation (potsnow; five mod-

els). However, the ranks of these variables differed

between models (Table 3, Fig. S2).

Contemporary and future pika distributions

We predicted current and future pika distributions in

seven study areas (Figs 6, 7, 8, S3, S4, S5, and S6).

Overall, contemporary predictions of pika distribution

ranged from 28 to 99% of potential habitat (Figs 3

and 4), with three of seven study areas exhibiting

nearly complete occupancy of available habitat

(CRLA, GRTE, and YELL). Future populations

showed an increase in distribution in two study areas

(GRTE and LAVO; Fig. 4) and eventual decline in the

remaining five study areas. Monotonic decline was

predicted for only three study areas (CRLA, ROMO,

and YELL). Complete extirpation was predicted in

ROMO and YELL (Fig. 4) under some climate

model/RCP combinations. Across all study areas, we

observed three primary kinds of trends in future pika

distributions: consistent monotonic decline (Fig. 6,

ROMO), little to no change (i.e., flat trend; Fig. 7,

GRTE) and fluctuations over time, but with an over-

all decline (Fig. 8, GRSA).

Occupancy probability

Although the majority of parks showed a declining

trend in mean and maximum occupancy probability,

the decrease was not consistent across all populations

or, in some instances, within a population over time

(Figs 3 and 5). Occupancy probabilities in ROMO and

YELL declined consistently but were more variable and

generally higher in YELL (Figs 3 and 5). In CRLA,

GRTE and LAVO (Fig. 5), occupancy probabilities were

consistent across future scenarios but differed consider-

ably from contemporary values (Fig. 3). For CRMO,

results were highly variable and model dependent

(Fig. 5). Although we observed a decrease in occupancy

probability overall (Fig. 3), individual model outcomes

ranged widely (56–89%; Fig. 5) and lacked a clear

trend.

Discussion

The predicted responses of pika populations to climate

change in eight US National Park units were highly

Fig. 3 Changes in occupancy probability (x axis) and distribu-

tion (y axis) for pika populations in each of eight study areas.

Distribution represents the proportion of potential pika habitat

with an occurrence probability >0.4, while mean occurrence

probability is calculated across all potential pika habitat. Con-

temporary and future periods are defined as in Fig. 2. Ellipses

represent the 95% CI across all 16 climate model and RCP

combinations.

Fig. 4 The proportion of all potential pika habitat within study

area boundaries predicted to be occupied with >40% probability

currently and in three future periods (2011–2040, 2041–2070,

and 2071–2099). Values for future time steps show the range

and mean proportion for each site in each period, generated by

individual prediction results from 16 unique climate model-

RCP combinations.
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variable, with outcomes ranging from complete extirpa-

tion (e.g., Fig. 6) to stability (e.g., Fig. 7) by the end of

the 21st century. Strikingly, climate variables were not

consistently the dominant determinant of occupancy;

rather, site-specific factors including habitat configura-

tion and connectivity – modified by climate – were

critical elements in some study areas (Table 3). Our

study demonstrates that local variation in the relation-

ships between changing environmental conditions and

biotic response, the so-called ‘idiosyncrasies of place’

Fig. 5 Maximum predicted pika occupancy probability in each of eight study areas for three future 30-year periods. In each period,

occupancy was predicted using eight climate models and one ensemble climate model, each of which was driven by a modest and high

carbon forcing scenario (RCP 4.5 and 8.5, respectively). Where points are not shown, maximum occupancy probability is less than 40%,

and extirpation is expected.
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(Billick & Price, 2010; Jeffress et al., 2013), may result in

divergent local population trajectories. To illuminate

complex population responses to global climate change,

we urge consideration of local variation in a species’

realized niche and the causes of that variation. Our

study provides a model place-based framework for

doing so by replicating large-sample studies across

multiple areas or regions.

Local variation in future population trajectories

Warming climate has frequently been predicted to

result in partial or complete extirpation of species (Bel-

lard et al., 2012), including the American pika (Beever

et al., 2011; Calkins et al., 2012). Our study predicts that

local extirpations are possible within the next 90 years

but only in the minority of sites we investigated, and it

implies that the relationship between changing climate

and occupancy of at least some species may not be

straightforward. For example, although all of our study

areas showed a warming trend, only five of eight exhib-

ited declining distribution and occupancy probability

(Figs 3–5). Where they occurred, declines in occupancy

and especially distribution varied from dramatic to

slight, while some study areas are expected to

support stable, robust populations in the future

(Figs 6–8, S3–S6).

Furthermore, the relationship between our two mea-

sures of pika population persistence (distribution and

occupancy probability) was not congruent across study

areas. Distribution reflects the typically employed bin-

ary characterization of habitat as occupied above some

threshold probability (here, >40%), whereas occupancy

probability captures the variability within those predic-

tions. In ROMO and YELL, both distribution and

occupancy probability declined simultaneously across

future time steps, indicating consistently declining per-

sistence. Conversely, distribution remained relatively

stable while occupancy probability declined by almost

20% in GRSA, indicating a constant potential distribu-

tion but increased volatility in occupancy patterns.

Fig. 6 Example of a pika population predicted to experience a

steady decline in suitable habitat throughout this century

(ROMO). Shown are total potential habitat (in black) and site

boundaries (upper right), predicted current occupancy probabil-

ity (upper left), and predicted occupancy probability using the

ensemble climate model with two carbon forcing (RCP) scenar-

ios (6 lower panels). Individual sampling locations are shown as

red dots in the upper right study area map.

Fig. 7 Example of a pika population predicted to experience no

change in suitable habitat throughout this century (GRTE).

Panel contents are as defined in Fig. 6.
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Elsewhere, including GRTE, occupancy probability

increased while distribution remained constant near its

maximum, indicating a robust population long-term.

Taken together, these results illustrate the value of

moving beyond binary presence–absence portrayals of

future species distributions (Cushman et al., 2010).

Interpreting our results solely on arbitrary presence–

absence distributional categories would imply negative

futures for pika populations in most study areas. For

example, using a 50% threshold (e.g., Stewart et al.,

2015), parks like CRLA would show substantial loss of

pika distribution. By considering a gradient of occu-

pancy probability, we have illustrated that pika persis-

tence is threatened by both declining distribution and

declining occupancy probability in many locations,

while highlighting stark contrasts in some study areas,

where occupancy probabilities imply very different

odds of persistence, despite similarly restricted final

distributions (e.g., YELL and ROMO vs. CRMO).

Occupancy trajectories for individual study areas

varied widely compared to previous range-wide pre-

dictions based solely on climate (Galbreath et al., 2009;

Calkins et al., 2012). Calkins et al. (2012) used a stepped

increase in temperature alone to model pika futures,

while Galbreath et al. (2009) incorporated a suite of

climate variables. Adding to these efforts, we incorpo-

rated landscape variables and produced local SDMs.

Galbreath et al. (2009) and Calkins et al. (2012) pre-

dicted extirpation in regions where we predict stability

(LAVO) or limited decline (CRLA). In these study

areas, our results suggest that favorable local climates

and habitats may persist, thereby sustaining pika popu-

lations. Conversely, Calkins et al. (2012) predicted

larger future pika distributions in ROMO and YELL

than our study, suggesting either that our models have

underestimated the physiological capacity of pika to

respond to climate change or the Calkins et al. (2012)

model over-predicted occupancy by failing to incorpo-

rate functional connectivity. Predictions for GRTE and

GRSA were comparable between this study and Calk-

ins et al. (2012), but exceeded the range predicted by

Galbreath et al. (2009). No prediction for CRMO was

produced by either Galbreath et al. (2009) or Calkins

et al. (2012), illustrating how unique peripheral popula-

tions are sometimes excluded from coarse-grain SDMs.

While opposing conclusions may result from different

inputs, scales of analysis, and methodologies, our find-

ings highlight the relevance of developing and evaluat-

ing SDMs parameterized at local scales, which may

better reflect population-level response to climate

change (Randin et al., 2009; Tingley et al., 2012).

Locally varying factors shape occupancy

Occupancy was not determined by the same factors

across the eight populations we studied. While factors

related to heat stress were dominant predictors in pre-

vious studies of pika dynamics (Beever et al., 2010,

2011; Wilkening et al., 2011), such factors played a

principal role in only three of the seven study areas

we were able to model (CRLA, GRSA, and YELL;

Table 3). Factors related to cold stress, especially cold-

season precipitation, were fundamental in explaining

occupancy patterns in two of seven populations (CRLA

and ROMO), adding to mounting evidence that the

pika’s climatic envelope can be influenced by snowpack

persistence (Beever et al., 2010; Erb et al., 2011). Precipi-

tation metrics were included in six of seven models,

although these varied in seasonality. These results cor-

respond with observations that the interplay between

temperature and precipitation can produce heteroge-

neous, locally varying responses to climate change

(Tingley et al., 2012).

Notably, pika occupancy in four of seven study

areas was strongly influenced by habitat availability

and connectivity (Table 3). Given the species’ strong

association with habitats that provide unique microcli-

Fig. 8 Example of a pika population predicted to experience

fluctuating habitat suitability throughout this century (GRSA).

Panel contents are as defined in Fig. 6.
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mates (Millar & Westfall, 2010; Rodhouse et al., 2010;

Varner & Dearing, 2014), as well as high annual patch

extirpation and recolonization rates (Smith, 1980;

Jeffress et al., 2013), the importance of habitat metrics

in shaping pika occupancy is not surprising. In

several instances, the influence of habitat-derived

variables surpassed that of the climate variables more

traditionally used to predict occupancy for this spe-

cies, suggesting that climate change impacts on pika

populations may be partially mediated where func-

tional connectivity persists. Conversely, where declin-

ing habitat suitability subsequently reduces functional

connectivity, the impact on pika occupancy may be

exacerbated (e.g., ROMO), underlining the importance

of considering the interaction between climate change

and connectivity for species with metapopulation-like

dynamics. Dynamic methods for investigating such

interactions (Franklin, 2010; Doerr et al., 2011; Lurgi

et al., 2015) offer considerable promise for exploring

this complex relationship.

The importance of habitat configuration has received

little attention in previous studies predicting future

pika-climate interactions. In one noteworthy exception

(Stewart et al., 2015), habitat area within a 1-km radius

was one of two top predictors of pika persistence in

California. Contrary to our findings, however, Stewart

et al. (2015) projected extirpation in the LAVO area.

This contrasting outcome likely reflects differences in

scale, study design, and scope of inference. Stewart

et al. (2015) used a finer scale (270 m rather than 800 m)

but focused only on changes in occurrence in historic

sites in California without a positive feedback loop on

habitat configuration (i.e., habitat configuration was

static throughout the forecast period), and used a 50%

presence–absence threshold. Our study revealed that

the dynamic habitat metrics were important to pika

occupancy over time in LAVO. Furthermore, our study

demonstrated that habitat connectivity occurs within a

4 km (not 1 km) radius in LAVO, and suggested that a

40% threshold is more appropriate for capturing pika

occupancy.

The importance of fine-scale data in species distribution
modeling

Accurately, modeling the fine spatial scale at which

ecological factors shape occupancy patterns is a persis-

tent challenge for understanding climate change

impacts on many species (Potter et al., 2013). Corre-

spondence between the resolution of environmental

data and the spatial scale at which organisms interact

with their environment is of critical import to species

distribution modeling (Seo et al., 2009), in particular for

dispersal-limited organisms (Guisan & Thuiller, 2005).

Pikas are sensitive to the availability of habitat-

mediated microclimates (Millar & Westfall, 2010) and

forage availability (Jeffress et al., 2013) within their ter-

ritories, while climate data is available only at larger

scales. In the case of the American pika, our limited

ability to predict microclimate influences is likely to

underestimate the mediating effects of these factors in

the future (Sears et al., 2011; Varner & Dearing, 2014).

This may explain the poor explanatory power (LABE)

and high inter-model variability (CRMO and YELL)

observed in some cases. We reiterate the call for

improved availability of high-resolution climate data,

which better reflect the scale at which organisms inter-

act with the environment (Halvorsen, 2012; Potter et al.,

2013). For example, using data loggers to generate

high-resolution (25–30 m) contemporary climate layers

exhibits greater potential for investigating microcli-

mate-occupancy associations across geographical

regions comparable in size to National Parks and other

conserved lands (Fridley, 2009; Ashcroft & Gollan,

2012).

Conclusion

Our study demonstrates that response to climate

change is unlikely to be uniform across a species’

range. We predicted local variation in the American

pika’s realized niche, indicating that site-specific

SDMs may generate outcomes more applicable to

conservation efforts undertaken locally. When species

occur across environmentally disjunct regions, local

variation in the realized niche is a reasonable expec-

tation (McPherson et al., 2004; Pearman et al., 2010).

Thus, when species exhibit fine-scale variation in

responses to climate, such as those observed in this

study, predictions that generalize across the species’

distribution may lead to erroneous expectations for

response to climate change at local scales (Randin

et al., 2009; Halvorsen, 2012). Moreover, we have

shown that functional connectivity can strongly influ-

ence how a species occupying fragmented habitat

will respond to climate change, and that habitat con-

figuration may stabilize or destabilize occupancy

trends in opposition of climate-only models (e.g.,

Austin & Van Niel, 2011; Bertrand et al., 2012). While

range-wide models are still an important tool for

inference, incorporating non-climatic variables

(Sober�on & Peterson, 2005; Bertrand et al., 2012; Hal-

vorsen, 2012) and deriving place-based assessments

and conservation strategies that reflect the unique

local relationship between climate, landscape, and

occupancy (Halvorsen, 2012) also are necessary steps

for the understanding and mediation of climate

change impacts on diverse biota.
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