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and behavioral cycles face an increased risk for cardiovascular 
disease and cancer.9 Recently, circadian misalignment has been 
directly manipulated in a small sample of people in a laboratory 
setting, resulting in adverse cardiometabolic effects.10 There-
fore, identifying biological and environmental factors that af-
fect sleep/wake patterns may lead to interventions that reduce 
the incidence of many common disorders.

Much of what is known about the molecular mechanisms of 
the circadian pacemaker comes from studies of model organ-
isms and Mendelian human sleep disorders. Two functionally 
conserved gene families, Period and Cryptochrome, play a cen-
tral role in the control of the mammalian circadian pacemaker 
by engaging in an autoregulatory negative feedback loop.2 In 
humans, mutations in components of the well-known circadian 
rhythm pathway have been found to result in rare Mendelian 
sleep disorders such as advanced or delayed sleep phase syn-
drome, which are estimated to affect less than 1% of the adult 
population.2,11 Much less is known, however, about the genetic 
regulation of less extreme variation in sleep phase among com-
munity-dwelling individuals. The few studies that have been 
conducted rely on self-administered questionnaires or sleep 
diaries to determine sleep phase. Based on these instruments, a 
substantial degree of heritability (h2) is suggested (h2 estimates 
for diurnal preference, sleep length, and daytime sleepiness are 
0.23–0.52,12-17 0.4–0.44,12,18 and 0.38–0.48,19-21 respectively). 
To date, a single genome-wide association study of daytime 
sleepiness, usual bedtime and usual sleep duration assessed by 

INTRODUCTION
The preferred wake time and bedtime, also referred to as the 

preferred sleep phase or the diurnal preference, is regulated by 
at least two factors: the endogenous circadian pacemaker and 
environmental stimuli.1 The endogenous circadian pacemaker, 
commonly named the biological clock, resides in the suprachi-
asmatic nucleus (SCN) of the hypothalamus.2 Environmental 
stimuli, such as light, exercise, social contact, and strict sched-
ules, entrain the endogenous pacemaker to the environment.3 
Light, the most potent entraining factor, regulates the SCN by 
exciting retinal photoreceptors that connect to the SCN via the 
retinohypothalamic tract.2

Many diseases display a circadian pattern of risk and have 
been shown to be associated with sleep disturbance.1 Epidemio-
logic studies have shown that both long and short sleep duration 
is highly prevalent in the United States4 and is associated with 
many common diseases, such as hypertension,5 obesity,6 diabe-
tes,7 and coronary heart disease.8 Shift workers who experience 
a misalignment between their endogenous circadian pacemaker 
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of genetic factors contributing to variation in habitual sleep by 
reducing sources of non-genetic influences. The heritability es-
timation of habitual sleep parameters was made possible by the 
use of data collected from extended pedigrees.42

METHODS

Study Population
The Heredity and Phenotype Intervention (HAPI) Heart 

Study has been previously described.43 Briefly, the study popu-
lation consists of 868 healthy adults (460 men and 408 women) 
from the Old Order Amish community in Lancaster County, 
Pennsylvania. Of the 868 study participants, 723 adults had 
complete measurements for Actical-based sleep parameters and 
covariates used in statistical analysis. The majority (96%) of 
the participants could be connected into a single 5-generation 
pedigree using information from AGDB.44 The remaining 4% 
were either singletons (n = 14) or belonging to one of 5 small 
pedigrees, consisting of between 2 to 6 members. Institutional 
review board approvals were obtained from the University of 
Maryland, Baltimore for data collection and from the Univer-
sity of California, San Francisco for data analysis.

Sleep Measurements

Actical
The time of day when participants go to sleep (bedtime), the 

time of day when they wake up (wake time), and sleep duration 
were measured using Actical physical activity monitors. Actical 
detects motion using an omnidirectional accelerometer. Similar 
to most accelerometers used for sleep studies,23 Actical has a 
detection bandwidth of 0.35-3.5 Hz. The Actical accelerometer 
detects 0.05-2 g gravitational forces in multiple directions.45 
With the recording interval set for 15 sec, study participants 
wore the Actical instrument on their hip for 7 consecutive days, 
24 h/day. Data were uploaded from the activity monitor to a 
personal computer and Actical software version 2.04 was used 
to produce a visual representation of each participant’s activ-
ity levels, called an actogram. To determine daily bedtime and 
wake time, 2 independent readers who were blinded to the sleep 
questionnaires and sleep diaries examined the actograms and 
estimated these sleep parameters to the nearest 30 min time 
point. Bedtime and wake time were determined from the pat-
tern of activity using the guideline that these times are at the 
boundary between periods of inactivity lasting > 1 h and pe-
riods of activity lasting > 1 h. A representative example of a 
7-day actogram with sleep/wake boundaries is shown in Figure 
1. Daily values that were > 1 h apart between the 2 readers 
were excluded. Similar to previous approaches to estimate ha-
bitual sleep times,46 daily Actical time points that were more 
than 2 h different from the participant-specific weekly average 
were excluded. Data from subjects with ≥ 4 days of valid sleep 
values were used to calculate the mean of these phenotypes. 
Data cleaning procedures only removed weekly habitual sleep 
parameters in 11 of the 777 (1%) subjects with Actical physical 
activity data. Among the 723 study participants with complete 
measurements from Actical-based sleep parameters and covari-
ates, 61 (8%) had at least one discrepancy in bedtime or wake 
time between the 2 independent readers.

self-administered questionnaires in a community-dwelling pop-
ulation has been performed and evidence for significant heri-
tability and genetic association for all three traits was found.22

In order to study the association between genetic/non-
genetic factors and habitual sleep patterns, it is important to 
objectively measure sleep phase for multiple days in a large 
number of community-dwelling individuals. This poses the 
formidable challenge of accurately measuring a person’s true 
sleep phase efficiently without being so invasive as to disrupt 
normal sleep habits. To this end, we explored the usefulness 
of Actical physical activity monitors (formerly Mini Mitter, 
Bend, OR, now Philips Respironics) to determine habitual 
bedtime and wake time. While the Actical device is mechani-
cally and electronically similar to actigraphy devices used to 
measure sleep,23 its software is optimized for the measurement 
of daytime physical activity level.24,25 Moreover, our study 
participants wore the Actical on the hip, the recommended 
placement for physical activity measurement, as opposed 
to the wrist, the standard placement for sleep assessment.23 
Accelerometers worn on the hip to measure physical activ-
ity level are increasingly being used in large epidemiological 
studies, including the National Health and Nutrition Exami-
nation Survey (NHANES) for the 2003-2004 cycle and later 
cycles. Demonstrating the utility of such measurements for 
the assessment of sleep could potentially lead to the develop-
ment of valuable resources for sleep researchers.

Our use of the Actical accelerometer to determine habitual 
bedtime, wake time, and sleep duration, a use for which it was 
not designed, compelled us to validate these sleep parameters 
using sleep diaries. Sleep diaries have been extensively used in 
sleep research since the 1960s and have been shown to provide 
reliable estimates of bedtime and wake time.26-29 Upon observ-
ing strong correlations between Actical-based and diary-based 
sleep parameters, we sought to determine the extent to which 
Actical-based sleep parameters are heritable and associated 
with non-genetic factors. Study participants also completed 
the Horne-Östberg Morningness-Eveningness Questionnaire 
(MEQ)30 to estimate diurnal preference and a modified version 
of the Epworth Sleepiness Scale (ESS)31 to estimate daytime 
sleepiness. Both the categorical diurnal types and the continu-
ous scores from the MEQ have been shown to be correlated 
with the endogenous circadian period.32-35 We examined the 
contribution of genetic and non-genetic factors on these ques-
tionnaire scores as well as the relationship between question-
naire scores and Actical-based sleep parameters.

Factors that accompany urbanization and industrialization 
are likely to affect sleep.3,36-39 We attempted to avoid much of 
the influence from these factors by conducting our study in the 
Old Order Amish (OOA), a conservative Christian sect resid-
ing in rural areas of Lancaster County, Pennsylvania. While the 
avoidance of modern electrical conveniences by the OOA likely 
reduces non-genetic influences on sleep, the OOA are still bound 
to schedules by occupational and social obligations. Little is 
known about sleep in rural populations,40,41 and even less in pop-
ulations that avoid modern technology.14 This community-based 
study of the OOA offers a rare examination of sleep without 
the influence of industrialization. In addition to the traditional 
agrarian lifestyle of the OOA, the homogeneity of socioeconom-
ic status and lifestyle is expected to facilitate the identification 
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Sleep diaries
Sleep diaries were also administered to a subset of the study 

participants (260 participants). The bedtime from the previous 
night and the wake time were recorded by the participant in the 
morning. The wake time from the sleep diary came from the 
question, “What time did you wake up in the morning?” and the 
bedtime from the question, “What time did you begin to sleep?” 
referring to the previous night. Daily sleep diary time points that 
were > 2 h different from the participant-specific weekly average 
were excluded. The weekly average of a sleep outcome measured 
by sleep diaries required ≥ 4 days of recorded values.

In addition to sleep parameters, total activity counts were de-
termined for each participant during wake and sleep hours com-
bined and during sleep hours only. Actical devices were version 
8.2, 8.3, or 8.4, as identified by a serial number beginning with 
V82, V83, or V84, respectively. As we have found in separate 
methodological studies (S. Snitker, unpublished observations) 
that Version 8.4 records only 0.55 times as many total counts as 
the previous models, activity counts (awake and sleeping) from 
participants (n = 66) obtained by Version 8.4 were divided by 
0.55. Actical device version was not associated with any of the 
Actical-based sleep parameters.
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Figure 1—Representative 7-day actogram. Daily and mean wake time and bedtime are shown (h:min). Arrows indicate sleep/wake boundaries.
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appeared to be normal based on skewness, kurtosis, QQ plots, 
and histograms.

RESULTS
There were slightly more males (388) than females (335) 

in the study population of 723 community-dwelling adults (P 
= 0.05) (Table 1). Combining both sexes, the mean age was 
43.3 ± 13.8 years, and the range was from 20 to 80 years. Male 
subjects were significantly younger than female subjects (men: 
41.9 ± 13.2; women: 44.9 ± 14.3 years; P = 0.003) (Table 1). 
Very few participants classified themselves as retired; 87% of 
men were farmers, carpenters, or mechanics, while 79% of 
women were housewives (Table 1). Napping was common in 
the study population, with 54% of men and 62% of women re-
porting that they made time in the day to take a nap at least once 
a week (Table 1). Total activity level was significantly higher in 
men than in women (men: 525.2 × 103 ± 269.6 × 103; women: 
377.5 × 103 ± 210.2 × 103 counts/day; P < 0.0001), but sleep 
activity level did not differ by sex (Table 1).

Sleep parameters measured by Actical and sleep diaries 
were compared in 164 people from whom both sets of data 
were available. Wake time obtained from the 2 instruments was 
highly correlated, as was bedtime (wake time: r = 0.82; bed-
time: r = 0.72; both P < 0.0001; Figure 2 A, B). On average, 
the diary wake times and bedtimes were only 6 and 11 min-
utes earlier, respectively, than those measured by Actical, but 
these differences were significant (P = 0.0004 and P < 0.0001, 
respectively). Bland-Altman plots indicate that there is no obvi-
ous relationship between the difference and the mean of the 2 
measurements (Figure 2 C, D).

The mean Actical-based habitual wake time, bedtime, and 
sleep duration when both sexes were combined was 5:06 ± 
00:44, 22:00 ± 00:44, and 7:05 ± 00:51, respectively. The Acti-
cal-based habitual wake time was significantly earlier for men 
(4:59 ± 45 min) than for women (5:14 ± 43 min, P < 0.0001) 
(Table 1). Actical-based habitual bedtime was not significantly 
different by sex, and consequently, habitual sleep duration was 
significantly shorter in men (7:01 ± 52 min) than in women 
(7:11 ± 49 min, P = 0.01) (Table 1). Based on the MEQ where 
lower scores indicate evening diurnal types, only 1% of the par-
ticipants were classified as moderately evening types, and none 
were classified as definitely evening types (Table 1). Given the 
narrow range of diurnal types in the study population, continu-
ous MEQ scores, which were not significantly different by sex 
(Table 1), were used in regression analysis. Based on the ESS 
where higher scores indicate higher levels of daytime sleepi-
ness, men had higher levels of daytime sleepiness than women 
(men: 9.1 ± 3.4; women: 7.6 ± 3.2; P < 0.0001) (Table 1).

The association between sleep parameters and factors known 
to be associated with sleep phase and duration, including age, 
sex, season of the year, occupation, and activity level, was eval-
uated in regression models conditioned on the relatedness of 
the study participants (Table 2).3,49 In general, factors associated 
with an unequal shift in wake time and bedtime were associ-
ated with a shift in sleep duration. The observation that sleep 
duration was significantly different by sex in univariate analysis 
(Table 1) but not multivariate analysis (Table 2) most likely re-
flects the high degree of collinearity between sex and the house-
wife occupation. Indeed, in multivariate analysis, the housewife 

Diurnal preference and daytime sleepiness
The Horne-Östberg Morningness-Eveningness question-

naire (MEQ) was administered using established scoring cri-
teria.30 Daytime sleepiness was evaluated using the Epworth 
Sleepiness Scale (ESS),31 modified for Amish use. The original 
ESS asks the participant to rate their chance of dozing from 0-3 
(3 being the highest chance of dozing) in 8 different situations. 
The ESS score, the sum of these 8 scores, ranges from 0 to 24. 
Two of these situations, “Watching TV” and “In a car, while 
stopped for a few minutes in traffic,” did not apply to the Amish 
population, and were removed. As a consequence, the modi-
fied Amish ESS ranges from 0 to 18. In addition, the situations 
“Sitting, inactive in a public place (e.g., a theater or a meet-
ing),” “As a passenger in a car for an hour without a break,” and 
“Sitting quietly after a lunch without alcohol” were modified to 
“Sitting inactive in a public place (e.g., during church service),” 
“As a passenger in a vehicle for an hour without a break,” and 
“Sitting quietly after lunch,” respectively.

Statistical Analysis
Of the 260 participants who kept sleep diaries, 164 partici-

pants had Actical-based sleep parameters for the same days. 
The validation study of these 164 participants compared aver-
age wake time and bedtime from sleep diaries and Actical using 
Pearson correlation coefficients, paired Student 2-sided t-tests, 
and Bland-Altman plots.47

In order to estimate heritability and to identify non-genetic 
factors associated with habitual sleep quantitative traits, linear 
multivariate regression with variance component analysis was 
performed using the software SOLAR (Southwest Foundation 
for Biomedical Research, San Antonio, TX).48 Relatedness was 
taken into account with a matrix of kinship coefficients. The 
non-independence of individuals within common households 
was taken into account using a variable assigning an identifi-
cation number based on the street address of the study partici-
pants. Occupation was modeled using the occupation with the 
earliest habitual wake time, farming, as the reference. Season 
of the year when the Actical device was worn was modeled 
using winter as the reference and three indicator variables 
for other seasons. Winter was defined as months December 
through February, spring as March through May, summer 
as June through August, and fall as September through No-
vember. The napping variable from a lifestyle questionnaire 
indicates whether a participant made time for a nap never or 
rarely (less than once per week), or at least once per week. The 
amount of physical movement during sleep (sleep activity) was 
determined by quantifying the activity counts between bedtime 
and wake time. Accounting for only 1% of total activity levels, 
sleep activity levels were included in measures of total activ-
ity. In an attempt to reduce the potential confounding effect of 
more waking hours leading to an accumulation of higher total 
activity levels, daily and sleep activity levels were standard-
ized by dividing by the number of waking and sleeping hours, 
respectively. The score on the shortened Epworth Sleepiness 
Scale was analyzed as is with no attempt to compensate for the 
fewer number of questions compared to the original scale. In 
regression analysis, total activity and sleep activity were trans-
formed by taking the natural log, then outliers > 3 standard de-
viations from the mean were excluded. Residuals for all traits 
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season, occupation, and activity level (Table 2). As expected, 
Actical-based wake time and bedtime later in the day were sig-
nificantly associated with lower MEQ scores, corresponding to 
more evening diurnal types (wake time: −2.0 ± 0.4, P < 0.0001; 
bedtime: −1.2 ± 0.4, P = 0.004; Table 2). Actical-based sleep du-
ration was not associated with diurnal preference measured by 
MEQ scores (−0.3 ± 0.4, Table 2). Consistently, Actical-based 
wake time and bedtime showed significant, negative correla-
tion with MEQ scores (r = −0.18 and −0.15, respectively, both 
P < 0.0001), but Actical-based sleep duration did not. Actical-
based wake time later in the day was significantly associated 
with lower ESS scores (−0.6 ± 0.2, P = 0.001), corresponding 
to less daytime sleepiness, and later Actical-based bedtime 
was significantly associated with higher ESS scores (0.4 ± 0.2, 
P = 0.01), corresponding to more daytime sleepiness (Table 2). 
As expected, longer sleep duration was significantly associated 
with lower ESS scores (−0.7 ± 0.2, P < 0.0001), corresponding 
to less daytime sleepiness (Table 2).

After adjustment for non-genetic factors and the effects of a 
shared household, variance component analysis revealed that 
wake time, MEQ score, and ESS score were significantly heri-
table (all P < 0.01), but not bedtime or sleep duration (Table 3). 
Additive genetic influences explained 20%, 21%, and 17% of 
the residual variance in Actical-based wake time, MEQ score, 
and ESS score, respectively (Table 3). There was a significant 
genetic correlation between Actical-based wake time and MEQ 
score (ρG = −0.60 ± 0.26, P = 0.05), but not between Actical-

occupation was associated with longer sleep duration (18.0 ± 
7.2 min, P = 0.02), indicating that the sex-associated variance 
was attributed to occupation in some of the models (Table 2). 
Summer, the season with the latest sunset, also had the latest 
bedtime compared with winter, the baseline season (43.8 ± 4.2 
min, P < 0.0001, Table 2).

Higher total activity level was significantly associated with 
earlier wake time (−18.6 ± 4.2 min, P < 0.0001), but not bed-
time (−3.0 ± 3.6 min), and accordingly, was significantly asso-
ciated with shorter sleep duration (−13.8 ± 4.8 min, P = 0.004) 
(Table 2). Although sleep activity level was not significantly 
associated with wake time or bedtime, it was significantly as-
sociated with longer sleep duration (6.0 ± 3.0 min, P = 0.04, 
Table 2). The effects of BMI and napping frequency were not 
significantly associated with any of the outcomes in multivari-
ate analyses, and were not included in final models.

From the analysis of outcomes obtained from questionnaires, 
increasing age was associated with a higher MEQ score (1.7 
± 0.2, P < 0.0001), corresponding to an increasing tendency 
towards the morning diurnal type, but no other factor was sig-
nificantly associated (Table 2). ESS score was significantly as-
sociated with age, sex, and occupation, but not with season of 
the year or activity level (Table 2).

It was investigated whether Actical-based sleep parameters 
were associated with MEQ or ESS scores by individually 
adding these Actical-based parameters to the final regression 
models analyzing MEQ and ESS scores adjusted for age, sex, 

Table 1—Characteristics of the study population

Males Females
Trait (unit) n Mean ± SD (range) or % n Mean ± SD (range) or %

Age (years) 388 41.9 ± 13.2 (20 – 77) 335 44.9 ± 14.3* (20 – 80)
BMI (kg/m2) 388 25.6 ± 3.2 (18.4 – 37.9) 335 27.7 ± 5.4* (18.1 – 46.8)
Occupation

Housewife 0 0% 266 79%
Farmer 159 41% 25 8%
Carpenter/mechanic 177 46% 0 0%
Shopkeeper 33 8% 30 9%
Craftmaker/teacher 8 2% 8 2%
Retired 11 3% 6 2%

Nap ≥ once/weeka 208 54% 207 62%*
Total activity (counts·day-1·1000-1) 388 525.2 ± 269.6 (88.2 – 1891.0) 335 377.5 ± 210.2* (89.7 – 1384.8)
Sleep activity (counts·day-1·1000-1) 388 5.0 ± 3.9 (0.8 – 33.4) 335 5.6 ± 4.6 (0.6 – 32.6)
Wake time 388 04:59 ± 00:45 (03:04 – 07:34) 335 05:14 ± 00:43* (02:50 – 08:35)
Bedtime 388 21:58 ± 00:45 (19:38 – 24:43) 335 22:02 ± 00:43 (19:35 – 24:24)
Sleep duration 388 07:01 ± 00:52 (04:20 – 09:50) 335 07:11 ± 00:49* (05:08 – 09:24)
MEQ scoreb 332 63.4 ± 6.9 (37 – 79) 293 63.7 ± 7.5 (37 – 80)

Definitely Morning 65 19% 62 21%
Moderately Morning 192 58% 168 57%
Neither 73 22% 59 20%
Moderately Evening 2 1% 4 1%
Definitely Evening 0 0% 0 0%

ESS scorec 388 9.1 ± 3.4 (1 – 18) 335 7.6 ± 3.2* (0 – 16)

*Men ≠ women (P < 0.05) unpaired 2-tailed t-test or χ2 test. a385 men and 334 women had non-missing answers. bMorningness-Eveningness Questionnaire. 
cEpworth Sleepiness Scale (ESS) scores come from the modified Amish ESS, which ranges from 0 to 18 (see Methods).
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ated with increased daytime sleepiness. The measurement of 
physical activity level and sleep parameters with the Actical 
revealed an association between greater amounts of total physi-
cal activity with earlier wake time and shorter sleep duration in 
this study population. After adjusting for the effect of non-ge-
netic factors and shared households, Actical-based wake time, 
diurnal preference, and daytime sleepiness showed significant 
heritability. Furthermore, diurnal preference had a significant 
genetic correlation with Actical-based wake time, suggesting a 
shared genetic influence or a similarity in these traits.

To study habitual sleep phase in large community-dwelling 
populations, actigraphy provides a reasonable alternative to the 
gold-standard method of polysomnography.23 The Actical de-
vice used in this study is similar in design to sleep actigraphy 
devices, but instead of being worn on the wrist as is standard for 
sleep studies, the Actical was worn on the hip to optimize the 
detection of physical activity. In addition, a validated computer 
algorithm was not used to determine sleep parameters from Ac-
tical data. Despite these limitations, we observed Actical-based 
wake time and bedtime to be highly correlated with sleep di-

based wake time and ESS score, or between MEQ and ESS 
score. The effects of a shared household were significantly as-
sociated with all three Actical-based sleep parameters, but not 
with MEQ score or ESS score (Table 3). There was no evidence 
for sex-specific effects on heritability.

DISCUSSION
In this study, we used a physical activity monitor, the Actical, 

to measure habitual wake time, bedtime, and sleep duration. 
Upon observing that sleep parameters from Actical and sleep 
diaries were highly correlated and in agreement, we evaluated 
the contribution of genetic and non-genetic factors on Actical-
based sleep parameters, as well as on questionnaire-based diur-
nal preference and daytime sleepiness. As would be expected 
from an informative measure of sleep phase and duration, we 
found Actical-based sleep parameters to be associated with fac-
tors known to be associated with sleep phase, such as age, oc-
cupation, and season of the year. Also, we found Actical-based 
wake time and bedtime to be associated with diurnal prefer-
ence and shortened Actical-based sleep duration to be associ-

Figure 2—Correlation and agreement between diary-based and Actical-based wake time and bedtime. (A, B). Scatter plots with solid lines that represent 
the fitted linear regression between the 2 variables, and the dashed lines represent 95% point-wise confidence bands of the fitted regression line. Pearson’s 
correlation coefficient (r) and its P-value are shown. (C, D). Bland-Altman agreement plots. Difference between measurements is plotted against the average 
of the measurements. The solid line marks the mean of the differences, and the dashed lines mark the 95% confidence intervals of the differences.
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other study populations. While sleep phase is generally early in 
middle-aged study populations such as ours, we found habitual 
sleep phase in our study population to be slightly earlier than 
that found in other study populations with similar age distribu-
tions.22,33,51,53 Consistent with this finding, the diurnal preference 
was similar, if not slightly earlier, to other middle-aged study 
populations.33,53 Even after applying revised MEQ score cutoffs 
designed for middle-aged populations, we only classified 7% of 
the OOA study participants as evening diurnal types, potential-
ly indicating our study population has a slightly earlier average 
diurnal preference relative to other middle-aged populations.53 
Consistent with our findings, previous studies have found ru-
ral populations to have earlier chronotypes compared to urban 
populations.36,37 ESS scores that measure daytime sleepiness 
also appear to be higher in our study population compared with 
other populations.22,54 Considering the omission of two items 
from the modified Amish ESS (see Methods), the level of day-
time sleepiness in our study population might be underestimat-
ed. This high level of daytime sleepiness is unlikely to be a 
result of short sleep duration, as sleep duration in the OOA is 

ary measures. Consistent with a previous comparison between 
actigraphy and sleep diaries,29 we observed weaker agreement 
between sleep diary and Actical-based bedtime than for wake 
time, possibly reflecting reduced accuracy for diary-based bed-
time. A previous study determined wake time and bedtime us-
ing the ActiGraph (formerly CSA) accelerometer model 7164 
worn on the hip without using a validated computer algorithm.50 
Taken together, these data suggest that activity monitors worn 
on the hip can provide useful information on habitual wake 
time and bedtime.

It has been posited that urbanization has contributed to the 
lack of sleep that is so common in modern industrialized soci-
eties, and that time spent watching television before bedtime 
can possibly be exchanged for sleep time.38,39 Thus, the freedom 
from modern technology among the OOA might be expected 
to result in longer habitual sleep duration, but in fact, habit-
ual sleep duration in our OOA study population was similar 
to that found in other study populations with similar age dis-
tributions.22,38,51,52 In addition to sleep duration, it was of inter-
est to compare sleep phase in our OOA study population with 

Table 2—Association between sleep parameters and non-genetic factors

Wake timea

(n = 723)
Bedtimea

(n = 723)
Sleep durationa

(n = 723)
MEQ scoreb

(n = 625)
ESS scorec 

(n = 723)
Parameter  β ± SE  β ± SE  β ± SE  β ± SE β ± SE

Age (10 years)  -3.6 ± 1.2*  -2.4 ± 1.2  -0.5 ± 1.2  1.7 ± 0.2**  0.4 ± 0.1**
Sex (ref. male)  16.2 ± 5.4*  4.8 ± 4.8  9.0 ± 6.6  -1.3 ± 1.1  -1.3 ± 0.5*
Season (ref. Winter)  -**  -**  -**  -  -

Spring  13.2 ± 4.2*  20.4 ± 4.8**  -5.4 ± 5.4  0.5 ± 0.8  0.1 ± 0.4
Summer  25.2 ± 4.2**  43.8 ± 4.2**  -14.4 ± 5.4*  -0.6 ± 0.8  0.3 ± 0.3
Fall  21.6 ± 4.2**  10.8 ± 4.8*  13.8 ± 5.4*  -0.2 ± 0.8  0.3 ± 0.4

Occupation (ref. Farmer)  -**  -  -**  -  -**
Housewife  10.2 ± 6.0  -4.8 ± 5.4  18.0 ± 7.2*  2.0 ± 1.2  -1.2 ± 0.5*
Shopkeeper  30.6 ± 6.0**  -1.8 ± 5.4  30.0 ± 7.2**  -0.5 ± 1.2  -1.3 ± 0.5*
Craftmaker/teacher  25.8 ± 9.6*  -6.0 ± 8.4  31.8 ± 12.0*  2.6 ± 2.0  -2.8 ± 0.9*
Carpenter/mechanic  34.8 ± 4.2**  -4.8 ± 3.6  38.4 ± 5.4**  0.5 ± 0.9  -1.8 ± 0.4**
Retired  52.2 ± 9.6**  0.6 ± 8.4  52.2 ± 11.4**  -3.3 ± 2.0  -1.1 ± 0.8

Total activity  -18.6 ± 4.2**  -3.0 ± 3.6  -13.8 ± 4.8*  0.8 ± 0.8  0.6 ± 0.3
Sleep activity  3.6 ± 2.4  -1.8 ± 2.4  6.0 ± 3.0*  -0.2 ± 0.5  0.0 ± 0.2
Wake time - - -  -2.0 ± 0.4**  -0.6 ± 0.2**
Bedtime - - -  -1.2 ± 0.4*  0.4 ± 0.2*
Sleep duration - - -  -0.3 ± 0.4  -0.7 ± 0.2**

*P < 0.05, **P < 0.001. aUnits of effect size in minutes. bMorningness-Eveningness Questionnaire. cEpworth Sleepiness Scale.

Table 3—Variance component analysis of sleep parameters

Wake time (n = 723) Bedtime (n = 723) Sleep duration (n = 723) MEQ scorec (n = 625) ESS scored (n = 723)

Parameter
% Variance 

± SE P
% Variance

± SE P
% Variance

± SE P
% Variance

± SE P
% Variance

± SE P
Fixed effectsa 0.30  < 0.0001 0.16  < 0.0001 0.19  < 0.0001 0.10  < 0.0001 0.13  < 0.0001
Heritabilityb 0.20 ± 0.09 0.007 0 NS 0 NS 0.21 ± 0.09 0.002 0.17 ± 0.08 0.008
Shared householdb 0.27 ± 0.07  < 0.0001 0.72 ± 0.03  < 0.0001 0.38 ± 0.06  < 0.0001 0 NS 0 NS

aAge, sex, season, occupation, total activity, and sleep activity. Percent variance shown. bAdjusted for fixed effects listed above. cMorningness-Eveningness 
Questionnaire. dEpworth Sleepiness Scale.
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effects of a shared household were taken into account. Without 
adjusting for the effects of a shared household, our heritability 
estimate for Actical-based wake time increases to 0.32 ± 0.09. 
The absence of heritability for Actical-based bedtime was pri-
marily due to the strong influence from household effects (72% 
variance explained). Daytime sleepiness measured by the ESS 
was also significantly heritable, but the genetic influence on 
ESS appeared to be distinct from the genetic influence on diur-
nal preference or Actical-based wake time based on our genetic 
correlation analyses.

In conclusion, findings from our study suggest that Actical 
could be a promising alternative for the ascertainment of in-
formation on habitual sleep patterns. Further validation studies 
are needed to compare sleep measurements recorded by Actical 
with measurements from established methods such as polysom-
nography. In addition to information on sleep, Actical also mea-
sures the level of total physical activity. As physical activity, 
a modifiable factor, is observed to be strongly associated with 
sleep patterns in the Amish, a better understanding of its rela-
tionship with sleep in other populations may lead to effective 
preventive measures for sleep-related disorders. In addition, 
the observation that wake time, diurnal preference, and daytime 
sleepiness are heritable provides justification for further genetic 
studies of these traits in the OOA.
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