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Summary
1. YellowhammerEmberiza citrinella populations have declined rapidly in the UK overant

decades and a clear understanding of their habairements is important to help inform
conservation schemes. Specifically we aimed tontizs®yle and rank the effects of winter
versus breeding season habitat characteristics.

2. We use information theoretic methods to anallieddctors determining yellowhammer
distribution across 26 sites in England and Walés.do this at two spatial levels: individual
field boundaries and individual territories, thééa consisting of spatial clusters of boundaries.

3. We consider the role of nine predictor variabldspfavhich have been suggested in the
literature as potentially important. These inclbdeindary height and width, and the presence
of hedges, trees, ditches, boundary strips, tilages, winter set-aside and winter stubbles.

4. The results of the statistical modelling show thatter habitats play an important role in
determining where birds locate territories in sumnreparticular, the presence of rotational
set-aside fields in winter shows the strongest@agon with summer territories.

5. There were minor differences between the territorg boundary based models. Most notably,
the territory data demonstrated a strong preferéncerritories containing trees but this was
not observed in the boundary dataset. We suggatstiié differences between the models may
reflect different scales of habitat selection. Babany occupancy reflects broad distributions of
habitat suitability; territory occupancy patterregtbr reveal detailed habitat requirements.

6. Regional densities were more closely correlated wié predictions of the boundary based
model than those of the territory based model,vaadliscuss the implications of this for
interpreting habitat association models.

Synthesis & applications - Provision of winter set-aside fields for summeritery selection by
yellowhammers is an important consideration fomfananagement where conservation is a
priority. We show models based on occupancy ofviddial boundary units (e.g. hedgerows)

correlates with the density of territories at thenf scale; thus farm management practices link



directly to population sizes through effects ondnality of breeding habitat.
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Introduction

Why do we find a particular animal or plant in golace as opposed to another? This question is
at the core of ecology and is the focus of theddrgdy of literature devoted to habitat selection
by both animals and plants (e.g. Cody 1984; Gug&aimmermann 2000). More frequent
occurrence in a particular habitat is usually tatesignify that this habitat is superior compared
with other habitats, though there are exceptiorgs {¢an Horne 1983). Conservation managers
often use such information in the preservation stbration of habitats to help conserve
populations of the animal or plant in question (8gckland & Elston 1993; Bradbugy al. 2000;
Whittingham, Percival & Brown 2000; Hinsley & Befley 2000). Habitat-association modelling
is the common method for understanding non-randalectgon of a given habitat.

Boundaries surrounding fields are common througferated areas in many parts of the
world. Many boundaries in farmed landscapes in peit@nd parts of North America consist of
hedgerows, formed from linear scrub and used ttosadields, primarily to contain livestock.
Hedgerows support a diverse community of birdsroét high densities compared to other
habitats such as woodland or open fields (Moorepgéo & Davis 1967; Williamson 1971; Wyllie
1976; O’Connor 1984; Lack 1987, 1988; Catilal. 1992; Fullert al. 2001). Knowledge of how
to manage hedgerows for birds and other wildlifengortant to conservationists because many
species associated with hedgerows have declinedesent decades (e.g. Siriwardehal.

1998; Donald, Green & Heath 2001; Fukéeal. 2001). Here we concentrate on one such species,
the yellowhammeEmberiza citrinella L. on English farmland, and its association widbitat
measured at different scales. Detailed knowledghehabitat requirements of each farmland bird
species is a key component within conservationraelseaimed at enhancing populations of
farmland birds.

One of the major problems in the analysis of halbissociations is that conventional
statistical methods (e.g. stepwise regression) havaherent bias that can lead to misleading

results. The problem is that model selection ¢iexiding which regression variables should be



included) is conducted at the same time as paranmééeence (e.g. testing whether parameters
are significantly different from zero) (Miller 199Chatfield 1995; Zhang 1992), which can lead
to biases in parameters, over-fitting and incorsggnificance tests. Although well known in the
statistical community, this problem is commonly appreciated in modelling applications. Multi-
model inference and information theoretic approadre increasingly recognised as a solution to
these problems (Burnham & Anderson 2002).

The second problem in the analysis of habitat aggougs is to ensure that each sampling
unit is large enough to encompass the scale atwthafocal animal is selecting habitat. Units
such as individual boundaries (e.g. hedgerowst@amngenient to measure, and hence may be a
more practical scale for study and prediction. Hosvesingle territories may overlap several
boundaries. Therefore, the question is open asather analysis based on individual boundaries
is representative of selection patterns at theesafaihe territory. Territories are likely to be an
important scale on which to measure habitat seledtr birds such as yellowhammers that
actively defend territories from other individual®rritories must include a nest site, be close to
song perches and be in close proximity to fooduesgs, because most foraging trips to collect
food for the young are made within 100 m of thet sés (Cramp & Perrins 1994; Morresal.
2001).

One key assumption in habitat modelling is thahsuodels apply in a broader
geographical context. There may be a number obreawhy this may not be the case, however.
Firstly, at low density individuals may preferetiyaselect high-quality habitat, whilst at high
densities populations spill out into less favouedtliffer habitat (Gilet al. 2001). Consequently,
positive selection of a particular habitat compdragnow densities does not imply that the
population cannot expand further when the mostalels habitat is fully occupied. Alternatively,
density-dependence may limit the expansion of paipuis even when the amounts of preferred
habitat components are increased. Consequenigyiniportant to test whether habitat selection

models are capable of predicting large-scale pettef abundance.



In this study we use modern model selection teclesdhat are increasingly advocated for
use in ecological modelling (Rushton, Ormerod &§e2004; Johnson & Omland 2004). In
addition, we use a model averaging technique gigistatistic which gives the likelihood that a
predictor should appear in the best-fitting mod@ld¢wing Burnham & Anderson 2002). We use
the approach to overcome model selection biagnmwye the arbitrariness of designating one
statistical model as the best fitting model, anddnstruct confidence sets of models for
comparing the fits of models to different datasets.

We have four main aims: (i) to determine the faxtinving habitat choice in
yellowhammers, and to disentangle and rank thetsfiagf winter versus breeding season habitat
characteristics; (ii) to determine whether varialdeving the selection of habitat boundaries are
the same as those driving the selection of tereiso(iii) to determine whether local scale habitat
selection can be used to predict large-scale ptpaldensity; and (iv) discuss the limitations and

benefits of the statistical methods we employed.

Methods

Sudy species

We chose the yellowhammer as a study species bedaastrongly associated with field
boundaries (Kyrkos, Wilson & Fuller 1998; Bradbetyal. 2000). Survey data were collected in
2002 from twenty-six sites (mean area per site 842 28.9 ha, 1 SD) scattered across lowland
farmland in England. Each site was a farm and veasqd the Common Birds Census scheme in
which voluntary observers select study areas fisttheme. Yellowhammers were surveyed on
boundary sections twice per month from April to da minimum of six visits were made to each
site, range 6-12), using Common Birds Census metfiddrchantt al. 1990). Boundary sections
(sampling units) were defined as any contiguougtleof field boundary between points of
intersection with other boundaries (all boundarmtisas were included in the analysis irrespective

of whether they were hedgerows or some other featug. fence or wall). If the nature of the



boundary changed abruptly between intersectiongast further subdivided into separate sampling
units.

Information was collected about the boundariestaedsurrounding fields in summer 2002
(see Table 1). Counts of birds were made betwe€f @iid 1300 GMT, but not in wet or windy
(> Force 4 on the Beaufort scale) weather. It isenttifficult to see and hear birds in wet or windy
conditions and fewer birds vocalise when it is iragn The locations of all individuals were
mapped, and records from all censuses over theseatfithe visits were collated. Territories were
identified from the spatio-temporal clusters ofaets using the methods described by Marckeant
al. (1990). A recent continuous radio-tracking studggests that yellowhammers are seldom

recorded on field boundaries outside their teryifdennings 2000).

Literature survey: modelling methods used in avian hedgerow habitat association studies

We explored the methods used to construct halstdezation models of hedgerow birds by
conducting a literature review. The words ‘boundahedgerow’ and ‘birds’ were entered into
the Web of Science database and we examined alp#mt were listed and the citations within
them. We deliberately excluded studies that sotqghompare bird densities with other broad
landscape types, such as woodland (e.g. Metaake 1967; Williamson 1971; Wyllie 1976; Lack
1987, 1988; Cablet al. 1992; Fulleret al. 2001), as we were interested in the methods tesed
study habitat selection patterns from samplingsuthiat are of a similar size to that on which the
animal is operating. All of the twelve avian hedgerstudies that operated at this scale treated
field boundary sections as the sampling unit (Mat®81; Arnold 1983; Osborne 1984; Rands
1986 & 1987, Green, Osborne & Sears 1994; MacDo&aldhnson 1995; Parish, Lakhani &
Sparks 1995; Sparks, Parish & Hinsley 1996; Bragleual. 2000; Jobin 2001; Stoate & Szczur
2001). Treating each boundary as a separate replghkely to record the same individual birds
(pair) on >1 sampling unit because most studie®ased on multiple visits (mean = 5.96 visits

1.21, 1 se, assuming the mid-point when numbersiswised to construct models varied) and



half the studies included contiguous sampling units

A survey of the literature revealed 10 factorg tteauld be considered as potential
predictors of yellowhammer abundance (Table 1). &ofrihese have been related to territory
distribution (hedge presence and hedge height aditth wwresence of grass and tilled fields,
presence of ditches and boundary strips) whilstrsthave not (winter stubble and set-aside fields
and tree presence). All of the twelve studies usalliple regression techniques to identify which
of a suite of candidate variables were relatedrtb dbundance or occupancy on boundary units.
Our analysis enables us to determinerthative influence of each predictor on yellowhammer

boundary or territory occupancy.

Designation of sampling units

In addition to treating each sampling unit as aasae replicate in our statistical models, as is
generally done (see literature review above), weeldped models based on territories (Figures 1
& 2). The territory-based models were derived usiriggo-stage process that sampled occupied
territories (i.e. where yellowhammers were recordedng the field observations) and unoccupied
‘territories’ (i.e. unoccupied clusters of boun@arof similar size) separately. Spatial sampling
was done in a vector GIS, Arc Info (ESRI, 1998) ethcontained a complete spatial database of
the sites. Habitat data were extracted for inputadistical software for model construction.

A territory comprised the number of boundaries thptir occupied not the actual size of
the home range. Territories were plotted on to nod@ach site and each territory was assigned an
individual code. Within the GIS, all field boundasiwhich were part of an occupied territory were
selected and extracted from the spatial dataseting the remainder to be used to sample for
unoccupied territories (Figures 1 & 2). Each indual territory was found to contain between one
and four boundaries. We calculated one value feryepredictor variable by averaging values
across the boundaries within the territory. Theriigtion of territory sizes for each site was

extracted as the number of boundaries occupiedbly erritory, separately for each site. This



distribution drives the random sampling of the ungmed territories described next.

For the second stage of the sampling, ‘unoccuperdtories were created using a random
sampling procedure constrained by the distributibtine observed territories. Mo Of Niot
boundaries were occupied on a site, then the maaber of boundaries per territory is simply B
= Noce /Nierr, WhereN is the number of territories on that site. Thdghe Ny,occ remaining
unoccupied boundaries, the number of "unoccupieditéries is SiImpIylynocc = Nunoce /Bt. The
observed frequencies of boundaries per territoffNy whereN = 0, 1, 2, 3. Thus, the expected
number of territories of sizid is Tynoee X f(N). Unoccupied territories were then assigned to
physical locations at random, using this expectstiibdution of territories. However, spatial
constraints were introduced to reflect constrdinés limit the size of territories. The sampling
procedure ensured that unoccupied territories nieekrded sampling units that were >100 m
apart (because we found that units separated by mil@ere very rarely included in the same

territory).

Satistical methodology

We examined correlates of variation in the probhdf occurrence of yellowhammers using a
generalised linear model (presence or absenceeofitry along one or more sampling units,
assuming a binomial error distribution and a ldigk, i.e. logistic regression). For the boundary-
based model, the response variable was specifidteaggesence or absence of a territorial
yellowhammer in a boundary section on any one ceusit. For the territory-based model the

response variable was specified as either an oedueiritory (1) or an unoccupied territory (0).

STATISTICAL MODELLING
We used the methods described by Burnham & Andd@@dR). The approach compares the fits
of a suite of candidate models using Akaike's imf@tion Criterion (AIC). AIC allows models

with different numbers of parameters to be directynpared with each other. If the ratio of the
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number of observations to number of parameters $ailbstantially below 40 then an adjustment
should be made to the AIC to control for bias (Heimé& Tsai 1989; Burnham & Anderson 2002).
In the models reported below, the dataset on ¢eieg has / K = 32.8. We therefore used the
bias-adjusted AIC in the analysis of this dataset.

AIC is calculated for a suite of models and thstlfidting one has the smallest AIC
(termed AlG,in). AIC differences are calculated relative to tmimimum, so for modal, the AIC
difference @\,) is calculated as:

A, =AIC -AIC,
The absolute size of the AIC is unimportant, indteéree difference in AIC values between models

indicates the relative support for the models.

Calculation of Akaike weights
In order to compare models we calculated "Akaikeghts", w; (cf Burnham & Anderson 2002);

i

W, = Equation 1
1
Zex -4,
r=1 2
For allR models, thav; sum to 1 and have a probabilistic interpretatadrthe set oR modelsw;
is the probability that modélould be selected as the best fitting model ifdhta were collected
again under identical circumstances.

Below we report confidence sets of models fitteddch dataset. A confidence set is the
smallest subset of candidate models for whichatheum to 0.95. This set represents a set of
models for which we have 95% confidence that the@etains the best approximating model to
the true model. It is important to note that ihat the set with 95% probability of containing the
true model since we do not know that the set ofeteodonsidered actually contains the true

model.

Because the; are probabilities, it is also possible to sum ¢éies models containing
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given variables (Burnham & Anderson 2002). Foranse if we consider some varialsleve can
calculate the sum of the Akaike weights of all thedels including, and this is the probability
that of the variables considered, varidble in the best approximating model. This is an
extremely powerful approach: it is essentially datale selection method that considers all
models, but in which each model is weighted bylsibility.

A problem in estimating Akaike weights for indivial variables is that poor predictors are
not expected to have selection probabilities ctossero (Burnham & Anderson 2002). To
overcome this we added a single randomly genepatatictor that was uncorrelated with the
response variable to the existing dataset of r@a&lles. This random predictor was generated
from a uniform distribution between zero and one §énerated 1000 such datasets and estimated

summed Akaike weights for models containing thib predictor along with the other variables.

Estimation and prediction

Model averaging uses the average of parameter asisnor model predictions from each
candidate model, weighted by its Akaike weight. fEh@&e a number of ways to do this (Burnham
& Anderson 2002), and we used the following methéas parameteff the model averaged

estimate was calculated as:
p— R ~
B, :ZWi,[ﬁ,i Equation 2

i=1
In whichw; is the Akaike weight of mode) and,@jfi is the estimate o if predictorj is included
in modeli, or is zero otherwise. These model-averaged etgweere compared with estimates
from a GLM including all variables to assess theeptial impact of model selection bias on
parameter estimates. The estimated selection tigsmfametey was calculated as:
ﬁj __ﬁglm

]

bias, :‘ Equation 3

Prediction by model averaging using a set of Glidsomplicated by the link function:

12



apart from the case of the identity link functitime predicted value for a given set of predicters i

not a linear function of the parametefs, The predicted value for given data is:
R

=2 Wik (x) Equation 4
i=1

The model averaged predictiofr)is the weighted average of the predicted valugof theR

candidate models.

Model fit
We calculated an estimate of total model fit ustahen’s kappa (see Fielding & Bell 1997,
Fielding 1999; Manel, Williams & Ormerd2D01). This statistic compares observed occurrences
and absences with those predicted by the modedsiimate this quantity, the following numbers
are requireda, the number of observed occurrences that the numdedctly predictsh the
number of absences the model incorrectly predicketpresences; the number of presences the
model incorrectly predicts as absences;@rttie number of absences the model correctly
predicts. Based on these numbers the kappa statialf be estimated using the formula given in
Fielding & Bell (1997) and Manet al. (2001).

A generalised linear model predicts a probabditpccurrence, rather then presence and
absenceer se. We therefore used two approaches to generataoihnee quantities. First,
following Manelet al. (2001) we used a cut-off threshold of predictembpbility of 0.5. Predicted
probabilities less than 0.5 were denoted as absetioese greater than 0.5 were denoted
presences. We denote the estimate of the kappstiseaterived in this way as Secondly, we

used the predicted probabilities directly, andneated:

a=y p, c=n"-a Equation 5

b=n-d d=nZl—pi
i=1

The data are split into theé andn” cases which are presences and absences, resjyedtien
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the probabilities of presences and absences amnedmwithin these groups separately to estimate
the total number of correct and incorrect prediidioNe denote the estimate of the kappa

statistics derived in this way &%

SET OF MODELS EXPLORED

The methods described above perform best whenepiaias small a set of models as possible.
Although initially our dataset contained 26 possiptedictors (as part of a larger project on 12
hedgerow nesting bird species), we reduced thisoeunto 10 based on the autecology of
yellowhammers, and previous analyses (Table 1)th&ke explored all possible subsets of these
10 predictors as candidate models. Although thésreslatively large number of variables, these
variables were selected based on consideratidmeatisting literature (see Table 1). All have
previously been suggested as predictors of yellowher abundance, and the dataset could not
reasonably have been reduced further. A varialdengdor site was included in all models as a
fixed effect (although including it as a randomeetfmade no quantitative difference to the
results), allowing large scale variation acrossdites to be controlled for in every fitted model.
Although boundary length is a potentially importaatiable we did not include it in the analysis
presented below in order to minimise the numberaoiables employed in the model selection.
However, we found that including boundary lengthttte boundary-based model) made no

gualitative difference to our conclusions.

Results

Model selection

The model selection exercise suggested that 14 Isiodeld be considered as plausible models
(i.e. 95% confidence set of models) for the boupdi@sed data (Table 2a). These models all
included hedge presence, boundary height, the mres# ditches, winter set-aside fields and

boundary strips. The selection probabilities fash variables were high (>0.98), indicating
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strong support. The other four variables, croppeld$ (mainly cereals), boundary width, trees
and winter stubble (which excludes rotational setlafields — see Table 1), received weaker
support, and the selection probabilities for thesgables were well within the intervals simulated
using null predictors (Table 2a). For all models tih was very good (~0.59) when assessed using
k, although only moderate (~0.29) when assessed usilWe note that the estimatesotio not
tend to correlate with the estimates of Akaike &g

The coefficients reveal an enormous range of tiarian the magnitude of the effects of
the predictors on the presence of yellowhammeisvaklables are measured on a scale from zero
to one, thus the model coefficients in Table 2 meathe effect on incidence (via a logit link
function) of changing from complete absence inlamyndaries within the territory to presence in
all of them. The ranking of the coefficients of fine variables in the model suggested as
optimum is winter set-aside > boundary strip > leedgight > hedge presence > ditch presence.
What is interesting about this is that the preseri¢erritorial yellowhammers in boundaries in
spring and summer appears to relate closely toewsst-aside fields: the coefficient for winter set
aside was nearly twice as large as that for hedgghhand around four times as large as the
coefficients for the other variableSnly two out of 17 fields (12%) that were set-asiields in
the winter (and associated with yellowhammer terigs) remained as such the following summer
(with almost 50% being converted to cereals orglags) so it seems that the presence of
rotational set-aside fields in the winter was catiin determining distribution of yellowhammers.
However, rotational set-aside fields are only péedito be sprayed after 15 April and so perhaps
it is the persistence of these fields at the baegmof the breeding season, as well as their
presence in the winter, which is important to y@hammers.

The models based on territories yielded broadlylampatterns (Table 2b). These models
indicated that there was strong support for (ireoxf decreasing coefficients) the effects of
winter set aside, boundary strip presence, hedggepce, hedge height, and tree presence, as

indicated by high (>0.940) selection probabiliti€eere was equivocal support (selection
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probabilities of 0.716 and 0.696) for effects dtHipresence and cropped fields. The model
selection probabilities for winter stubble preseand hedge width were relatively smaller (0.278
and 0.318 respectively), and fell within the ranfi@alues simulated for null variables. Again, it

is notable that the highest-ranking variable wéated to winter conditions (i.e. presence of winter
set-aside).

The best ranking model in terms of the AIC includi&dh; however the Akaike weight for
this model was not appreciably larger than thahefmodel excluding ditch. Again, the estimates
of k tended to be higher (~ 0.61) fethan forx’ (0.34), and did not tend to correlate with akaike
weights. We discuss this below.

Model selection bias was large for those parametgrslow selection probabilities, as
would be expected (Table 2). This was true for nfitted both to the territory and boundary
data. These results indicate that attempts to #iyrtpe full model would run the risk of yielding
biased parameter estimates, emphasising the nedtefapproach employed here.

In total, eight models were common to the configdesets of the two datasets, indicating
that the determinants of boundary and territoryupancy are largely the same. However, the

analysis of the boundary data failed to revealkdfect of tree presence.

Relating local occupancy to abundance

Finally, we consider the potential use of these e®tb predict abundance at a larger (landscape)
scale. For each of the 26 sites we generated écpogdof average boundary and territory
occupancy from the boundary and territory-basedetspdespectively. We compared these with
the densities of territories measured across the.9hs shown in Fig. 3, the predictions of the
boundary-based model (Figa)3are relatively better than those from the modeida on territories
(Fig. ). Indeed the relationship in Figh & statistically non-significant, whilst the retatiship

in Fig. 3a has moderate explanatory powgf £ 0.30).
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Discussion

One of the most useful applications of model sedagbrocedures of the sort used here is
in comparing sets of predictors between datasétighwcannot be easily done using a
conventional stepwise modelling approach, sincewuuld yield a single model for each dataset
without indicating how much better this model iarttthe alternatives. Using the confidence sets
we directly compared the support of models fitiethie two datasets. The results clearly indicate
that the relationship between species occupancyabitiat characteristics can depend on the scale
at which both are measured. By using statisticahous that allow us to quantify model selection
uncertainty we have been able to demonstrateltbattdifferences are statistically meaningful,
and we have disentangled the effects of a largeoeuf potential predictors. Two criticisms of
the information theoretic approach employed heedlzat (i) if the set of candidate models is poor
then the resultant output will necessarily be arplascription of the data (although this is true of
all modelling approaches); (ii) that goodness bifeasures are required (Rushébal. 2004). In
our analysis we have dealt with these points giij¢be set of favoured models in both analyses is
small relative to the set of models considered {fne 95% confidence set of models in Tables 2a
and b are small relative to the potential set oflet®); (i) we have tested the adequacy of the

models at two spatial scales, namely the boundarittiry scale, as well as the regional scale.

BOUNDARY VERSUS TERRITORYSCALE SELECTION

The boundary model can be used to predict the ptiopcof boundaries occupied per unit
area at the farm scale (e.qg. if 40 out of 100 baued are occupied by yellowhammers then the
score in Figure 3 would be 0.4). As this propori®olosely correlated with the density of
territories in our dataset € 0.86,n = 26,P <0.001), the density of territories on individfiaims
is well predicted by the boundary model (Fig. 3a).

The predictions of the model based on territormsetate less closely with the observed

density of territories (Figure 3b). There are tvitfedences between this model and the one based

17



on boundaries, both relating to the aggregatigoredlictors at the territory scale. First, in the
boundary model it was found that variables sucthagresence of winter set-aside and boundary
height were key variables. Much of the variatiothase variables is between rather than within
farms, since farms tend to have high boundariésveiones (Kruskal-Wallis test for the effect of
site on boundary height: H = 414, d.f. = P50.001), or either have winter non-rotational set
aside or do not (Kruskal-Wallis test for the effetsite on distribution on winter set-aside: H =
1294, d.f. = 25P<0.001). In the boundary model, boundaries adjgirsinch features have high
occupancy. However, in the territory model, mostt@ies (whether occupied or not) on a given
farm are likely to adjoin such features. Thesealddas would then have much lower power to
predict territory occupancy at the same scale abtiundary model. Secondly, it would seem
likely that territories are formed in order to eresthe presence of desirable habitat components.
The presence of trees was found to be a signifiggedictor in the territory models but not the
boundary models. The presence of a tree withimradey may be important, since
yellowhammers make use of them for display and §Gngmp & Perrins 1994). However, only
one tree may be required per territory, and heeicédries need not contain more than one
boundary possessing a tree. This has the consegtieatc whilst all territories possess trees, there

may be a weaker or statistically undetectable sielefor individual boundaries containing trees.

CONSEQUENCES FOR YELLOWHAMMER CONSERVATION

Our most important finding was the strong influen€svinter set-aside fields on
yellowhammer distribution. Both sampling methodsrfd set-aside fields (mainly rotational) in
the previous winter to be more strongly associatghl the distribution of yellowhammers than
any other predictor. Previous work has linked eiriteld management with breeding density for
a range of species (Robinsetral. 2001), and although yellowhammer abundance washown
to be significantly related to winter habitats at study, sample sizes were limited and the

authors argue that such a relationship is likelgxist (Robinsoret al. 2001). Yellowhammers
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are fairly sedentary, seldom being recorded >1Grkim their ringing site (Paradet al. 1998)

and this may explain why breeding distributioninkéd to nearby wintering habitats. Carefully
targeted placement of suitable wintering habitatda be beneficial for overall demography of
local populations of sedentary species such aswelimmer and corn buntildiliaria calandra

L. The difference in our study between the streelgction of winter set-aside fields and the lack
of an association with winter stubble fields (bptkferred wintering habitats) suggests that the
temporal persistence of set-aside fields into grang in contrast to stubble fields which are often
ploughed earlier in the year may also be important.

Other predictors found to be important by both rad#) namely taller hedges and
boundary strips (Table 2), indicate that the effexftthese two variables are well supported. The
presence of ditches was found to be important usiedpoundary-based model but not the
territory model. As the boundary-based model voasidl to correlate well with territory density,
adding ditches is likely to increase yellowhammengity on farmland.

It is heartening that hedgerow management, ditahdsboundary strips are all part of
current agri-environment measures such as Coud&\&tewardship

(http://www.defra.gov.uk/erdp/schemes/css/defauit)htSeveral predictors including boundary

strips, ditches and hedges have been highlighted@stant to yellowhammers by a previous
study aimed at identifying habitat-associationghatfield scale (Bradburst al. 2000). Our study
supports these findings but suggests both winteaside fields and the presence of trees are also

important in determining yellowhammer settlemerttgras.

Synthesis and applications

We found yellowhammer occupancy, as measured aspabal scales, was most strongly
associated with rotational winter set-aside figleisence. This suggests that conservationists
wishing to enhance local populations of yellowhamsrshould consider not just providing

suitable habitats during the breeding season (@adfoundary strips, tall hedges, ditches and
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trees) but also the amount and proximity of prefémvintering habitats if they wish to encourage
more birds to breed during the summer. The worlae presented highlights that problems of
scaling should be considered when using modelsdbitat selection in generating predictions for
management. Specifically, we found that decisionbilds on settling territories may differ from
patterns detected when analysing data from boueslaNe also found that there may be problems
in extrapolating from habitat selection models base local occupancy to regional population
abundance, and this is an important potential lpitfdhabitat association modelling based on

presence/absence data.
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Table 1. List of habitat parameters used as pateeiplanatory predictors of yellowhammer distribnton boundaries on 26 study sites.

Predictor Description Reason for inclusion
Continuous Variables
Length of boundary (m) [Included in boundary moaoiely]
Boundary height (measured fowvaries from 0 (<1m) to 1 (>4m)* Intermediate or ghaoundaries preferred for territory settlement
all boundary types, e.g. (Hinsley & Bellamy 2000)
hedges, fences, walls etc.)
Boundary width Varies from 0 (<1m) to 1 (>4m)* Vidboundaries preferred for territory settlemenngity &

Bellamy 2000)
Adjacent fields cropped in Proportion of adjacent fields of this Tilled fields are favoured over grassland for tery settlement and

summer type (70% were autumn-sown by adults foraging for their chicks (Bradbuetyal. 2000; Hinsley &
cereal)** Bellamy 2000; Morrist al. 2001; Perkingt al. 2002).
Adjacent fields stubble during Proportion of adjacent fields of this Stubble fields are strongly favoured in the wir{i#tilson et al 1996;
preceding winter type (all were grass leys the Hancock & Wilson 2003).
following summer)**
Adjacent fields set-aside Proportion of adjacent fields of this Set-aside fields are strongly favoured in the wiBaickinghamet
during preceding winter type (88% were rotational set-aside:al. 1999; Wilsoret al 1996; Hancock & Wilson 2003).

of which 45% became grass fields
the following summer)**

Categorical Factors Levels

Site 1-26 for 26 study sites To account for inhedkffierences between sites (e.g. soil type,
landscape effects etc.).

Hedge present / absent*** Prefer hedges for nestimjterritory settlement (Bradbueyal .
2000)

Ditch present / absent*** Prefer ditches for negtamd territory settlement (Bradbuatyal.
2000)

Boundary strip present / absent*** Prefer boundstrips for foraging (Morrigt al. 2001; Perkingt al.
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2002) and territory settlement (Bradbetyal. 2000)
Tree presence present / absent*** Trees used apmusis (Cramp & Perrins 1994).

*Each hedge was classified into five height andtivithtegories: 1 (<1m), 2 (1-2m), 3 (2-3m), 4 (3y4md 5 (>4m). Therefore a boundary of 3m woulddered
as 0.6 in the boundary models. A territory recordedwo sampling units, one of category 1 of 100w the other of category 2 of 200m would be assignscore
of 500/1500 = 0.33. 1500 is the maximum score pés$or a length of 300m (5x300m) and the actuateds 500 (1x100 + 2x200).

*Two visits to each site were made over the coufstne breeding season and one visit during timeewi If no fields of a particular type were prasen either
side of the sampling unit (or series of samplingsuior some territories) then a score of 0 waggivIf all fields on both sides were of this typen a score of 1
was assigned. During the breeding season scoresaveraged across both visits.

***Note that territory-based models take an averagare for these predictors (e.g. a territory réedron three sampling units, two of which were kesdgvould
receive a score of 0.67).
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Table 2. Alternative ways of deriving habitat asabon models based on the same data set of yedlowter territories distributed across landscapes
from 26 sites in England. All predictors from Talllevere included in the modelling process. A fixagiable coding for site was included in all
models. The table indicates the variables includede model, the AIC (Akaike's information criteni), the delta weight (difference between the
AIC for a given model and the best fitting modeahd the model selection probability;Y. The latter are also summed for each parametessall
models by summing all vgcores for all possible models in which the priedizvas included. The null interval representsgélection probability for

a randomly derived predictor obtained by 100 simhe (see text for details). Parameter estimfdeare presented which were generated by
averaging across all models (weighted by the seleprrobabilities). The models shown represenBf% confidence set for each dataset, models
underlined are shared between the two confidertse B@ally total model fit was assessed using @hkappa statistic. This was calculated in two
ways K andx’), as described in the text, and measures theracgwf prediction of occupied and unoccupied sites

(a) Models based on boundaries£ 2443; mean occupancy = 0.26)

Variable: hedge heightditch  strip winsetsumtill width winstub trees AIC [ Wi K K’

AIC best: 1 1 1 1 1 1 2176.35 0.00 0.220.586 0.280
1 1 1 1 1 2176.96 0.61 0.16 0.588 0.27¢
1 1 1 1 1 1 1 2178.26 1.91 0.08 0.588 0.28(
1 1 1 1 1 1 1 2178.341.99 0.08 0.588 0.28(
1 1 1 1 1 1 1 2178.35 2.00 0.08 0.586 0.28(
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1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

2178.862.51
2178.932.58
2178.96 2.60

0.06 0.589 0.27¢
0.06 0.588 0.27¢
0.06 0.588 0.27¢

2180.253.90
2180.26 3.91

0.03 0.590 0.28(
0.03 0.591 0.28(

2180.34 3.99

0.03 0.588 0.28(

1
1
1
1 1
1 1
1 1
1 1
1 1
1 1

2180.844.48
2180.85 4.50

0.02 0.589 0.27¢
0.02 0.588 0.27¢

2180.924.57

0.02 0.588 0.27¢

Selection Probability

null mean: 0.369
null interval: 0.269 — 0.654

B

Bias:

>0.9980.999 0.989>0.999 0.995 0.573

0.278 0.270 0.270

0.763 0.9530.417 1.364 4.089 0.152 -0.021 0.018 0.002
0.010 0.0250.021 0.009 0.028 0.741 2.576 1.376 1.955
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(b) Models based on territories £ 1150; mean occupancy = 0.27)

Variable hedgeheight ditch strip winsetsumtill width winstub trees AlG AY Wi K K
AIC best: 1 1 1 1 1 1 1 100191 0.00 0.23 0.613 0.340
1 11 1 1 , 100351 160 010 0613 0341
1 1 1 1 1 1 1 1 1003.53 1.61 0.10 0.623 0.337
11 1 1 1 , 100384 192 009 0608 0.340
1 1 1 1 1 1 1 1 1004.01 2.10 0.08 0.612 0.336
1 1 1 1 1 1005.12 3.21 0.05 0.615 0.337
i 1 1 1 1 1 q 100519 328 004 0.609 0333
1 1 1 1 1 1 1 100548 3.56 0.04 0.613 0.340
1 1 1 1 1 1 1 1005.49 3.58 0.04 0.622 0.337
Full model 10101 111 1 , 100562 371 004 0612 0.337
1 1 1 1 1 1 1 1005.94 4.03 0.03 0.612 0.336
1 1 1 1 1 1 1006.83 4.91 0.02 0.610 0.334
1 1 1 1 1 1 1007.12 5.20 0.02 0.616 0.337
1 1 1 1 1 1 1 1007.15 5.23 0.02 0.608 0.333
1 1 1 1 1 1 1007.19 5.27 0.02 0.607 0.334
1 1 1 1 1 1 1 1007.59 5.68 0.01 0.612 0.337
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1 1 1 1 1 , 100843 652 001 0595  0.330
1 1 L 1 1 1 , 100881 690 001 0611 0334
1 1 1 1 1 1008.97 7.05 0.01 0.613 0.335
1 1 1 1 1 1 1 1009.04 7.13  0.01 0616 0.331
1 1 1 1 1 1 1 1009.30 7.39  0.01 0608 0.334
1 1 1 1 1 1009.39 7.48  0.01 0.617 0.331
1 1 1 1 1 1 1 1009.82 7.90 0.00 0.613 0.340

Selection Probability >0.9990.967 0.716 >0.999 0.993 0.696 0.318 0.278 0.942

null mean: 0.368
interval: 0.269 — 0.738

B

Bias:

1.390 1.241 0.345 2.183 7.273 0.375-0.092 0.056 0.483
0.020 0.112 0.398 0.016 0.024 0.446 2.610 1.829 0.070
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Figure L egends

Figures la-c. Selection of boundaries in modelling procedurgukeé ‘a’ shows a grid
of nine squares (or fields) and their boundariesnuphich data from six bird
territories has been overlain. At the end of tleédfdata collection, territories were
determined by clustering of records on boundarji@es, e.g. all the records for
territory 1 were located on one boundary. FigutesHows those boundaries that were
selected by one or more territories. Figure ‘c’idepthose territories that were coded

as unoccupied.

Figures 2a-d. lllustration of procedure used in territory-baseddels. Figure 2a
shows two randomly selected territories each ahgles boundary (T1 & T2). Figures
2b and 2c illustrate how a territory comprising tha@undaries was determined.
Initially a boundary was randomly selected (arradinging to boundary in Fig 2b)
and a buffer zone of 100 m drawn around that boyn@kepicted by a dotted line in
Figure 2c) to determine which boundaries could mpicda#ly be selected in addition to
the one initially selected in Figure 2b. Of the tpatential boundaries that could be
selected the one running at right angles was rahdsatected to produce territory
T3 in Figure 2d.

Figure 3. Relationships between model predictions and dessif territories at each
site (had"). (a) Predictions of the model based on boundéRes: 0.30,n = 26,P =
0.002). (b) Predictions of the model based ontteieis & = 0.039 h=26,P =ns ).
Note that site was excluded for the list of preatistin order to generate the fitted

values.
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Figure 3.

Predicted occupancy
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