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INTRODUCTION

Under United States law, entities engaged in

marine activities that can potentially harm marine

mammals are required to complete Environmental

Assessments and Environmental Impact Statements

to determine the likely impact of their activities.

These documents specifically require an estimate of

the number of animals that might be harmed or

 disturbed. A key element of this estimation is knowl-

edge of cetacean (whale, dolphin, and porpoise) den-

sities in specific areas where those activities will

occur. Cetacean densities are typically estimated by

line-transect surveys or mark-recapture studies (e.g.
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Hammond et al. 2002, Stevick et al. 2003, Gerrodette

& Forcada 2005, Barlow & Forney 2007) across broad

geographic areas, such as waters within the United

States Exclusive Economic Zone off California, Ore-

gon, and Washington, or the eastern tropical Pacific

(ETP). These areas tend to be much larger than oper-

ational areas where impacts might occur (e.g. the

Navy’s Southern California Offshore Range off San

Clemente Island), and finer scale estimates of ceta -

cean density are required. Advances in ceta cean-

habitat modeling allow predictions of cetacean den-

sities on a finer spatial scale than traditional line-

transect analyses, because cetacean densities are

estimated as continuous functions of habitat vari-

ables (i.e. sea-surface temperature, seafloor depth,

distance from shore, prey density, etc.) (Red fern et al.

2006). The objectives of the present study were: (1) to

determine relationships between properties of the

physical, biological, and chemical ocean environ-

ment and the distribution and abundance of ceta -

ceans and (2) to develop spatial predictions of the

distribution and abundance of cetaceans based on

ecological factors, habitat, and other aspects of their

natural behavior.

To meet these objectives, we used data from 15

ship-based cetacean and ecosystem assessment sur-

veys to develop habitat models and predict density

for 11 cetacean species and 1 species guild in the Cal-

ifornia Current Ecosystem (CCE) and for 14 species,

subspecies, or genera in the ETP. All data used for

modeling were collected by the National Oceanic and

Atmospheric Administration’s (NOAA) Southwest

Fisheries Science Center (SWFSC) be tween 1986 and

2003 using accepted, peer- reviewed line-transect

sur vey methods (Buckland et al. 2001) aboard large

oceanographic vessels. Models were validated based

on additional SWFSC surveys conducted during sum-

mer through fall of 2005 (CCE) and 2006 (ETP).

Methodological choices were required for various

aspects of the modeling, including choice of statisti-

cal tools, sources of habitat data (in situ or remotely

sensed), selection of temporal and spatial scales for

models and input data, and evaluation of data inter-

polation techniques. In completing this project, we

explored several of these choices using one or both

data sets (ETP and CCE) to evaluate the effects on

the resulting models. Some aspects of these analyses

have already been published elsewhere (Becker

2007, Redfern et al. 2008, Barlow et al. 2009, Becker

et al. 2010); in this paper we provide an overview of

the entire project and the best-and-final models for

the CCE and ETP. Final models for each region incor-

porated the respective methodological choices evalu-

ated for that region; thus, the final modeling method-

ology differed slightly between the ETP and CCE.

Model results have been collaboratively incorporated

into a web-based system developed by Duke Univer-

sity (see Best et al. unpubl.). The software, called the

Spatial Decision Support System (SDSS), allows

users to view model outputs within areas of interest

as color-coded maps of cetacean density, along with

a table of densities and measures of precision

(expressed as point-wise standard errors and log-

normal 90% confidence intervals).

MATERIALS AND METHODS

Cetacean survey data

We base our habitat models on 15 cetacean and

ecosystem assessment surveys conducted by SWFSC

in the ETP and CCE during summer and fall of 1986

to 2006 and including >17 000 sightings of cetacean

groups and >400 000 km of transect coverage within

the 2 study areas combined (Fig. 1, see Hamilton et

al. 2009 for details on transect lines and sighting loca-

tions by species for 1986 to 2005). Rigorous line-tran-

sect methods were consistently used on all of these

surveys (see Wade & Gerrodette 1993, Gerro dette &

Forcada 2005, Barlow & Forney 2007 for methodolog-

ical details). Typically, a team of 6 trained observers

searched for cetaceans from the ship’s flying bridge,

rotating among 3 observation stations (left 25× binoc-

ulars, data recorder, and right 25× binoculars) and

alternating 2 h watches with 2 h of rest. The recorder

searched with the naked eye (and occasionally 7×

binoculars) and recorded effort, sighting, and envi-

ronmental data on a computer. Sightings of all ceta -

cean species were recorded on every survey. Surveys

were mostly conducted in  closing mode (Barlow &

Forney 2007), diverting from the trackline as needed

to estimate group size and confirm species identifica-

tion. On-duty observers estimated total group size

and the percentage of each species independently;

these were later averaged for each encounter.

In preparation for building the models, the ceta cean

survey data were divided into continuous-effort seg-

ments of approximately 10 km (ETP) or 5 km (CCE),

as described in Becker et al. (2010). Each segment

was assigned species-specific sighting information

(number of encounters, mean group size) and envi-

ronmental data as described below (see ‘Habitat vari-

ables’), based on the midpoint of each segment.

Twelve species or species groups were encountered

sufficiently frequently to develop CCE models: striped
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dolphin Stenella co eru leoalba, short-beaked common

dolphin Delphinus delphis, Risso’s dolphin Grampus

griseus, Pacific white-sided dolphin Lagenorhynchus

obliquidens, northern right whale dolphin Lisso -

delphis borealis, Dall’s porpoise Phocoenoides dalli,

sperm whale Physeter macrocephalus, fin whale Bal-

aenoptera phy salus, blue whale B. musculus, hump-

back whale  Megaptera novaeangliae, Baird’s beaked

whale Be rardius bairdii, and a small beaked whale

guild (including Cuvier’s beaked whale, Ziphius cavi-

rostris, and beaked whales of the genus Mesoplodon).

In the ETP, models could be developed for 10 species,

3 subspecies, and 1 genus: offshore pantropical spot-

ted dolphin Stenella attenuata attenuata, eastern

spinner dolphin S. longirostris orientalis, whitebelly

spinner dolphin S. longirostris longirostris, striped

dolphin, rough-toothed dolphin Steno bredanensis,

short-beaked common dolphin, common bottlenose

dolphin Tursiops truncatus, Risso’s dolphin, short-

finned pilot whale Glo bi ce phala macrorhynchus,

dwarf sperm whale Kogia sima, Cuvier’s beaked

whale, Mesoplodon beaked whales, blue whale, and

Bryde’s whale Balaenoptera edeni. Models for off-

shore pantropical spotted dolphins were, however,

based only on the 1998 to 2003 surveys because the

transect lines for this survey period were optimized to

estimate the abundance of the offshore form.

Habitat variables

Water depth was derived from the ETOPO2 2-min

global relief data (U.S. Department of Commerce

2006). Bathymetric slope was calculated as the mag-

nitude of the bathymetry gradient using the gradient

operator tool in Generic Mapping Tools (Wessel &

Smith 1998). Depth and slope values for each geo-

graphic location were obtained using the ‘sample’

tool in ArcGIS (Version 9.2, ESRI). Sea-surface tem-

perature (SST) and salinity (SSS) from a thermo -

salinograph were recorded continuously at 0.5 to

2 min intervals. Mixed-layer depth (MLD, the depth

at which temperature is 0.5°C less than surface tem-

perature; Monterey & Levitus 1997) was estimated

from expendable bathythermograph (XBT) and con-

ductivity-temperature-depth (CTD) casts collected

3 to 5 times per day. Surface chlorophyll (CHL, mg

m−3) was estimated at the same stations from the sur-

face bottle on the CTD or from bucket samples ana-

lyzed by standard techniques (Holm-Hansen et al.

1965). Details of the field methods can be found in

Philbrick et al. (2001, 2003).

Given the generally larger scale oceanic processes

within the ETP (Fiedler & Talley 2006), and that

analyses suggest larger scale cetacean-habitat

models are appropriate for this study area (Redfern et

al. 2008), values of the habitat variables for model de-

velopment were calculated as weighted averages of

the oceanographic data collected on the same day

and within a radius of 50 km of each segment mid-

point. Inverse distance weighting (distance−1) was

used in the weighted average computations. Within

the CCE, in contrast, spatial scales of habitat variabil-

ity are smaller, due to coastal processes and the effect

of latitude on eddy scale (Longhurst 2007); therefore,

alternate methods of estimating location-specific val-
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ues for each segment were used. The underway

thermo salinograph data (SST, SSS) were averaged

within a 5 km radius of each segment midpoint.

In the CCE, we used interpolation of all oceano-

graphic measurements to obtain continuous spatial

grids of our in situ oceanographic habitat variables.

Interpolation inevitably introduces errors caused by

spatial gaps between sample points and measurement

inaccuracy and imprecision. The best estimate of an

independent variable at an unsampled point in space

(and time) is derived from an interpolation of sampled

data that minimizes both the influence of measure-

ment or sampling error in the observations and error

introduced by the statistical technique, either between

observations or at edges. To determine the optimal in-

terpolation method to use for estimating habitat vari-

ables, 5 smoothing interpolation methods were com-

pared for 3 variables (SST, ther mo cline depth [depth

of maximum temperature gradient in a 10 m interval,

which is highly correlated with MLD] and CHL) from

the 2005 CCE survey, using the program Surfer

(Golden Software, Version 2008): inverse distance

squared, kriging, local polynomial, radial basis func-

tion, and minimum curvature.

For each variable, subsets of observations were se-

lected and removed from the dataset, the remaining

observations were interpolated, and the residuals of

the omitted observations were calculated, where the

residual is the difference between an omitted data

value and the interpolated value (i.e. the predicted

value) at that point. Two jackknife procedures were

used to calculate the mean and standard deviation of

residuals at each data point: (1) single (omit each ob-

servation one at a time) and (2) daily (omit each ship-

day, typically with 5 observations, 1 ship-day at a

time). In general, the only resultant difference be-

tween these 2 procedures was that daily jackknife

residuals were slightly greater than single jackknife

residuals. For each variable, a variogram analysis esti-

mated length scale (i.e. how rapidly variance changes

with increased distance between sampling points), er-

ror variance or the nugget effect (this source of error

can be due to measurement error or small-scale het-

erogeneity in the system), and ani so tropy. Then, jack-

knifing and interpolation were performed with similar

search parameters for each of the 5 interpolation

methods (see Barlow et al. 2009 for details). Grid reso-

lution was 1 degree of latitude and longitude. Using

the optimal interpolation method, yearly inter po la -

tions were created for 5 CCE surveys (1991, 1993,

1996, 2001, and 2005). Values of CHL and MLD for

each segment midpoint were subsequently estimated

from the interpolated yearly fields using Surfer’s re si -

dual command. Chlorophyll values were log-trans-

formed in each ecosystem because the minimum and

maximum values differed by an order of magnitude.

In addition to the in situ measurements, some

remotely sensed data sources were considered in the

CCE models. SST (taken from NOAA/National Envi-

ronmental Sa tellite, Data, and Information Service/

Pathfinder V5) and measures of its variance at spe-

cies-specific spatial scales were included as potential

predictors, using 8 d running average SST compos-

ites (Becker et al. 2010). Although past studies have

shown relationships between cetacean sightings and

other remotely sensed measures, such as chlorophyll

(Smith et al. 1986, Jaquet et al. 1996, Moore et al.

2002), satellite-derived measures of chlo rophyll con-

centration were not consistently avail able for the sur-

vey periods in the present study. Remotely sensed

data at various spatial and temporal scales have pre-

viously been compared to in situ data within the CCE

to identify the spatial scales with the best predictive

power (Becker et al. 2010). In the present study, we

selected CCE models with the best predictive ability

from 1 of 2 options: re motely sensed (at the scales de -

scribed in Becker et al. 2010), or a combined set of in

situ and re motely sensed predictor variables. The lat-

ter in cluded the predictors used in the remotely

sensed models, as well as in situ values of CHL and

MLD estimated from the interpolated yearly fields,

and SSS underway thermosalinograph data aver-

aged within a 5 km radius of each segment midpoint.

Re motely sensed measures of SST and CV(SST) were

used in the combined models because remotely

sensed CV(SST) was found to be more effective at

characterizing frontal regions than our in situ

CV(SST) measures, and SST measures performed

similarly (Becker et al. 2010).

Model framework

Cetacean population density predictions were

derived from encounter rate and group size models

developed within a generalized additive modeling

frame work developed by Hedley et al. (1999) and

Ferguson et al. (2006a,b). Generalized additive mod-

els (GAMs) are commonly used to relate characteris-

tics of a species, such as distribution or abundance, to

environmental characteristics. A GAM may be repre-

sented as:

(1)

(Hastie & Tibshirani 1990). The function g(μ) is

known as the link function, and it relates the mean of

( ) ƒ ( )
1

g Xj

j

p

j∑μ = α +
=
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the response variable given the predictor variables

μ = E(Y|X1,…,Xp) to the additive predictor α + Σjƒj(Xj).

GAMs are nonparametric extensions of generalized

linear models (GLMs). The components ƒj(Xj) in the

additive predictor of a GAM may include nonpara-

metric smooth functions of the predictor variables,

whereas a GLM is composed of a linear predictor,

α + ΣjβjXj, in which the terms βj are constants. This

difference between the additive and linear predictor

allows GAMs to be more flexible than GLMs.

The CCE models developed in the present study

used S-PLUS (Version 6) for model development,

building upon the methods used in previous model-

ing studies for this area (Forney 2000, Becker 2007).

Alternate algorithms for constructing GAMs and

GLMs were separately evaluated for the ETP only,

using a common set of environmental and cetacean

line-transect survey data. Three different algorithms

for constructing GAMs and 1 for constructing GLMs

were included in the comparison: (1) S-PLUS gam

with cubic smoothing splines and up to 3 degrees of

freedom (df), (2) R (version 2.6.2) gam from package

gam with cubic smoothing splines and up to 3 df,

(3) R (version 2.6.2) glm from package stats with

polynomial terms of up to 3 df to allow a degree of

non-linearity between predictor and response vari-

ables, and (4) R (version 2.6.2) gam from package

mgcv (version 1.3−29) using cubic regression splines

and thin-plate regression splines with shrinkage. For

the first 3 algorithms used in the ETP analysis, for-

ward/ backward stepwise variable selection was im -

plemented using step.gam and Akaike’s information

criterion (AIC). In contrast, the mgcv gam determines

the effective df for the smoothing parameter by min-

imizing the generalized cross validation (GCV) score

(Wood 2006) using a selection of numerical optimiza-

tion methods. We tested a total of 6 different numeri-

cal method options, 4 to construct the encounter rate

models (outer, perf.outer, perf.magic, and perf.mgcv)

and 2 to construct the group size models (magic and

mgcv). Because GCV is known to overfit on occasion

(Kim & Gu 2004), we tested 2 values of the parameter

gamma that mgcv uses to compute GCV. Larger val-

ues for gamma penalize model complexity more than

smaller values, so we tested the default, gamma =

1.0, and an alternative, gamma = 1.4.

Encounter rate and group size models

The number of cetacean sightings per kilometer of

survey effort (encounter rate) was modeled for all

transect segments using a quasi-likelihood model

with variance proportional to the mean and a loga-

rithmic link function. The natural logarithm of seg-

ment length was included as an offset term to stan-

dardize each sample for effort because some

seg ments were slightly longer or shorter than the 5 or

10 km target length. Group sizes varied over 3 orders

of magnitude and were modeled with the natural

logarithm of group size as the response variable and

an identity link function, using only segments that

contained sightings. A ratio estimator was used to

correct for back-transformation bias (Smith 1993) in

group-size predictions prior to calculating densities

using the standard line-transect formula and previ-

ously published values of f(0) and g(0) (Barlow 2003,

Ferguson & Barlow 2001):

(2)

where n/L is the encounter rate (number of sightings

per unit length of transect), S is the expected (or

mean) group size, ESW is the effective strip width

(1-sided), or 1/f(0), where f(0) is the sighting proba-

bility density at zero perpendicular distance, and g(0)

is the probability of detecting an animal on the tran-

sect line.

Potential predictor variables for encounter rate

and group size models for the ETP included closest

distance to shore (continents or islands), depth, and

in situ oceanographic data collected during the line-

transect surveys, specifically SST, SSS, MLD, and

log-transformed values of CHL. Potential predictor

variables for the CCE included distance to the

2000 m isobath, depth, slope, remotely sensed SST,

CV(SST) (as a proxy for frontal regions), along-track

SSS from the thermosalinograph, and estimates of

MLD and CHL (log-transformed) derived from the

interpolated in situ station data. In both regions, the

average sea state (Beaufort scale) on each segment

was included as a predictor in all models to account

for potential biases due to changes in detection

probability. Only survey effort conducted in sea

states corresponding to Beaufort 5 or less was used

to build the models, corresponding to the conditions

under which f(0) and g(0) estimates were derived

(see Barlow et al. 2009, Becker et al. 2010 for further

details). Final density predictions were based on the

average observed sea state during the surveys. Lati-

tude and longitude were generally not included in

the models because they are static predictors and

can obscure patterns with correlated dynamic pre-

dictor variables, such as SST. The only exception

was the eastern spinner dolphin, for which geo-

graphic coordinates provided a simple method of

D
n

L
S

g
= ( ) ⋅ ⋅

⋅ ⋅ ( )

1

2 0ESW
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separating this subspecies from whitebelly spinner

dolphins when the models’ physical and biological

habitat variables could not.

Model selection

Model validation using an independent data set is

an integral part of building robust cetacean-habitat

models (Forney 1997, 2000, Becker 2007). In the pre-

sent analysis, final models for the CCE and ETP were

selected using a 2-part process in which models were

initially built based on the available SWFSC survey

data through 2003. Candidate models were then eva -

luated in terms of their predictive capabilities when

applied to data from the novel 2005 (CCE) and 2006

(ETP) SWFSC cetacean surveys. Predictions and

 overall model performance were compared to identify

the best models, using explained deviance, average

squared prediction error (ASPE), and ratios of ob-

served to predicted densities for the entire study area.

Density predictions derived from the encounter rate

and group size models were also plotted on maps of

the study area, and the spatial distribution was quali-

tatively evaluated by experts knowledgeable about

cetacean ecology in the study areas. Following model

selection and validation, the best models were then

re-fit to include the additional year of data (2005 and

2006, respectively). For the CCE region, where stan-

dard line-transect density estimates for the same sur-

vey years have previously been made using the same

estimates of f(0) and g(0) (Barlow 2003), we also com-

pared the modeled study-area abundances to the

standard line-transect estimates as a cross-check to

validate model predictions. Although the estimates

provided by Barlow (2003) also have uncertainty asso-

ciated with them, they provide a benchmark against

which our model predictions could be evaluated.

Cetacean density interpolation

The segment-specific predictions from the best

models were interpolated to the entire ETP and CCE

study areas using Surfer and inverse distance

weight ing to the power of 2. This weighting method

gives points closer to each grid node greater influ-

ence than those farther away. For the California Cur-

rent models, interpolation grids were created at a

resolution of 25 km, and all data within a search

radius of 2 degrees latitude (222 km) were used for

interpolation, because transect spacing ranged from

150 to 230 km during the surveys, and contouring

results were more robust when data from >1 transect

line were included. For the ETP models, grids were

developed at a resolution of 100 km, and all data

within a search radius of 10 degrees latitude

(1111 km) were included in the inverse distance

weighting calculations. After creating grids for each

of the individual survey years, individual grid cells

were averaged across all years to calculate a mean

species density and its inter-annual variance. A final

average density prediction grid was then re-calcu-

lated using a 5 × 5 pixel moving average filter with

equal weight, to eliminate occasional over-specifica-

tion (‘bull’s eye’) effects. The complete gridding pro-

cess thus provided smoothed multi-year average

cetacean densities, taking into account both the vary-

ing oceanographic conditions and different levels of

sampling coverage achieved during the SWFSC

cetacean surveys. Standard errors and log-normal

90% confidence limits were calculated from the grid

cell averages and variances using standard formulae.

RESULTS

Oceanographic data interpolation

Kriging was selected as the best method for inter-

polating the oceanographic data collected during the

SWFSC surveys, based on its better performance and

the prevalence of its use in geostatistical spatial map-

ping. Further, kriging allows patterns of variability in

the data to be used directly through the fitted vari-

ogram model. Minimum curvature, radial basis func-

tion, and, to a lesser extent, inverse distance squared

tended to produce isolated areas of high or low values

(i.e. bull’s eyes). Local polynomial interpolation tend -

ed to produce extreme highs or lows beyond the edge

of the sampled area; this problem was minimized by

using a first-order polynomial. Kriging re sulted in the

fewest number of bull’s eyes but had slightly higher

residuals. None theless, residuals at in dividual sample

points were very similar for all interpolation methods

(e.g. r2 = 0.94 between single jackknife residuals of

inverse distance squared and kriging methods, and r2

= 0.93 and 0.99 between single and daily jackknife

residuals for these 2 methods).

Yearly fields were created at the approximate reso-

lution of station samples, (i.e. 0.5 degrees in the

CCE), and spline interpolation was subsequently

used to produce finer scale interpolated fields at 0.05

degree resolution. This 2-step process was necessary

because kriging directly at the finer scale created ar-

tifacts in areas of sparse coverage, and adjusting
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search parameters to avoid the artifacts resulted in

the loss of mesoscale variability (100 to 200 km) that

might be important for habitat modeling. The final

fields generated by the 2-step process were nearly

identical to the original high-resolution fields but did

not contain the previously described artifacts. The

variogram analyses within the CCE typically gave

cross-shore to alongshore anisotropy of 0.5 or less (i.e.

variability was much greater when sampling from the

coast to offshore compared to alongshore). The re -

commended anisotropy range is 0.5 to 2.0, if the x-

and y-axes have the same units; the use of anisotropy

values of 0.5 or less estimated from the variogram re-

sulted in overly smoothing the grids. Therefore,

anisotropy was constrained to be at least 0.75; this re-

sulted in a lower goodness-of-fit for the variogram

model, but the interpolated  surfaces were better

 representations of the spatial patterns in the data.

Model algorithm comparison

During the comparison of GAM algorithms using

the ETP data, we found a previously unreported bug

in the step.gam function from the R package gam that

prevented step.gam from including the offset term for

survey effort in any encounter rate model examined

during the stepwise search. Therefore, our comparison

of the gam algorithms in S-PLUS and the R package

gam was limited to group size models, which did not

have an offset term. Group size GAMs built using the

gam algorithms in S-PLUS and the R package gam

119

Species                                               Model       gam.method       Spline     gamma        Total           R       Explained   ASPE

                                                              type                                                                           EDF                       deviance

Pantropical spotted dolphin             Simple         perf.magic           cs            1.4           6.914       1.443       0.104        0.044

Stenella attenuata attenuata         Complex             outer                 ts            1.0           42.143       1.303       0.116        0.044

Eastern spinner dolphin                   Simple         perf.magic           cs            1.0           32.200       1.947       0.252        0.018

Stenella longirostris orientalis      Complex              NA                 NA          NA             NA           NA           NA           NA

Whitebelly spinner dolphin              Simple         perf.magic           cs            1.0           22.627       2.070       0.165        0.007

Stenella longirostris longirostris   Complex              NA                 NA          NA             NA           NA           NA           NA

Striped dolphin                                 Simple         perf.magic           cs            1.0           22.533       1.149       0.086        0.048

Stenella coeruleoalba                   Complex             outer                 ts            1.4           53.388       1.048       0.094        0.048

Rough-toothed dolphin                     Simple         perf.magic           cs            1.0           8.914       1.355       0.155        0.010

Steno bredanensis                         Complex             outer                cs            1.0           60.560       0.745       0.180        0.010

Short-beaked common dolphin       Simple         perf.magic           cs            1.4           16.733       1.599       0.162        0.020

Delphinus delphis                         Complex         perf.outer             cs            1.0           59.646       1.494       0.183        0.020

Common bottlenose dolphin           Simple         perf.magic           ts            1.4           14.240       1.806       0.163        0.029

Tursiops truncatus                         Complex         perf.outer             ts            1.0           51.457       1.475       0.178        0.029

Risso’s dolphin                                   Simple         perf.magic           cs            1.0           14.238       2.196       0.088        0.011

Grampus griseus                           Complex             outer                cs            1.0           59.795       1.797       0.111        0.011

Cuvier’s beaked whale                     Simple         perf.magic           cs            1.0           7.027       2.023       0.056        0.005

Ziphius cavirostris                         Complex        perf.magic           ts            1.0           8.973       1.742       0.057        0.005

Blue whale                                         Simple         perf.magic           cs            1.4           24.174       4.092       0.215        0.005

Balaenoptera musculus                 Complex              NA                 NA          NA             NA           NA           NA           NA

Bryde’s whale                                   Simple         perf.magic           ts            1.0           10.284       1.697       0.058        0.012

Balaenoptera edeni                       Complex              NA                 NA          NA             NA           NA           NA           NA

Short-finned pilot whale                   Simple         perf.magic           cs            1.0           16.160       1.715       0.061        0.014

Globicephala macrorhynchus       Complex             outer                 ts            1.4           57.162       1.625       0.086        0.014

Dwarf sperm whale                         Simple           perf.outer             cs            1.4           26.920       1.273       0.342        0.005

Kogia sima                                     Complex             outer                cs            1.0           61.997       0.646       0.388        0.005

Mesoplodon spp.                               Simple           perf.outer             cs            1.0           52.296       1.736       0.140        0.005

                                                          Complex              NA                 NA          NA             NA           NA           NA           NA

Table 1. Comparison of the simple and complex encounter rate generalized additive models (GAMs) for the eastern tropical

Pacific, built using the gam algorithm in the R package mgcv. The term gam.method refers to the numerical method used to

optimize the smoothing parameter estimation criterion for the GAM. Splines were either cubic regression splines with shrink-

age (cs) or thin-plate regression splines with shrinkage (ts). The gamma parameter determines the penalty for model complex-

ity, with larger values of gamma resulting in greater penalty. Also shown are the total effective degrees of freedom (EDF), the

sum of the absolute value of the deviance in the ratio of observed to predicted number of sightings (R), the explained deviance,

and the average squared prediction error (ASPE) for the best model re-fit using all data from 1986 to 2006 (or 1998 to 2006 for

pantropical spotted dolphins). If a single model clearly outperformed all others, the corresponding elements of the table show 

‘NA’ for the type of model that was not considered any further
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were essentially identical: the best models contained

the exact same predictor variables and associated df,

and the parameterizations of the smoothing splines

were identical, except for small differences that were

likely due to the precision of the software platforms.

GAMs built using the R package mgcv often resulted

in different predictor variables, or different df, than

those built using S-PLUS. The mgcv gam algorithm

allows users to adjust many more parameters and set-

tings to build the models compared to the S-PLUS

analogue. To the knowledgeable user, this flexibility

enables fine-tuning of the GAMs. On the other hand,

having numerous adjustable arguments makes the al-

gorithm less user-friendly because more time must be

invested to learn how to build appropriate models.

Tables 1 & 2 show the range of encounter rate and

group size models, respectively, selected as the final

model by mgcv gam given the specified combination

of settings for the gam.method, smoothing spline,

and gamma arguments. The ‘simple models’ had rel-

atively few effective df and the smallest sum of ab so -

lute deviations of the observed-to-predicted ratios.

The ‘complex models’ had relatively large effective

df in addition to good agreement be tween observed

and predicted values of the response variable. When

cetacean experts were shown geographic contour

plots of the predictions from the competing simple

and complex mgcv gam models for each species, the

simple models were overwhelmingly preferred to the

complex models. The dominant criticisms of the com-

plex models were 2-fold: the predictions from the

complex models either (1) exhibited relatively small-

scale details in population density that are unex-

plainable given existing knowledge of the dynamics

of the ecosystem, or (2) were nearly identical to those

from the simple model, and, therefore, the extra

model complexity was not necessary for capturing

the spatial patterns.

With mgcv, encounter rate models using gam.

method = perf.magic produced simple models with

the greatest predictive performance. The best com-

plex encounter rate models were developed using
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Species                                               Model     gam.method   Spline   gamma       Total           R        Explained   ASPE

                                                              type                                                                  EDF                       deviance

Pantropical spotted dolphin             Simple          magic             cs           1.4         3.830       1.663         0.038     6734.449

                                                          Complex           NA              NA         NA           NA           NA            NA             NA

Eastern spinner dolphin                   Simple          magic             ts           1.4         13.222       2.161         0.105     12863.707

                                                          Complex         mgcv             cs           1.0         21.621       1.992         0.150     12517.964

Whitebelly spinner dolphin              Simple          magic             ts           1.0         1.783       0.776         0.083     41435.168

                                                          Complex           NA              NA         NA           NA           NA            NA             NA

Striped dolphin                                  Simple          magic             ts           1.4         12.641       0.543         0.089     2898.201

                                                          Complex         mgcv             ts           1.0         17.934       0.473         0.098     2890.072

Rough-toothed dolphin                     Simple          magic             ts           1.4         6.789       1.672         0.148     114.062

                                                          Complex           NA              NA         NA           NA           NA            NA             NA

Short-beaked common dolphin       Simple          magic             cs           1.4         10.974       1.627         0.138     83237.681

                                                          Complex        magic             ts           1.0         21.745       1.094         0.215     77358.863

Common bottlenose dolphin            Simple          magic             ts           1.4         10.162       1.183         0.060     12433.442

                                                          Complex         mgcv             cs           1.0         27.789       1.292         0.118     12461.770

Risso’s dolphin                                   Simple          magic             ts           1.4         5.031       0.570         0.096     353.787

                                                          Complex        magic             cs           1.0         20.570       0.294         0.208     304.655

Cuvier’s beaked whale                     Simple          magic             ts           1.0         10.324       0.543         0.217     1.138

                                                          Complex         mgcv             cs           1.0         16.626       0.621         0.202     1.185

Blue whale                                         Simple          magic             ts           1.4         7.571       0.737         0.300     2.469

                                                          Complex        magic             cs           1.0         33.089       0.324         0.586     1.519

Bryde’s whale                                    Simple          magic             ts           1.0         6.194       0.705         0.073     1.108

                                                          Complex           NA              NA         NA           NA           NA            NA             NA

Short-finned pilot whale                   Simple          magic             ts           1.0         5.428       1.080         0.059     261.772

                                                          Complex        magic             cs           1.0         11.473       1.391         0.117     248.580

Dwarf sperm whale                           Simple          magic             ts           1.4         1.847       1.368         0.051     1.343

                                                          Complex         mgcv             cs           1.0         18.484       1.118         0.330     0.977

Mesoplodon spp.                               Simple          magic             ts           1.0         9.422       0.763         0.238     0.678

                                                          Complex         mgcv             ts           1.0         14.329       0.768         0.274     0.653

Table 2. Comparison of the simple and complex group size generalized additive models for the eastern tropical Pacific, built

using the gam algorithm in the R package mgcv (for further details of methods and taxonomic names see ‘Model framework‘ 

and Table 1)
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outer (6 models), perf.outer (4 models), and perf.

magic (2 models). Cubic regression splines were pre-

ferred for simple encounter rate models, whereas the

complex models were constructed using either cubic

or thin-plate regression splines. Simple models were

split almost equally between those built using gamma

= 1.0 (8 models) and 1.4 (6 models), while the best

complex models were generally constructed using

gamma = 1.0. For group size models, the gam. method

magic produced the simple models with the greatest

predictive performance, while the best complex mod-

els were di vided among gam.methods mgcv and

magic. Preferred simple models were  generally con-

structed using thin-plate regression splines, whereas

cubic regression splines were se lected more fre-

quently in the complex models. The majority of simple

models were constructed using gamma = 1.4, and

most complex models used the default value of 1.0.

The differences between GLMs and S-PLUS

GAMs for a given dataset were surprisingly small

based on a comparison of ASPE, explained de -

viance, the predictor variables and associated df in

the final models, the shape of the smoothing splines

for each predictor variable, and visual examination

of geographic contour plots of predicted density.

Greater differences in statistical details (but not in

geographic contour plots of predicted densities)

were observed between GLMs and GAMs con-

structed using mgcv, because the GLMs and S-

PLUS GAMs were constrained to a maximum of 3 df

per term, whereas the mgcv gam function allowed

higher df. However, as evident from the comparison

between simple and complex mgcv gam models in

Tables 1 & 2 and the outcome of the cetacean ex -

perts’ review, greater complexity frequently did not

result in better models.
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Species                                         Model   Exp.   ASPE                                     Predictor variables

                                                                    dev.                   D2000   Depth   Slope  SSTa CV(SST)a  BF   MLDb   CHLb   SSSb

Striped dolphin                               ER       0.10   0.04         −           S2           −        S2           −         L1        −          −         −

Stenella coeruleoalba                   GS       0.09   4429         −           −           −        L1           −          −         −          −         −

Short-beaked common dolphin     ER       0.13   0.17         −           S3           −        S3         S2        L1       S3        S3       S3

Delphinus delphis                         GS       0.02  61 267       −           −           −        L1           −         L1        −          −         −

Risso’s dolphin                               ER       0.08   0.07     CATc        −           −         −           −         S2        −          −         −

Grampus griseus                           GS       0.05   743.71         −           −           L1        −           −          −         −          −         −

Pacific white-sided dolphin           ER       0.28   0.12         −           S3           −        S3           −         S3       S3        L1        −

Lagenorhynchus obliquidens      GS       0.35  44 405       −           S2           −         −           −         L1        −          −        L1

Northern right whale dolphin       ER       0.18   0.04         −           S3           −        S3           −         S3       L1        L1       S2

Lissodelphis borealis                    GS       0.17  12 423       −           −                       −           −         L1       L1         −         −

Dall’s porpoise                               ER       0.42   0.37         −           S3         L1       S3           −         S3       S3        S3       S3

Phocoenoides dalli                       GS       0.11   8.20         −           −           S3       S2           −          −        L1        S2         

Sperm whale                                   ER       0.05   0.09         −           S2           −         −           S3        S2        −         S3        −

Physeter macrocephalus              GS       0.05   61.95       L1           −           −        L1           −          −         −          −         −

Fin whale                                       ER       0.09   0.09         −           S3           −        S3         L1        L1        −          −         −

Balaenoptera physalus                 GS       0.06   1.86       S3           −           −         −           S3         −         −          −         −

Blue whale                                     ER       0.22   0.14         −           S3         S3       S3           −         S3       S3        S3       S3

Balaenoptera musculus               GS       0.08   0.75         −           −           L1       L1           −          −        L1         −         −

Humpback whale                           ER       0.33   0.10       L1         L1         S2       S3         L1        L1        −          −         −

Megaptera novaeangliae             GS         0      2.25         −           −           −         −           −          −         −          −         −

Baird’s beaked whale                   ER       0.08   0.02     CATd       −           −         −           −          −         −          −         −

Berardius bairdii                           GS       0.35   26.79     CATd       −           −         −           −          −         −          −         −

Small beaked whales                     ER       0.07   0.08         −           L1         L1        −           −         L1        −          −         −

Ziphius cavirostris and               GS       0.14   1.08         −           −           −         −           L1        S2        −          −         −

Mesoplodon spp.
aRemotely sensed data; bin situ data; cthe ER model included a categorical variable (CAT) representing different regions of

the study area (see ‘Results, Spatial density models: CCE’ for details); dthe ER and GS model included a categorical variable

(CAT) to indicate areas within 50 km of the 2000 m isobath (see ‘Results, Spatial density models: CCE’ for details)

Table 3. California Current Ecosystem model summary of explained deviance (exp. dev.), average squared prediction error

(ASPE), and predictor variables included in the final encounter rate (ER) and group size (GS) generalized additive models

(built using the S-PLUS gam algorithm). L1: linear fits; S#: smoothing splines, where # is the associated degrees of freedom.

Potential predictor variables were: distance to the 2000 m isobath (D2000), depth, slope, sea-surface temperature (SST), the

coefficient of variation (CV) of SST, Beaufort sea state (BF), mixed-layer depth (MLD), the natural log of chlorophyll (CHL), 

and sea-surface salinity (SSS). (–) Predictor variable did not enter the final model
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Spatial density models: CCE

Final best models for the 11 cetacean species and

1 species guild in the CCE included a mixture of

models based on remotely sensed predictor vari-

ables (i.e. they did not include any in situ vari -

ables), and models that included a combination of

remotely sensed and in situ variables in addition to

the static bathymetric variables (Table 3). Variables

that were in cluded in many of the species’ final

encounter rate models were SST, depth, and sea

state, the latter re flecting this variable’s effect on

detection probability. MLD, CV(SST), CHL, and

SSS were included for fewer species. The percent-

age of deviance ex plained ranged from 5% (sperm

whale) to 42% (Dall’s porpoise) for encounter rate

models and from 0% (humpback whale) to 35%

(Pacific white-sided dolphin) for group size models.

Model validation using the novel 2005 dataset

revealed that the initial models for Risso’s dolphin

and Baird’s beaked whale were not effective at

capturing their distribution patterns, and models

for both species yielded better re sults using cate-

gorical static variables representing regional or

slope categories. Except for these 2 categorical

variables, functional forms between predictor and

response ranged from linear (‘L1’ in Table 3) to

smoothing spline functions with 3 df (S3).

Density plots comparing observed sighting loca-

tions to a sample of yearly predictions (3 of the

total 5) and the multi-year average, with 90% confi-

dence limits (Figs. 2 to 4), showed that the final CCE

models were broadly effective at capturing general

distribution patterns of the 12 modeled cetacean spe-

cies and guild. Across all years, den sity ratios for all

models ranged from 0.86 to 1.50, indicating that aver-

age model-based density estimates were similar to

comparable line-transect den sity estimates calcu-

lated from the same segments. Study-area wide

model-based abundance estimates were also similar

to previous line-transect estimates that used the

same f(0) and g(0) values (Barlow 2003; Table 4). Un -

cer tainty in the model predictions was generally

greater off Oregon and Washington, where fewer

surveys were conducted (in 1991 and 1993, surveys

were only conducted off California). Variance was

also greater for species with a large range in group

size, e.g. short-beaked common dolphins, and

smaller for large whale species and Dall’s porpoises,

which occur in smaller groups.

Spatial density models: ETP

The final best models for ETP cetaceans were

based on static and in situ habitat data and included

smoothing splines with df ranging from 0 to about 9,

plus 1 interaction term requiring 19.5 df (Table 5).

Based on the comparison of simple and complex

encounter rate and group size models, the simple

models were chosen as the final best models for all

taxa except Cuvier’s beaked whale. Encounter rate

models for common bottlenose dolphins, Cuvier’s

beaked whales, whitebelly spinner dolphins, and

blue whales failed to converge with the default set-

tings in the mgcv gam algorithm, but the conver-

gence was achieved by setting the irls.reg parameter

in the gam.control argument in these models to a

value of 1.0 (see R helpfile for gam.control in mgcv

for details on the use of the irls.reg parameter).

Predicted distributions of population density for

the 14 ETP taxonomic categories revealed inter -

annual variability in distribution for most species

(Figs. 5 to 9). Density predictions for Mesoplodon

spp. (Fig. 9) show 2 general areas of high density: the

waters of the equatorial cold tongue that straddles

the equator, and the coastal waters off central Amer-

ica and Mexico. These areas correspond to known

patterns of distribution for Blainville’s beaked whale

M. densirostris and the Peruvian beaked whale M.

peruvianus, respectively (Pitman & Lynn 2001). Thus,
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Species Average abundance estimate

                                      Model Barlow (2003)

                                          N             N             95% CI

Striped dolphin             22 146      18 766     10 459/33 670

Short-beaked               507 660    449 881  314 357/643 832

common dolphin

Risso’s dolphin              19 797      16 603     10 441/26 402

Pacific white-sided       33 154      46 286   20 514/104 435

dolphin

Northern right              16 890      19 420     12 630/29 861

whale dolphin

Dall’s porpoise              66 467      90 391   50 041/163 277

Sperm whale                  1234        1293         726/2301

Fin whale                        3388        2842         1749/4618

Blue whale                     2862        2079         1503/2875

Humpback whale          1373        1123         699/1803

Baird’s beaked whale     600          437            203/940

Small beaked whales    8259        6240      3354/11 608

Table 4. Average abundances (numbers of individuals, N)

predicted based on results from the final California Current

Ecosystem models and derived from the standard line-tran-

sect estimates for 1991, 1993, 1996, and 2001 that were

based on the same values of f(0) and g(0) used by Barlow

(2003). In all cases, model estimates are within the 95% con-

fidence limits (CI) of the average calculated from Barlow’s 

(2003) values. Taxonomic names as in Table 3
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although sample sizes were insufficient to build sep-

arate models for each species of Mesoplodon, the

genus-level model was able to identify the known

patterns of distribution for the 2 dominant Meso-

plodon species in the ETP. The plots for Bryde’s

whales (Fig. 8) highlight the need to consider survey

effort along with the distribution of sightings when

interpreting the density plots. Although the Bryde’s

whale sightings appear to be relatively uniform

throughout the study area, there is considerably less

survey effort in the southern region, which translates

to higher overall densities in these waters. As with

the CCE models, estimates of uncertainty for all spe-

cies were greatest in areas where survey effort was

least (for example, around the margins of the study

areas) and for species having the greatest range in

encounter rate and group size (for example, spotted,

striped, eastern spinner, and whitebelly spinner

 dolphins). Eastern and whitebelly spinner dolphins

were successfully separated geographically (Fig. 5)

using the tensor product spline with latitude, longi-

tude, and SST. Lastly, we attempted to build en -

counter rate and group size models for sperm whales,

killer whales, and coastal spotted dolphins, but the

models for these 3 species failed to converge or pro-

duced predictions that were determined by the

expert review panel to be inconsistent with known

occurrence patterns.

DISCUSSION

Methodological choices

In the present study, we evaluated different

aspects of the model development that were relevant

to each study area, and used the ETP data to examine

the effects of algorithm selection on model results.
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Fig. 2. Modeled species densities for striped dolphin, short-beaked common dolphin, Risso’s dolphin, and Pacific white-sided

dolphin in the California Current Ecosystem. Panels show 3 sample years (1996, 2001, 2005), the multi-year average, and 90% 

confidence limits. Dots are observed sighting locations for each time period. Taxonomic names as in Table 3
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The comparison of interpolation methods showed

that there is not a single ‘best’ method for interpolat-

ing the oceanographic observations, and we chose

ordinary kriging because this method was least sus-

ceptible to bull’s eyes, edge effects, or other artifacts

where data were sparse. The kriged yearly fields

produced for cetacean-habitat modeling captured

both mesoscale and larger scale habitat variability

that might influence the distribution of cetaceans.

However, it is important to remember that the yearly

field was neither a snapshot nor a mean of the dy -

namic oceanographic conditions during the 3 to 4 mo

survey. Rather, it represents a synoptic measure of

summer/fall conditions for each survey year, based

on the oceanographic data collected concurrently

with the cetacean sighting data. Preliminary models

that investigated alternate methods of including

oceano graphic data (e.g. using only along-track or

daily station data) had lower explanatory and predic-

tive power, likely because such approaches resulted

in greater data loss and/or coarser resolution of the

oceanographic data. While the use of an interpolated

field does not allow consideration of within-survey

temporal variability, it was nonetheless able to cap-

ture species-habitat patterns adequately for our

 models. However, for future prediction it might be

better to use fields of oceanographic parameters

derived from ocean−atmosphere models that assi -

milate ship, buoy, and remotely sensed data (e.g.

Carton et al. 2000).

The choice of modeling algorithm did not dramati-

cally affect the resulting models, but 2 features of

the mgcv gam algorithm distinguished it from the

S-PLUS counterpart and made it the preferred algo-

rithm in the ETP. First, the predict.gam function in

mgcv did not require the original dataset to make

predictions from a parameterized GAM. This was in

contrast to the S-PLUS predict.gam algorithm, which

124

Fig. 3. Modeled species densities for northern right whale dolphin, Dall’s porpoise, sperm whale, and fin whale in the Califor-

nia Current Ecosystem. Panels show 3 sample years (1996, 2001, 2005), the multi-year average, and 90% confidence limits. 

Dots are observed sighting locations for each time period. Taxonomic names as in Table 3



Forney et al.: Eastern Pacific cetacean density models

produced a run-time error and stopped working if

the original dataset was not in the working directory.

The practical consequence of this restriction is that a

model developer working in the S-PLUS environ-

ment must provide both the original data and the

gam model object to anyone interested in making

predictions from the model. The second desirable

feature of mgcv gam is its ability to construct a vari-

ety of multidimensional smooth terms. Incorporating

tensor product smooths improved the predictive per-

formance of the ETP eastern spinner dolphin and

Cuvier’s beaked whale encounter rate models.

Based on the model comparison, we believe it is

worthwhile to compare models built using a variety

of tools. Choice of the ‘preferred’ tool is likely to be

case-specific, but it is best to be fully aware of the

advantages and disadvantages of alternative model-

ing methods and algorithms. Further, model evalua-

tion should encompass a suite of model evaluation

techniques. It was rare that all model evaluation

techniques in our study pointed to the same ‘best’

model, because they were evaluating difference

aspects of model performance. Quantitative statis-

tics, such as explained deviance or the overall

observed-to-predicted ratios, provide broad mea-

sures of average model performance but do not

explicitly consider spatial accuracy. ASPE and visual

inspection of density maps allow spatial assessment

of model performance, but it is difficult to quantify

concordance between observations and predictions

or between plots derived from different models.

The output from an ecological model is an approxi-

mation to truth (Burnham & Anderson 1998), and

there are numerous sources of uncertainty in the

cetacean-habitat population density models, including

uncertainty arising from survey design, stochasticity

inherent in the sighting process, measurement error,

model parameter estimation errors, and model selec-
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Fig. 4. Modeled species densities for blue whale, humpback whale, small beaked whales, and Baird’s beaked whale in the

California Current Ecosystem. Panels show 3 sample years (1996, 2001, 2005), the multi-year average, and 90% confidence 

limits. Dots are observed sighting locations for each time period. Taxonomic names as in Table 3
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tion error. To complicate matters, these sources of

 uncertainty and the data themselves are not in -

dependent, making the development of analytical

methods for estimating variance intractable. Given

the large range in the magnitude of uncertainty in tro -

duced by each of these sources, it is not always neces-

sary to quantify the uncertainty associated with each

source to derive a relatively accurate estimate of over-

all uncertainty. Rather, estimation of the un certainty

contributed by the dominant sources is often suffi-

cient. In our analyses, the greatest source of uncer-

tainty was determined to be the interannual variability

in population density due to movement of animals

within or outside of the study areas, and we focused

on this source of uncertainty to produce ap prox imate

estimates of variance for the spatial density estimates.

Spatial cetacean density models

The current study represents the

most comprehensive spatial density

modeling effort for cetaceans to date,

covering 22 species within a broad re-

gion of the temperate and tropical

eastern Pacific Ocean and including

more years of survey effort than any

previous modeling study. Several new

lines of research on model me tho -

dology have been presented in this

study and in related, previously pub-

lished studies (Becker 2007, Redfern

et al. 2008, Becker et al. 2010), includ-

ing evaluations of algorithm choice,

interpolation methods, model cross-

validation, effects of scale, use of re-

motely sensed versus in situ habitat

data, and seasonal predictive capabil-

ities. Our research has confirmed that

GAMs offer a robust framework for

predictive cetacean density models, as

long as sufficient ob servations of each

species are available and the surveys

adequately characterize the full range

of oceanographic variability.

Within the CCE and ETP, the multi-

year average maps provide the first

spatially explicit estimates of sum-

mer/ fall cetacean density and vari-

ance therein. The successful conser-

vation and management of cetaceans

requires that potential anthropogenic

im pacts are correctly assessed, and

the models developed in the present

study represent a new tool to improve

accuracy and allow estimation of  spatial and tempo-

ral heterogeneity of cetacean densities within spe-

cific areas of interest, such as naval operations areas.

For example, there is considerable inshore− offshore

variation in the densities of ceta ceans off Southern

California (Figs. 2 to 4), but previous summer/fall

line-transect estimates (Barlow & Forney 2007) pro-

vided only an average, uniform density from the

coast out to 300 nautical miles offshore. For all spe-

cies that are more abundant in shelf/slope waters

(including endangered blue, fin, and humpback

whales), potential impacts nearshore would thus

have been underestimated, while those offshore

would have been overestimated. The new models

allow more accurate estimation of regional densities,

and provide confidence limits based on observed
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Species                   Model Offshore Depth   SST     SSS   MLD  CHL    BF

                                            distance

Pantropical               ER         0.00       2.37     1.76    1.79   1.00   0.00      –

spotted dolphin       GS         1.89       0.35     0.00    0.00   1.35   0.24      –

Eastern                     ERa        2.01       2.71     1.00    0.57   2.28   0.54   3.63

spinner dolphin      GS         4.11       2.07     2.19    2.28   1.72   0.00   0.87

Whitebelly               ER         3.00       3.27     2.56    7.79   3.81   1.09   1.11

spinner dolphin      GS         0.00       0.98     0.81    0.00   0.00   0.00   0.00

Striped dolphin         ER         6.94       4.30     4.36    0.00   1.94   2.12   2.86

                                  GS         0.83       1.22     0.97    5.63   3.86   0.12   0.01

Rough-toothed         ER         0.00       2.23     4.48    0.00   0.00   0.48   1.72

dolphin                   GS         3.07       0.00     1.14    0.67   0.00   1.33   0.58

Short-beaked           ER         2.33       6.37     2.11    0.83   1.39   2.69   1.02

common dolphin     GS         0.00       0.01     0.48    0.78   6.86   1.15   1.68

Common                   ER         1.81       1.99     1.44    5.34   0.90   1.86   0.88

bottlenose dolphin GS         0.62       4.06     0.88    1.63   0.00   0.00   2.98

Risso’s dolphin         ER         2.09       3.25     2.83    2.98   0.00   1.79   1.31

                                  GS         1.94       0.00     1.46    0.00   0.75   0.00   0.88

Cuvier’s                     ER         1.17       2.31     2.47    0.00   0.00   2.06   0.97

beaked whale         GS         2.97       2.21     2.06    1.54   2.41   2.84   2.60

Blue whale                ER         3.60       4.91     5.59    3.42   3.56   3.14   0.00

                                  GS         1.22       0.81     0.53    0.00   2.59   2.42   0.00

Bryde’s whale           ER         0.04       2.54     2.36    0.96   0.87   2.85   0.67

                                  GS         2.44       3.76     0.00    0.00   0.00   0.00   0.00

Short-finned             ER         1.16       5.87     1.81    3.73   0.00   1.38   2.23

pilot whale              GS         2.21       0.00     0.88    0.00   1.50   0.00   0.85

Dwarf sperm whale ER         0.00       0.00     8.97    0.00   0.00   8.97   8.98

                                  GS         1.06       0.79     0.00    0.00   0.00   0.00   0.00

Mesoplodon spp.      ER         8.92       8.95     8.97    8.74   0.00   8.95   7.77

                                  GS         1.38       0.45     1.90    3.22   0.00   0.00   2.47
aThis model also included the interaction term latitude × longitude × SST

with 19.5 df

Table 5. Effective degrees of freedom for each predictor variable included in

the final eastern tropical Pacific models (SST: sea-surface temperature; SSS:

sea-surface salinity; MLD: mixed-layer depth; CHL: natural log of chlorophyll;

BF: Beaufort sea state). Terms with effective degrees of freedom (df) <1 × 10–4

are represented as 0.00. Taxonomic names as in Table 1. (–) Predictor variable 

did not enter the final model
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Fig. 5. Modeled species densities for pantropical spotted dolphin, whitebelly spinner dolphin, and eastern spinner dolphin in

the eastern tropical Pacific. Panels show 3 sample years (1998 [end of a major El Niño], 1999 [La Niña], and 2000 [ENSO-

 neutral]), the multi-year average, and 90% confidence limits. Dots are observed sighting locations for each time period. Taxo-

nomic names as in Table 1
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Fig. 6. Modeled species densities for striped dolphin, rough-toothed dolphin, and short-beaked common dolphin in the eastern

tropical Pacific. Panels show 3 sample years (1998 [end of a major El Niño], 1999 [La Niña], and 2000 [ENSO-neutral]), the

multi-year average, and 90% confidence limits. Dots are observed sighting locations for each time period. Taxonomic names 

as in Table 1
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Fig. 7. Modeled species densities for common bottlenose dolphin, Risso’s dolphin, and Cuvier’s beaked whale in the eastern

tropical Pacific. Panels show 3 sample years (1998 [end of a major El Niño], 1999 [La Niña], and 2000 [ENSO-neutral]), the

multi-year average, and 90% confidence limits. Dots are observed sighting locations for each time period. Taxonomic names 

as in Table 1
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Fig. 8. Modeled species densities for blue whale, Bryde’s whale, and short-finned pilot whale in the eastern tropical Pacific.

Panels show 3 sample years (1998 [end of a major El Niño], 1999 [La Niña], and 2000 [ENSO-neutral]), the multi-year average, 

and 90% confidence limits. Dots are observed sighting locations for each time period. Taxonomic names as in Table 1
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temporal variation of each species. The model-based

densities are currently accessible within a web-

based interface that allows end-users to estimate

average cetacean densities (and uncertainty therein)

within any user-specified polygon (see Best et al.

2012, this Theme Section). This system has already

been successfully used by the United States Navy,

the National Marine Fisheries Service’s Southwest

Re gion, and other users to assist in planning, evalua-

tion, and mitigation of potential impacts of various

marine activities on cetaceans.

While our models represent a significant improve-

ment over the previous, uniform-density estimates

from broad-scale line-transect surveys, a logical next

step in model development would be to identify

methods of near real-time density predictions based

on current or projected oceanographic conditions.

In particular, seasonal changes cannot presently be

modeled because rough weather conditions during

winter/spring prevent surveys similar to those con-

ducted in summer/fall. Research by Becker (2007)

suggests that summer/fall models may have the

potential to capture seasonal variability in addition to

interannual variability, but such models will require

the input of near real-time oceanogra phic data. Re -

cent advances in processing and in te grating re -

motely sensed data, ship reports, buoy data, and

ocean circulation models to develop near real-time or

forecast models (see Becker et al. 2012, this Theme

Section) provide a foundation for such dynamic

 models. It may also be possible to develop analytical

methods for incorporating alternative data types,
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Fig. 9. Modeled species densities for dwarf sperm whale and Mesoplodon beaked whales in the eastern tropical Pacific. Panels

show 3 sample years (1998 [end of a major El Niño], 1999 [La Niña], and 2000 [ENSO-neutral]), the multi-year average, and 

90% confidence limits. Dots are observed sighting locations for each time period. Taxonomic names as in Table 1
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such as small-scale line-transect survey, tagging, op -

portunistic, and acoustic data, into the devel op ment

and validation of cetacean-habitat models. Cur-

rently, the models are based on large-scale line-tran-

sect surveys that are limited by weather, funding,

and logistics. Expansion of the models to include

alternative data types would help overcome some of

these limitations. For example, tagging data and pas-

sive acoustic data could be useful in exploring sea-

sonal distribution patterns and developing migration

models for large whales.

Lastly, the present models only included habitat

variables derived from physical and biological

oceanographic data relating to primary producers,

and it is unknown whether models could be im -

proved through inclusion of indices related to the

abundance of cetacean prey. Echosounder data are

available for most cruises and have been looked at to

evaluate patterns of overall dolphin distribution and

abundance in the ETP (Fiedler et al. 1998); however,

the data have not yet been fully processed for all sur-

veys. Prey abundance indices have also been ex -

plored based on manta net and bongo net tow data

collected during many of the surveys (Vilchis & Bal-

lance 2005), and future models might be able to in -

clude such prey indices as predictors.
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