
Habits of Programming in Scratch
Orni Meerbaum-Salant Michal Armoni Mordechai Ben-Ari

Department of Science Teaching
Weizmann Institute of Science

Rehovot 76100 Israel

{orni.meerbaum-salant,michal.armoni,moti.ben-ari}@weizmann.ac.il

ABSTRACT
Visual programming environments are widely used to introduce
young people to computer science and programming; in
particular, they encourage learning by exploration. During our
research on teaching and learning computer science concepts with
Scratch, we discovered that Scratch engenders certain habits of
programming: (a) a totally bottom-up development process that
starts with the individual Scratch blocks, and (b) a tendency to
extremely fine-grained programming. Both these behaviors are at
odds with accepted practice in computer science that encourages
one: (a) to start by designing an algorithm to solve a problem, and
(b) to use programming constructs to cleanly structure programs.
Our results raise the question of whether exploratory learning with
a visual programming environment might actually be detrimental
to more advanced study.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer and Information
Science Education - Computer Science Education.

General Terms
Human Factors.

Keywords
Scratch, middle schools, habits

1. INTRODUCTION
Scratch [11] is a visual programming environment that is widely
used by young people. Scratch is used by individuals for self-
study outside of any educational framework; it is used in informal
settings like clubs and summer camps [8]; and, it is used in
schools at all levels. Even lecturers at universities have taken to
using Scratch in CS1 courses before plunging into programming
in professional languages [7].

While the attractiveness of the Scratch environment and its ability
to motivate young people are widely attested, we are interested in
exploring whether Scratch can be used to teach concepts of
computer science and programming. In previous work [6, 9], we
showed that learning by middle-school students is uneven at best.

Contrary to the claim that open-ended exploration can achieve
satisfactory learning outcomes [2], we found that concepts were
only learned when students were explicitly taught the concepts
while they created projects that use the concepts. This is not
intended to denigrate Scratch in any way, but rather to emphasize
that Scratch is just a tool, and that good teaching methods and
learning materials are required to maximize potential learning
with the tool.

During our research on learning concepts, we found incidentally
that Scratch influenced not only the learning of concepts but also
the habits of programming that the students develop. In this
paper, we present the habits of programming that we found and
we attempt to explain their development within the Scratch
environment. Since these habits are very much at odds with the
accepted practice, our research raises the possibility that learning
with Scratch could be detrimental to successfully learning
programming.

Section 2 contains a brief overview of Scratch and previous work
on habits. Our research methodology is described in Section 3.
Section 4 presents the two primary classes of programming habits
that we found. Section 5 discusses the results and attempts to
provide explanations for them. In the concluding Section 6, we
reflect on the implications of our results and offer suggestions for
further research.

2. BACKGROUND

2.1 The Scratch Environment
Scratch is a visual programming environment that was developed
by the Lifelong Kindergarten group at the MIT Media Laboratory.
Scratch is intended to foster creativity, increase motivation to
engage with computers and reduce the anxiety that can result from
the engagement. Like its predecessor LOGO, Scratch is based on
constructionism [2, 5]. Programming is done by dragging and
dropping blocks to form scripts that control the animation of two-
dimensional sprites on a stage. The elimination of syntax errors
makes Scratch accessible to young people, and most users create
colorful games and stories. As reported in the literature, Scratch
encourages self-directed learning: Many users learn Scratch as
they go, trying commands from the blocks palette and using code
from existing projects [8].

2.2 Habits and programming
Joni and Soloway [4] argued that educators cannot be satisfied
when students produce programs that “just work.” They found
that students may write correct programs in the sense that they
work (that is, they have correct I/O behavior for all input from the
problem space), but cannot be considered as good since they are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’11, June 27–29, 2011, Darmstadt, Germany.
Copyright 2011 ACM 1-978-1-4503-0697-3/11/06…$10.00.

168

poorly structured. They recommended teaching students that
readability (and therefore, good structure) is a criterion according
to which programs are evaluated. Similarly, in mathematics,
Cuoco et al. recommended that students be taught good habits of
problem solving [1], and that these should even serve as a theme
around which to organize the curriculum.

There are several websites that list good habits that programmers
should have, in particular, ones that concern configuration
management, testing and documentation:

http://web.mit.edu/~axch/www/programming_habits.html

http://drupal.technicat.com/writing/programming.html.

HabiPro (Habits of Programming) is “a pedagogical and
collaborative software designed to develop good programming
habits. It doesn't try to teach programming but to develop in the
novice student skills such as observation, reflection or structure,
which are necessary to become good programmers” [13].

All this points out that an examination of teaching and learning
processes in computer science should not neglect the aspect of
programming habits.

3. RESEARCH METHODOLOGY
The phenomenon described in this paper arose during an
investigation into the learning of computer science concepts in
Scratch [8]. That research methodology was designed with certain
goals in mind, but, serendipitously, during the data collection and
its qualitative analysis, interesting findings arose, which we report
on in this paper. In this section, we summarize those aspects of
the research methodology of [8] that are relevant to this article.

We studied novices who used the Scratch environment in middle
schools. Our subjects were drawn from two classes: one consisted
of 18 students (11 boys and 7 girls), while the other consisted of
28 students (all boys, studying in a boys-only school). The
students in both classes were 14–15 years old (ninth grade). Each
class took place in one two-hour period a week for one semester.

The teacher of the first class taught mathematics in middle school
and had no CS teaching experience, while the teacher of the
second class had 15 years experience teaching CS. Both were
encountering the Scratch environment for the first time.

A draft of a textbook written by the second and third authors was
available to the teachers, but not to the students. This book
emphasizes the process of developing a program by posing an
algorithm, designing a solution and only then implementing the
solution in the programming environment.

The investigation described here is based primarily on three
sources of qualitative data:

• The first author was a non-participant observer in both
classes, observing the students as they solved problems in
class for two hours a week during the entire school year. The
observations were documented in field notes.

• The students' work was collected and analyzed, including
solutions to exams. In addition, 34 projects that they
submitted for presentation at a public Scratch Day held at our
institution were collected and analyzed.

• Interviews were conducted with ten students and two
teachers. In addition, a discussion was held with a focus
group consisting of two students from one class.

We emphasize that these tools were not designed to document the
phenomena described in this paper; rather, these phenomena arose
from the data, appearing repeatedly in different types of data.

4. HABITS OF PROGRAMMING
According to a dictionary (http://merriam-webster.com), a habit is
“a settled tendency or usual manner of behavior” or “an acquired
mode of behavior that has become nearly or completely
involuntary.” Our observations of students’ behavior when
programming with Scratch, together with our analyses of the
programs they developed, led us to identify habits of
programming, that is, habits used in the process of solving
programming tasks.

The two characteristics we looked for in order to identify a habit
were: (1) a behavior must be “settled” or “usual,” in the sense that
the behavior appeared in the work of many students, as well as on
numerous occasions for an individual student; (2) the behavior
must be “involuntary,” in the sense that the students demonstrated
the behavior unconsciously without attempting to justify it and
without considering alternatives.

We identified two programming habits that were demonstrated
over and over again during the students’ work and in the resulting
projects. The following subsections describe these two
programming habits. To simplify the presentation and to stay
within the limits of a conference paper, we will use a few concrete
examples to exemplify the habits, although we found many more
in our analysis of the data.

4.1 Bottom-up programming
In a bottom-up programming approach one starts with
components, which are then linked together to form a larger
subsystem, until a complete top-level system is formed. When
used correctly, a bottom-up approach enables a programmer to
design, implement and test logically-coherent components that
can then be integrated to form a software system. In our case,
students took this approach to its extreme, starting with the most
basic elements of Scratch, the blocks with the instructions. During
the observations and the interviews, we saw that when faced with
a programming task, the students did not approach it by thinking
on the algorithmic level and not even on the level of software
design. Instead, they began to solve a problem by dragging all the
blocks that seemed to be appropriate for solving the task, and then
combining them into a script. This pattern of behavior can be
characterized as programming by bricolage, as advocated by
Turkle and Papert [12].

The Scratch environment fosters the development of this habit:
All the instructions are given on the blocks palette that is visible
at all times, so the users need not remember the instructions nor
need they deliberate as to what instructions are needed. This is
further exacerbated by the fact that individual instructions or
fragments of scripts can be left in the script area without affecting
the computation of the program that is executed. While this aids
the interactive construction of scripts, it is obviously conducive to
bricolage.

169

This habit was described by a student during an interview:

When I need to solve a programming problem, first of all I
choose which instructions to drag and drop to the script area,
and then I try to see how all the instructions will fit together in
the best way, what will be the simplest way to solve the
problem without any interruption or difficulties.

4.2 Extremely Fine-Grained Programming
The second programming habit that we found complements the
first one, in that it takes the top-down approach to its extreme. In
a top-down approach [3], tasks are decomposed into smaller,
more tractable subtasks. When used correctly for designing
software, the decomposition is into logically coherent units that
facilitate development and improve maintainability.

When analyzing the students’ artifacts, we saw that they carried
out the decomposition until the units (the scripts) became
extremely small, and usually lacked logical coherency. We call
this extremely fine-grained programming (EFGP).

4.2.1 An example of EFGP
We will use the following example to demonstrate this habit: In a
game, the player collects magical items by fighting their guards.
Every time the player hits a guard (by touching him with his
sword), he obtains the magical item that was watched over by the
guard. When the player has collected six items, he can move to
the next level.

A script to handle the event of the player winning a fight should
be composed of the following steps: (a) move the item to the
player's bag (by sending an appropriate message to the item); (b)
update a counter of the items in the bag; (c) if the counter reaches
six, move to the next level.

Here is an EFGP implementation of this sequence of steps:1

In Script1

In Script2

Although the three steps as a whole form a logically coherent
unit, this student decomposed it further, creating a separate script
for the third step of deciding whether to move to the next level.
Furthermore, this script was for a different sprite, one that had
nothing at all to do with the event of winning a fight!

As a result of the habit of EFGP, students' projects contained a
very large number of scripts (occasionally hundreds).

1 The examples we use are taken from students' projects, but have

been simplified to obtain a concise and clear presentation.

Scratch is to be praised for its clear and convenient support of
decomposition into multiple scripts for multiple sprites. However,
it seems likely that this ease of decomposition fosters the habit of
EFGP. The habit is closely related to habit of extreme bottom-up
programming described in Section 4.2, in the sense that both
demonstrate the lack of a design phase during the development.

In the following subsections, we analyze the habit of EFGP in
more detail, relating it to specific concepts computer science.

4.2.2 EFGP and control structures
When the decomposition is very fine-grained, the use of control
structures is affected in the sense that they are not always used as
they should be and sometimes are not used at all. For example, the
simplest implementation of the third step of the algorithm
presented above uses a conditional statement::

However, the student’ s solution used a conditional infinite loop,
turning a simple conditional into a busy-wait loop. This
phenomenon—the reduced use of if-blocks—was frequently
found in the students' projects.

The reduced used of conditional execution in EFGP carried over
to the more complex if <cond> do <op1> else do
<op2> construct, which aggregates two subtasks together.
Students tended to decompose this construct into the two smaller
constructs, one for each subtask: if <cond> do <op1> and
if <not cond> do <op2>.

The use of loop structures was similarly affected. A (finite) loop is
a control structure that encapsulates two subtasks: repetition of a
sequence of instructions and termination of the repetition when
appropriate (after a certain number of times or when a certain
condition holds). EFGP decomposes these two subtasks, resulting
with an infinite loop that implements the repetition task, while
another script handles the ending of the loop! Consider, for
example, a game in which a missile moves until it touches a
target. A simple control structure implementing this subtask might
be:

Here is an EFGP implementation:

In Script1

In Script2

170

In Script3

The decomposition of the simple loop is into three subtasks:
repeatedly executing the move instruction, checking the
termination condition and then terminating the execution. We
found this frequently: EFGP resulted in a reduced use of finite
looping structures so that for-loops and repeat-until loops were
replaced by forever-loops with external control of the execution.

4.2.3 EFGP and structured programming
Not only did EFGP result in a skewed use of the various control
structures, but it also resulted in programs that we judged
qualitatively to be poorly structured. A repeat-until loop is a
coherent logical concept where the body of the loop and the
condition for its termination are co-located and easy to
understand. When these components of the loop construct are no
longer co-located, it becomes very difficult to read and understand
a program. This can be seen as analogous to objections to the
goto-instruction, which can cause unstructured (“ spaghetti”)
programs that have lost their logical coherence. Defenders of the
goto-instruction claimed that the instruction was not at fault and
that the instruction could be used in ways that were not
detrimental to the structure of a program, but the consensus in
modern language design and programming is that structured
constructs like repeat-until loops should always be used unless
there is a special reason not to. The students did not justify their
choice of structures, though they are certainly too inexperienced
to do so. Similarly, the forever-instruction should not be blamed
for “ spaghetti” code in Scratch; instead, one should look for
reasons why the control structures were not used in the ways they
were designed to be used.

4.2.4 EFGP and concurrency
The Scratch environment encourages the use of concurrency since
all scripts of all sprites are executed at the same time. Extreme
decomposition necessarily results in a highly concurrent program,
but one in which the concurrency was not consciously designed.
When actions are executed concurrently, understanding the
execution is not simple since actions may be interleaved in
various ways, leading sometimes to unexpected, even unwanted,
results. Indeed, our students were frequently helpless when faced
with unanticipated problems caused by concurrency issues.

For example, in the project described in Sction 4.2.1, the move to
the next level might not happen when the student wanted it to
happen. After the value of the counter became 6 in Script1, the
player might touch the guard again, increasing the value of the
counter to 7 before the condition in Script2 was checked. This
would not have happened had the event of winning been handled
in one script, containing the three-step sequence described above.

Since concurrent scripts (both within a single sprite and in
separate sprites) are such an integral part of Scratch, one cannot
avoid this issue when teaching Scratch. The textbook presented
concurrency as early as in the second chapter, but in an informal
manner. Synchronization of concurrent scripts is a very difficult

concept, so a more formal and complete treatment was deferred to
a chapter near the end of the textbook. Neither class had time to
learn this material, and, in any case, it is unreasonable to assume
that young novice students will easily develop the skills necessary
to debug concurrent programs (even assuming that "debugging" is
a viable concept in the context of concurrency).

Unfortunately, EFGP exacerbates the problem since the plethora
of scripts makes problems more likely to occur. Given the very
large number of scripts in the students’ projects, race conditions
were very common. The massive concurrency that results from
EFGP made the programs difficult to debug and we believe that
had the students developed programs using fewer, logically
coherent, scripts, the programs would have been much easier to
understand and debug.

5. DISCUSSION
We identified two habits of programming demonstrated by
students who worked with the Scratch environment. Both of these
habits are at odds with the accepted practice of computer science.
Since habits tend to be persistent, this raises the possibility that
they will be retained as students advance from an educational
visual programming environment like Scratch to professional
languages and environments.

The bottom-up programming habit is clearly encouraged by the
characteristics of the Scratch environment and is in line with
Papert's philosophy of constructionism [2] and with bricolage
[12]. Normally, one would not be surprised that program design
did not take place if no design is taught, but in our case, we did
try to do so and still the results were not satisfactory from our
point of view. As noted above, our textbook does emphasize
analysis and design. Furthermore, one of the teachers was an
experienced high-school teacher of computer science, who pays
careful attention to teaching design in her courses at that level.
Why, then, did she not emphasize program design in the context
of this course, when clearly she was capable of doing so and had
the support of the textbook?

When asked, the teacher agreed that she is fully familiar with the
importance of program design. She claimed that her inexperience
with Scratch was the reason that she did not engage the students
in design during the teaching process. We believe that another
factor may be relevant here: the colorful interface of Scratch and
the fun of creating animated games can give the impression that
Scratch is a toy or a video game; this has the potential to cause
teachers to relax their vigilance concerning software design during
teaching process. However, for all its glamour, Scratch is a
sophisticated programming environment, and we believe that it
should be treated like any other programming environment: as a
tool with which to teach sound habits of programming. These
sound habits do not develop by themselves; they can only develop
if diligently instilled by the teacher.

The habit of EFGP is characterized by decomposition into very
small, incoherent, modules. Modularity is a fundamental principle
of software design, and indeed the textbook emphasizes
decomposition into subtasks. However, the extreme to which this
principle is taken results raises a few concerns.

First, we are concerned by the incorrect use of control structures.
One major objective of an introductory course is to expose novice
students to fundamental ideas such as algorithmic control

171

structures. We are especially disturbed by the fact the students
avoided the use of the most important structures: conditional
execution and bounded loops. It is uncontroversial that these are
difficult to learn, so it is unfortunate that students miss the
opportunity to learn these structures in a fun environment.

We may be partly to blame because our textbook teaches the
simpler if-statement before the if-then-else-statement and the
simpler forever-loop before the repeat-until loop and the for-loop.
This seems sound from a pedagogical point of view, but it does
demand that the teaching process emphasize the more complex
constructs and encourage their use in preference to the EFGP style
of programming. A similar consideration applies not just to the
individual control structures, but also to the inability of the
students to write a well-structured program, a skill that is central
to CS education.

An important advantage of the Scratch environment is that it lends
itself naturally to projects such as games, which the students are
able to implement themselves. But creating games by extremely
fine-grained programming leads to projects with hundreds of
concurrent scripts that are practically impossible for the students
to debug and maintain. Paradoxically, the motivation that results
from the ability to program interesting games can dissolve when
the debugging process becomes difficult and frustrating!

6. CONCLUSION
While we are pleased with the willingness of students to engage in
programming by using Scratch and with the technical skills that
they develop, we are disturbed by the habits of programming that
we uncovered. These habits are not at all what one expects as the
outcome of learning computer science. Any habit, including a
programming habit, tends to be persistent, so it is possible, even
likely, that these bad habits will transfer to the students' further
CS studies. On the other hand, perhaps they can outgrow these
bad habits.

Our results can be framed as a dilemma: should we make things
“ easy” for students during their initial studies or should we teach
them the “ right way” from the beginning? This dilemma is
extremely common in computer science education, because it
arises any time an educational language, environment or
technique is proposed. For example, even the “ objects-first”
controversy can be framed as a dilemma between learning what
some consider as “ the right way” initially vs. learning it later
when the students have more experience and are ready to
understand it.

This is not a question that can be answered by debate; instead, it is
an empirical question that needs to be elucidated with further
research (both qualitative and quantitative).

7. ACKNOWLEDGMENTS
This research was partially supported by the Israel Science
Foundation grant 09/1277 and by a Sir Charles Clore Postdoctoral
Fellowship�

8. REFERENCES
[1] Cuoco, A., Goldenberg, E.P., and Mark, J. 1997. Habits of

mind: An organizing principle for mathematics curriculum.
Journal of Mathematical Behavior, 15(4), 375-402.

[2] Harel, I., and Papert, S. (eds.). 1991. Constructionism.
Ablex, Norwood, NJ.

[3] Hartman, J., 1991. Understanding natural programs using
proper decomposition, Proceedings of the 13th International
Conference on Software Engineering (Austin, Texas, May
13-17, 1991), 62-73.

[4] Joni, S. A., and Soloway, E., 1986. But my program runs!
Discourse rules for novice programmers. Journal of
Educational Computing Research, 2(1), 95-126.

[5] Kafai, Y., and Resnick, M., (eds.) 1996. Constructionism in
Practice: Designing, Thinking, and Learning in a Digital
World. Lawrence Erlbaum Associates, Mahwah, NJ.

[6] Kaloti-Hallak, F., 2010. Learning Programming Concepts
Using Scratch at the Middle-School Level. Unpublished MSc
Thesis, Weizmann Institute of Science.

[7] Malan, D. J., and Leitner, H. H., 2007. Scratch for budding
computer scientists. In Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education
(SIGCSE '07). ACM, New York, 223-227.

[8] Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., and
Rusk, N. 2008. Programming by choice: Urban youth
learning programming with Scratch. SIGCSE Bull. 40, 1
(March 2008), 367-371.

[9] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M., 2010.
Learning computer science concepts with Scratch. In
Proceedings of the Sixth International Workshop on
Computing Education Research (ICER '10). ACM, New
York, 69-76.

[10] Papert, S., 1980. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York.

[11] Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Silverman, B., and Kafai, Y., 2009. Scratch:
Programming for all. Commun. ACM 52, 11 (November
2009), 60-67.

[12] Turkle, S., and Papert, S., 1991. Epistemological pluralism
and the revaluation of the concrete. In: Harel, I. and Papert,
S. (eds.), Constructionism. Ablex, Norwood, MA, 161–192.

[13] Vizcaino, A., Contreras, J., Favela, J., and Prieto, M. 2000.
An Adaptive, Collaborative Environment to Develop Good
Habits in Programming. In Proceedings of the 5th
International Conference on Intelligent Tutoring Systems
(ITS '00), Gilles Gauthier, Claude Frasson, and Kurt
VanLehn (eds.). Springer-Verlag, London, UK, 262-271.

172

