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Summary 
1. Yellowhammer Emberiza citrinella populations have declined rapidly in the UK over recent 

decades and a clear understanding of their habitat requirements is important to help inform 

conservation schemes. Specifically we aimed to disentangle and rank the effects of winter 

versus breeding season habitat characteristics. 

2. We use information theoretic methods to analyse the factors determining yellowhammer 

distribution across 26 sites in England and Wales. We do this at two spatial levels: individual 

field boundaries and individual territories, the latter consisting of spatial clusters of boundaries.  

3. We consider the role of nine predictor variables, all of which have been suggested in the 

literature as potentially important. These include boundary height and width, and the presence 

of hedges, trees, ditches, boundary strips, tillage crops, winter set-aside and winter stubbles. 

4. The results of the statistical modelling show that winter habitats play an important role in 

determining where birds locate territories in summer. In particular, the presence of rotational 

set-aside fields in winter shows the strongest association with summer territories.  

5. There were minor differences between the territory and boundary based models. Most notably, 

the territory data demonstrated a strong preference for territories containing trees but this was 

not observed in the boundary dataset. We suggest that the differences between the models may 

reflect different scales of habitat selection. Boundary occupancy reflects broad distributions of 

habitat suitability; territory occupancy patterns better reveal detailed habitat requirements. 

6. Regional densities were more closely correlated with the predictions of the boundary based 

model than those of the territory based model, and we discuss the implications of this for 

interpreting habitat association models.  

Synthesis & applications - Provision of winter set-aside fields for summer territory selection by 

yellowhammers is an important consideration for farm management where conservation is a 

priority. We show models based on occupancy of individual boundary units (e.g. hedgerows) 

correlates with the density of territories at the farm scale; thus farm management practices link 



 4 

directly to population sizes through effects on the quality of breeding habitat.  

Keywords: Akaike weights, metapopulation, agri-environment, habitat management, passerines 
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Introduction 

Why do we find a particular animal or plant in one place as opposed to another? This question is 

at the core of ecology and is the focus of the large body of literature devoted to habitat selection 

by both animals and plants (e.g. Cody 1984; Guisan & Zimmermann 2000). More frequent 

occurrence in a particular habitat is usually taken to signify that this habitat is superior compared 

with other habitats, though there are exceptions (e.g. Van Horne 1983). Conservation managers 

often use such information in the preservation and restoration of habitats to help conserve 

populations of the animal or plant in question (e.g. Buckland & Elston 1993; Bradbury et al. 2000; 

Whittingham, Percival & Brown 2000; Hinsley & Bellamy 2000). Habitat-association modelling 

is the common method for understanding non-random selection of a given habitat. 

Boundaries surrounding fields are common throughout farmed areas in many parts of the 

world. Many boundaries in farmed landscapes in Europe and parts of North America consist of 

hedgerows, formed from linear scrub and used to enclose fields, primarily to contain livestock. 

Hedgerows support a diverse community of birds, often at high densities compared to other 

habitats such as woodland or open fields (Moore, Hooper & Davis 1967; Williamson 1971; Wyllie 

1976; O’Connor 1984; Lack 1987, 1988; Cable et al. 1992; Fuller et al. 2001). Knowledge of how 

to manage hedgerows for birds and other wildlife is important to conservationists because many 

species associated with hedgerows have declined over recent decades (e.g. Siriwardena et al. 

1998; Donald, Green & Heath 2001; Fuller et al. 2001). Here we concentrate on one such species, 

the yellowhammer Emberiza citrinella L. on English farmland, and its association with habitat 

measured at different scales. Detailed knowledge of the habitat requirements of each farmland bird 

species is a key component within conservation schemes aimed at enhancing populations of 

farmland birds. 

One of the major problems in the analysis of habitat associations is that conventional 

statistical methods (e.g. stepwise regression) have an inherent bias that can lead to misleading 

results. The problem is that model selection (i.e. deciding which regression variables should be 
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included) is conducted at the same time as parameter inference (e.g. testing whether parameters 

are significantly different from zero) (Miller 1990; Chatfield 1995; Zhang 1992), which can lead 

to biases in parameters, over-fitting and incorrect significance tests. Although well known in the 

statistical community, this problem is commonly not appreciated in modelling applications. Multi-

model inference and information theoretic approaches are increasingly recognised as a solution to 

these problems (Burnham & Anderson 2002).  

The second problem in the analysis of habitat associations is to ensure that each sampling 

unit is large enough to encompass the scale at which the focal animal is selecting habitat. Units 

such as individual boundaries (e.g. hedgerows) are convenient to measure, and hence may be a 

more practical scale for study and prediction. However, single territories may overlap several 

boundaries. Therefore, the question is open as to whether analysis based on individual boundaries 

is representative of selection patterns at the scale of the territory. Territories are likely to be an 

important scale on which to measure habitat selection for birds such as yellowhammers that 

actively defend territories from other individuals. Territories must include a nest site, be close to 

song perches and be in close proximity to food resources, because most foraging trips to collect 

food for the young are made within 100 m of the nest site (Cramp & Perrins 1994; Morris et al. 

2001).   

One key assumption in habitat modelling is that such models apply in a broader 

geographical context. There may be a number of reasons why this may not be the case, however. 

Firstly, at low density individuals may preferentially select high-quality habitat, whilst at high 

densities populations spill out into less favourable buffer habitat (Gill et al. 2001). Consequently, 

positive selection of a particular habitat component at low densities does not imply that the 

population cannot expand further when the most desirable habitat is fully occupied. Alternatively, 

density-dependence may limit the expansion of populations even when the amounts of preferred 

habitat components are increased. Consequently, it is important to test whether habitat selection 

models are capable of predicting large-scale patterns of abundance.  
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In this study we use modern model selection techniques that are increasingly advocated for 

use in ecological modelling (Rushton, Ormerod & Kerby 2004; Johnson & Omland 2004). In 

addition, we use a model averaging technique giving a statistic which gives the likelihood that a 

predictor should appear in the best-fitting model (following Burnham & Anderson 2002). We use 

the approach to overcome model selection bias, to remove the arbitrariness of designating one 

statistical model as the best fitting model, and to construct confidence sets of models for 

comparing the fits of models to different datasets.  

We have four main aims: (i) to determine the factors driving habitat choice in 

yellowhammers, and to disentangle and rank the effects of winter versus breeding season habitat 

characteristics; (ii) to determine whether variables driving the selection of habitat boundaries are 

the same as those driving the selection of territories; (iii) to determine whether local scale habitat 

selection can be used to predict large-scale population density; and (iv) discuss the limitations and 

benefits of the statistical methods we employed. 

 

Methods 

Study species 

We chose the yellowhammer as a study species because it is strongly associated with field 

boundaries (Kyrkos, Wilson & Fuller 1998; Bradbury et al. 2000). Survey data were collected in 

2002 from twenty-six sites (mean area per site = 72.94 ± 28.9 ha, 1 SD) scattered across lowland 

farmland in England. Each site was a farm and was part of the Common Birds Census scheme in 

which voluntary observers select study areas for the scheme. Yellowhammers were surveyed on 

boundary sections twice per month from April to June (a minimum of six visits were made to each 

site, range 6-12), using Common Birds Census methods (Marchant et al. 1990). Boundary sections 

(sampling units) were defined as any contiguous length of field boundary between points of 

intersection with other boundaries (all boundary sections were included in the analysis irrespective 

of whether they were hedgerows or some other feature, e.g. fence or wall). If the nature of the 
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boundary changed abruptly between intersections, it was further subdivided into separate sampling 

units.  

Information was collected about the boundaries and the surrounding fields in summer 2002 

(see Table 1). Counts of birds were made between 0700 and 1300 GMT, but not in wet or windy 

(> Force 4 on the Beaufort scale) weather. It is more difficult to see and hear birds in wet or windy 

conditions and fewer birds vocalise when it is raining. The locations of all individuals were 

mapped, and records from all censuses over the course of the visits were collated. Territories were 

identified from the spatio-temporal clusters of records using the methods described by Marchant et 

al. (1990). A recent continuous radio-tracking study suggests that yellowhammers are seldom 

recorded on field boundaries outside their territory (Jennings 2000). 

 

Literature survey: modelling methods used in avian hedgerow habitat association studies 

We explored the methods used to construct habitat-association models of hedgerow birds by 

conducting a literature review. The words ‘boundary’, ‘hedgerow’ and ‘birds’ were entered into 

the Web of Science database and we examined all papers that were listed and the citations within 

them. We deliberately excluded studies that sought to compare bird densities with other broad 

landscape types, such as woodland (e.g. Moore et al. 1967; Williamson 1971; Wyllie 1976; Lack 

1987, 1988; Cable et al. 1992; Fuller et al. 2001), as we were interested in the methods used to 

study habitat selection patterns from sampling units that are of a similar size to that on which the 

animal is operating. All of the twelve avian hedgerow studies that operated at this scale treated 

field boundary sections as the sampling unit (Martin 1981; Arnold 1983; Osborne 1984; Rands 

1986 & 1987; Green, Osborne & Sears 1994; MacDonald & Johnson 1995; Parish, Lakhani & 

Sparks 1995; Sparks, Parish & Hinsley 1996; Bradbury et al. 2000; Jobin 2001; Stoate & Szczur 

2001). Treating each boundary as a separate replicate is likely to record the same individual birds 

(pair) on >1 sampling unit because most studies are based on multiple visits (mean = 5.96 visits ± 

1.21, 1 se, assuming the mid-point when number of visits used to construct models varied) and 
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half the studies included contiguous sampling units.  

 A survey of the literature revealed 10 factors that could be considered as potential 

predictors of yellowhammer abundance (Table 1). Some of these have been related to territory 

distribution (hedge presence and hedge height and width, presence of grass and tilled fields, 

presence of ditches and boundary strips) whilst others have not (winter stubble and set-aside fields 

and tree presence). All of the twelve studies used multiple regression techniques to identify which 

of a suite of candidate variables were related to bird abundance or occupancy on boundary units. 

Our analysis enables us to determine the relative influence of each predictor on yellowhammer 

boundary or territory occupancy. 

 

Designation of sampling units 

In addition to treating each sampling unit as a separate replicate in our statistical models, as is 

generally done (see literature review above), we developed models based on territories (Figures 1 

& 2). The territory-based models were derived using a two-stage process that sampled occupied 

territories (i.e. where yellowhammers were recorded during the field observations) and unoccupied 

‘territories’ (i.e. unoccupied clusters of boundaries of similar size) separately. Spatial sampling 

was done in a vector GIS, Arc Info (ESRI, 1998) which contained a complete spatial database of 

the sites. Habitat data were extracted for input to statistical software for model construction. 

A territory comprised the number of boundaries that a pair occupied not the actual size of 

the home range. Territories were plotted on to maps of each site and each territory was assigned an 

individual code. Within the GIS, all field boundaries which were part of an occupied territory were 

selected and extracted from the spatial dataset, leaving the remainder to be used to sample for 

unoccupied territories (Figures 1 & 2). Each individual territory was found to contain between one 

and four boundaries. We calculated one value for every predictor variable by averaging values 

across the boundaries within the territory. The distribution of territory sizes for each site was 

extracted as the number of boundaries occupied by each territory, separately for each site. This 
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distribution drives the random sampling of the unoccupied territories described next. 

For the second stage of the sampling, ‘unoccupied’ territories were created using a random 

sampling procedure constrained by the distribution of the observed territories. If Nocc of Ntot 

boundaries were occupied on a site, then the mean number of boundaries per territory is simply Bt 

= Nocc /Nterr, where Nterr is the number of territories on that site. Thus, of the Nunocc remaining 

unoccupied boundaries, the number of "unoccupied" territories is simply Tunocc = Nunocc /Bt. The 

observed frequencies of boundaries per territory is f(N), where N = 0, 1, 2, 3. Thus, the expected 

number of territories of size N is Tunocc  x f(N). Unoccupied territories were then assigned to 

physical locations at random, using this expected distribution of territories.  However, spatial 

constraints were introduced to reflect constraints that limit the size of territories. The sampling 

procedure ensured that unoccupied territories never included sampling units that were >100 m 

apart (because we found that units separated by >100 m were very rarely included in the same 

territory). 

 

Statistical methodology 

We examined correlates of variation in the probability of occurrence of yellowhammers using a 

generalised linear model (presence or absence of a territory along one or more sampling units, 

assuming a binomial error distribution and a logit link, i.e. logistic regression). For the boundary-

based model, the response variable was specified as the presence or absence of a territorial 

yellowhammer in a boundary section on any one census visit. For the territory-based model the 

response variable was specified as either an occupied territory (1) or an unoccupied territory (0).  

 

STATISTICAL MODELLING  

We used the methods described by Burnham & Anderson (2002). The approach compares the fits 

of a suite of candidate models using Akaike's Information Criterion (AIC). AIC allows models 

with different numbers of parameters to be directly compared with each other. If the ratio of the 
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number of observations to number of parameters falls substantially below 40 then an adjustment 

should be made to the AIC to control for bias (Hurvich & Tsai 1989; Burnham & Anderson 2002). 

In the models reported below, the dataset on territories has n / K = 32.8. We therefore used the 

bias-adjusted AIC in the analysis of this dataset. 

 AIC is calculated for a suite of models and the best fitting one has the smallest AIC 

(termed AICmin). AIC differences are calculated relative to this minimum, so for model i, the AIC 

difference (∆ i) is calculated as: 

∆ i = AICi − AICmin 

The absolute size of the AIC is unimportant, instead the difference in AIC values between models 

indicates the relative support for the models. 

 

Calculation of Akaike weights 

In order to compare models we calculated "Akaike weights", wi (cf Burnham & Anderson 2002); 

wi =
exp − 1

2
∆ i

 
 
 

 
 
 

exp − 1
2

∆ r

 
 
 

 
 
 

r=1

R

∑
         Equation 1 

For all R models, the wi sum to 1 and have a probabilistic interpretation: of the set of R models, wi 

is the probability that model i would be selected as the best fitting model if the data were collected 

again under identical circumstances.  

 Below we report confidence sets of models fitted to each dataset. A confidence set is the 

smallest subset of candidate models for which the wi sum to 0.95. This set represents a set of 

models for which we have 95% confidence that the set contains the best approximating model to 

the true model. It is important to note that it is not the set with 95% probability of containing the 

true model since we do not know that the set of models considered actually contains the true 

model.  

 Because the wi are probabilities, it is also possible to sum these for models containing 
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given variables (Burnham & Anderson 2002). For instance if we consider some variable k, we can 

calculate the sum of the Akaike weights of all the models including k, and this is the probability 

that of the variables considered, variable k is in the best approximating model. This is an 

extremely powerful approach: it is essentially a variable selection method that considers all 

models, but in which each model is weighted by its plausibility.  

 A problem in estimating Akaike weights for individual variables is that poor predictors are 

not expected to have selection probabilities close to zero (Burnham & Anderson 2002). To 

overcome this we added a single randomly generated predictor that was uncorrelated with the 

response variable to the existing dataset of real variables. This random predictor was generated 

from a uniform distribution between zero and one. We generated 1000 such datasets and estimated 

summed Akaike weights for models containing this null predictor along with the other variables.  

 

Estimation and prediction 

Model averaging uses the average of parameter estimates or model predictions from each 

candidate model, weighted by its Akaike weight. There are a number of ways to do this (Burnham 

& Anderson 2002), and we used the following methods. For parameter βj the model averaged 

estimate was calculated as: 

β j = wi

i=1

R

∑ ˆ β j,i
+           Equation 2 

In which wi is the Akaike weight of model i, and ˆ β j,i
+  is the estimate of βj if predictor j is included 

in model i, or is zero otherwise. These model-averaged estimates were compared with estimates 

from a GLM including all variables to assess the potential impact of model selection bias on 

parameter estimates. The estimated selection bias for parameter j was calculated as: 

bias j =
β j − βglm

β j
         Equation 3 

 Prediction by model averaging using a set of GLMs is complicated by the link function: 
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apart from the case of the identity link function, the predicted value for a given set of predictors is 

not a linear function of the parameters, β.  The predicted value for given data is: 

µ = wi

i=1

R

∑ ˆ µ i x i( )         Equation 4 

The model averaged prediction (µ ) is the weighted average of the predicted values (ˆ µ ) of the R 

candidate models. 

 

Model fit 

We calculated an estimate of total model fit using Cohen’s kappa (see Fielding & Bell 1997; 

Fielding 1999; Manel, Williams & Ormerod 2001). This statistic compares observed occurrences 

and absences with those predicted by the model. To estimate this quantity, the following numbers 

are required: a, the number of observed occurrences that the model correctly predicts; b the 

number of absences the model incorrectly predicts to be presences; c, the number of presences the 

model incorrectly predicts as absences; and d, the number of absences the model correctly 

predicts. Based on these numbers the kappa statistic may be estimated using the formula given in 

Fielding & Bell (1997) and Manel et al. (2001). 

 A generalised linear model predicts a probability of occurrence, rather then presence and 

absence per se. We therefore used two approaches to generate the above quantities. First, 

following Manel et al. (2001) we used a cut-off threshold of predicted probability of 0.5. Predicted 

probabilities less than 0.5 were denoted as absences, those greater than 0.5 were denoted 

presences. We denote the estimate of the kappa statistics derived in this way as κ. Secondly, we 

used the predicted probabilities directly, and estimated: 

a = pi

i=1

n +

∑  c = n+ − a        Equation 5 

b = n− − d d = 1− pi

i=1

n −

∑  

The data are split into the n+ and n- cases which are presences and absences, respectively. Then 
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the probabilities of presences and absences are summed within these groups separately to estimate 

the total number of correct and incorrect predictions. We denote the estimate of the kappa 

statistics derived in this way as κ’. 

 

SET OF MODELS EXPLORED 

The methods described above perform best when applied to as small a set of models as possible. 

Although initially our dataset contained 26 possible predictors (as part of a larger project on 12 

hedgerow nesting bird species), we reduced this number to 10 based on the autecology of 

yellowhammers, and previous analyses (Table 1). We then explored all possible subsets of these 

10 predictors as candidate models. Although this is a relatively large number of variables, these 

variables were selected based on consideration of the existing literature (see Table 1). All have 

previously been suggested as predictors of yellowhammer abundance, and the dataset could not 

reasonably have been reduced further. A variable coding for site was included in all models as a 

fixed effect (although including it as a random effect made no quantitative difference to the 

results), allowing large scale variation across the sites to be controlled for in every fitted model. 

Although boundary length is a potentially important variable we did not include it in the analysis 

presented below in order to minimise the number of variables employed in the model selection. 

However, we found that including boundary length (to the boundary-based model) made no 

qualitative difference to our conclusions. 

 

Results 

Model selection 

The model selection exercise suggested that 14 models could be considered as plausible models 

(i.e. 95% confidence set of models) for the boundary based data (Table 2a). These models all 

included hedge presence, boundary height, the presence of ditches, winter set-aside fields and 

boundary strips. The selection probabilities for these variables were high (>0.98), indicating 
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strong support. The other four variables, cropped fields (mainly cereals), boundary width, trees 

and winter stubble (which excludes rotational set-aside fields – see Table 1), received weaker 

support, and the selection probabilities for these variables were well within the intervals simulated 

using null predictors (Table 2a). For all models the fit was very good (~0.59) when assessed using 

κ, although only moderate (~0.29) when assessed using κ’.  We note that the estimates of κ do not 

tend to correlate with the estimates of Akaike weights.  

 The coefficients reveal an enormous range of variation in the magnitude of the effects of 

the predictors on the presence of yellowhammers. All variables are measured on a scale from zero 

to one, thus the model coefficients in Table 2 measure the effect on incidence (via a logit link 

function) of changing from complete absence in any boundaries within the territory to presence in 

all of them. The ranking of the coefficients of the five variables in the model suggested as 

optimum is winter set-aside > boundary strip > hedge height > hedge presence > ditch presence. 

What is interesting about this is that the presence of territorial yellowhammers in boundaries in 

spring and summer appears to relate closely to winter set-aside fields: the coefficient for winter set 

aside was nearly twice as large as that for hedge height and around four times as large as the 

coefficients for the other variables. Only two out of 17 fields (12%) that were set-aside fields in 

the winter (and associated with yellowhammer territories) remained as such the following summer 

(with almost 50% being converted to cereals or grass leys) so it seems that the presence of 

rotational set-aside fields in the winter was critical in determining distribution of yellowhammers. 

However, rotational set-aside fields are only permitted to be sprayed after 15 April and so perhaps 

it is the persistence of these fields at the beginning of the breeding season, as well as their 

presence in the winter, which is important to yellowhammers.  

The models based on territories yielded broadly similar patterns (Table 2b). These models 

indicated that there was strong support for (in order of decreasing coefficients) the effects of 

winter set aside, boundary strip presence, hedge presence, hedge height, and tree presence, as 

indicated by high (>0.940) selection probabilities. There was equivocal support (selection 
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probabilities of 0.716 and 0.696) for effects of ditch presence and cropped fields. The model 

selection probabilities for winter stubble presence and hedge width were relatively smaller (0.278 

and 0.318 respectively), and fell within the range of values simulated for null variables. Again, it 

is notable that the highest-ranking variable was related to winter conditions (i.e. presence of winter 

set-aside). 

The best ranking model in terms of the AIC included ditch; however the Akaike weight for 

this model was not appreciably larger than that of the model excluding ditch. Again, the estimates 

of k tended to be higher (~ 0.61) for κ than for κ’ (0.34), and did not tend to correlate with akaike 

weights. We discuss this below.  

Model selection bias was large for those parameters with low selection probabilities, as 

would be expected (Table 2). This was true for models fitted both to the territory and boundary 

data. These results indicate that attempts to simplify the full model would run the risk of yielding 

biased parameter estimates, emphasising the need for the approach employed here.  

In total, eight models were common to the confidence sets of the two datasets, indicating 

that the determinants of boundary and territory occupancy are largely the same. However, the 

analysis of the boundary data failed to reveal the effect of tree presence.  

 

Relating local occupancy to abundance 

Finally, we consider the potential use of these models to predict abundance at a larger (landscape) 

scale. For each of the 26 sites we generated a prediction of average boundary and territory 

occupancy from the boundary and territory-based models, respectively. We compared these with 

the densities of territories measured across the sites. As shown in Fig. 3, the predictions of the 

boundary-based model (Fig. 3a) are relatively better than those from the model based on territories 

(Fig. 3b). Indeed the relationship in Fig. 3b is statistically non-significant, whilst the relationship 

in Fig. 3a has moderate explanatory power (R2 = 0.30).  
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Discussion 

One of the most useful applications of model selection procedures of the sort used here is 

in comparing sets of predictors between datasets, which cannot be easily done using a 

conventional stepwise modelling approach, since this would yield a single model for each dataset 

without indicating how much better this model is than the alternatives. Using the confidence sets 

we directly compared the support of models fitted to the two datasets. The results clearly indicate 

that the relationship between species occupancy and habitat characteristics can depend on the scale 

at which both are measured. By using statistical methods that allow us to quantify model selection 

uncertainty we have been able to demonstrate that these differences are statistically meaningful, 

and we have disentangled the effects of a large number of potential predictors. Two criticisms of 

the information theoretic approach employed here are that (i) if the set of candidate models is poor 

then the resultant output will necessarily be a poor description of the data (although this is true of 

all modelling approaches); (ii) that goodness of fit measures are required (Rushton et al. 2004). In 

our analysis we have dealt with these points since (i) the set of favoured models in both analyses is 

small relative to the set of models considered (i.e. the 95% confidence set of models in Tables 2a 

and b are small relative to the potential set of models); (ii) we have tested the adequacy of the 

models at two spatial scales, namely the boundary/territory scale, as well as the regional scale. 

 

BOUNDARY VERSUS TERRITORY-SCALE SELECTION 

The boundary model can be used to predict the proportion of boundaries occupied per unit 

area at the farm scale (e.g. if 40 out of 100 boundaries are occupied by yellowhammers then the 

score in Figure 3 would be 0.4). As this proportion is closely correlated with the density of 

territories in our dataset (r = 0.86, n = 26, P <0.001), the density of territories on individual farms 

is well predicted by the boundary model (Fig. 3a).  

The predictions of the model based on territories correlate less closely with the observed 

density of territories (Figure 3b). There are two differences between this model and the one based 
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on boundaries, both relating to the aggregation of predictors at the territory scale. First, in the 

boundary model it was found that variables such as the presence of winter set-aside and boundary 

height were key variables. Much of the variation in these variables is between rather than within 

farms, since farms tend to have high boundaries or low ones (Kruskal-Wallis test for the effect of 

site on boundary height: H = 414, d.f. = 25, P<0.001), or either have winter non-rotational set 

aside or do not (Kruskal-Wallis test for the effect of site on distribution on winter set-aside: H = 

1294, d.f. = 25, P<0.001). In the boundary model, boundaries adjoining such features have high 

occupancy. However, in the territory model, most territories (whether occupied or not) on a given 

farm are likely to adjoin such features. These variables would then have much lower power to 

predict territory occupancy at the same scale as the boundary model. Secondly, it would seem 

likely that territories are formed in order to ensure the presence of desirable habitat components. 

The presence of trees was found to be a significant predictor in the territory models but not the 

boundary models. The presence of a tree within a territory may be important, since 

yellowhammers make use of them for display and song (Cramp & Perrins 1994). However, only 

one tree may be required per territory, and hence territories need not contain more than one 

boundary possessing a tree. This has the consequence that, whilst all territories possess trees, there 

may be a weaker or statistically undetectable selection for individual boundaries containing trees.  

 

CONSEQUENCES FOR YELLOWHAMMER CONSERVATION 

Our most important finding was the strong influence of winter set-aside fields on 

yellowhammer distribution.  Both sampling methods found set-aside fields (mainly rotational) in 

the previous winter to be more strongly associated with the distribution of yellowhammers than 

any other predictor.  Previous work has linked winter field management with breeding density for 

a range of species (Robinson et al. 2001), and although yellowhammer abundance was not shown 

to be significantly related to winter habitats in that study, sample sizes were limited and the 

authors argue that such a relationship is likely to exist (Robinson et al. 2001).  Yellowhammers 
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are fairly sedentary, seldom being recorded >10 km from their ringing site (Paradis et al. 1998) 

and this may explain why breeding distribution is linked to nearby wintering habitats.  Carefully 

targeted placement of suitable wintering habitats could be beneficial for overall demography of 

local populations of sedentary species such as yellowhammer and corn bunting Miliaria calandra 

L.  The difference in our study between the strong selection of winter set-aside fields and the lack 

of an association with winter stubble fields (both preferred wintering habitats) suggests that the 

temporal persistence of set-aside fields into the spring in contrast to stubble fields which are often 

ploughed earlier in the year may also be important.   

Other predictors found to be important by both methods, namely taller hedges and 

boundary strips (Table 2), indicate that the effects of these two variables are well supported. The 

presence of ditches was found to be important using the boundary-based model but not the 

territory model.  As the boundary-based model was found to correlate well with territory density, 

adding ditches is likely to increase yellowhammer density on farmland.   

It is heartening that hedgerow management, ditches and boundary strips are all part of 

current agri-environment measures such as Countryside Stewardship 

(http://www.defra.gov.uk/erdp/schemes/css/default.htm).  Several predictors including boundary 

strips, ditches and hedges have been highlighted as important to yellowhammers by a previous 

study aimed at identifying habitat-associations at the field scale (Bradbury et al. 2000).  Our study 

supports these findings but suggests both winter set-aside fields and the presence of trees are also 

important in determining yellowhammer settlement patterns.   

 

Synthesis and applications 

We found yellowhammer occupancy, as measured at two spatial scales, was most strongly 

associated with rotational winter set-aside field presence.  This suggests that conservationists 

wishing to enhance local populations of yellowhammers should consider not just providing 

suitable habitats during the breeding season (such as boundary strips, tall hedges, ditches and 
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trees) but also the amount and proximity of preferred wintering habitats if they wish to encourage 

more birds to breed during the summer.  The work we have presented highlights that problems of 

scaling should be considered when using models for habitat selection in generating predictions for 

management. Specifically, we found that decisions by birds on settling territories may differ from 

patterns detected when analysing data from boundaries. We also found that there may be problems 

in extrapolating from habitat selection models based on local occupancy to regional population 

abundance, and this is an important potential pitfall in habitat association modelling based on 

presence/absence data.  
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Table 1. List of habitat parameters used as potential explanatory predictors of yellowhammer distribution on boundaries on 26 study sites.  

Predictor Description Reason for inclusion 
Continuous Variables   
Length of boundary (m) [Included in boundary model only] 
Boundary height (measured for 
all boundary types, e.g. 
hedges, fences, walls etc.)  

Varies from 0 (<1m) to 1 (>4m)* Intermediate or short boundaries preferred for territory settlement 
(Hinsley & Bellamy 2000) 

Boundary width  Varies from 0 (<1m) to 1 (>4m)* Wider boundaries preferred for territory settlement (Hinsley & 
Bellamy 2000) 

Adjacent fields cropped in 
summer 

Proportion of adjacent fields of this 
type (70% were autumn-sown 
cereal)** 

Tilled fields are favoured over grassland for territory settlement and 
by adults foraging for their chicks (Bradbury et al. 2000; Hinsley & 
Bellamy 2000; Morris et al. 2001; Perkins et al. 2002). 

Adjacent fields stubble during 
preceding winter 

Proportion of adjacent fields of this 
type (all were grass leys the 
following summer)** 

Stubble fields are strongly favoured in the winter (Wilson et al 1996; 
Hancock & Wilson 2003). 

Adjacent fields set-aside 
during preceding winter 

Proportion of adjacent fields of this 
type (88% were rotational set-aside: 
of which 45% became grass fields 
the following summer)** 

Set-aside fields are strongly favoured in the winter (Buckingham et 
al. 1999; Wilson et al 1996; Hancock & Wilson 2003). 

   
Categorical Factors Levels  
Site 1-26 for 26 study sites To account for inherent differences between sites (e.g. soil type, 

landscape effects etc.). 
Hedge present / absent*** Prefer hedges for nesting and territory settlement (Bradbury et al. 

2000) 
Ditch present / absent*** Prefer ditches for nesting and territory settlement (Bradbury et al. 

2000) 
Boundary strip present / absent*** Prefer boundary strips for foraging (Morris et al. 2001; Perkins et al. 
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2002) and territory settlement (Bradbury et al. 2000)  
Tree presence present / absent*** Trees used as song posts (Cramp & Perrins 1994). 
*Each hedge was classified into five height and width categories: 1 (<1m), 2 (1-2m), 3 (2-3m), 4 (3-4m) and 5 (>4m). Therefore a boundary of 3m would be scored 
as 0.6 in the boundary models. A territory recorded on two sampling units, one of category 1 of 100m and the other of category 2 of 200m would be assigned a score 
of 500/1500 = 0.33. 1500 is the maximum score possible for a length of 300m (5x300m) and the actual score is 500 (1x100 + 2x200). 
**Two visits to each site were made over the course of the breeding season and one visit during the winter.  If no fields of a particular type were present on either 
side of the sampling unit (or series of sampling units for some territories) then a score of 0 was given.  If all fields on both sides were of this type then a score of 1 
was assigned. During the breeding season scores were averaged across both visits. 
***Note that territory-based models take an average score for these predictors (e.g. a territory recorded on three sampling units, two of which were hedges, would 
receive a score of 0.67). 
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Table 2. Alternative ways of deriving habitat association models based on the same data set of yellowhammer territories distributed across landscapes 

from 26 sites in England. All predictors from Table 1 were included in the modelling process. A fixed variable coding for site was included in all 

models. The table indicates the variables included in the model, the AIC (Akaike's information criterion), the delta weight (difference between the 

AIC for a given model and the best fitting model), and the model selection probability (wi). The latter are also summed for each parameter across all 

models by summing all wi scores for all possible models in which the predictor was included. The null interval represents the selection probability for 

a randomly derived predictor obtained by 100 simulations (see text for details). Parameter estimates (β) are presented which were generated by 

averaging across all models (weighted by the selection probabilities). The models shown represent the 95% confidence set for each dataset, models 

underlined are shared between the two confidence sets. Finally total model fit was assessed using Cohen’s kappa statistic. This was  calculated in two 

ways (κ and κ’), as described in the text, and measures the accuracy of prediction of occupied and unoccupied sites.  

(a) Models based on boundaries (n  = 2443; mean occupancy = 0.26) 

Variable: hedge height ditch strip winset sumtill width winstub trees AIC �i wi κ κ’ 

AIC best:  1 1 1 1 1 1    2176.35 0.00 0.22 0.586 0.280 

 1 1 1 1 1     2176.96 0.61 0.16 0.588 0.279

 1 1 1 1 1 1 1   2178.26 1.91 0.08 0.588 0.280

 1 1 1 1 1 1  1  2178.34 1.99 0.08 0.588 0.280

 1 1 1 1 1 1   1 2178.35 2.00 0.08 0.586 0.280
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 1 1 1 1 1  1   2178.86 2.51 0.06 0.589 0.279

 1 1 1 1 1   1  2178.93 2.58 0.06 0.588 0.279

 1 1 1 1 1    1 2178.96 2.60 0.06 0.588 0.279

 1 1 1 1 1 1 1 1  2180.25 3.90 0.03 0.590 0.280

 1 1 1 1 1 1 1  1 2180.26 3.91 0.03 0.591 0.280

 1 1 1 1 1 1  1 1 2180.34 3.99 0.03 0.588 0.280

 1 1 1 1 1  1 1  2180.84 4.48 0.02 0.589 0.279

 1 1 1 1 1  1  1 2180.85 4.50 0.02 0.588 0.279

 1 1 1 1 1   1 1 2180.92 4.57 0.02 0.588 0.279

Selection Probability >0.999 >0.999 0.989 >0.999 0.995 0.573 0.278 0.270 0.270      

null mean: 0.369 

null interval: 0.269 – 0.654             
  

β 0.763 0.953 0.417 1.364 4.089 0.152 -0.021 0.018 0.002      

Bias: 0.010 0.025 0.021 0.009 0.028 0.741 2.576 1.376 1.955      
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(b) Models based on territories (n = 1150; mean occupancy = 0.27) 
 

Variable hedge height ditch strip winset sumtill width winstub trees AICc ∆i wi κ κ’

AIC best: 1 1 1 1 1 1   1 
1001.91 0.00 0.23 0.613 0.340

 1 1 1 1 1    1 
1003.51 1.60 0.10 0.613 0.341

 1 1 1 1 1 1 1  1 
1003.53 1.61 0.10 0.623 0.337

 
1 1  1 1 1   1 

1003.84 1.92 0.09 0.608 0.340

 
1 1 1 1 1 1  1 1 

1004.01 2.10 0.08 0.612 0.336

 
1 1  1 1    1 

1005.12 3.21 0.05 0.615 0.337

 
1 1 1 1 1  1  1 

1005.19 3.28 0.04 0.609 0.333

 
1 1 1 1 1   1 1 

1005.48 3.56 0.04 0.613 0.340

 
1 1  1 1 1 1  1 

1005.49 3.58 0.04 0.622 0.337

Full model: 1 1 1 1 1 1 1 1 1 
1005.62 3.71 0.04 0.612 0.337

 
1 1  1 1 1  1 1 

1005.94 4.03 0.03 0.612 0.336

 
1 1  1 1  1  1 

1006.83 4.91 0.02 0.610 0.334

 
1 1  1 1   1 1 

1007.12 5.20 0.02 0.616 0.337

 
1 1 1 1 1  1 1 1 

1007.15 5.23 0.02 0.608 0.333

 
1 1 1 1 1 1    

1007.19 5.27 0.02 0.607 0.334

 
1 1  1 1 1 1 1 1 

1007.59 5.68 0.01 0.612 0.337
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1  1 1 1 1   1 

1008.43 6.52 0.01 0.595 0.330

 
1 1  1 1  1 1 1 

1008.81 6.90 0.01 0.611 0.334

 
1 1  1 1 1    

1008.97 7.05 0.01 0.613 0.335

 
1 1 1 1 1 1 1   

1009.04 7.13 0.01 0.616 0.331

 
1 1 1 1 1 1  1  

1009.30 7.39 0.01 0.608 0.334

 
1 1 1 1 1     

1009.39 7.48 0.01 0.617 0.331

 
1  1 1 1 1 1  1 

1009.82 7.90 0.00 0.613 0.340

Selection Probability >0.999 0.967 0.716 >0.999 0.993 0.696 0.318 0.278 0.942       

null mean: 0.368 

interval: 0.269 – 0.738            
  

β  1.390 1.241 0.345 2.183 7.273 0.375 -0.092 0.056 0.483      

Bias: 0.020 0.112 0.398 0.016 0.024 0.446 2.610 1.829 0.070      
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Figure Legends 

 

Figures 1a-c. Selection of boundaries in modelling procedure. Figure ‘a’ shows a grid 

of nine squares (or fields) and their boundaries upon which data from six bird 

territories has been overlain. At the end of the field data collection, territories were 

determined by clustering of records on boundary sections, e.g. all the records for 

territory 1 were located on one boundary. Figure ‘b’ shows those boundaries that were 

selected by one or more territories. Figure ‘c’ depicts those territories that were coded 

as unoccupied.  

 

Figures 2a-d. Illustration of procedure used in territory-based models. Figure 2a 

shows two randomly selected territories each of a single boundary (T1 & T2). Figures 

2b and 2c illustrate how a territory comprising two boundaries was determined. 

Initially a boundary was randomly selected (arrow pointing to boundary in Fig 2b) 

and a buffer zone of 100 m drawn around that boundary (depicted by a dotted line in 

Figure 2c) to determine which boundaries could potentially be selected in addition to 

the one initially selected in Figure 2b. Of the two potential boundaries that could be 

selected the one running at right angles was randomly selected to produce territory  

T3 in Figure 2d. 

 

Figure 3. Relationships between model predictions and densities of territories at each 

site (ha-1). (a) Predictions of the model based on boundaries (R2
  = 0.30, n = 26, P = 

0.002). (b) Predictions of the model based on territories (R2 = 0.039 , n = 26, P = ns ). 

Note that site was excluded for the list of predictors in order to generate the fitted 

values.  
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Figure 3. 
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