
Appears in the Proceedings of the ACM Symposium on Operating System Principles (SOSP ’97), Saint-Malo, France, October 1997

HAC: Hybrid Adaptive Caching for Distributed Storage Systems

Miguel Castro Atul Adya Barbara Liskov Andrew C. Myers

MIT Laboratory for Computer Science,
545 Technology Square, Cambridge, MA 02139�

castro,adya,liskov,andru � @lcs.mit.edu

Abstract

This paper presents HAC, a novel technique for managing the
client cache in a distributed, persistent object storage sys-
tem. HAC is a hybrid between page and object caching that
combines the virtues of both while avoiding their disadvan-
tages. It achieves the low miss penalties of a page-caching
system, but is able to perform well even when locality is poor,
since it can discard pages while retaining their hot objects.
It realizes the potentially lower miss rates of object-caching
systems, yet avoids their problems of fragmentation and high
overheads. Furthermore, HAC is adaptive: when locality is
good it behaves like a page-caching system, while if locality
is poor it behaves like an object-caching system. It is able to
adjust the amount of cache space devoted to pages dynami-
cally so that space in the cache can be used in the way that
best matches the needs of the application.

The paper also presents results of experiments that in-
dicate that HAC outperforms other object storage systems
across a wide range of cache sizes and workloads; it per-
forms substantially better on the expected workloads, which
have low to moderate locality. Thus we show that our hy-
brid, adaptive approach is the cache management technique
of choice for distributed, persistent object systems.

1 Introduction

In distributed persistent storage systems, servers provide per-
sistent storage for information accessed by applications run-
ning at clients [LAC � 96, C � 89, WD94, LLOW91, BOS91].

This research was supported in part by DARPA contract DABT63-95-C-005, moni-
tored by Army Fort Huachuca, and in part by DARPA contract N00014-91-J-4136,
monitored by the Office of Naval Research. M. Castro is supported by a PRAXIS XXI
fellowship.

Copyright c
�

1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org

These systems cache recently used information at client ma-
chines to provide low access latency and good scalability.

This paper presents a new hybrid adaptive caching tech-
nique, HAC, which combines page and object caching to
reduce the miss rate in client caches dramatically. The
approach provides improved performance over earlier ap-
proaches — by more than an order of magnitude on com-
mon workloads. HAC was developed for use in a persistent
object store but could be applied more generally, if provided
information about object boundaries. For example, it could
be used in managing a cache of file system data, if an ap-
plication provided information about locations in a file that
correspond to object boundaries. HAC could also be used
within a server cache.

In persistent object systems, objects are clustered in fixed-
size pages on disk, and pages are much larger than most
objects [Sta84]. Most systems manage the client cache us-
ing page caching [LLOW91, WD94, SKW92]: when a miss
occurs, the client evicts a page from its cache and fetches
the missing object’s page from the server. Page caching
achieves low miss penalties because it is simple to fetch and
replace fixed-size units; it can also achieve low miss rates
provided clustering of objects into pages is good. However,
it is not possible to have good clustering for all applica-
tion access patterns [TN92, CK89, Day95]. Furthermore,
access patterns may evolve over time, and reclustering will
lag behind because effective clustering algorithms are very
expensive [TN92] and are performed infrequently. There-
fore, pages contain both hot objects, which are likely to be
used by an application in the near future, and cold objects,
which are not likely to be used soon. Bad clustering, i.e.,
a low fraction of hot objects per page, causes page caching
to waste client cache space on cold objects that happen to
reside in the same pages as hot objects.

Object-caching systems [Ont92, D � 90, LAC � 96, C � 94b,
KK90, WD92, KGBW90] allow clients to cache hot objects
without caching their containing disk pages. Thus, object
caching can achieve lower miss rates than page caching
when clustering is bad. However, object caching has two
problems: objects are variable-sized units, which leads to
storage fragmentation, and there are many more objects than
pages, which leads to high overhead for bookkeeping and for
maintaining per-object usage statistics.

Dual buffering [KK94] partitions the client cache stati-

cally into a page cache and an object cache. This technique
has been shown to achieve lower miss rates than both page
caching and object caching when the fraction of space ded-
icated to the object cache is manually tuned to match the
characteristics of each application. Such tuning is not fea-
sible for real applications; furthermore, these systems do
not solve the problems of storage fragmentation and high
overheads in object caching systems.

HAC is the first technique to provide an adequate solu-
tion to all these problems. It is a hybrid between page and
object caching that combines the virtues of each — low over-
heads and low miss rates — while avoiding their problems.
Furthermore, HAC adaptively partitions the cache between
objects and pages based on the current application behav-
ior: pages in which locality is high remain intact, while for
pages in which locality is poor, only hot objects are retained.
To our knowledge, HAC is the first adaptive caching system.
O’Toole and Shrira [OS95] present a simulation study of an
adaptive caching system, but they focus on avoiding reads to
install modifications at servers and ignore storage manage-
ment issues.

HAC partitions the client cache into page frames and
fetches entire pages from the server. To make room for
an incoming page, HAC does the following:

� selects some page frames for compaction,
� discards the cold objects in these frames,
� compacts the hot objects to free one of the frames.

The approach is illustrated in Figure 1. The policy to select
page frames for compaction strives both to achieve low over-
head and to discard objects that are unlikely to be reused.
HAC maintains usage statistics on a per-object basis using a
novel technique with low space and time overheads. The
technique combines both recency and frequency information
to make good replacement decisions.

Hot object

Cold object

Free
Frame

Before compaction

After compaction

1

2

3

4

5

6 7

tFrame 14 Frame 2 Frame 53

Frame 14 Frame 2 Frame 53

1

2

3

4
5

6
7

Figure 1: Compaction of pages by HAC

HAC has been incorporated in Thor-1, a new implemen-
tation of the Thor object database [LAC � 96]; it retains the
server storage management and concurrency control tech-
niques of our previous implementation, Thor-0, but uses
HAC for client cache management. The high performance
of Thor-1 is furthermore achieved by adherence to two de-
sign principles: think small, and be lazy. We were careful
about the sizes of all data structures, but particularly about
objects; we designed our object format parsimoniously, and
the result is better performance in all parts of the system,
from the server disk to the client cache. Furthermore, we do
work only when absolutely necessary, since this allows us to
avoid it entirely in many cases. We will explain how these
principles were applied in our implementation and how they
contribute to our performance.

The paper presents results of performance experiments
that show the benefits of these techniques. The experiments
evaluate their impact on performance across a wide range of
cache sizes and workloads. Our results show that HAC con-
sistently outperforms page-based approaches and achieves
speedups of more than an order of magnitude on memory-
bound workloads with typically achievable clustering. We
also show that Thor-1 outperforms the best object storage
systems.

The rest of the paper is organized as follows. Section 2
gives an overview of our implementation, and describes the
object format at both clients and servers. Section 3 describes
HAC. We present performance results in Section 4. Section 5
summarizes the main results in the paper.

2 System Overview

In Thor, applications running at client machines make use
of persistent objects stored at servers. Applications interact
with Thor by calling methods of objects; these calls occur
within atomic transactions. The methods are implemented
in a type-safe language called Theta [LCD � 94].

To speed up applications, client machines cache copies
of persistent objects. Clients communicate with servers only
to fetch pages or commit transactions; we use optimistic
concurrency control [AGLM95, Gru97] to serialize transac-
tions. The fact that computations run as transactions does
not preclude the use of HAC in non-transactional systems,
since the main impact of transactions is defining when mod-
ifications are sent to servers, and this could be defined in a
different way, e.g., for file systems, updates could be sent
every few seconds.

Good performance for a distributed object storage system
requires good solutions for client cache management, storage
management at servers, and concurrency control for transac-
tions. Performance studies of our previous implementation,
Thor-0, showed its techniques for server storage manage-
ment [Ghe95] and concurrency control [AGLM95, Gru97]

2

worked well and therefore these were retained in Thor-1.

2.1 Servers

Servers store objects on disk in pages and maintain a page
cache in main memory to speedup client fetch requests. The
results presented in this paper were obtained using 8 KB
pages, but the system can be configured to use a different page
size. To simplify cache management, objects are required not
to span page boundaries. Pages are large enough that this
does not cause significant internal fragmentation. Objects
larger than a page are represented using a tree.

When a transaction commits, its client sends information
about its modifications to the servers in the commit request;
if the commit succeeds, these changes become visible to later
transactions. Because client caches in HAC may hold objects
without their containing pages, we must ship modified ob-
jects (and not their containing pages) to servers at commit
time. Earlier work [OS94, WD95] has shown that this leads
to poor performance if it is necessary to immediately read the
objects’ pages from disk to install them in the database. We
avoid this cost by using the modified object buffer (MOB)
architecture [Ghe95]. The server maintains an in-memory
MOB that holds the latest versions of objects modified by
recent transactions. New versions are written to the MOB
when transactions commit; when the MOB fills up, versions
are written to their disk pages in the background.

2.2 Page and Object Format

Keeping objects small at both servers and clients is impor-
tant because it has a large impact on performance [WD94,
MBMS95]. Our objects are small primarily because object
references (or orefs) are only 32 bits. Orefs refer to objects
at the same server; objects point to objects at other servers
indirectly via surrogates. A surrogate is a small object that
contains the identifier of the target object’s server and its
oref within that server; this is similar to designs proposed
in [Bis77, Mos90, DLMM94]. Surrogates will not impose
much penalty in either space or time, assuming the database
can be partitioned among servers so that inter-server refer-
ences are rare and are followed rarely; we believe these are
realistic assumptions.

Object headers are also 32 bits. They contain the oref of
the object’s class object, which contains information such as
the number and types of the object’s instance variables and
the code of its methods.

An oref is a pair consisting of a 22-bit pid and a 9-bit
oid (the remaining bit is used at the client as discussed be-
low). The pid identifies the object’s page and allows fast
location of the page both on disk and in the server cache.
The oid identifies the object within its page but does not
encode its location. Instead, a page contains an offset table
that maps oids to 16-bit offsets within the page. The offset

table has an entry for each existing object in a page; this
2-byte extra overhead, added to the 4 bytes of the object
header, yields a total overhead of 6 bytes per object. The
offset table is important because it allows servers to compact
objects within their pages independently from other servers
and clients. It also provides a larger address space, allow-
ing servers to store a maximum of 2 G objects consuming a
maximum of 32 GB; this size limitation does not unduly re-
strict servers, since a physical server machine can implement
several logical servers.

Our design allows us to address a very large database. For
example, a server identifier of 32 bits allows 232 servers and
a total database of 267 bytes. However, our server identifiers
can be larger than 32 bits; the only impact on the system is
that surrogates will be bigger. In contrast, most systems that
support large address spaces use very large pointers, e.g.,
64 [CLFL95, LAC � 96], 96 [Kos95], or even 128-bit point-
ers [WD92]. In Quickstore [WD94], which also uses 32-bit
pointers to address large databases, storage compaction at
servers is very expensive because all references to an ob-
ject must be corrected when it is moved (whereas our design
makes it easy to avoid fragmentation).

2.3 Clients

The client cache is partitioned into a set of page-sized frames.
Some frames are intact: they hold pages that were fetched
from servers. Others are compacted; they hold objects that
were retained when their containing server pages were com-
pacted. When a client tries to use an object that is not in its
cache, it fetches the object’s containing page from the appro-
priate server and frees a frame. Pages at the client have the
same size and structure as at the server to avoid extra copies.

It is not practical to represent object pointers as orefs
in the client cache because each pointer dereference would
require a table lookup to translate the name into the ob-
ject’s memory location. Therefore, clients perform pointer
swizzling [KK90, Mos92, WD92], i.e., replace the orefs in
objects’ instance variables by virtual memory pointers to
speed up pointer traversals. HAC uses indirect pointer swiz-
zling [KK90], i.e., the oref is translated to a pointer to an
entry in an indirection table and the entry points to the target
object. Indirection allows HAC to move and evict objects
from the client cache with low overhead; indirection has
also been found to simplify page eviction in a page-caching
system [MS95].

HAC uses a novel lazy reference counting mechanism to
discard entries from the indirection table. The reference
count in an entry is incremented whenever a pointer is swiz-
zled and decremented when objects are evicted, but no refer-
ence count updates are performed when objects are modified.
Instead, reference counts are corrected lazily when a trans-
action commits, to account for the modifications performed
during the transaction. This scheme is described in detail

3

in [CAL97], where it is shown to have low overheads.
In-cache pointers are 32 bits, which is the pointer size

on most machines. HAC uses 32-bit pointers even on 64-bit
machines; it simply ensures that the cache and the indirec-
tion table are located in the lower 232 bytes of the address
space. The results presented in Section 4 were obtained on
a machine with 64-bit pointers.

Both pointer swizzling and installation of objects, i.e.,
allocating an entry for the object in the indirection table, are
performed lazily. Pointers are swizzled the first time they
are loaded from an instance variable into a register [Mos92,
WD92]; the extra bit in the oref is used to determine whether
a pointer has been swizzled or not. Objects are installed
in the indirection table the first time a pointer to them is
swizzled. The size of an indirection table entry is 16 bytes.
Laziness is important because many objects fetched to the
cache are never used, and many pointers are never followed.
Furthermore, lazy installation reduces the number of entries
in the indirection table, and it is cheaper to evict objects that
are not installed.

3 Hybrid Adaptive Caching

HAC improves system performance by reducing the miss rate
in client caches: it retains useful objects without needing to
cache their pages, and it can cache more objects than existing
object-caching systems because the compaction mechanism
greatly reduces storage fragmentation. Additionally, HAC

avoids the high overheads associated with existing object-
caching systems.

We begin by describing how compaction works. Then
we describe how we select frames to compact and objects to
discard.

3.1 Compaction

HAC computes usage information for both objects and frames
as described in Section 3.2, and uses this information to
select a victim frame

�
to compact, and also to identify

which of
�����

objects to retain and which to discard.
Then it moves retained objects from

�
into frame � , the

current target for retained objects, laying them out contigu-
ously to avoid fragmentation (see Figure 2). Indirection table
entries for retained objects are corrected to point to their new
locations; entries for discarded objects are modified to indi-
cate that the objects are no longer present in the cache; also,
the reference counts of the objects referenced by discarded
objects are decremented. If all retained objects fit in � , the
compaction process ends and

�
can be used to receive the

next fetched page; this case is shown in Figure 2(a). If some
retained objects do not fit in � ,

�
becomes the new target

and the remaining objects are compacted inside
�

to make
all the available free space contiguous. Then, another frame

is selected for compaction and the process is repeated for that
frame. This case is shown in Figure 2(b).

This compaction process preserves locality: retained ob-
jects from the same disk page tend to be located close together
in the cache. Preserving locality is important because it takes
advantage of any spatial locality that the on-disk clustering
algorithm may be able to capture.

An important issue in hybrid caching is handling the situ-
ation where the disk page � of an object � is fetched and � is
already in use, cached in frame

�
. HAC handles this situation

in a simple and efficient way. No processing is performed
when � is fetched. Since the copy of � in

�
is installed in

the indirection table, � ’s copy in � will not be installed or
used. If there are many such unused objects in � , its frame
will be a likely candidate for compaction, in which case all
its uninstalled copies will simply be discarded. If instead

�
is freed, its copy of � is moved to � (if � is retained) instead
of being compacted as usual. In either case, we avoid both
extra work and foreground overhead. In contrast, the eager
approach in [KK94] copies � into � when � is fetched; this
increases the miss penalty because the object is copied in the
foreground, and wastes effort if � is compacted soon after
but � is not evicted.

3.2 Replacement Policy

It is more difficult to achieve low space and time overheads
in object-caching systems than in page-caching systems be-
cause there are many more objects than pages. Despite this
difficulty, our replacement policy achieves low miss rates
with low space and time overheads. We keep track of ob-
ject usage by storing 4 bits per object that indicate both how
recently and how frequently the object has been used. This
object usage information is used to compute frame usage
information, but frame usage is only computed occasionally
because its computation is expensive. Frames are selected
for compaction based on their last computed usage; objects
within the frame are retained or discarded based on how their
usage compares to that of their frame.

3.2.1 Object Usage Computation

It has been shown that cache replacement algorithms which
take into account both recency and frequency of accesses –
2Q [JS94], LRU-K [OOW93] and frequency-based replace-
ment [RD90] – can outperform LRU because they can evict
recently used pages that are used infrequently. However, the
algorithms that have been proposed so far have high space
and time overheads.

HAC maintains per-object usage statistics that capture in-
formation on both recency and frequency of accesses while
incurring very low space overheads. Headers of installed ob-
jects contain 4 usage bits. The most significant usage bit is
set each time a method is invoked on the object. Besides its

4

x

y

z
Target

Indirection
 Table

Victim
Frame

 After
Compaction x

y
z

Target Free
Frame

Indirection
 Table

 After
Compaction

y
z

x
Target Full

Frame
Indirection
 Table

(A)

(B)

x

y

z
Target

Indirection
 Table

Victim
Frame

Figure 2: Compacting objects in a frame

low space overhead, this scheme has low impact on hit time;
it adds at most two extra instructions and no extra processor
cache misses to a method call.

The usage value is decayed periodically by shifting right
by one; thus, each usage bit corresponds to a decay period
and it is set if the object was accessed in that period. Our
scheme considers objects with higher usage (interpreting the
usage as a 4-bit integer) as more valuable, i.e., objects that
were accessed in more recent periods are more valuable and
when the last accesses to two objects occurred in the same
period, their value is ordered using the history of accesses in
previous periods. Therefore, our scheme acts like LRU but
with a bias towards protecting objects that were frequently
accessed in the recent past. To further increase this bias and
to distinguish objects that have been used in the past from
objects that have never been used,we add one to the usage bits
before shifting; we found experimentally that this increment
reduces miss rates by up to 20% in some workloads. Our
decay rule is identical to the one used to decay reference
counts in [RD90], but its purpose is quite different.

Usage bits are much cheaper in both space and time than
maintaining either an LRU chain or the data structures used
by 2Q, LRU-K and frequency based replacement. For exam-
ple, the system described in [Kos95] uses a doubly linked list
to implement LRU. This imposes an overhead of at least an

extra 8 bytes per object for the LRU information, which in-
creases the client cache miss rate and also increases hit times
substantially by adding up to three extra processor cache
misses per object access.

HAC uses fine-grained concurrency control [AGLM95,
Gru97] and some objects in a cached page may be invali-
dated (when they become stale) while the rest of the page
remains valid. We set the usage of invalid objects to 0,
which ensures their timely removal from the cache. In con-
trast, page-caching systems that use fine-grained concurrency
control (e.g., adaptive callback locking [CFZ94], which does
concurrency control by adaptively locking either objects or
pages) waste cache space holding invalid objects because
they always cache full pages.

3.2.2 Frame Usage Computation

We could implement replacement by evicting the objects with
the lowest usage in the cache, but this approach may pick
objects from a large number of frames. Since HAC compacts
objects retained from these frames, compaction time may be
unacceptable, e.g., compacting 126 frames could take up to
1 second in our experimental environment. Therefore, we
compute usage values for frames and use these values to
select frames to compact and indirectly objects to evict.

5

2

4

6

3

5

3

Usage: (3, 0.5)

0

2

5

0

0

0

0

Usage: (0, 0.29)

Hot object

Cold object

Frame F1 Frame F2

Figure 3: Usage statistics for frames

Our goals in freeing a frame are to retain hot objects and
to free space. The frame usage value reflects these goals.
It is a pair

�
T, H � . T is the threshold: when the frame is

discarded, only hot objects, whose usage is greater than � ,
will be retained. � is the fraction of objects in the frame
that are hot at threshold � . We require � to be less than the
retention fraction, � , where � is a parameter of our system.
� is the minimum usage value that results in an � that meets
this constraint. Frame usage is illustrated (for � = 2/3) in
Figure 3. For frame F1, � = 2 would not be sufficient since
this would lead to � = 5/6; therefore we have � = 3. For
frame F2, � = 0 provides a small enough value for � .

We use object count as an estimate for the amount of
space occupied by the objects because it is expensive to
compute this quantity accurately in the HAC prototype; it is a
reasonable estimate if the average object size is much smaller
than a page.

Selecting a value for system parameter � involves a trade-
off between retaining hot objects to reduce miss rate and
achieving low replacement overhead by reducing the num-
ber of frames whose contents need to be compacted. If � is
large, only very cold objects will be discarded but little space
may be recovered; if � is small, more space is freed but
the miss rate may increase since hot objects may be evicted.
We have found experimentally that ��� 2 � 3 works well;
Section 4.1 describes the sensitivity experiments we used to
determine the value of � and other system parameters.

HAC uses a no-steal [GR93] cache management policy,
i.e., objects that were modified by a transaction cannot be
evicted from the cache until the transaction commits. The
frame usage is adjusted accordingly, to take into account
the fact that modified objects are retained regardless of their
usage value: when computing the usage of a frame, we use
the maximum usage value for modified objects rather than
their actual usage value.

3.2.3 The Candidate Set

The goal for replacement is to free the least valuable frame.
Frame

�
is less valuable than frame � if its usage is lower:

F.T
�

G.T or (F.T = G.T and F.H
�

G.H)

i.e., either F’s hot objects are likely to be less useful than G’s,
or the hot objects are equally useful but more objects will be
evicted from F than from G. For example, in Figure 3, F2
has lower usage than F1.

Although in theory one could determine the least valuable
frame by examining all frames, such an approach would be
much too expensive. Therefore, HAC selects the victim from
among a set of candidates. A few frames are added to this
set during each epoch, i.e., at each fetch. A frame’s usage
is computed when it is added to the set; since this compu-
tation is expensive, we retain frames in the candidate set,
thus increasing the number of candidates for replacement at
later fetches without increasing replacement overhead. Since
frame usage information that was calculated long ago is likely
to be out of date, we remove entries that have remained in
the candidate set for � epochs. We use a value of 20 for �
(see Section 4.1).

We add new members to the candidate set using a variant
of the CLOCK algorithm [Cor69]. We organize the cache
as a circular array of frames and maintain a primary scan
pointer and 	 secondary scan pointers into this array; these
pointers are equidistant from each other in the array. When
a frame needs to be freed, HAC computes the usage value
for
 contiguous frames starting at the primary pointer and
adds those frames to the candidate set; then it increments the
primary scan pointer by
 . We use a value of
�� 3 (see
Section 4.1).

The secondary pointers are used to ensure the timely evic-
tion of uninstalled objects, i.e., objects that have not been
used since their page was fetched into the cache. These ob-
jects are good candidates for eviction provided they have not
been fetched too recently into the cache [OOW93, RD90].
The secondary pointers are used to find frames with a large
number of uninstalled objects. For each secondary pointer,
HAC determines the number of installed objects in
 contigu-
ous frames starting at that scan pointer and then advances the
pointer by
 . It enters a frame in the candidate set if the
fraction of installed objects in the frame is less than � ; the
thresholds of these frames will always be zero since unin-
stalled objects have a usage value of zero. In each epoch, at
most
��	 members are added to the candidate set from the
secondary scan pointers. The secondary scan pointers intro-
duce low overhead because HAC keeps track of the number
of installed objects in each frame and no scanning through
the usage values of objects is needed.

Since scan pointers are equidistant from one another, a
newly fetched page will be protected until approximately an-
other 1���

� 1 ��� of the frames in the cache has been freed. The

6

Cache

25

Primary
Pointer

Secondary 1
 Pointer

Secondary 2
 Pointer

225 226 227 228125 126 127 12826 27 28

Cache

25 225 226 227 228125 126 127 12826 27 28

Before scanning

After scanning
Candidate Set

Index Usage

 127 0, 0.3
 27 2, 0.5
 26 1, 0.4
 25 2, 0.1
 21 0, 0.6
 16 3, 0.5

Candidate Set

Index Usage

 21 0, 0.6
 16 3, 0.5

Primary
Pointer

Secondary 1
 Pointer

Secondary 2
 Pointer

Figure 4: Adding new members to the candidate set

choice of 	 is thus important: a low number of secondary
scan pointers will lead to wasting cache space with unin-
stalled objects but a larger number can increase miss rates
by prematurely evicting recently fetched objects. We found
experimentally that a value of 2 for 	 works well (see Sec-
tion 4.1); it protects recently fetched objects from eviction
until approximately 1 � 9 of the frames in the cache have been
freed.

Figure 4 shows an example for a 300-page cache. The
three scan pointers are spaced 100 frames apart. After scan-
ning, four frames (25, 26, 27, and 127) have been added to
the set; the other frames at the secondary pointers were not
added since they did not have enough uninstalled objects.

HAC decays object usage when it computes frame usage
at the primary scan pointer: it needs to scan the objects at
this point, and therefore decaying object usage adds almost
no overhead. However, if there are no fetches, usage values
will not be decayed and it will be difficult to predict which
objects are less likely to be accessed. If this were a problem,
we could perform additional decays of object usage when
the fetch rate is very low. These decays would not impose
a significant overhead if performed infrequently, e.g., every
10 seconds.

3.2.4 Selection of Victims

The obvious strategy is to free the lowest-usage frame in the
candidate set. However, we modify this strategy a little to
support the following important optimization.

As discussed earlier, HAC relies on the use of an indi-
rection table to achieve low cache replacement overhead.
Indirection can increase hit times, because each object ac-

cess may require dereferencing the indirection entry’s pointer
to the object, and above all, may introduce an extra cache
miss. This overhead is reduced by ensuring the following
invariant: an object for which there is a direct pointer in the
stack or registers is guaranteed not to move or be evicted.
The Theta compiler takes advantage of this invariant by load-
ing the indirection entry’s pointer into a local variable and
using it repeatedly without the indirection overhead; other
compilers could easily do the same. We ran experiments to
evaluate the effect of pinning frames referenced by the stack
or registers and found it had a negligible effect on miss rates.

To preserve the above invariant, the client scans the stack
and registers and conservatively determines the frames that
are being referenced from the stack. It frees the lowest-
usage frame in the candidate set that is not accessible from
the stack or registers; if several frames have the same usage,
the frame added to the candidate set most recently is selected,
since its usage information is most accurate. To make the
selection process fast, the candidate set was designed to have���

log ��� cost for removing the lowest-usage frame.
When a frame fills up with compacted objects, we com-

pute its usage and insert it in the candidate set. This is
desirable because objects moved to that frame may have low
usage values compared to pages that are currently present in
the candidate set.

The fact that the usage information for some candidates
is old does not cause valuable objects to be discarded. If
an object in the frame being compacted has been used since
that frame was added to the candidate set, it will be retained,
since its usage is greater than the threshold. At worst, old
frame-usage information may cause us to recover less space
from that frame than expected.

7

3.3 Replacement in the Background

Although our replacement overhead is low, we also have
designed the system to allow replacement to be done in the
background. HAC always maintains a free frame, which is
used to store the incoming page. Another frame must be
freed before the next fetch, which can be done while the
client waits for the fetch response.

3.4 Summary

The client maintains usage information for each object to
differentiate between hot and cold objects. It periodically
scans frames in the cache, computes summary usage values
for these frames, and enters this information in the candidate
set. The candidate set maintains the summary usage infor-
mation of frames that have been scanned during the last few
fetches. When a cache miss occurs, the client fetches the
missing page into a free frame, and frees a new frame for
the next fetch by compacting the least valuable frames from
the candidate set: it copies their hot objects into the current
target frame and evicts their cold objects.

4 Performance Evaluation

This section evaluates the performance of HAC based on the
usual analytical model of cache performance:

Access time � Hit time
�

Miss rate � Miss penalty

Here, hit time is the average time to access an object that
is present in the client cache and is fully converted to the
in-cache format, miss rate is the average number of page
fetches per object access, and miss penalty is the average
time to service a client cache miss.

We analyze the performance of HAC by evaluating its ef-
fect on each of the terms in the formula. Section 4.2 shows
that HAC achieves lower miss rates than page-caching sys-
tems and dual-buffering schemes proposed in the literature.
Sections 4.3 and 4.4 examine the overhead introduced by
HAC on hit time and miss penalty. Section 4.5 analyzes the
overall performance of our system, and Section 4.6 shows
how it performs when objects are both read and written.

4.1 Experimental Setup

Before presenting the analysis, we describe the experimen-
tal setup. Our workloads are based on the OO7 benchmark
[CDN94]; this benchmark is intended to match the character-
istics of many different CAD/CAM/CASE applications, but
does not model any specific application. The OO7 database
contains a tree of assembly objects, with leaves pointing
to three composite parts chosen randomly from among 500
such objects. Each composite part contains a graph of atomic
parts linked by connection objects; each atomic part has 3

outgoing connections. The small database has 20 atomic
parts per composite part; the medium has 200. In our im-
plementation, the small database takes up 4.2 MB and the
medium database takes up 37.8 MB.

The objects in the databases are clustered into 8 KB pages
using time of creation as described in the OO7 specifica-
tion [CDN94]. The databases were stored by a server on
a Seagate ST-32171N disk, with a peak transfer rate of
15.2 MB/s, an average read seek time of 9.4 ms, and an
average rotational latency of 4.17 ms [Sea97].

The databases were accessed by a single client. Both the
server and the client ran on DEC 3000/400 Alpha worksta-
tions, each with a 133 MHz Alpha 21064 processor, 128 MB
of memory and OSF/1 version 3.2. They were connected by
a 10 Mb/s Ethernet and had DEC LANCE Ethernet inter-
faces. The server had a 36 MB cache (of which 6 MB were
used for the modified object buffer); we experimented with
various sizes for the client cache.

The experiments ran several database traversals that are
described below. Both the C code generated by the Theta
compiler for the traversals and the system code were com-
piled using GNU’s gcc with optimization level 2.

4.1.1 Traversals

The OO7 benchmark defines several database traversals;
these perform a depth-first traversal of the assembly tree and
execute an operation on the composite parts referenced by
the leaves of this tree. Traversals T1 and T6 are read-only;
T1 performs a depth-first traversal of the entire composite
part graph, while T6 reads only its root atomic part. Traver-
sals T2a and T2b are identical to T1 except that T2a modifies
the root atomic part of the graph, while T2b modifies all the
atomic parts. Note that T6 accesses many fewer objects than
the other traversals.

In general, some traversals will match the database clus-
tering well while others will not, and we believe that on
average, one cannot expect traversals to use a large fraction
of each page. For example, Tsangaris and Naughton [TN92]
found it was possible to achieve good average use by means of
impractical and expensive clustering algorithms; an

����� 2 � 4 �
algorithm achieved average use between 17% and 91% de-
pending on the workload, while an

�����
log

� � algorithm
achieved average use between 15% and 41% on the same
workloads. Chang and Katz [CK89] observed that real CAD
applications had similar access patterns. Furthermore, it is
also expensive to collect the statistics necessary to run good
clustering algorithms and to reorganize the objects in the
database according to the result of the algorithm [GKM96,
MK94]. These high costs bound the achievable frequency
of reclusterings and increase the likelihood of mismatches
between the current workload and the workload used to train
the clustering algorithm; these mismatches can significantly
reduce the fraction of a page that is used [TN92].

8

The OO7 database clustering matches traversal T6 poorly
but matches traversals T1, T2a and T2b well; our results show
that on average T6 uses only 3% of each page whereas the
other traversals use 49%. We defined a new traversal T1

�

that uses an average of 27% of a page to represent a more
likely clustering quality; we believe that in real workloads,
average use would fall between T6 and T1 � . We also defined
a traversal T1 � that uses 91% of the objects in a page; it
allows us to evaluate the impact of HAC in a very unlikely
worst case. T1 � and T1 � are similar to T1; T1 � visits all the
sub-objects of atomic parts and connections, whereas T1

�

stops traversing a composite part graph after it visits half of
its atomic parts. Our methodology fixes the way objects are
physically clustered in the database and simulates different
qualities of clustering by using different traversals.

To analyze the sensitivity of HAC to different workloads,
we also designed our own dynamic traversals of the OO7
database, which are similar to the multi-user OO7 bench-
mark [C � 94a], but execute a more mixed set of operations.
The dynamic traversals perform a sequence of operations in
two medium-sized databases; each operation selects one of
the databases randomly, follows a random path down from
the root of the assembly tree to a composite part, and ran-
domly executes a T1

�
, T1 or T1 � traversal of the composite

part graph. To model a working set, operations are prefer-
entially executed in one of the two databases. At any given
point, one of the databases is the hot database, to which 90%
of the operations are directed; the remainder go to the cold
database. Each traversal runs 7500 operations and we time
only the last 5000. After the 5000-th operation, there is a
shift of working set, and the roles of hot and cold database
are reversed.

4.1.2 Parameter Settings

Table 1 shows the values we used for HAC’s parameters in
all the experiments described in the next sections. To choose
these values, we ran various hot traversals including static
traversals T1 and T1-, the dynamic traversal with 80% of ob-
ject accesses performed by T1

�
operations and 20% by T1

operations, and another very dynamic shifting traversal de-
scribed by Day [Day95]. The experiments varied the cache
sizes and the values of the parameters across the studied
range reported in the table. The stable range column shows
the range of parameter values that (for each traversal and
each cache size) resulted in an elapsed time within 10% of
that obtained for the value we chose.

The performance of HAC improves monotonically within
the range studied for � and � , varying little towards the high
end of the range. Its behavior relative to changes in 	 is also
monotonic for traversals T1 � , T1, and the dynamic traversal,
but performance on the shifting traversal degrades for values
of 	 larger than 2.

The only parameter that is not trivial to set is
 , the

Description Chosen
Value

Studied
Range

Stable
Range

Retention fraction (
�

) 0.67 0.5 – 0.9 0.67 – 0.9
Candidate set epochs (�) 20 1 – 500 10 – 500
Secondary scan ptrs (�) 2 0 – 20 2
Frames scanned (�) 3 2 – 20 3

Table 1: Parameter Settings for HAC

number of frames scanned, because it controls both the speed
at which object usage is decayed and the number of frames
inserted in the candidate set in each epoch. We picked a
value
 � 3 because it results in good performance for all the
experimental points and because the replacement overhead
increases quickly with
 .

4.2 Miss Rate

This section shows that HAC achieves lower miss rates than
the best page-caching, and dual-buffering systems in the lit-
erature.

4.2.1 Systems Studied

We show that HAC achieves lower miss rates than page-
caching systems by comparing it to QuickStore [WD94],
which is the best page-caching system in the literature. Quick-
Store uses a CLOCK algorithm to manage the client cache.
Like HAC, it uses 8 KB pages and 32-bit pointers in objects
in both the client cache and on disk; its database size is ap-
proximately the same size as HAC’s, and it is also clustered
using time of creation, as specified in the OO7 benchmark.
It uses an interesting pointer-swizzling technique that stores
pointers on disk in their swizzled form, together with a map-
ping object that maps the virtual memory page frame indices
of the swizzled pointers to logical page identifiers. When a
page is fetched, QuickStore also fetches the page’s mapping
object and attempts to map the pages that are referenced by
the fetched page at the virtual memory addresses specified
in the mapping object. If it succeeds, no format conversions
are necessary; otherwise, it corrects the pointers in the page
to point to a different virtual memory frame. This tech-
nique allows QuickStore to use small 32-bit object pointers
without severely restricting the maximum database size or
introducing any overhead on hit time.

We also compare HAC to a system we created called FPC

(fast page caching). FPC is identical to HAC except that it
uses a perfect LRU replacement policy to select pages for
eviction and always evicts entire pages. We implemented
FPC because we wanted to compare the miss rate of HAC

and page-caching systems over a wide range of cache sizes
and traversals, and only limited experimental results were

9

available for QuickStore. We explain in Section 4.2.3 why
experiments showing that HAC outperforms FPC allow us to
conclude that it would do even better in a comparison with
QuickStore.

To show HAC achieves lower miss rates than dual-buffering
systems, we compare its miss rate with that of GOM [KK94],
the dual-buffering system with the lowest miss rates in the
literature. GOM partitions the client cache statically into
object and page buffers, each managed using a perfect LRU
replacement policy. When there is a cache miss, the missing
page is fetched into the page buffer and the least-recently
used page � is chosen for eviction. Rather than evicting all
the objects in � , GOM copies the recently-used objects in
� to the object buffer. If � is refetched, the objects from �
that are cached in the object buffer are immediately put back
in � . Pages with a large fraction of recently used objects
are protected from eviction. To make room for retained ob-
jects, the least recently used objects in the object buffer are
evicted. To reduce fragmentation, storage is managed using
a buddy system. GOM’s database is clustered (like ours)
using time of creation. GOM uses 96-bit pointers and has
12-byte per-object overheads at the server.

Kemper and Kossmann [KK94] show that the cache man-
agement strategy used in GOM leads to a lower miss rate
than the eager copying strategy used by object-caching sys-
tems [C � 94b, KK90, WD92, KGBW90] which fetch pages
from the server. The eager copying strategy copies objects
from the page buffer to the object buffer on first use and
copies modified objects back to their home pages when a
transaction commits. In contrast to GOM, objects can be
accessed only when they are in the object buffer; therefore,
this buffer is much larger than the page buffer. Since GOM
achieves lower miss rates than these object-caching systems,
any miss rate reduction HAC achieves relative to GOM would
be larger relative to these systems.

4.2.2 Comparison with QuickStore

Table 2 shows the number of fetches for HAC, FPC, and
QuickStore for cold traversals T6 and T1 of the medium
database. The QuickStore results were obtained with a
12 MB client cache and were reported in [WD94]. HAC and
FPC use a smaller cache size, adjusted to account for the size
of the indirection table in traversal T1: HAC used a 7.7 MB
cache, FPC used a 9.4 MB cache. The indirection table is
large because the entries in the table are 16 bytes and the ob-
jects accessed by this traversal are small: 29 bytes on average.
The overhead for HAC is higher (55%) because most objects
in the cache are installed in the indirection table, whereas for
FPC it is lower (27%) because only approximately half of the
objects in the cache are installed. The unrealistically small
object sizes of the OO7 database represent nearly a worst
case for the indirection-table overhead.

T6 T1
QuickStore 610 13216
HAC 506 10266
FPC 506 12773

Table 2: Misses, Cold traversals, Medium database

HAC and FPC have the same number of misses in traversal
T6 because they are all cold cache misses. In traversal T1,
HAC has 24% fewer fetches than FPC, because it has 38%
fewer capacity misses (there are 3662 cold cache misses),
due to the use of object caching. QuickStore has a higher
miss rate than both systems in both traversals: HAC and FPC

have 21% fewer misses than QuickStore in T6 because of the
extra misses required to fetch the mapping objects, and FPC

has 3% fewer fetches than QuickStore in T1 — mainly for
the same reason — but also because FPC uses perfect LRU
whereas QuickStore uses CLOCK.

The miss rate reduction achieved by HAC relative to the
two page-caching systems is not very impressive for this
particular traversal and cache size because T1 is a traversal
with very good clustering (as discussed in Section 4.1.1),
and the cache can fit only 55% of the objects accessed by the
traversal.

4.2.3 Additional Experiments

This section presents results of experiments comparing the
miss rates of HAC and FPC. We argue that for all traver-
sals with equal or lower clustering quality than T1, any miss
rate reductions HAC achieves relative to FPC would be even
higher relative to QuickStore. This is true because FPC out-
performs QuickStore in traversal T1, and as clustering be-
comes worse, FPC’s performance becomes relatively better.
As clustering degrades, FPC’s overhead decreases because
traversals with worse clustering access a lower fraction of
objects per page, resulting in a smaller number of indirection
table entries and more space to store objects; QuickStore’s
overhead remains constant because it always fetches one
mapping object per page, regardless of the quality of cluster-
ing. For traversals with better clustering than T1, QuickStore
might outperform FPC, but we expect these traversals to be
very uncommon, as discussed in Section 4.1.1.

The first set of additional experiments ran traversals T6,
T1

�
, T1, and T1 � on the medium database with varying

client cache sizes starting both from cold and hot caches.
Figure 5 shows the number of misses of HAC and FPC for
the hot traversals. The x-axis shows the sum of the client
cache size and the indirection table size; since FPC uses less
space in the indirection table than HAC, at any particular size,
it has more space in the cache than HAC does. We do not
present the graphs for the cold traversals because they are

10

0 1 2 3 4 5

Cache + indirection table (MB)

0

500

1000

1500

2000

N
um

be
r

of
 f

et
ch

es

Bad clustering (T6)

0 10 20 30 40

Cache + indirection table (MB)

0

5000

10000

15000

N
um

be
r

of
 f

et
ch

es
Average clustering (T1-)

10 20 30 40

Cache + indirection table (MB)

0

5000

10000

15000

N
um

be
r

of
 f

et
ch

es

Good clustering (T1)

10 20 30 40 50

Cache + indirection table (MB)

0

5000

10000

15000

N
um

be
r

of
 f

et
ch

es

Excellent clustering (T1+)

FPC
HAC

Figure 5: Client cache misses, Hot traversals, Medium database

similar; the main difference is that they include the constant
cost of cold cache misses (506 for T6 and 3662 for the other
traversals).

For the excellent-clustering case of traversal T1 � , HAC

and FPC have an almost identical miss rate, because HAC

behaves like a page-caching system when clustering is very
good. This traversal accesses an average fraction of objects
per page that is larger than the retention fraction � and, since
there is good spatial locality, these objects have identical
usage values. Therefore, the threshold value selected by
HAC to compact a page will frequently cause all its objects
to be discarded.

For the other traversals, when the cache is very small or
very large, the miss rates of HAC and FPC are similar: in the
first case, neither of the two systems is able to retain many
useful objects in the cache resulting in a high miss rate for
both of them; and if the cache is large enough to hold all
the pages used by the traversal, both HAC and FPC perform
equally well since there are no cache misses. HAC achieves
much lower miss rates than FPC in the middle range because it
can cache useful objects without needing to cache their pages;
e.g., for the average clustering case (T1 �), HAC achieves a
maximum reduction in the number of fetches relative to FPC

of 11192 (FPC has 11192 fetches and HAC has none).
HAC is space-efficient: it needs only 11% more cache

space than the bare minimum to run T1
�

without cache
misses, and it needs only 1% more than the minimum if the
number of secondary scan pointers is increased to 23. HAC

requires 20 times less memory than FPC to run traversal T6
without cache misses, 2.5 times less memory to run traversal
T1 � and 62% less memory to run traversal T1; as expected,
these gains decrease as the quality of clustering increases.

The second set of experiments ran our dynamic traversals.
The results were qualitatively similar to the ones described
above: the performance of HAC and FPC was similar when
clustering was excellent (i.e., when all operations executed
T1 � traversals of the composite parts), and HAC achieved
much lower miss rates when most of the operations executed
traversals T6, T1

�
and T1.

Figure 6 presents miss rates for a dynamic traversal where
each operation randomly executes T1 � or T1 such that 80%
of the object accesses are performed by T1 � operations and
20% by T1 operations (above-average clustering quality).

20 30 40

Cache + indirection table (MB)

0

5000

10000

15000

20000

25000

N
um

be
r

of
 f

et
ch

es

Good clustering (80% T1-, 20% T1)

FPC
HAC

Figure 6: Client cache misses, Dynamic traversal

4.2.4 Comparison with GOM

We now compare HAC’s performance with that of GOM.
Figure 7 presents fetch counts for GOM, HAC, and HAC-
BIG running a cold T1 traversal of the small OO7 database
with varying client cache sizes. Since GOM partitions the
client cache into object and page buffers statically, all data
for GOM were obtained by manual tuning of the buffer sizes
to achieve “the best possible” [KK94] performance; the sizes
of the buffers were tuned for each cache size and for each
traversal (e.g., tuning was different for T1 and T2b). The
results for GOM were obtained from Kossmann [Kos97].

We introduce HAC-BIG to separate the performance ef-
fects of smaller objects and better cache management, which
in combination cause HAC to outperform GOM at all cache
sizes. HAC-BIG is like HAC except that we padded its objects
to be approximately the same size as GOM’s (HAC-BIG’s
database is actually 6% larger than GOM’s). The differ-
ences between HAC and HAC-BIG result from using smaller

11

0 2 4 6 8

Client cache size (MB)

0

2000

4000

6000

8000

N
um

be
r

of
 f

et
ch

es

T1

GOM
HAC-BIG
HAC

Figure 7: Client cache misses, Cold T1 Traversal, Small
database

objects, and the differences between HAC-BIG and GOM
result from the better cache management in HAC-BIG. (De-
spite using page caching, even FPC has a lower miss rate than
GOM for all cache sizes, because it uses small objects.)

Both HAC and HAC-BIG use 4 KB pages like GOM. We
conservatively did not correct the cache sizes for HAC and
HAC-BIG to account for our 16-byte indirection table entries
because GOM uses a resident object table that introduces a
36-byte overhead for each object [Kos95, Kos97].

The most important point is that HAC-BIG outperforms
GOM even though GOM’s results required manual tuning
of the sizes of the object and page buffers. Of course, in a
real system, such tuning would not be possible, and a poor
adjustment can hurt performance. By contrast, HAC adapts
dynamically to different workloads with no user intervention.

GOM requires a cache size of 4.7 MB to hold all the
objects accessed by the traversal whereas HAC-BIG only re-
quires 3.9 MB. The difference is due to two problems with
GOM’s cache management scheme: storage fragmentation
and static partitioning of the cache between page and object
buffers (which causes space to be wasted by useless objects
contained in cached pages). Note that reducing the size
of GOM’s page buffer does not necessarily improve perfor-
mance, because GOM’s page buffer is already too small to
hold some pages long enough for the traversal to access all
their objects of interest. This causes GOM to refetch some
pages even when all the objects accessed by the traversal fit
in the cache, e.g., for a cache size of 4.7 MB, GOM refetches
11% of the pages.

Finally, GOM incurs overheads that we did not account
for in this comparison: it uses perfect LRU, which introduces
a large overhead on hit time, and its resident object table
entries are 20 bytes larger than ours.

4.3 Hit Time

This section evaluates the overhead that HAC adds to hit
time. Our design includes choices (such as indirection) that
penalize hit time to reduce miss rate and miss penalty; this
section shows that the price we pay for these choices is
modest.

We compare HAC with C++ running hot T6 and T1 traver-
sals of the medium database. HAC runs with a 30 MB client
cache to ensure that there are no misses and no format con-
versions during these traversals. The C++ program runs the
traversals without paging activity on a database created on the
heap. The C++ version does not provide the same facilities
as our system; for example, it does not support transactions.
However, the C++ and HAC codes are very similar because
both follow the OO7 specification closely, and both are com-
piled using GNU’s gcc with optimization level 2.

T1 (sec) T6 (msec)
Exception code 0.86 0.81
Concurrency control checks 0.64 0.62
Usage statistics 0.53 0.85
Residency checks 0.54 0.37
Swizzling checks 0.33 0.23
Indirection 0.75 0.00
C++ traversal 4.12 6.05

Total (HAC traversal) 7.77 8.93

Table 3: Breakdown, Hot Traversals, Medium Database

Table 3 shows where the time is spent in HAC. This break-
down was obtained by removing the code corresponding to
each line and comparing the elapsed times obtained with and
without that code. Therefore, each line accounts not only
for the overhead of executing extra instructions but also for
the performance degradation caused by code blowup. To
reduce the noise caused by conflict misses, we used cord and
ftoc, two OSF/1 utilities that reorder procedures in an exe-
cutable to reduce conflict misses. We used cord on all HAC

executables and on the C++ executable; as a result the total
traversal times for HAC are better than the ones presented in
Section 4.5.

The first two lines in the table are not germane to cache
management. The exception code line shows the cost in-
troduced by code to generate or check for various types of
exceptions (e.g., array bounds and integer overflow). This
overhead is due to our implementation of the type-safe lan-
guage Theta [LAC � 96]. The concurrency control checks
line shows what we pay for providing transactions.

The next four lines are related to our cache management
scheme: usage statistics accounts for the overhead of main-
taining per-object usage statistics, residency checks refers to
the cost of checking indirection table entries to see if the

12

T1
0

2

4

6

8
E

la
ps

ed
 t

im
e

(s
ec

)

T6
0

2

4

6

8

10

E
la

ps
ed

 t
im

e
(m

se
c)

C++
HAC

Figure 8: Elapsed time, Hot traversals, Medium database

object is in the cache; swizzling checks refers to the code
that checks if pointers are swizzled when they are loaded
from an object; and indirection is the cost of accessing ob-
jects through the indirection table. The indirection costs
were computed by subtracting the elapsed times for the C++
traversals from the elapsed times obtained with a HAC exe-
cutable from which the code corresponding to all the other
lines in the table had been removed. Since HAC uses 32-bit
pointers and the C++ implementation uses 64-bit pointers,
we also ran a version of the same HAC code configured to
use 64-bit pointers. The resulting elapsed times were within
3% of the ones obtained with the 32-bit version of HAC for
both traversals, showing that the different pointer size does
not affect our comparison. Note that we have implemented
techniques that can substantially reduce the residency and
concurrency control check overheads but we do not present
the results here.

Figure 8 presents elapsed time results; we subtract the
costs that are not germane to cache management (shown in
white). The results show that the overheads introduced by
HAC on hit time are quite reasonable; HAC adds an overhead
relative to C++ of 52% on T1 and 24% on T6. Furthermore,
the OO7 traversals exacerbate our overheads, because usage
statistics, residency checks and indirection are costs that are
incurred once per method call, and methods do very little
in these traversals: assuming no stalls due to the memory
hierarchy, the average number of cycles per method call in
the C++ implementation is only 24 for T1 and 33 for T6.
HAC has lower overheads in T6 mainly because the indirec-
tion overhead is negligible for this traversal. This happens
because all the indirection table entries fit in the processor’s
second level cache and because our optimizations to avoid
indirection overheads are very effective for this traversal.

The overheads introduced by HAC on hit time are even
lower on modern processors; we ran the two traversals in a
200 MHz Intel Pentium Pro with a 256 KB L2 cache and the
total overheads relative to the C++ traversals (on the same
processor) decreased by 11% for T1 and 60% for T6.

It is interesting to note that our compaction scheme can
actually speed up some traversals; running T6 with the mini-

mum cache size for which there are no cache misses reduces
the elapsed time by 24%. This happens because all ob-
jects accessed by the traversal are compacted by HAC into 19
pages, eliminating data TLB misses and improving spatial
locality within cache lines. This effect does not occur with
T1 because it accesses a much larger amount of data.

Another interesting observation, which puts our indirec-
tion table space overhead in perspective, is that the use of
64-bit pointers in the C++ program (and a small amount of
space wasted by the memory allocator) result in a database
that is 54% larger than ours; this overhead happens to be
two times larger than the space overhead introduced by our
indirection table during traversal T1.

4.4 Miss Penalty

This section shows that our miss penalty is dominated by disk
and network times. To better characterize the techniques that
affect miss penalty, we break it down as:

Miss penalty � Fetch time
�

Replacement overhead
�

Conversion overhead

Here, fetch time is the average time to fetch a page from the
server, replacement overhead is the average time to free a
page frame in the client cache to hold a fetched page, and
conversion overhead is the average time per fetch to convert
fetched objects from their on-disk to their in-cache format
(i.e., install them in the indirection table and swizzle their
pointers).

0

5000

10000

15000

M
is

s
pe

na
lt

y
(u

s)

Conversion
Replacement
Fetch

T6 T1- T1 T1+

Figure 9: Client cache miss penalty

Figure 9 presents a breakdown of HAC’s miss penalty
for the static traversals. The miss penalty was measured
for the experimental point where replacement overhead was
maximal for each traversal. This point corresponded to hot
traversals with cache sizes of 0.16 MB for T6, 5 MB for
T1 � , 12 MB for T1 and 20 MB for T1 � .

Conversion overhead is the smallest component of the
miss penalty for all traversals but T1 � , which we believe
is not a realistic workload. The conversion overhead grows

13

0

500

1000

1500

R
ep

la
ce

m
en

t
ov

er
he

ad
 (

us
)

Stack scanning

Usage computation

Page compaction

T6 T1- T1 T1+

Figure 10: Worst case replacement overhead

0

2000

4000

6000

8000

10000

12000

F
et

ch
 t

im
e

(u
s)

Client
Network
Server
Disk

T6 T1- T1 T1+

Figure 11: Fetch time

with the quality of clustering because both the number of
installed objects per page and the number of swizzled point-
ers per page increase. The conversion overhead is relatively
low: it is 0.7% of the fetch time for T6, 9% for T1

�
, and

10% for T1. Let us compare this conversion overhead to that
in QuickStore. QuickStore’s conversion overhead includes
the time to process its mapping objects, and can easily ex-
ceed HAC’s conversion overhead when clustering is poor and
mapping objects are large. Furthermore, QuickStore’s con-
version overhead is much higher than HAC’s when it is not
possible to map disk pages to the virtual memory frames
described by its mapping objects; the authors of [WD94]
present results that show an increase in the total time for a
cold T1 traversal of 38% in this case.

Figure 9 shows the overhead when replacement is per-
formed in the foreground; it is 5% of the fetch time for T6,
12% for T1

�
, 16% for T1, and 17% for T1 � . Since this

overhead is much lower than the fetch time, HAC is able to
perform replacement with no cost if the processor is idle
waiting for the fetch reply; otherwise, the actual replacement
cost will be between zero and the foreground replacement
overhead reported in Figure 9.

Figure 10 presents a breakdown of the foreground re-

placement overhead for HAC. As the figure shows, replace-
ment overhead grows with the quality of clustering, except
that it is lower for T1 � than for T1. This happens mainly be-
cause the fraction of a fetched page that survives compaction
grows, causing an increase in the page compaction time. The
exception for T1 � occurs because HAC tends to evict entire
pages for traversals with extremely good clustering. The cost
of stack scanning is significantly lower than the cost of usage
computation and page compaction. However, it is high in
traversal T1 (14% of the total) because the OO7 traversals
are implemented using recursion, which results in large stack
sizes; we expect the cost of stack scanning to be lower for
most applications.

Figure 11 presents a breakdown of the fetch time. The
most important observation is that fetch time is completely
dominated by the time spent transmitting the fetch request
and reply over the network, and by the time spent reading
pages from disk at the server. The cost labeled client corre-
sponds to the overhead of registering pages in the client cache
and server corresponds to the cache bookkeeping cost at the
server and the additional overhead to support transactions.

For most system configurations, the cost of foreground
replacement and format conversions as a fraction of fetch
time will be lower than the values we report. This is clearly
true when a slower network is used, e.g., client and server
connected by a wireless network or a WAN, but the use
of a faster network could presumably increase the relative
cost. We believe that the reduction in network time would
be offset by the following factors. First, in our experimental
configuration, the disk time is only a small fraction of the
total fetch time because the hit rate in the server cache is
unrealistically high; T1 has the lowest server cache hit rate
and it is still 86%. In a configuration with a realistic hit rate of
23% (measured by Blaze [Bla93] in distributed file systems),
the foreground replacement overheads in T1

�
and T1 would

be 11% and 16% of the disk time alone. Second, our server
was accessed by a single client; in a real system, servers may
be shared by many clients, and contention for the servers’
resources will lead to even more expensive fetches. Third,
our client machine is a DEC 3000/400 with a 133 MHz Alpha
21064 processor, which is slow compared to more recent
machines; our overheads will be lower in today’s machines.
For example, we reran the experiments described in this
section on a 200 MHz Intel Pentium Pro with a 256 KB L2
cache. The conversion overheads on this machine relative to
the overheads on the Alpha workstation were 33% for T1

�

and 42% for T1; the foreground replacement overheads were
75% for T1

�
and 77% for T1. Note that the speedup of the

replacement overhead should be larger in a machine with a
larger second level cache.

14

0 1 2 3 4 5

Cache + indirection table (MB)

0

5

10

15

20
E

la
ps

ed
 t

im
e

(s
ec

on
ds

)

Bad clustering (T6)

0 10 20 30 40

Cache + indirection table (MB)

0

50

100

150

200

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Average clustering (T1-)

10 20 30 40

Cache + indirection table (MB)

0

50

100

150

200

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Good clustering (T1)

10 20 30 40 50

Cache + indirection table (MB)

0

50

100

150

200

250

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Excellent clustering (T1+)

FPC
FPC-NO
HAC-FG
HAC

Figure 12: Elapsed time, Hot traversals, Medium database

4.5 Overall Performance

The previous sections showed that HAC achieves low miss
rates, hit times and miss penalties. This section shows the ef-
fect on overall performance by comparing elapsed times (not
including commit time) for HAC and FPC. We are not able to
compare HAC with QuickStore directly because QuickStore
runs on different equipment. However, our results show that
Thor-1 with HAC will outperform QuickStore on realistic
workloads, as we argue below.

We present results for both the base version of HAC, which
performs replacement in the background while waiting for
replies to fetch requests, and HAC-FG, a version of HAC mod-
ified to perform replacement in the foreground. In all our ex-
periments, the time to perform replacement was lower than
the idle time during fetches and, therefore, HAC had zero
replacement overhead. HAC-FG corresponds to the worst
case replacement overhead, i.e., when there is no idle time
between fetches because of multithreading or multiprogram-
ming in the client machine.

We also present results for two versions of FPC that bound
the range of performance we would expect from a fast page-
caching system: the base version and FPC-NO, which is an
unrealistic system that incurs no overheads. The elapsed
times of FPC-NO were obtained by subtracting the replace-
ment and conversion overheads from the elapsed time of the
base version. Both versions use a previously collected execu-
tion trace to implement perfect LRU without any overhead.

We claim that any performance gains HAC or HAC-FG

achieve relative to FPC-NO, when running traversals with
equal or lower clustering quality than T1, would be even
higher relative to QuickStore. This is true because FPC-
NO has low hit time (as low as HAC’s), no replacement and
conversion overheads, and lower miss rates than QuickStore
for traversals with equal or lower clustering quality than T1.
In the analysis that follows, we concentrate on the worst-case
comparison for HAC — HAC-FG vs. FPC-NO; the gains of
HAC relative to a more realistic page-caching system would
be higher.

Figure 12 shows elapsed times we measured running hot
T6, T1

� , T1, and T1 � medium traversals. The performance
of HAC-FG is worse than the performance of FPC-NO for the
traversal T1 � , because the miss rates of both systems are
almost identical and FPC-NO has no overheads. However,
the lines for the two versions of HAC are contained within
the range defined by the two FPC lines. Therefore, the per-
formance of HAC should be similar to the performance of
realistic implementations of FPC even for this worst case.

For more realistic traversals, when the cache is very large,
the performance of HAC-FG and FPC-NO is similar because
the cache can hold all the pages touched by the traversal and
the hit times of both systems are similar. When the cache
is very small, FPC-NO can outperform HAC-FG because the
miss rates of the two systems are similar and FPC-NO has
no overheads, but this region is not interesting because both
systems are thrashing. The gains of HAC-FG relative to FPC-
NO are substantial in the middle region because it has much
lower miss rates. The maximum performance difference
between HAC-FG and FPC-NO occurs for the minimum cache
size at which all the objects used by the traversal fit in the
client cache; HAC-FG performs up to approximately 2400
times faster than FPC-NO in T6, 23 times faster in T1

�
, and

10 times faster in T1.

Figure 13 shows the elapsed times we measured for the
dynamic traversal that executes 80% of the object accesses in
T1 � operations and 20% in T1 operations. HAC-FG performs
up to 61% faster than FPC-NO in this workload.

We also compared the performance of Thor-1 with Thor-
0, our previous implementation, which had been shown to
outperform all other systems as long as the working set of
a traversal fit in the client cache [LAC � 96]. We found that
HAC enabled Thor-1 to outperform Thor-0 on all workloads,
and to do substantially better on traversals where the working
set did not fit in the client cache.

15

20 30 40

Cache + indirection table (MB)

0

50

100

150

200

250

300

350

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Good clustering (80% T1-, 20% T1)

FPC
FPC-NO
HAC-FG
HAC

Figure 13: Elapsed time, Dynamic traversal

4.6 Traversals With Updates

All the experiments we presented so far ran read-only traver-
sals. For completeness, we now show results for traver-
sals with updates. Figure 14 presents elapsed times for cold
traversals T1, T2a and T2b of the medium database running
with a 12 MB client cache. The figure also shows the time
to commit the transactions.

T1 T2a T2b
0

50

100

E
la

ps
ed

 t
im

e
(s

ec
on

ds
)

Commit
Traversal

Figure 14: Elapsed time, Cold traversals, Medium database

HAC uses a no-steal [GR93] cache management policy:
modifications are sent to the server only when a transaction
commits, and the modified objects cannot be evicted from
the client cache until this happens. We claim there is no
significant loss in functionality or performance in our system
due to the lack of a steal approach. This approach may be
needed with page caching; otherwise, the cache could fill
up with pages containing modified objects, leaving no room
to fetch more pages needed by a large transaction. How-
ever, since object caching retains only the modified objects
and not their pages, it is unlikely that the cache will fill
up. Our claim is supported by the results presented in Fig-
ure 14: HAC is capable of running traversal T2b in a single
transaction even though this transaction reads and writes an
extremely large number of objects (it reads 500000 objects
and writes 100000). Furthermore, T2b runs only 26% slower
than T1 in HAC, whereas in QuickStore T2b runs 3.5 times

slower than T1 (mostly because of the recovery overhead of
shipping updates to the server due to insufficient client cache
space) [WD94].

Object-caching systems must ship modified objects to
servers at commit time. This can lead to poor performance
if it is necessary to immediately read the objects’ pages from
disk in order to install the objects in their pages. We avoid
this performance problem using the modified object buffer
architecture [Ghe95], which allows these installations to be
performed in the background.

5 Conclusions

This paper has described a new technique for managing the
client cache in a distributed persistent object system. HAC

is a hybrid between page and object caching that combines
the virtues of both while avoiding their disadvantages: it
achieves the low overheads of a page-caching system, but
does not have high miss rates when spatial locality is poor;
and it achieves the low miss rates of object-caching systems,
while avoiding their problems of storage fragmentation and
high overheads for managing the cache at a fine granularity.
Furthermore, HAC is adaptive: when spatial locality is good,
it behaves like a page-caching system,avoiding the overheads
of object caching where it has low benefit. If spatial local-
ity is poor, it behaves like an object-caching system, taking
advantage of the low miss rates to offset the increased over-
heads. It is able to dynamically adjust the amount of cache
space devoted to pages so that space in the cache can be used
in the way that best matches the needs of the application.

The paper compares HAC to QuickStore, the best page-
caching system in the literature, and shows that HAC sig-
nificantly outperforms QuickStore for the range of spatial
locality that can be expected using practical clustering al-
gorithms. The paper also shows HAC outperforms GOM,
the best dual-buffering system in the literature. Since GOM
was shown to have lower miss rates than object-caching sys-
tems and our overheads are very low, we claim HAC will
also outperform the best object-caching systems. Therefore,
we believe hybrid adaptive caching is the cache management
technique of choice for distributed, persistent object storage
systems.

Acknowledgements

We would like to thank Jeff Chase (our shepherd), Darrell
Anderson, Kavita Bala, Phillip Bogle, Chandrasekhar Boy-
apati, John Chapin, Markos Zaharioudakis, and the anony-
mous referees for their helpful comments. Donald Kossmann
provided us with additional data for his dual-buffering sys-
tem. We would also like to thank other members of the
Programming Methodology group who contributed to the
Thor project — Dorothy Curtis, Paul Johnson and Umesh

16

Maheshwari. Liuba Shrira was involved in the initial discus-
sions of the design.

References

[AGLM95] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Effi-
cient optimistic concurrency control using loosely synchro-
nized clocks. In ACM SIGMOD Int. Conf. on Management of
Data, pages 23–34, San Jose, CA, May 1995.

[Bis77] P. B. Bishop. Computer systems with a very large address
space and garbage collection. Technical Report MIT-LCS-
TR-178, MIT Lab for Computer Science, May 1977.

[Bla93] M. Blaze. Caching in Large-Scale Distributed File Systems.
Technical Report TR-397-92, Princeton University, Jan. 1993.

[BOS91] P. Butterworth, A. Otis, and J. Stein. The GemStone database
management system. Comm. of the ACM, 34(10):64–77, Oct.
1991.

[C
�

89] M. Carey et al. Storage management for objects in EXODUS.
In W. Kim and F. Lochovsky, editors, Object-Oriented Con-
cepts, Databases, and Applications. Addison-Wesley, 1989.

[C
�

94a] M. J. Carey et al. A Status Report on the OO7 OODBMS
Benchmarking Effort. In ACM Conf. on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA),
pages 414–426, 1994.

[C
�

94b] M. J. Carey et al. Shoring up persistent applications. In ACM
SIGMOD Int. Conf. on Management of Data, pages 383–394,
Minneapolis, MN, May 1994.

[CAL97] M. Castro, A. Adya, and B. Liskov. Lazy reference counting
for transactional storage systems. Technical Report MIT-LCS-
TM-567, MIT Lab for Computer Science, June 1997.

[CDN94] M. J. Carey, D. J. DeWitt, and J. F. Naughton. The
OO7 benchmark. Technical Report; Revised Version dated
7/21/1994 1140, University of Wisconsin-Madison, 1994.
ftp://ftp.cs.wisc.edu/OO7.

[CFZ94] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Grained
Sharing in a Page Server OODBMS. In ACM SIGMOD Int.
Conf. on Management of Data, pages 359–370, may 1994.

[CK89] E. E. Chang and R. H. Katz. Exploiting inheritance and struc-
ture semantics for effective clustering and buffering in an
object-oriented dbms. In ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 348–357, Portland, OR, May 1989.

[CLFL95] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska.
Sharing and protection in a single-address-space operating sys-
tem. ACM Transactions on Computer Systems, 12(1):271–307,
Feb. 1995.

[Cor69] F. J. Corbato. A Paging Experiment with the Multics System,
in Festschrift: In Honor of P. M. Morse, pages 217–228. MIT
Press, 1969.

[D
�

90] O. Deux et al. The story of O2. IEEE Trans. on Knowledge
and Data Engineering, 2(1):91–108, Mar. 1990.

[Day95] M. Day. Client cache management in a distributed object
database. Technical Report MIT/LCS/TR-652, MIT Labo-
ratory for Computer Science, 1995.

[DLMM94] M. Day, B. Liskov, U. Maheshwari, and A. C. Myers. Ref-
erences to remote mobile objects in Thor. ACM Letters on
Programming Languages and Systems (LOPLAS), pages 115–
126, Mar. 1994.

[Ghe95] S. Ghemawat. The Modified Object Buffer: a Storage Man-
amement Technique for Object-Oriented Databases. PhD the-
sis, Massachusetts Institute of Technology, 1995.

[GKM96] C. Gerlhof, A. Kemper, and G. Moerkotte. On the cost of
monitoring and reorganization of object bases for clustering.
Sigmod Record, 25(3):22–27, September 1996.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, California, 1993.

[Gru97] R. Gruber. Optimism vs. Locking: A Study of Concurrency
Control for Client-Server Object-Oriented Databases. PhD
thesis, MIT, Feb. 1997.

[JS94] T. Johnson and D. Shasha. A low overhead high performance
buffer replacement algorithm. In Proceedings of International
Conference on Very Large Databases, pages 439–450, 1994.

[KGBW90] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architec-
ture of the ORION next-generation database system. IEEE
Trans. on Knowledge and Data Engineering, 2(1):109–124,
Mar. 1990.

[KK90] T. Kaehler and G. Krasner. LOOM—Large Object-Oriented
Memory for Smalltalk-80 Systems, pages 298–307. Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[KK94] A. Kemper and D. Kossmann. Dual-buffer strategies in object
bases. In 20th Int. Conf. on Very Large Data Bases (VLDB),
pages 427–438, Santiago, Chile, 1994.

[Kos95] D. Kossmann. Efficient Main-Memory Management of Persis-
tent Objects. Shaker-Verlag, 52064 Aachen, Germany, 1995.
PhD thesis, RWTH Aachen.

[Kos97] D. Kossmann. Private communication. June 30, 1997.

[LAC
�

96] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. C. Myers, and L. Shrira. Safe
and efficient sharing of persistent objects in Thor. In ACM
SIGMOD Int. Conf. on Management of Data, pages 318–329,
June 1996.

[LCD
�

94] B. Liskov, D. Curtis, M. Day, S. Ghemawhat, R. Gruber,
P. Johnson, and A. C. Myers. Theta reference man-
ual. Programming Methodology Group Memo 88, MIT
Lab. for Computer Science, Feb. 1994. Also available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Ob-
jectStore database system. Comm. of the ACM, 34(10):50–63,
Oct. 1991.

[MBMS95] J. C. Mogul, J. F. Barlett, R. N. Mayo, and A. Srivastava. Per-
formance Implications of Multiple Pointer Sizes. In USENIX
1995 Tech. Conf. on UNIX and Advanced Computing Systems,
pages 187–200, New Orleans, LA, 1995.

[MK94] W. J. McIver and R. King. Self adaptive, on-line recluster-
ing of complex object data. In ACM SIGMOD Int. Conf. on
Management of Data, pages 407–418, Minneapolis, MN, May
1994.

[Mos90] J. E. B. Moss. Design of the Mneme persistent object store.
ACM Transactions on Information Systems (TOIS), 8(2):103–
139, Apr. 1990.

17

[Mos92] J. E. B. Moss. Working with persistent objects: To swizzle or
not to swizzle. IEEE Transactions on Software Engineering,
18(3):657–673, August 1992.

[MS95] M. McAuliffe and M. Solomon. A trace-based simulation of
pointer swizzling techniques. In Int. Conf. on Data Engineer-
ing (ICDE), pages 52–61, Mar. 1995.

[Ont92] Ontos, Inc., Lowell, MA. Ontos Reference Manual, 1992.

[OOW93] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In ACM
SIGMOD Int. Conf. on Management of Data, pages 297–306,
Washington, D.C., May 1993.

[OS94] J. O’Toole and L. Shrira. Opportunistic log: Efficient instal-
lation reads in a reliable object server. In Proceedings of
the Symp. on Operating System Design and Implementation
(OSDI), pages 39–48, Monterey, CA, 1994.

[OS95] J. O’Toole and L. Shrira. Shared data management needs
adaptive methods. In Proceedings of IEEE Workshop on Hot
Topics in Operating Systems, Orcas Island, 1995.

[RD90] J. Robinson and N. Devarakonda. Data cache management
using frequency-based replacement. In Proceedings of ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 134–142, 1990.

[Sea97] Seagate Technology, Inc. http://www.seagate.com/, 1997.

[SKW92] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: An effi-
cient, portable persistent store. In 5th Int. Workshop on Persis-
tent Object Systems (POS), pages 11–33, San Miniato, Italy,
Sept. 1992.

[Sta84] J. W. Stamos. Static grouping of small objects to enhance
performance of a paged virtual memory. ACM Trans. on Pro-
gramming Languages and Systems (TOPLAS), 2(2):155–180,
May 1984.

[TN92] M. Tsangaris and J. F. Naughton. On the performance of ob-
ject clustering techniques. In ACM SIGMOD Int. Conf. on
Management of Data, pages 144–153, San Diego, CA, June
1992.

[WD92] S. White and D. DeWitt. A performance study of alterna-
tive object faulting and pointer swizzling strategies. In 18th
Int. Conf. on Very Large Data Bases (VLDB), pages 419–431,
Vancouver, British Columbia, Aug. 1992.

[WD94] S. J. White and D. J. DeWitt. QuickStore: A high perfor-
mance mapped object store. In ACM SIGMOD Int. Conf. on
Management of Data, pages 395–406, Minneapolis, MN, May
1994.

[WD95] S. J. White and D. J. DeWitt. Implementing crash recovery
in QuickStore: A performance study. In ACM SIGMOD Int.
Conf. on Management of Data, pages 187–198, San Jose, CA,
June 1995.

18

