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INTRODUCTION

Understanding species distribution and associated
measures of habitat suitability are fundamental ele-
ments of any planning or management program
(Franklin 1995, Pearce & Ferrier 2001). In the terres-
trial context, models of species distribution have long
been recognised as cost-effective and powerful tools to
estimate species occurrence across a landscape where
limited direct observations exist (Pearce & Ferrier
2001, Ferrier et al. 2002a,b, Zaniewski et al. 2002, Elith
et al. 2006, Guisan et al. 2006, Hirzel et al. 2006, Brau-
nisch et al. 2008). These models are predicated on the

assumption that the spatial variation in environmental
factors (e.g. topography) used by a species control
(either directly or indirectly) its geographic distribution
(Guisan & Zimmermann 2000). It is only recently that
predictive species distribution models have been used
to predict species occurrence in management of the
marine environment. These include applications to
identify high conservation priority areas (Cañadas et
al. 2005), assess the spatial patterns of suitable habitat
within protected areas (Monk et al. 2010), predict sites
at risk of invasion by exotic species (Compton et al.
2010) and investigate the distribution of coral disease
(Williams et al. 2010).
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Parallel to the development and application of spe-
cies distribution modelling in the marine environment,
is the increasing access to multibeam sonar (MBES)
technology and underwater video systems. These tech-
nological developments, coupled with advances in
geographic information systems and computational
power, make it possible to survey large regions of
seafloor with unprecedented accuracy and resolution
(Nasby-Lucas et al. 2002, Iampietro et al. 2005, Wilson
et al. 2007, Ierodiaconou et al. 2010). MBES datasets
are ideal for the application of a variety of terrain-
analysis techniques, which form predictor variable
datasets for input into models (see Wilson et al. 2007).

While traditionally used for assessing sessile species,
‘passive’ underwater video systems such as drop video,
towed/drift video and remotely operated vehicles
(ROV) are increasingly being used as cost-effective,
non-destructive methods for assessing marine fish spe-
cies distributions (Morrison & Carbines 2006, Ander-
son & Yoklavich 2007). These video-based survey
methods have significant advantages over traditional
methods (e.g. SCUBA divers) in collecting fish occur-
rence data. They are capable of being deployed at
depths and times that are dangerous for divers (Assis
et al. 2007), provide a permanent record of survey
(Watson et al. 2005), afford accurate positioning when
coupled with differential GPS and acoustic positioning,
enable high replication and, in the case of drift/towed
and ROV, capture transitions between different habitat
types (Spencer et al. 2005). However, video-based sur-
vey methods also have a number of disadvantages,
including restricted field of view and the need for high
water clarity (Murphy & Jenkins 2010). Mueller et al.
(2006) estimated that a stationary underwater video
camera was able to detect around 45 to 75% of large
(i.e. 30 to 50 cm) trout in water with turbidity levels
equivalent to those encountered in shallow temperate
marine waters (i.e. 0 to 4 nephelometric turbity units,
NTU). Additionally, towed video systems are con-
stantly moving (i.e. up, down and side-to-side) and are
often ‘flown’ over highly rugose reef systems covered
in a dense canopy-forming macroalgae. These factors
combined have the potential to underestimate species
distributions because fish may simply be hiding under
or camouflaged within the canopy and reef. Conse-
quently, observations of demersal fishes derived from
such towed video techniques may lead to the inclusion
of false absences (i.e. a failure of the survey to detect
the species when it is actually present). Incorporation
of such ‘false absences’ has the potential to bias model
predictions (Hirzel et al. 2001).

Integrating towed video data capture methods and
MBES in a presence-only predictive modelling frame-
work has the potential to better our understanding of
the fine-scale spatial ecology and distribution of many

marine fish species, while avoiding issues of false ab-
sences. Presence-only models have 2 unique attributes
that make them potentially more useful than pres-
ence/absence models for estimating habitat suitability
for marine demersal fishes based on towed video obser-
vations. First, presence-only models do not require the
explicit constraints indicated by absence data. Consid-
ering the issues surrounding accurately surveying fish
assemblages using towed video, it would be inappro-
priate to treat localities without an observed presence
as unsuitable. Instead, presence-only approaches are
based on constructing a model of a species’ niche from
locational records. This modelled niche/habitat signa-
ture can then be used to predict distribution, or suitabil-
ity, within the available environment. Second, most
presence-only models are designed to function well
even when limited to very small occurrence datasets
(Engler et al. 2004, Hernandez et al. 2006), meaning
that useful models of habitat suitability can often be de-
veloped from very few presence locations (i.e. ~30 ob-
servations). This feature is particularly important be-
cause of the often small sample sizes obtained from
marine fish surveys (Langlois et al. 2010).

There is a broad array of quantitative approaches
available to model species habitat suitability based on
presence-only datasets (e.g. Nix 1986, Stockwell & No-
ble 1992, Robertson et al. 2001, Hirzel et al. 2002, Phillips
et al. 2006, Li & Hilbert 2008). Consequently, researchers
are faced with the difficulty of selecting between numer-
ous presence-only modelling approaches. Relatively few
studies have compared more than 3 different methods on
the same data, and the majority of these have focused on
terrestrial, freshwater or simulated datasets (Elith &
Burgman 2002, Ferrier et al. 2002b, Olden & Jackson
2002, Farber & Kadmon 2003, Loiselle et al. 2003, Bro-
tons et al. 2004, Segurado & Araújo 2004, Elith et al.
2006, Tsoar et al. 2007). The effective application of pres-
ence-only modelling methods in the marine environ-
ment, however, has received less attention, specifically
in relation to demersal fish species. We are aware of only
2 studies that have compared presence-only algorithms
for marine organisms (MacLeod et al. 2008, Tittensor et
al. 2009). MacLeod et al. (2008) used data on the occur-
rence of harbour porpoises to compare the predictive
abilities of one presence/absence approach (generalised
linear modelling) and 3 presence-only approaches (prin-
cipal component analysis-based approach, genetic algo-
rithm for rule-set prediction and ecological-niche factor
analysis [ENFA]). They concluded that presence-only
approaches can produce models of habitat suitability of
marine species that are significantly better than random
and exhibit comparable performances to presence/
absence modelling approaches (MacLeod et al. 2008).

In the marine environment, studies have predomi-
nantly focused on how variations in predictor variables
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(e.g. seafloor characteristics such as bathymetry or
rugosity) affect the ability of the models to predict spe-
cies distributions (e.g. Pittman et al. 2009). In the ter-
restrial context, in addition to the predictor variables,
the influence of response variables (i.e. the ecological
characteristics of the species occurrence data) has
been more widely investigated (e.g. Araújo & Williams
2000, Pearce & Ferrier 2000, Manel et al. 2001, Pearce
et al. 2001, Segurado & Araújo 2004, Sérgio et al.
2007). An organism with a narrow range of environ-
mental requirements (i.e. clearly definable niche) is
likely to return a better performing model in terms of
model diagnostics (e.g. model performance measures
such as kappa and Area Under Curve of the Receiver
Operator Characteristic) (Pearce & Ferrier 2000, Bro-
tons et al. 2004, Segurado & Araújo 2004, Elith et al.
2006). In contrast, it may be more difficult to define the
habitat characteristics of an organism with a much
wider range of environmental tolerances as there are
more combinations of biophysical factors that could
potentially be used as habitat.

In this study, we compared the relative performance of
presence-only modelling approaches to predict habitat

suitability of marine fish taxa using remotely-sensed oc-
currence and high-resolution MBES-derived seafloor
datasets. Specifically, we used data on 5 demersal fish
taxa and 2 measures of model performance to compare
10 different modelling algorithms: BIOCLIM, DOMAIN,
ENFA (using the 7 available algorithms in the software)
and MAXENT. Previous evidence indicates differences
in model performance may depend on the species range
and environmental niches (Pearce & Ferrier 2000, Bro-
tons et al. 2004, Segurado & Araújo 2004, Elith et al.
2006). To investigate this, we also tested if variation in
these factors influenced model performance. Finally, we
identified key seafloor variables that influence the spa-
tial distribution and discuss these in terms of the known
ecology of each taxon investigated.

MATERIALS AND METHODS

Study site. The study site encompassed an area
42 km2 that was situated on the western side of Cape
Duquesne (38° 22’ S, 141° 21’ E) in Discovery Bay,
south-eastern Australia (Fig. 1). The site ranged in
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Fig. 1. Discovery Bay study area on the south-east Australian continental shelf. Shading: water depth. Black lines: towed video
transects
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depth from 12 to 80 m. Vertical basalt reef structures
rise some 20 m from the seafloor, reflecting the region’s
dynamic volcanic history (Boutakoff 1963). The tops of
these reef structures support diverse assemblages of
red algae and kelps (dominated by Ecklonia radiata,

Phyllospora comosa and Durvillaea potatorum), while
the deeper regions are covered in sponges, ascidians,
bryozoans and gorgonian corals (Ierodiaconou et al.
2007a).

Fish occurrence data for model training and testing.

Towed-video transects, which were initially collected
for benthic habitat mapping, were used to provide fish
occurrence data for model training and testing. Nine
transects, aligned perpendicular to the coast, were
selected to encompass the main physical gradients
(e.g. depth, topographic variation, exposure). These
9 transects covered 56 linear km of the study area
(Fig. 1). Over 4 d (24, 25 March and 26, 27 April 2006)
a micro remotely-operated vehicle (VideoRay Pro 3)
was towed along the transects at 0.5 to 1 m s–1 (1 to
2 knots) to collect video data. The oblique angled cam-
era was maintained ~2 m from the bottom using a
vessel-mounted winch system. A text overlay contain-
ing a time stamp and transect ID were recorded with
the video using a Sony MiniDV recorder. The video
footage was interrogated to identify fish to the lowest
possible taxonomic resolution. The exact spatial posi-
tion (±5 m accuracy) of each fish taxon was then deter-
mined by matching the time stamp of the video with
the corresponding survey positional data. The survey
positional data was recorded through the integration of
vessel location (Omnistar satellite dGPS), motion sen-
sor (KVH) and acoustic camera positioning (Tracklink
Ultra Short Baseline).

More than 7300 individual fish, representing 40 spe-
cies, were observed. Some video frames included mul-
tiple individuals of the same species resulting in a total
of 1648 observational events. From these observations,
we used occurrence data for the 5 most commonly
observed demersal fish taxa (Table 1). For each taxon,
we made 10 random partitions of the occurrence local-
ities. Each partition was created by randomly selecting
75% of the occurrence localities as training data, with
the remaining 25% reserved for testing the resulting

models (Table 1). We made 10 random partitions to
assess the average performance of the algorithms, and
to allow for statistical testing of observed differences in
performance for each taxon.

Spatial autocorrelation was investigated by examin-
ing Moran’s I statistic on model residuals (i.e. for each
species, the observed occurrence minus the predicted
probability of occurrence given by each modelling
approach). The distance classes and Moran’s I statistics
were computed using the freeware package SAM
(Spatial Analysis in Macroecology). Only very weak
global spatial autocorrelation (i.e. all species were
<0.08) was found at the level of the first neighbour.
Consequently, we assumed the partitioning of data
into model training and testing datasets to be indepen-
dent of each other.

MBES survey and derived seafloor characteristics

used in model construction. Multibeam echosounder
(MBES) derived bathymetry and backscatter variables
were gridded to a 2.5 m2 cell resolution. MBES data was
acquired on 2 and 3 November (38 h) 2005 as part of the
Victorian Marine Habitat Mapping Project (Ierodiaconou
et al. 2007a). A detailed description of the MBES data ac-
quisition is provided in Monk et al. (2010). Details on
MBES processing methods are provided in Rattray et al.
(2009). The processed bathymetry and backscatter were
used to produce an additional 11 variables of the seafloor
using a range of techniques and applications in ENVI 4.2
(RSI) and ArcGIS 9.3 (ESRI) based using 3 × 3 cell-analy-
sis window (Table 2). To reduce the likelihood of model
over-fitting, a covariance matrix and correlation tree, us-
ing a correlation coefficient threshold of 0.5 (Hirzel et al.
2002, Galparsoro et al. 2009), were used to reduce the
13 variables to the 8 least correlated (Table 3). Con-
sequently, bathymetry, benthic position index (BPI),
eastness, Euclidean distance to nearest reef, hue-satura-
tion-intensity-blue (HSI-b; backscatter derivative),
maximum curvature, northness and rugosity were re-
tained for model construction (Fig. 2, Table 2). Euclidean
distance to nearest reef was calculated using the spatial
analyst tool in ArcGIS 9.3 based on an accurately
modelled reef class (81% accuracy) extracted from a
predicted substrata map of the study area. These vari-
ables were chosen as they captured the main seafloor
characteristics and many of them are known to be impor-
tant determinants of demersal fish habitat (e.g. distance
to reef: Friedlander & Parrish 1998; bathymetric vari-
ance: Pittman et al. 2007; rugosity: Wedding et al. 2008).
We limited the analysis to MBES derived seafloor char-
acteristics because oceanographic variables are not
available at the fine-scale resolution of the MBES
datasets (2.5 m2). In addition, because of the relatively
small spatial scale of the study area, we expected that
there would be little variation in oceanographic charac-
teristics (e.g. temperature).
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Taxon Training Testing Total

Caesioperca spp. 710 237 946
Cheilodactylus nigripes 25 8 33
Notolabrus tetricus 47 16 62
Pempheris multiradiata 38 13 50
Pseudolabrus psittaculus 283 94 377

Table 1. Partitioning of occurrence data into training and test 
localities
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Variable Description Software

Aspect  Aspect (azimuthal bearing of steepest slope) has an inherent circularity Spatial Analyst-ArcGIS 9.3

(eastness, built in; to overcome this, 2 trigonometric transformations (Roberts 1986) 

northness) were applied: northness (sin[aspect]) and eastness (cos[aspect]). These 2 

variables represent proxies for exposure.

Bathymetry Bathymetry provides a measure of water depth. Fugro Starfix suite 9.1

Backscatter Backscatter is the acoustic scattering of the seafloor that represents the Fugro Starfix suite 9.1

softness and hardness of the substratum.

Benthic Measure of a location relative to the overall landscape. Calculated by com- Benthic Terrain Modeller 

position index paring the elevation of a cell with the mean elevation of surrounding Tool for ArcGIS

cells by the 3 analysis extents. Regions with positive values are higher 

than their surroundings, whereas areas with negative values are lower. 

Flatter areas have values closer to zero (Weiss 2001)

Complexity Complexity is the rate of change of the slope and is a measure of local ENVI 4.2

variability in benthic terrain.

Euclidean Reef class from a substratum map, generated using a decision tree classifier Spatial Analyst-ArcGIS 9.3

distance to (Ierodiaconou et al. 2007b) was used to calculate Euclidean distance (m)

nearest reef to nearest reef.

HSI (R, G, B) Hue-saturation-intensity (HSI) is a transformation of backscatter (proxy for ENVI 4.2

seafloor hardness/softness), initially developed to decrease noise in radar 

reflectance (Daily 1983). Since backscatter represents seafloor reflectance,

a HSI transformation may improve the separation of high and low fre-

quency signal-scattering properties of the substratum. The high and low 

frequency information is mapped to hue (chromatic) and intensity (achro-,

matic) respectively, with a fixed saturation value. These HSI values are

transformed into a red, green, blue (RGB) colour space to produce 3 vari-

ables.

Maximum Maximum curvature provides the greatest curve of either the profile or ENVI 4.2

curvature plan convexity relative to the analysis window (Gallant & Wilson 1996).

Rugosity Rugosity provides the ratio of surface area to planar area within the analysis Benthic Terrain Modeller

window and is to represent a measure of structural complexity (Lundblad Tool for ArcGIS

et al. 2006).

Slope Slope is the maximum change in elevation between each cell and cells in its ENVI 4.2

analysis neighbourhood (3 × 3 cells). Calculated in degrees from horizontal.

Table 2. Description of the 13 seafloor variables

Back- Bathy- BPI Com- East- Euclidean HSI-b HSI-g HSI-r Maxi- North- Rugo-

scatter metry plexity ness distance mum ness sity

to nearest curvature

reef

Bathymetry –0.894

BPI –0.022 0.043

Complexity 0.223 –0.168 0.134

Eastness 0.289 –0.279 0.06 0.296

Euclidean distance –0.015 –0.125 –0.138 –0.607 –0.262

to nearest reef

HSI-b 0.152 0.036 0.048 0.186 0.138 –0.363

HSI-g –0.769 0.749 0.043 –0.114 –0.208 –0.143 –0.205

HSI-r 0.59 –0.622 –0.049 0.027 0.131 0.246 –0.319 –0.683

Maximum curvature –0.023 0.057 0.279 0.331 0.089 –0.254 0.089 0.038 –0.091

Northness –0.058 0.06 0.008 –0.034 –0.089 –0.025 –0.083 0.04 0.035 –0.014

Rugosity –0.038 0.086 0.128 0.341 0.071 –0.266 0.111 0.051 –0.127 0.461 –0.023

Slope 0.115 –0.049 0.106 0.679 0.141 –0.515 0.221 –0.038 –0.094 0.345 –0.025 0.375

Table 3. Correlation matrix used to assess independence between seafloor variables. A 0.5 threshold was applied to determine

the least correlated variables that were retained for model construction (shown in bold). BPI: benthic position index; HSI: 

Hue-saturation-intensity (b: blue; g: green; r: red)
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Modelling approaches. Four distinct modelling
approaches were used; however, ENFA outcomes
were converted into geographic space using all 7 avail-
able algorithms (distance geometric mean [GM], dis-
tance harmonic mean [HM], median [M], area-
adjusted median [Ma], median + extremum [Me],
area-adjusted median + extremum [Mae] and mini-
mum distance [Min]), resulting in 10 different models
for each of the 5 fish taxa. Each algorithm was run on
each of the 10 fish-occurrence data partitions, result-
ing in 500 model runs. Predictive models used were
BIOCLIM (Busby 1986, Nix 1986), DOMAIN (Carpen-
ter et al. 1993), ENFA (using all 7 available algorithms)
(Hirzel et al. 2002, Braunisch et al. 2008), and MAX-
ENT (Phillips et al. 2006). All of these methods are
based on the concept of the ecological niche (Hutchin-
son 1957). Each method uses mathematical algorithms
to define the ecological niche of the focal taxon based
on the distribution of the occurrence records in multi-
dimensional environmental space. Once this niche is
defined, it is projected into geographic space to pro-
duce a predictive map of suitable habitat.

Both BIOCLIM and DOMAIN were run through
DIVA-GIS (Hijmans et al. 2005, Hijmans & Graham
2006). BIOCLIM predicts suitable conditions in a ‘bio-
climatic envelope’, consisting of a rectilinear region in
environmental space representing the range (or some
percentage thereof) of observed presence values in
each environmental dimension. This envelope speci-
fies the model in terms of percentiles or upper and
lower tolerances of variables, and does not allow for
regions of absence (i.e. ‘holes’) within the envelope.
The concept is one of extremes and cores. In this study,
we applied a percentile range of 95% (excluding 2.5%
of the values either side of the rectilinear box in envi-
ronmental space). Similarly, DOMAIN (Carpenter et
al. 1993) uses the Gower metric, a distance measure
that standardises each variable by its range over all
occurrence observations to equalise the contribution of

all variables. A predicted suitability index is given by
computing the minimum distance in environmental
space to any occurrence record.

ENFA was conducted through Biomapper 4 soft-
ware (Hirzel et al. 2007). It is similar to principal com-
ponents analysis, involving a linear transformation of
the environmental space into orthogonal ‘marginality’
and ‘specialisation’ factors. Environmental suitability
is then modelled by the 7 different distance-based
algorithms in the transformed space. These algorithms
make the assumptions that, on all ENFA factors, either
the geometric mean, harmonic mean, median, or min-
imum distance of the species distribution offers the
optimal habitat conditions, taking into account the
density of observations in environmental space, with
the following exceptions. The Ma algorithm assumes
that, for all ENFA factors, the optimal habitat is the
median of the habitat use to habitat availability ratio
(Braunisch et al. 2008). The Me algorithm assumes
that the optimal habitat suitability is, for the marginal-
ity factor, either the lowest or highest value, whereas
for all specialisation factors, it is the median (as in the
M algorithm) (Braunisch et al. 2008). Finally, the Mae
algorithm is a combination of the Ma and Me algo-
rithms. For all ENFA algorithms, across the 5 fish taxa,
3 factors were retained based on ‘MacArthurs broken-
stick’ rule (MacArthur 1957), which compares the
eigenvalue distribution of the factors to ensure that
there is no overlap and that only those that are neces-
sary are retained (i.e. with eigenvalues >1).

MAXENT (Phillips et al. 2006) uses the maximum
entropy method for modelling species geographic dis-
tributions with presence-only data. MAXENT is a gen-
eral-purpose, machine-learning method with a simple
and precise mathematical formulation, and it has a
number of aspects that make it well-suited for species
distribution modelling (see Phillips et al. 2006). Models
were trained using default settings; convergence
threshold (0.00001), maximum iterations (1000), auto
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Fig. 2. Zoomed examples of the 8 variables used in model construction. Darker shading: high values. (a) Euclidean distance to
nearest reef, (b) bathymetry, (c) eastness, (d) northness, (e) benthic position index, (f) rugosity, (g) hue-saturation-intensity-blue, 

(h) maximum curvature, (i) hillshade of study area showing extent of zoomed examples
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features, regularisation multiplier (r = 1) and back-
ground points (10000).

Model testing. Using the occurrence datasets that
were set aside for model testing, model performance
was evaluated using 2 methods: the threshold-inde-
pendent AUC (area under the curve) of the ROC
(receiver operating characteristic) (Fielding & Bell
1997) and threshold-dependent kappa statistic (Cohen
1960).

The ROC plots sensitivity (the fraction of occurrence
records that are classified as presence) against 1 –
specificity (the portion of absences points that are clas-
sified as absent) for all possible thresholds. A curve
that maximises sensitivity for low values of the false-
positive fraction is considered a good model and is
quantified by calculating the AUC. An AUC value of
0.5 implies the model predicts species occurrence no
better than random, and a value of 1.0 implies perfect
prediction (Fielding & Bell 1997). While this technique
was initially applied to presence/absence methods, it
can be adapted to evaluate presence-only models
(Wiley et al. 2003, Phillips et al. 2006). Plotting sensitiv-
ity against a random sample of background locations is
sufficient to define an ROC curve (Wiley et al. 2003,
Phillips et al. 2006). The ROC plot method has an
advantage over confusion matrix-derived evaluation
methods (for examples see Fielding & Bell 1997)
because it does not require an arbitrary selection of a
threshold above which prediction is considered posi-
tive: a procedure that can bias evaluations (Fielding &
Bell 1997). A 1:1 ratio of presence:background point
was used (i.e. if there were 237 occurrences, then 237
background points were randomly generated). For
each individual taxon, these background points were
randomly generated along transects where no fish taxa
were observed. The AUC derived from the ROC plot of
this study can be interpreted as a measure of the abil-
ity of the algorithm to discriminate between a suitable
environmental condition and a random analysis pixel
(background), rather than between suitable and un-
suitable conditions, as an AUC developed with mea-
sured absences is interpreted (Phillips et al. 2006). The
ROC curves and the AUC values were calculated in
DIVA-GIS.

Although the continuous map of the probability of
presence produced by distribution models is itself use-
ful for many conservation applications (e.g. Wilson et
al. 2005), it is often converted into a presence/absence
map. Despite threshold-independent measures of mo-
del performance being widely preferred, such as the
AUC, the reliability of these methods has recently
been questioned (Lobo et al. 2008). Therefore, to
enable a thorough evaluation of our models, we selec-
ted the threshold-dependent kappa statistic (Cohen
1960). The kappa statistic assesses the extent to which

a model predicts occurrence at a rate higher than
expected by chance. The results vary between 1.0 for
perfect agreement and 0 for random agreement. We
used the kappa-maximised threshold in DIVA-GIS.
This threshold method calculates kappa scores for
100 threshold values (in 0.01 increments) and the one
that provides maximum kappa is accepted as the
threshold (Thuiller 2003). When multiple thresholds
had the same kappa value, the mean threshold value
was selected.

To compare the influence of the modelling algorithm
on model performance (as measured by AUC and
kappa), a permutational multivariate analysis of vari-
ance (PERMANOVA) was used (Anderson 2001). PER-
MANOVA was run with 999 permutations of the resid-
uals under a reduced model. Post-hoc pairwise tests
(t-tests) were conducted, again using 999 permuta-
tions. All analyses were tested at α = 0.05. PER-
MANOVA was conducted using the PERMANOVA+
add-on in the statistical package PRIMER-E (Clarke &
Gorley 2006).

Influence of species’ spatial range and environmen-

tal niches on modelling performance. When examin-
ing model outputs of marine species distribution, much
of the emphasis is on the influence of explanatory vari-
ables (e.g. Moore et al. 2009). However, the influence
of species’ spatial range and environmental niches is
less often considered in the marine environment. To
address this imbalance, a series of orthogonal contrasts
were carried out on the modelled distributions of habi-
tat suitability generated in this study. The rationale of
these analyses was the assumption that the modelled
distributions of habitat suitability of taxa with wider
spatial range and environmental niches would be
characterised by lower performance (in terms of kappa
and AUC) relative to taxa that exhibit a narrower
range and niche. The spatial range and environmental
niches were determined using 3 measures: area of
occupancy (AOO), marginality and tolerance. AOO is
an estimate of geographic-range size that is actually
occupied by a taxon (Gaston 1996). It was calculated
by summing the number of 2.5-m2 grid cells where a
fish taxon was observed. Marginality is the difference
between the species’ optimum habitat and the mean
environmental conditions in the study area. This is
therefore representative of the species’ ecological
niche position. Tolerance describes the species’ niche
breadth by comparing the variability in the environ-
mental conditions where the species occurs to the
range of environmental conditions in the study area.
These characteristics were calculated using BIOMAP-
PER (Hirzel et al. 2002).

Six sets of orthogonal contrasts (Field 2000) were
used to test the influences of (1) marginality on mean
kappa; (2) marginality on mean AUC; (3) tolerance on
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mean kappa; (4) tolerance on mean AUC; (5) AOO on
mean kappa; and (6) AOO on mean AUC. For the
design of these contrasts, the 5 fish taxa were used to
provide the measures of AOO, marginality and toler-
ance, while model diagnostics of the 10 algorithms
were used to provide measures of mean kappa and
mean AUC. Using a series of t-tests, orthogonal con-
trasts provide an efficient way to test specific hypothe-
sis while maintaining strict control over the Type I
error rate by reducing the amount of pairwise compar-
isons when compared to post-hoc testing (Field 2000).
Homogeneity of variance in the dependent variables
was assessed using Levene’s test and normal distribu-
tion was assessed using Kolmogorov–Smirnov test
(Field 2000).

Most important variables for characterisation of

suitable habitat for demersal fishes. Using the best
model run (i.e. MAXENT) for each fish taxon, we used
a jackknife analysis of the regularised gain (a statistic
that measures how well a variable distinguishes locali-
ties where taxa occur from the total area under study)
with the training occurrence data. The variables with
regularised gains ≥0.1 were considered important. To
assess how the variation in these variables influenced
suitable habitat, response curves (log contribution to
prediction) were used. These curves show how predic-
tion of suitable habitat changes as each seafloor vari-
able is varied, keeping the remaining 7 variables at
their average sample value. Predictor variable values
with positive log contribution (i.e. >0) indicate higher
habitat suitability.

RESULTS

Comparison of model performances

Generally, MAXENT was found to be the best per-
forming model (Fig. 3). Subtle differences between
each fish taxon, however, were observed (Fig. 3). Pair-
wise comparisons based on kappa and AUC indicated
that MAXENT was significantly better than all other
algorithms for Notolabrus tetricus and Pseudolabrus

psittaculus (pairwise tests: p < 0.05). Similarly, pairwise
comparisons based on kappa and AUC indicated that
MAXENT was significantly better than all other algo-
rithms with the exception of DOMAIN for Caesioperca

spp. and Cheilodactylus nigripes. Results for Pem-

pheris multiradiata were less defined. Pairwise com-
parisons based on AUC indicated that MAXENT was
significantly better than ENFA Min (minimum dis-
tance), but was not significantly different to all other
algorithms (Fig. 3h). Pairwise results from kappa indi-
cated, however, that MAXENT was significantly better
than all other algorithms with exception to ENFA GM

(geometric mean) (Fig. 3g). In addition to differences in
model performance, we observed considerable varia-
tion in the spatial distributions projected by the differ-
ent algorithms (Fig. 4 shows examples of the highest
and lowest performing algorithms for the 5 demersal
fishes investigated).

Influence of species’ spatial range and environmental 

niches on modelling performance

Orthogonal contrasts indicated that as marginality
increased, there was a trend of increasing mean kappa
and AUC (Table 4). There were no discernible trends
when examining the influence of niche breadth (toler-
ance) or species spatial range (AOO) on mean AUC
and mean kappa (Table 4).

Most important variables for characterisation of

suitable habitat for demersal fishes

Variable importance varied for the 5 fish taxa based
on the best performing MAXENT model run (Table 5).
It is acknowledged that the fitted response curves (log
contribution to prediction; Fig. 5) are graphical de-
scriptions of how the different variables influence
habitat suitability and do not describe the environmen-
tal limits of the taxa (Ysebaert et al. 2002).

For Caesioperca spp., the areas surrounding sheer
drop-offs along the south-eastern region of the study
area were predicted to be the most suitable habitat
(Fig. 4b). Areas of fragmented, highly suitable habitat
were also predicted throughout the deeper (>30 m)
regions of the study area (Fig. 4b). The jackknife test of
variable importance showed that bathymetry, Euclid-
ean distance to nearest reef, HSI-b and rugosity were
important for determining suitable habitat for Caesiop-

erca spp. (Table 5). Response curves of these variables
indicated that suitable habitat for Caesioperca spp.
decreased with the increase in distance from reef
(Fig. 5d). Similar patterns were observed for bathyme-
try and HSI-b variables (Fig. 5a,e). The response
curves showed that as these values increased, so did
habitat suitability of Caesioperca spp. However, the
curves showed this trend up to a certain point (~32 m
depth and ~80 HSI-b) and beyond that the habitat suit-
ability plateaued. Variation in rugosity, however, had
only a small influence on suitability, with values
~2 being most important (Fig. 5h).

Regions of highest habitat suitability for Cheilo-

dactylus nigripes were predicted to be the deeper
(>30 m) fringing reefs at the base of the drop-offs
(Fig. 4d). The most important seafloor variables for
defining suitable habitat were rugosity, Euclidean dis-
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tance to nearest reef, HSI-b and maximum curvature
(Table 5). Examination of the response curves for these
variables showed that areas delineated by depths
~40 m, close to reef, with low rugosity, intermediate
maximum curvature and high HSI-b values were the
most suitable habitats for this species (Fig. 5).

The shallow (<20 m), highly complex reef structures
in the eastern region of the study site were found to
have the highest habitat suitability for Notolabrus tet-

ricus (Fig. 4f). Some fragmented, highly suitable habi-
tat was also predicted throughout the deeper (>50 m)
regions in the north-west of the study site. Among
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Fig. 3. Model performance for (a,b) Caesioperca spp.: (a) kappa, pseudo-F9, 81 = 8.95, p < 0.001, (b) AUC (area under curve),
pseudo-F9, 81 = 13.93, p < 0.001; (c,d) Cheilodactylus nigripes: (c) kappa, pseudo-F9, 81 = 7.64, p < 0.001, (d) AUC, pseudo-F9, 81 =
4.57, p < 0.001; (e,f) Notolabrus tetricus: (e) kappa, pseudo-F9, 81 = 6.85, p < 0.001, (f) AUC, pseudo-F9, 81 = 6.07, p < 0.001; (g,h)
Pempheris multiradiata: (g) kappa, pseudo-F9, 81 = 6.63, p < 0.001, (h) AUC, pseudo-F9, 81 = 3.41, p < 0.001; and (i,j) Pseudolabrus

psittaculus: (i) kappa, pseudo-F9, 81 = 9.74, p < 0.001, (j) AUC, pseudo-F9, 81 = 17.10, p < 0.001 produced with models BIOCLIM,
DOMAIN, ENFA-M, -Ma, -Mae, -Me, -GM, -HM, -Min and MAXENT (see ‘Materials and methods: modelling approaches’). 

Error bars: SD 
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Fig. 4. Examples of the pre-
dicted habitat suitability for
the lowest (middle column)
and highest (right column)
performing models (see ‘Ma-
terials and methods: model-
ling approaches’) for (a–c)
Caesioperca spp., (d–f) Chei-

lodactylus nigripes, (g–i) No-

tolabrus tetricus, (j–l) Pem-

pheris multiradiata and (m–o)
Pseudolabrus psittaculus. Left
column: spatial arrangement
of occurrences for each taxon
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seafloor variables, Euclidean distance to nearest reef,
rugosity, bathymetry, HSI-b, BPI and maximum curva-
ture were selected as important variables for defining
habitat suitability for this species (Table 5). Examina-
tion of the response curves for these variables high-
lighted regions that were delineated by close proxim-
ity to reef, high rugosity, high HSI-b, either highly
positive or negative BPI (i.e. peaks or troughs), inter-
mediate maximum curvature, and ~20 m water depth
as the most suitable habitat for N. tetricus (Fig. 5).

The predicted distribution of suitable habitat for Pem-

pheris multiradiata showed similar patterns to that of No-

tolabrus tetricus, albeit more widespread in the deeper
regions of the study area (Fig. 4h). Several seafloor vari-
ables defined the predicted distribution of suitable habi-
tat for P. multiradiata: Euclidean distance to nearest reef,
maximum curvature, rugosity, HSI-b, northness and
eastness (Table 5). Response curves of these variables in-
dicated that, in general, south-east facing (i.e. northness
values ca. –0.8 and eastness values ca. 0.8) regions close
to reef, with low rugosity, moderate maximum curvature
and high HSI-b values were the best indicators for suit-
able habitat for this species (Fig. 5).

Pseudolabrus psittaculus was predicted by MAX-
ENT to have similar patterns to Cheilodactylus ni-

gripes, with highly suitable habitat being confined to

the deeper regions of the study area (Fig. 4j). Analysis
of jackknife results showed that bathymetry, rugosity,
HSI-b, maximum curvature, Euclidean distance to
nearest reef and BPI were the primary determinants in
characterising the habitat suitability for this species
(Table 5). Response curves of these seafloor variables
indicated that the highest habitat suitability for P. psit-

taculus was observed with the increase in depth
(Fig. 5a). However, the curves showed this trend up to
certain point (~31 m depth) and beyond that the habi-
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Contrast description Contrast t-statistic Significance 
(45 df) (1-tailed)

Marginality influence 1 6.298 <0.001

on mean kappa 2 4.320 <0.001

3 1.292 0.105
4 5.818 <0.001

Marginality influence 1 2.844 0.004

on mean AUC 2 1.174 0.123
3 0.455 0.326
4 6.630 <0.001

Tolerance influence 1 1.041 0.152
on mean kappa 2 –1.579 0.061

3 –9.209 <0.001

4 –2.333 0.012

Tolerance influence 1 3.944 <0.001

on mean AUC 2 0.322 0.375
3 –5.969 <0.001

4 –1.530 0.067
AOO influence 1 1.041 0.152
on mean kappa 2 –1.579 0.061

3 –9.209 <0.001

4 –2.333 0.012

AOO influence 1 3.994 <0.001

on mean AUC 2 0.322 0.375
3 –5.969 <0.001

4 –1.530 0.065

Table 4. Summary of orthogonal contrasts used in determin-
ing influence of species range and environmental niches on
model performance. AUC: area under the curve; AOO: area 

of occupancy. Significant contrasts shown in bold

Taxon Variable Regularised gain

Caesioperca spp.
Bathymetry 0.16

BPI 0.06
Eastness 0.05
Euclidean distance to nearest reef 0.13

HSI-b 0.13

Max. curvature 0.08
Northness 0.03
Rugosity 0.11

Cheilodactylus nigripes

Bathymetry 0.06
BPI 0.09
Eastness 0.10

Euclidean distance to nearest reef 0.27

HSI-b 0.13

Max. curvature 0.10

Northness 0.05
Rugosity 0.39

Notolabrus tetricus

Bathymetry 0.39

BPI 0.15

Eastness 0.03
Euclidean distance to nearest reef 1.00

HSI-b 0.29

Max. curvature 0.11

Northness 0.03
Rugosity 0.89

Pempheris multiradiata

Bathymetry 0.05
BPI 0.02
Eastness 0.10

Euclidean distance to nearest reef 0.35

HSI-b 0.14

Max. curvature 0.19

Northness 0.13

Rugosity 0.17

Pseudolabrus psittaculus

Bathymetry 0.24

BPI 0.11

Eastness 0.05
Euclidean distance to nearest reef 0.14

HSI-b 0.17

Max. curvature 0.15

Northness 0.03
Rugosity 0.17

Table 5. Relative variable importance as measured by regu-
larised gain for each fish taxon. BPI: benthic position index;
HSI-b: Hue-saturation-intensity (blue). Variables contribu-

ting most to predictions are shown in bold
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Fig. 5. Response curves
(log contribution to pre-
diction) for each predic-
tor variable as generated
by the best MAXENT
model run for the 5 dem-
ersal fish taxa invest-
gated. Taxa: Caesioperca

spp. (solid black), Cheilo-

dactylus nigripes (solid
light grey), Notolabrus

tetricus (black dashed),
Pempheris multiradiata

(light grey dotted) and
Pseudolabrus psittaculus

(black dotted)
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tat suitability plateaued until 73 m after which there
was a sharp decline. The response curve for rugosity
(Fig. 5h) showed a similar trend to that of Caesioperca

spp. with only a slight increase in habitat suitability of
P. psittaculus around rugosity values of 2. Lower val-
ues of HSI-b were associated with most suitable habi-
tat for P. psittaculus (Fig. 5e). Increased maximum cur-
vature decreased habitat suitability (Fig. 5f). Euclidean
distance to nearest reef showed the same trend as all
other taxa, with diminishing suitability increasing with
distance from reef (Fig. 5d). Albeit more pronounced
than for Notolabrus tetricus, BPI showed a decrease in
suitable habitat around BPI values of 0 for P. psittacu-

lus (Fig 5b).

DISCUSSION

Predictive performance

This study compared 10 presence-only algorithms to
predict the habitat suitability of 5 demersal fish taxa
in Discovery Bay, Australia. To the best of our know-
ledge, this is the first time that towed-video-derived
fish occurrence and detailed spatially-explicit seafloor
datasets have been used to compare presence-only
modelling approaches. Overall, we found that the
range in kappa and AUC values from the models were
comparable with other marine and terrestrial pres-
ence-only modelling studies (e.g. Elith et al. 2006,
Tsoar et al. 2007, Tittensor et al. 2009). Statistically sig-
nificant differences in values of kappa and AUC were
observed between the modelling algorithms. Gener-
ally, MAXENT significantly outperformed the other
algorithms, similar to findings from previous studies.
Tittensor et al. (2009) used MAXENT and ENFA-GM
to predict global habitat suitability of stony corals on
seamounts and found that MAXENT consistently out-
performed ENFA-GM. Similarly, Elith et al. (2006),
who compared 16 modelling approaches using a vari-
ety of terrestrial flora and fauna from 6 different re-
gions of the world, found that MAXENT significantly
outperformed BIOCLIM and DOMAIN. We also found
that there was no significant difference between the
more recently developed ENFA-Ma, ENFA-Mae,
ENFA-Me approaches and the original ENFA-M algo-
rithm. This is in contrast to findings by Braunisch et al.
(2008), who found that the more recent ENFA algo-
rithms provided better models of habitat suitability for
large forest grouse Tetrao urogallus than the original
ENFA-M algorithm.

There are numerous reasons for the observed
differences in predictive model performances in this
study. Differences could potentially be due to the mod-
elling algorithms ability to fit the complex species–

environment relationships. Pearce & Ferrier (2000)
suggested that algorithms used to fit species distribu-
tion models can be ranked in accordance to their ‘func-
tion complexity’. The models examined in our study
differ considerably from each other in their com-
plexity. BIOCLIM is conceptually the simplest model
tested, assuming a rectilinear environmental envelope
around occurrence data in environmental space. Con-
sequently, only the outer records along each environ-
mental variable are used to define the boundaries of
the ecological niche and the model cannot deal with
correlations or interactions between the environmental
variables (Hijmans et al. 2005). DOMAIN differs from
BIOCLIM in its ability to cope with discontinuity of the
species occurrence datasets in environmental space
(Hijmans et al. 2005). Its main restraint is that, for each
potential site, only a single record (the nearest neigh-
bour in environmental space) is used to determine suit-
able habitat. The original ENFA-related algorithms
(GM, HM, M and Min) take into account the distribu-
tion of all the occurrence records in environmental
space and create elliptic envelopes that are consistent
with the assumption of unimodal responses to environ-
mental gradients. The more recent ENFA algorithms
(Ma, Me, Mae) are slightly more complex than the
original ENFA algorithms, taking into account margin-
ality and specialisation (see Braunisch et al. 2008).
Because of MAXENT’s ability to iteratively evaluate
and improve the rules used for generating predictions,
it is the most complex algorithm among the methods
examined in this study. Our results indicate that the 10
modelling algorithms can be generalised into 3 groups
based on their kappa and AUC scores: (1) MAXENT
consistently performed best; (2) ENFA-GM, ENFA-HM
and DOMAIN had intermediate levels of performance;
and (3) BIOCLIM, ENFA-M, ENFA-Min and the more
recent ENFA algorithms performed lowest. Conse-
quently, with the exception of the relatively poor per-
formance obtained for the more recent ENFA algo-
rithms, our results are consistent with the hypothesis
that increasing model complexity may provide a better
fit for complex species–environment relationships,
resulting in better model performance.

Influence of species’ range and environmental niches

on modelling performance

Niche position (expressed by marginality) was the
only descriptor to be significantly associated with
model performance (i.e. kappa). We obtained higher
performing models based on occurrence data from
fish taxa with niche positions that were greatly differ-
ent from the mean conditions of the study area. How-
ever, no discernible association was achieved from
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the other environmental niche (i.e. tolerance) and spe-
cies range (i.e. AOO) descriptors examined. In rela-
tion to marginality, this association with model perfor-
mance (kappa) coincides with observations made by
Hernandez et al. (2006), who found that predictive
performance of organisms with clearly definable envi-
ronmental niches (i.e. high marginality) can be mod-
elled with higher performance than those of more
generalist species (i.e. low marginality). Our lack of
association between model performance and the
remaining descriptors contrasts with previous terres-
trial studies. Tsoar et al. (2007) found that tolerance
had a negative effect on predictive performance as
measured by kappa. A possible explanation for these
discrepancies between our findings and previous
studies could relate to the spatial scale at which the
variables are generated and fitted. Brotons et al.
(2004) proposed that species inhabiting a wide range
of habitats in a certain area might not be limited by
any of the measured variables at the scale at which
the models are fitted and may therefore perform
lower. Because this study was primarily concerned
with assessing model performance between algo-
rithms, the same variables were used across all taxa
and were generated at the finest possible spatial scale
(3 × 3 cell analysis window). We acknowledge that
there is no universally correct spatial scale at which to
describe species–habitat relationships (Wiens 1989)
and that better models may be achieved if variables
were generated at multiple spatial scales.

Most important variables for characterisation of

suitable habitat for demersal fishes

The integration of occurrence data from towed-
video and multibeam sonar-derived seafloor variables
in a presence-only modelling framework were useful
for explaining the characteristics that define suitable
habitat for the 5 demersal fish taxa investigated. We
found that MAXENT models consistently delineated
areas of suitable habitat to be regions of seafloor that
relate to the known ecology of these focal taxa. For
example, adult Caesioperca spp. are known to school
on top of deeper (>30 m) rocky outcrops, feeding on
plankton, while juveniles remain close to the rocky
substrata (Edgar 2000, Williams & Bax 2001). Its distri-
bution of suitable habitat was defined with seafloor
variables that express these deeper reef drop-offs.
Similarly, Cheilodactylus nigripes is a common spe-
cies that inhabits reefs, over a range of depths, feed-
ing on benthic invertebrates (Gomon et al. 2008).
Highly suitable habitat was identified as the less com-
plex intermediate to deep reef systems, which are
known to be densely covered in a variety of sponges,

ascidians and bryozoans (Ierodiaconou et al. 2007a).
Pempheris multiradiata are generally observed near
over-hangs and caves near the edges of reefs (Edgar
2000). Consistent with this, the MAXENT model high-
lighted areas of highly suitable habitat as the pro-
tected south-east facing reefs (the predominant swell
direction is from the south-west) with low bathymetric
complexity.

The MAXENT models highlighted an important dif-
ference in the ecological requirements of 2 wrasse spe-
cies (Labridae). While both Notolabrus tetricus and
Pseudolabrus psittaculus are benthic carnivores that
consume a variety of mobile and sessile invertebrates
(Gomon et al. 2008), differences in seafloor variables
that influence their habitat suitability were observed.
N. tetricus juveniles and small females are commonly
observed in kelp- and seagrass-dominated shallow
waters (<20 m), while larger fish inhabit deeper inver-
tebrate-dominated rocky reefs (Edgar 2000). Males of
this species are fiercely territorial and maintain a
harem of females over home ranges of 400 to 775 m2

(Barrett 1995). By contrast, P. psittaculus were com-
monly observed in pairs, or small schools, in and
around sessile invertebrate- and thallose-red-algal-
dominated reef systems that are >30 m. Examining the
predicted habitat suitability and response curves of
these 2 species indicated that highly suitable habitat
for N. tetricus was predicted as present in shallow
areas of reef with high bathymetric complexity (i.e.
high rugosity and either positive or negative BPI);
whilst P. psittaculus was predicted to be mainly con-
fined to the less complex deeper reefs.

Many studies have identified the influence of sea-
floor characteristics on the distributions of suitable
habitat for demersal fishes because they are either
direct or indirect proxies that represent important
physiological or ecological limitations, including the
availability of territory, food, shelter or the existence of
predation or competition (Choat & Ayling 1987, Fried-
lander & Parrish 1998, Priede & Merrett 1998, García-
Charton et al. 2004, Moore et al. 2009, Chatfield et al.
2010). Our study, however, highlights the importance
of having detailed spatially explicit (i.e. full-coverage)
seafloor data rather than the point-located descriptors
relied on by earlier studies (Friedlander & Parrish
1998, Babcock et al. 1999, Westera et al. 2003, Willis &
Anderson 2003). These spatially continuous measures
of seafloor data reflect subtle, but important, differ-
ences in habitat suitability that provide end users (e.g.
management agencies or research scientists) with
accurate and detailed spatially explicit information
about demersal fishes. Consequently, the spatially
explicit model predictions generated in this study
should be viewed as a framework upon which targeted
empirical research can be based.
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CONCLUSIONS

The comparison of 10 algorithms provided a compre-
hensive evaluation of which presence-only techniques
are most suited to modelling suitable habitat of demer-
sal fishes. Generally, MAXENT produced the best per-
forming models for the taxa and study area examined.
We also found that fish with clearly definable environ-
mental niches can be modelled with higher perfor-
mance than those of more generalist species. The con-
tinued use of these presence-only models, particularly
MAXENT, is encouraged. Further comparisons, how-
ever, with other approaches, including presence/
absence methods (using pseudo-absence data), are
also encouraged. MAXENT models clearly demon-
strated the value of remotely-sensed occurrence and
detailed spatially-explicit seafloor datasets in deter-
mining the importance of variables that influence suit-
able habitat of demersal fishes.

While the models are still only describing associa-
tions and not necessarily demonstrating causal rela-
tionships, it is their ability to develop realistic response
curves and to provide spatially-explicit predictions of
suitable habitat that makes these approaches a useful
management tool. There are, however, a number of
issues and limitations that need to be taken into
account if model predictions are to be incorporated
into management decisions. First, compared to pres-
ence/absence approaches, presence-only models in-
evitably tend to over-predict suitable habitat (Za-
niewski et al. 2002). This is because there is no
absence data to constrain the model predictions of suit-
able habitat. Overestimating suitable habitat, how-
ever, might be more preferable to underestimating its
existence, particularly when considering commer-
cially- or ecologically important species that are likely
to be the focus of management interventions (Fielding
& Bell 1997). Indeed, it is commonly perceived that
presence-only predictions reflect potential habitat suit-
ability, whereas presence/absence methods reflect the
present habitat suitability of the species (Soberón &
Peterson 2007, Chefaoui & Lobo 2008, Jiménez-
Valverde et al. 2008). Second, our models are based on
a one-off survey. Many fish species exhibit temporal
migration patterns between habitats and regions (Mal-
colm et al. 2007). Ideally, additional surveys and mod-
els are needed to quantify temporal changes in habitat
preferences. Third, although it is notable that models
had strong predictive performances, even when
restricted to seafloor variables, we suspect that model
performance could be improved with the inclusion of
additional explanatory variables such as wave expo-
sure and prey availability (if and when they become
available). Finally, habitat ontogenies among fishes
are well documented (Green 1996, Gratwicke et al.

2006). While not attainable from the current camera
system, the use of size class information (obtained from
stereo video methods; e.g. Harvey et al. 2002) in mod-
els may also provide more accurate predictions of suit-
able habitat and potentially highlight differences in
size class/life stage habitat dependency. Despite these
issues, the model predictions presented in this study
provide an accurate baseline that may assist resear-
chers in addressing more targeted biological questions
and helping managers and conservation practitioners
to ensure that marine resources are managed in a sus-
tainable manner.
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