
www.computer.org/software

Habitation: A Domain-Specific Language for Home
Automation

Manuel Jiménez, Francisca Rosique, Pedro Sánchez, Bárbara Álvarez and Andrés Iborra

Vol. 26, No. 4
 July/August 2009

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints invoked
by each author's copyright. In most cases, these works may not be reposted without the

explicit permission of the copyright holder.

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

30 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus

MDE lets developers create tools for managing

reactive systems much more effectively.5,6 These

tools are more interoperable than traditional

tools and easier to maintain owing to certain

MDE qualities, such as a higher abstraction level.

Home automation is one example of MDE’s ap-

plication in reactive systems. Home automation

systems can interact with their environments, of-

fering management of energy, security, communi-

cations, and comfort.7 Such systems are currently

developed using low-level procedures and without

a methodology that allows platform-independent

inclusion of the system requirements. Home au-

tomation application developers must therefore

have a high level of specialization. In addition,

only minimal reuse of artifacts is possible.

Speci�c languages that allow platform-

independent capture of requirements are practi-

cally nonexistent in the home automation �eld.

MDE-based proposals for home automation6,8

use modeling languages (such as UML9), which

aren’t very intuitive and are far removed from

the home automation sphere. For example, UML

includes hundreds of elements, but only a few of

them are directly relevant to software design. Even

using pro�les, models would be complex (plenty

of tags, stereotypes, and so on). Other proposals

correspond to platform-dependent commercial

tools; the two best-known are Engineering Tool

Software (ETS) and LonMaker, which are spe-

ci�c to the KNX/EIB (European Installation Bus)

and LonWorks platforms, respectively.

In light of all this, we introduce Habitation

(derived from development of home automation

applications using a model-driven approach),

a new methodology to tackle the complete life

cycle of home automation system design. Habi-

tation combines a model-driven approach with

DSLs to support these applications’ de�ni-

tion. We also offer a platform- and technology-

independent graphical tool that uses domain-

speci�c abstractions.

T
he appearance of model-driven engineering (MDE)1 has invigorated research

on domain-speci�c languages (DSLs)2 and automatic code generation. MDE

uses models to build software, thereby displacing source code as the develop-

ment process’s main feature. DSLs provide easy, intuitive descriptions of the

system using graphic models. In this new context, DSLs facilitate work in the �rst design

stages. In addition, MDE helps reduce DSL development costs.3,4 It therefore represents a

synergistic union that can signi�cantly improve software development.

Combining a domain-
speci�c language
with a model-driven
approach can
enhance the quality
and portability of
home automation
systems.

Manuel Jiménez, Francisca Rosique, Pedro Sánchez, Bárbara Álvarez,
and Andrés Iborra, Technical University of Cartagena

Habitation:
A Domain-Speci�c Language
for Home Automation

dom a in - sp e c i f i c m o de l ing

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

 July/August 2009 I E E E S O F T W A R E 31

The Home Automation DSL
Home automation application developers mainly

use a software tool provided by the device manu-

facturer (in the case of proprietary systems) or the

associations that support the technology (in the case

of standardized systems). These tools are usually

platform-dependent, code-generation-oriented, in-

tegrated environments that do little to raise the ab-

straction level. Moreover, the concrete syntax they

use is rarely intuitive, so users require specialized

training and can work only in the solution’s imme-

diate context.

The entire application development process is

performed by a domain expert who collates the

customer’s requirements for an installation (ele-

ments to be integrated, services required, selection

of a concrete technology, and so on) on the basis

of the expert’s own experience. This expert de-

ploys the devices and then programs them (using a

platform-speci�c tool) to achieve the desired func-

tionality. This manner of working makes it dif�cult

to achieve some of the desired attributes of software

systems, such as interoperability, �exibility, reuse,

and productivity.

To resolve these shortcomings, we combine a

speci�c visual language with an MDE approach.

Our main objective in de�ning this language is to

let designers describe home automation systems us-

ing only domain concepts. In this sense, our DSL

facilitates the requirements-speci�cation phase visu-

ally and intuitively. So, the �rst constraint is to pro-

vide a visual language that’s concise and common

to the different platforms.

Any home automation system incorporates sev-

eral elements (functional units) that are in all the

technologies and standards proper to the domain.

These employ different architectures and protocols,

but they’re identical in capability. To encourage re-

use of these functional units and to avoid repeatedly

de�ning the same unit for each application (includ-

ing several times in a single application), we used a

catalog of reusable elements. Once you de�ne such

a catalog, you can use it in any application. Func-

tional units have some services through which they

can interact with other units. Many of these services

are repeated among the functional units, so we cre-

ated a catalog of services with service de�nitions

that we can reuse in any functional unit.

For this reason, we differentiate two approaches

to DSLs. In one, the DSL’s purpose is to develop ap-

plications, and the user is a developer who might

be familiar with the �eld but isn’t necessarily an

expert. In the other, the purpose is to develop and

implement possible catalog upgrades, and the user

should be an expert in the �eld.

The Catalog View

This view lets the home automation expert model

the catalog of functional units and services that de-

velopers will later use to create home automation

applications. Figure 1 shows the main primitives for

modeling a catalog:

A ■ category is a specialization of a catalog

element.

Links ■ can be between categories or between

functional units and categories.

A ■ functional unit is the smallest element into

which a home automation device can be di-

vided. It includes an icon, a name, and the ser-

vices provided or implemented.

A ■ service de�nition has a signature that in-

cludes the service name and its arguments. The

service sign indicates whether the service is

(a) (b) (c)

(d) (e) (f)

Figure 1. A graphic
display of the catalog
view. This view’s
elements include
(a) category; (b) links
between categories
(green) and between
functional units and
categories (blue);
(c) functional unit;
(d) services, with
the signs indicating
whether the service is
provided or required
(right or left arrow) and
whether it’s a hardware
or software service (red
or blue); (e) parameter
de�nition; and (f) scene.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

32 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

provided or required (right or left arrow) and

whether it’s a hardware or software service (red

or blue). A service catalog serves as a compart-

ment containing the service de�nitions.

A ■ parameter de�nition indicates a functional

unit’s parameters.

A ■ scene is a specialization of the functional unit.

We de�ne the steps that constitute a scene later.

These elements are available in the developed tool’s

palette.

Figure 2 shows a snapshot of a catalog, which

includes categories and functional units that any

home automation application developer would use.

We’ll upgrade and enlarge this catalog by incorpo-

rating new functional-unit de�nitions inside the ex-

isting categories. The Final-Passive functional units

represent unprogrammable elements (for example,

lights and push buttons). The Controller functional

units represent programmable elements.

The Application View

This view is used by the developer who designs new

applications, who needn’t be a home automation

expert. The developer can use the catalog to specify

an application using these primitives:

Developers con�gure ■ instances of functional

units, which are de�ned in the catalog, by add-

ing the necessary values to their parameters.

The ■ links between functional units indicate,

through services, how these units will interact

with the rest of the system. The links can act as

channels when a functional unit involved is pas-

sive (as such, it’s modeled as a hardware-level

connection) or as a normal link when neither

unit is passive.

Developers can use ■ scenes to con�gure the se-

quential execution of several services from func-

tional units within a single action. For example,

a developer could de�ne a “Presentation” scene

using three steps: lower the blinds, dim the

lights, and lower the projection screen. The user

could push a button to trigger this scene.

Figure 3 shows these elements, which are in-

cluded in the developed tool’s palette.

Model-Driven Methodology
and Tools
Our methodology uses the Object Management

Group’s model-driven architecture (MDA),10 which

organizes software development in three layers:

a ■ computation-independent model (CIM),

which in our case represents the syntax and

part of the semantics of the de�ned DSL;

a ■ platform-independent model (PIM), which in

our methodology is a simpli�cation of the UML

metamodel for reactive systems,5 and consid-

Figure 2. A catalog of functional units and their categories. Final-Passive functional units represent nonprogrammable
elements; Controller functional units represent programmable elements.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

 July/August 2009 I E E E S O F T W A R E 33

ers components, activities, and state chart dia-

grams; and

a ■ platform-speci�c model (PSM), for which

we’ve de�ned a metamodel for the KNX/EIB

home automation technology. This metamodel

considers the domain object model used by

ETS.

In the CIM layer (see Figure 4), the developer elicits

requirements through the DSL. Models from this

level are automatically transformed into architec-

tural components in the PIM layer. Our tool then

transforms the components into executable PSMs

for each platform.

This methodology requires that we use the DSL

in the �rst development phase (CIM) so that the

user can interact easily with the tool, relying on the

methodology’s underlying precision. The PIM level

is a junction point for different reactive systems

(wireless sensor networks, robotic systems, arti�cial

vision, and so on). Consequently, the elements of

home automation systems designed in this manner

can be integrated as components of a more complex

reactive system.

The tool we developed to support our methodol-

ogy uses the Eclipse (www.eclipse.org) development

environment. Eclipse provides a working frame-

work in which the user can manage models. It in-

corporates various MDE-related projects, making

it possible to perform modeling, model transforma-

tion, veri�cation, graphic environment generation,

code generation, and other such tasks.

The Eclipse Modeling Framework is a plug-in in

the Eclipse development environment. EMF lets you

create model editors and supplies the basis for in-

teroperability with other tools. We used the Eclipse

Graphical Modeling Framework (GMF), which

automatically generates graphic editors as Eclipse

plug-ins from models.

Our DSL tool has three parts:

a drawing area in which to build graphic mod- ■

els for the catalog and applications,

a graphic palette containing the elements (see ■

Figures 1 and 3) that can be dragged to the

drawing area, and

an area in which the available properties (attri- ■

butes, parameters, and so on) are displayed and

can be modi�ed for the selected element.

The tool, which lets us create logical models that

describe applications in terms of functional units

and links between their services, is now fully op-

erational. A demonstration of its use in our case

study example is available at http://hdl.handle.net/

10317/854. The CIM metamodel supports an addi-

tional �oor-plan view, but its implementation in the

tool is still under development.

The transformations between the CIM and

PIM layers are completely de�ned using a graph-

grammar-based approach11—in particular, the

EMF Model Transformation (EMT) plug-in.12

Because models are usually represented by graphs,

graph grammar is more attractive than other ap-

proaches. For instance, transformation rules ex-

pressed through graphs are easier to understand

and trace.

Transformation is expressed with rules. Each

rule has a left-hand side (LHS) and a right-hand

side (RHS), both of which are graphs. A rule might

also have a negative application condition (NAC),

which must not be satis�ed to apply it. To apply a

rule to a host graph (the graph to be transformed),

a subgraph isomorphism from the LHS to the host

graph must exist. After the application, there must

be a subgraph isomorphism from the RHS to the

result graph.

Consider the model-to-model transformation

(from DSL to PIM) in Figure 5. Figure 5a represents

a push button (PB-1) that switches a light (LO-1)

on and off. Elements SWI-1 and SWO-1 symbolize

the controllers providing the desired functionality.

Figure 5b shows a graph transformation rule. The

rule states that when a service (LHS) is found, it

must be transformed into ports, interfaces, and ser-

vices of the target component model (RHS). How-

ever, this rule isn’t applied if the transformation has

(a) (b)

(c)

Figure 3. A graphic display of the application view. (a) An instance
of a functional unit includes the unit’s parameters and their values.
(b) Links between functional units can act as channels (red line) or
other link types (discontinuous green line with end points). In each
link, the top and bottom labels indicate services that participate in the
link; the center label is the service’s de�nition. (c) Scenes contain the
steps to be performed. A step shows the service to be performed and
the icon of the functional unit to which it belongs.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

34 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

already been performed (NAC). Applying all the

rules results in a component model (see Figure 5c).

A complete description of the CIM-to-PIM graph

transformation rules and the considered metamod-

els is available elsewhere.13

To generate code, the developer must �rst se-

lect a target platform. Doing this involves two key

considerations:

The technology must be supported by interna- ■

tional standards.

The tools for programming the devices must be ■

available and able to be interfaced externally.

The two leading home automation technologies—

KNX and LonWorks—ful�ll these requirements.

Because our research group has wide experience

in KNX, we selected this technology for the �rst

platform-speci�c infrastructure. Currently, the

rules for transforming PIM models into PSM mod-

els (conforming to the de�ned KNX/EIB meta-

model) are informally de�ned. We’re working to

formalize these rules using the graph-grammar

notation. PSM models are independent of spe-

ci�c commercial tools and serve as a source for

model-to-text transformations. To implement

these transformations, we chose the Java Emitter

Template tool (JET; www.eclipse.org/modeling/

m2t/?project=jet) and the ITTools plug-in. This

plug-in lets us interface with the manufacturer

Component for new
functional units

Component for reused
functional units

Platform-specific model (PSM)

KNX European Installation Bus (EIB) Other platforms

EIB-Engineering Tool Software EIB-IDE
Device EIB

implementation

LonWorks
X10
...

Computing-independent model (CIM)

DSL for applications DSL for new elements

Catalog of reusable
functional units

Platform-independent model (PIM)

Figure 4. The proposed methodology for developing home automation applications. The CIM level captures user
requirements using the de�ned domain-speci�c languages (DSLs). The PIM level considers a UML-like component
model. At the PSM level, we provide models for different speci�c platforms and several code generation strategies.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

 July/August 2009 I E E E S O F T W A R E 35

environment (ETS) using the VBScript program-

ming language. In this way, we promote reuse of

platform-speci�c tools.

Case Study
Our sample case study involves a system that con-

trols and manages a meeting room used for meet-

ings, seminars, and presentations of various kinds

(see Figure 6).13 This case study has let us vali-

date the DSL’s functionality in a real application

and establish a starting point from which to apply

our methodology. It aims to achieve various ob-

jectives regarding energy, security, comfort, and

communications.

We used the DSL application view to formally

display the system requirements. The complete spec-

i�cation is given by the model’s graphical view plus

the parameterization of the corresponding proper-

ties. Links between functional units establish a kind

of activity diagram that starts from the events trig-

gered at the input units. Parameters set up the con-

trollers’ internal behavior.

Figure 6 shows the application model for light-

ing management, including the deployment layout

and some correspondences with the DSL elements.

Two push buttons control six lighting points in

the room. One push button (PB-1) switches and

dims the lights next to the meeting room window

(LDM-1 to LDM-4). Another push button (PB-2)

controls the lights next to the door (LDM-5 and

LDM-6). To model this behavior, we connect each

push button to a dimming input controller (DMI-1

and DMI-2) using a channel link (red lines) that

binds required (PBactivated) and provided (DMI-

activated) services (both services must be instances

of the same service de�nition). At the same time,

lights are linked to their controllers (DMO-1 to

DMO-6), which switch and dim the lights. Finally,

controller services are associated with logical links

(dashed green lines).

To achieve energy saving and comfort, the sys-

tem activates a power-off function when it detects

no presence in the room after �ve minutes. Pres-

ence detectors (PIR3-1 and PIR3-2) are intercon-

nected through channels to the functional units

acting as controllers (SWI-1 and SWI-2). These

(a)

(b)

Service

S2S

sm

sm

sm

4: StdFUInstance

6:SimpleComp

9:sm

1: Service

11:tm

2: ServiceDefinition

name=SDn

10:isInstanceOf

7:hasService

1: Service

3:StdFUDef

4:StdFUInstance

name=Sn
type-“Required”

8:isInstanceOf

5:FU2C

(c)

6:SimpleComp
9:sm 11:tm

2: ServiceDefinition

name=SDn

10:isInstanceOf

7:hasService

1: Service

3:StdFUDef

4:StdFUInstance

name=Sn
type-“Required”

name=Sn+”.”+SDn

services

Interface

name=Sn

requiredInterface

owner ports

Port

name=SDn
8:isInstanceOf

5:FU2C

Service

S2S

tm

sm

sm

Switching In Switching Out
Light OnOff

hw_switch

switch

switch

SWOswitchIn

SWIswitchOut

SWIsetStatus

SWOstatus

Pushbutton

PB-1

Final

SWIactivated

SWI-1

Final: false

SWISendOnRisingEdge: On

Type: enum{-,On,Off,Toggle}
SWOType: NO

Type: enum{NO,NC}

SWO-1

Final: false

LO-1

FinalSWISendOnFallingEdge: -

Type: enum{-,On,Off,Toggle}
hw_switch

SWOswitchOut LOswitch
PBactivated

Figure 5. Obtaining a component diagram from a DSL model. (a) A DSL example with the source model at the CIM level.
(b) A graph transformation rule for a transform from the CIM to the PIM level. Black indicates a catalog view (DSL)
instance, red indicates a target metamodel (PIM) instance, blue indicates an application view (DSL) instance, and
green indicates a transformation metamodel instance. (c) A component model diagram with the target model at the
PIM level.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

36 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

controllers call the TMtempIn service from the

timer (TM-1) every time the system detects a pres-

ence. So, the timer switches the lights on when the

system detects a presence and switches them off

after 300 seconds of detecting no presence. It’s

possible to use presence detectors simultaneously

for both lighting and security management. The

functional-unit icons suggest their meanings. Ex-

ecution platforms (KNX/EIB, LonWorks, and so

on) usually integrate controllers (in the case study

example, DMI-1, DMO-1, and so on) into devices

following a speci�c criterion. So, Figure 6 doesn’t

include correspondences between these controllers

and �oor-plan devices.

Evaluation
Software products should be evaluated for each

relevant quality factor using widely accepted met-

rics.14 To validate our proposal and our DSL’s

possible bene�ts, we conducted an experiment

involving a group of students in an electronic-

engineering master’s course on home automation.

We offered participants, none of whom had pre-

vious knowledge of home automation technology,

three training sessions before beginning the evalu-

ation. The �rst involved training in the home au-

tomation �eld. The two subsequent sessions pro-

vided training in the use of a commercial tool and

in the use of the DSL. We then presented partici-

pants with a case study in which they were to use

both tools.

The experiment mainly concerned usability un-

der speci�c conditions.15 It evaluated six usabil-

ity quality factors: ease of understanding, ease of

learning, operability, �exibility, accordance, and

attractiveness. For each quality factor, we asked

participants to perform an action using the tools

and then complete a questionnaire rating their ex-

perience (using a 1- to 5-point scale, where 5 is the

highest quality rating). We also tracked the time

needed to complete the actions and to respond to

the questionnaire. We obtained �nal valuations for

each factor using an arithmetic mean of the results

of each questionnaire. Table 1 lists the results.

(a)

(b)

Figure 6. The home
automation system
in our case study:
(a) �oor plan and
element layout and
(b) lighting model in
the Habitation DSL.
Dashed lines show
correspondences
between the physical
devices and the Final-
Passive functional
units. The remaining
DSL elements are
integrated either as part
of these devices or as
separate controllers.

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

 July/August 2009 I E E E S O F T W A R E 37

Study participants mostly rated the DSL tool

higher than the commercial tool (ETS). The excep-

tion was �exibility. The largest differences were in

ease of learning, ease of understanding, and attrac-

tiveness. For example, to questions such as, “Do

you need help to remember the concepts repre-

sented by each primitive in the palette/tool bar?”

most students answered “not at all” (score 5) in the

DSL questionnaire. Fewer students did so for the

commercial tool.

W e’re completing the code-generation

implementation for ETS. We’re also

working to integrate other home auto-

mation platforms and advanced capabilities, such

as requirements traceability, in the process.

Incorporating the GMF plug-in offers multi-

ple possibilities for managing models. However,

the training time required to effectively use it is

long. With this in mind, we’re exploring other

modeling tools that require less training time,

such as MetaEdit+, which offers a fully inte-

grated modeling, metamodeling, and code gen-

eration environment.16

Acknowledgments
The Spanish Interministerial Commission of Science
and Technology’s MEDWSA (a conceptual and tech-
nological framework for the development of reactive
software systems) project (TIN2006-15175-C05-02)
and the Technical University of Cartagena partially
supported this work.

References
 1. B. Selic, “The Pragmatics of Model-Driven Develop-

ment,” IEEE Software, vol. 20, no. 5, 2003, pp. 46–51.

 2. M. Mernik et al., “When and How to Develop Domain-
Speci�c Languages,” ACM Computing Surveys, vol. 37,
no. 4, 2005, pp. 316–344.

About the Authors

Manuel Jiménez is an associate professor of industrial electronics at the Technical
University of Cartagena and is a member of the university’s DSIE (Division of Systems and
Electronic Engineering) research group. His research interests include electronics and model-
driven engineering for reactive systems. Jiménez has a PhD in computer science from the
Technical University of Cartagena. Contact him at manual.jimenez@upct.es.

Pedro Sánchez is an associate professor of computer science at the Technical Univer-
sity of Cartagena and a member of the university’s DSIE (Division of Systems and Electronic
Engineering) research group. His research interests include model-driven engineering for
real-time systems. Sánchez has a PhD in computer science from the Technical University of
Valencia. Contact him at pedro.sanchez@upct.es.

Andrés Iborra is full professor and head of the Electronics Technology Department
at the Technical University of Cartagena and a member of the university’s DSIE (Division of
Systems and Electronic Engineering) research group. His research interests include computer
vision and robotics. Iborra has a PhD in industrial engineering from the Technical University
of Madrid. Contact him at andres.iborra@upct.es.

Francisca Rosique is an assistant professor and a PhD student in computer
science at the Technical University of Cartagena and a member of the university’s DSIE
(Division of Systems and Electronic Engineering) research group. Her research interests
include model-driven engineering and home automation systems. Rosique has a master’s in
telecommunication engineering from the Technical University of Cartagena. Contact her at
paqui.rosique@upct.es.

Bárbara Álvarez is an associate professor in computer science at the Technical
University of Cartagena and a member of the university’s DSIE (Division of Systems and
Electronic Engineering) research group. Her research interests include real-time systems and
software architectures for teleoperation. Alvarez has a PhD in telecommunication engineer-
ing from the Technical University of Madrid. Contact her at balvarez@upct.es.

Table 1
Usability results from our case study

Quality factor

Home automation DSL Commercial tool

Score

(1 to 5)

Time needed (min.)
Score

(1 to 5)

Time needed (min.)

Action Questionnaire Action Questionnaire

Ease of understanding 3.6 20.0 5 2.4 24.6 4

Ease of learning 4.2 30.0 3 2.0 90.0 8

Operability 3.6 20.0 6 3.0 25.0 3

Flexibility 2.8 36.8 6 3.6 23.4 4

Accordance 3.8 12.2 5 3.4 10.0 3

Attractiveness 4.0 10.0 3 2.0 20.0 4

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

38 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

 3. T. Clark et al., Applied Metamodeling: A Foundation
for Language Driven Development, Ceteva, 2008;
http://itcentre.tvu.ac.uk/~clark/Publications.html.

 4. J.P. Tolvanen and S. Kelly, “De� ning Domain-Speci� c
Modeling Languages to Automate Product Derivation:
Collected Experiences,” Proc. 9th Int’l Conf. Software
Product Lines (SPLC 05), LNCS 3714, Springer, 2005,
pp. 198–209.

 5. D. Alonso et al., “V3Studio: A Component-Based Ar-
chitecture Modeling Language,” Proc. 15th Ann. IEEE
Int’l Conf. Workshop Eng. Computer-Based Systems
(ECBS 08), IEEE Press, 2008, pp. 346–355.

 6. M. Voelter and I. Groher, “Product Line Implementa-
tion Using Aspect-Oriented and Model-Driven Software
Development,” Proc. 11th Int’l Software Product Line
Conf. (SPLC 07), IEEE CS Press, 2007, pp. 233–242.

 7. J.L. Ryan, “Home Automation,” Electronics & Comm.
Eng. J., vol. 1, no. 4, 1989, pp. 185–192.

 8. E. Serral et al., “A Model Driven Development Method
for Developing Context-Aware Pervasive Systems,”
Proc. 5th Int’l Conf. Ubiquitous Intelligence Comput-
ing (UIC 08), LNCS 5061, Springer, 2008, pp. 662–676.

 9. Uni� ed Modeling Language (UML) Speci� cation
v2.1.2, Object Management Group, Nov. 2007; www.
omg.org/spec/UML/2.1.2.

 10. S. Mellor et al., MDA Distilled, Addison-Wesley Profes-
sional, 2004.

 11. G. Rozenberg, Handbook of Graph Grammars and

Computing by Graph Transformation, World Scienti� c,
1997.

 12. E. Biermann et al., “Tiger EMF Model Transformation
Framework (EMT),” 2006; http://user.cs.tu-berlin.
de/~emftrans/papers/userdoc.pdf.

 13. M. Jiménez, “Development of Home Automation Ap-
plications Following a Model Driven Approach,” PhD
thesis, Electronics Technology Dept., Tech. Univ. of
Cartagena, 2009; http://hdl.handle.net/10317/846
(in Spanish).

 14. C. Wohlin and P. Runeson, Experimentation in Soft-
ware Engineering: An Introduction, Springer, 2000.

 15. A. Seffah et al., “Usability Measurement and Metrics:
A Consolidated Model,” Software Quality J., vol. 14,
no. 2, 2006, pp. 159–178.

 16. J.P. Tolvanen and M. Rossi, “MetaEdit+: De� ning and
Using Domain-Speci� c Modeling Languages and Code
Generators,” Proc. 18th Ann. ACM SIGPLAN Conf.
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 03), ACM Press, 2003, pp.
92–93.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

A
gile development approaches have had

signi� cant impact on industrial software

development practices. Nevertheless, there

is increasing perplexity about the role and impor-

tance of a system’s software architecture in agile

approaches. Advocates of architecture’s vital role

in achieving quality goals of large-scale software-

intensive systems are skeptical of the scalability

of any development approach that does not pay

suf� cient attention to architectural aspects, es-

pecially in domains like automotive, telecommu-

nication, � nance, and medical devices. But agile

proponents usually perceive the upfront design

and evaluation of architecture as being of little

value to a system’s customers. This issue intends

to separate facts from myths about the necessity,

importance, advantages, and disadvantages of

coexistence of agile and architectural approaches.

C ALL FO R A R T IC LES

Agility and Architecture—
Oil and Water?

PUBLICATION: March/April 2010

SUBMISSION DEADLINE: 17 August 2009

FOR MORE INFORMATION ABOUT THE FOCUS, CONTACT THE GUEST EDITORS:

Pekka Abrahamsson, Univ. of Helsinki & SINTEF ICT, pekka.abrahamsson@ieee.org •
M. Ali Babar, Lero, malibaba@lero.ie •
Philippe Kruchten, Univ. of British Columbia, pbk@ece.ubc.ca•

FOR SUBMISSION DETAILS AND GENERAL AUTHOR GUIDELINES

www.computer.org/software/author.htm or software@computer.org

Authorized licensed use limited to: Universidad de Cartagena. Downloaded on June 26, 2009 at 02:50 from IEEE Xplore. Restrictions apply.

