
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/web/publications/rights/index.html.

MOBILE AND UBIQUITOUS SYSTEMS
www.computer.org/pervasive

Hacking, Mashing, Gluing:

Understanding Opportunistic Design

Björn Hartmann, Scott Doorley, and Scott R. Klemmer

Vol. 7, No. 3

July–September 2008

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

46 PERVASIVE computing Published by the IEEE CS ■ 1536-1268/08/$25.00 © 2008 IEEE

T H E H A C K I N G T R A D I T I O N

Hacking, Mashing, Gluing:

Understanding
Opportunistic Design

Björn Hartmann, Scott Doorley,

and Scott R. Klemmer

Stanford University

Learn about principles of opportunistic design through an interview

study of 14 professional and hobbyist “mashers” from three design

disciplines: Web 2.0, hardware, and ubiquitous computing.

O
pportunistic practices in interac-

tive system design include copy-

ing and pasting source code

from public online forums into

your own scripts, taking apart

consumer electronics and appropriating their

components for design prototypes, and “Frank-

ensteining” hardware and software artifacts

by joining them with duct tape and glue code.

We consider these opportunistic practices part

of mashup design. Although many ubiquitous

computing practitioners have engaged in these

practices, design tools and software engineering

research don’t traditionally address them.

Mashup design’s ad hoc nature might be an-

tithetical to classical software

engineering methods, but it

can have a signifi cant impact.

For example, Eric von Hippel

chronicles the importance of

end-user innovation in fuel-

ing commercial product de-

velopment in this issue (p. 66) and elsewhere.1

Because hobbyists and amateurs often under-

take opportunistic design, it relates to end-user

programming.2,3 Even professionals engage in

opportunistic practice when speed and ease of

development are valued over robustness and

maintainability.4 We aimed to understand how

mashup design of software and hardware takes

place today to derive goals for better design

tools in the future.

In this article, we introduce a framework that

situates opportunistic design for ubiquitous

computing at the intersection of three existing

hacking traditions and distinguishes between

deep and surface-level approaches for integrat-

ing components. We interviewed 14 professional

and amateur “mashers” from three design disci-

plines: Web 2.0, hardware, and interactive ubiq-

uitous computing. This interview study revealed

how designers choose between integration lev-

els; how mashups provide epistemic, pragmatic,

and intrinsic values for their creators; and how

shopping becomes a central activity.

Ubicomp mashups
In our view, mashups consist of recombination

and ad hoc design across boundaries of bits and

atoms. This broad perspective builds on previ-

ous concepts of mashups in computer science and

music. Mashups originated in music, where the

term denotes the practice of taking elements of

two or more existing songs and creating a new

piece by rearranging, interspersing, and superim-

posing parts of these sources. Computer science

later adopted the term to refer to applications

created by programming against one or more

public Web APIs, also known as infrastructure

services.5 We’re most interested in the nascent

area of ubiquitous computing mashups. Ubi-

comp mashups attempt to move computation off

the desktop and integrate it with the artifacts of

everyday life.6 They extend beyond the Web and

combine the functionality of both software and

hardware components.

JULY–SEPTEMBER 2008 PERVASIVE computing 47

A framework

of mashup components

Moving from the physical to the digi-

tal domain, a ubicomp mashup can use

four types of components (see Figure

1). First, a mashup can contain built or

repurposed mechanisms, such as a toy

doll’s movement mechanism. Second,

sensors and actuators can interface with

these mechanisms and other physical

phenomena; electronics such as embed-

ded programmable microcontrollers

provide the logic for sensors and actua-

tors. Third, designers can write their

own programs or leverage off-the-shelf

software on their personal computers

(be it a desktop, PDA, or smart phone).

Local applications might offer hooks for

programmatic automation through APIs

or built-in scripting languages. Fourth,

mashups can use Web infrastructure ser-

vices such as search and mapping APIs.

Each of these four components has

a history of opportunistic design prac-

tice (see Figure 2). Shell scripts and

application macros have long func-

tioned as glue between desktop appli-

cations. John Ousterhout provides a

good overview of scripting languages’

advantages for connecting preexisting

software components.7 Bonnie Nardi’s

account of end-user programming de-

scribes tool-independent practices such

as programming by example modifi ca-

tion.8 In the tangible world of mecha-

nisms and electronics, amateurs as

well as professional product designers

cannibalize or repurpose off-the-shelf

products to fi t new needs. Hardware

hacking has seen a recent resurgence in

popularity with hobbyists, evidenced

by the success of publications such as

Make magazine (www.makezine.com).

The advent of open APIs for Web ser-

vices has spurred development of nu-

merous services and sites that aggregate

disparate data sets. The Web API cata-

log programmableweb.com lists 3,109

Web mashups leveraging 775 distinct

APIs as of June 2008.

Integration strategies:

Dovetail joints versus hot glue

A broad shift that the mashup para-

digm introduced is the reallocation

of the designer’s effort and creativity.

More time and ingenuity go to select-

ing components and shaping the “glue-

ware” that interfaces them.

We distinguish between two ap-

proaches to glue. In the fi rst, two com-

ponents explicitly support combination

through a shared interface. They’re

aware of each other, allowing for tight

integration. We use the carpenter’s

dovetail joint metaphor to label these

deep combinations. Dovetail joints are

Web
infrastructure

services
(remote code)

Electronics
hardware

Mechanisms and
physical phenomena

Off-the-shelf
software

(local code)

Web 2.0 mashups

Ubicomp mashups

Hardware hacks

(a) (b)

Figure 1. Ubicomp systems ingredients.

(a) Four components of a ubicomp

mashup. (b) Ubicomp mashups unite

hardware and Web practices.

Hardware

Software

Electronics

Mechanisms

Web APIs and
services

Local (desktop)
applications

Hardware hacking,
do-it-yourself
electronics

Ubicomp
mashups

Web 2.0
mashups

Macros and
shell

scripts

H
a
rd

w
a
re

S
o
ft

w
a
re

E
le

ct
ro

n
ic

s

M
e
ch

a
n
is

m
s

W
e
b
 A

P
Is

 a
n
d

se
rv

ic
e
s

L
o
ca

l
(d

e
sk

to
p
)

a
p
p
li

ca
ti

o
n
s

Figure 2. A classifi cation of mashups based on their components. The arrows

indicate how existing communities and practices inform ubicomp mashups.

48 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

documented extension and integration

points in the system architecture—APIs

in software, breakout headers and con-

nectors in electronics, and mounting

holes in hardware.

In contrast, hot glue combinations

adjoin components that are either in-

compatible, don’t know about each

other, or don’t support each other. You

can apply hot glue to almost anything,

but it has limited adhesive power—all

it can offer is shallow, surface-level in-

tegration. Screen scraping—parsing

rendered user interfaces such as Web

pages to gather data—and screen pok-

ing—generating synthetic mouse and

keyboard events computationally—are

examples of digital hot glue joints. Im-

portantly, a designer’s intent is often

hidden in such glue code: what is re-

corded is only a trace of the taken ac-

tions (for example, a sequence of mouse

clicks), but not their semantics (such as

opening a particular fi le).

In practice, most systems, whether

software or hardware, are constructed

from preexisting components—code

libraries, integrated circuits, and me-

chanical subassemblies. This raises the

question of whether there’s a dividing

line between component-based engi-

neering and mashup practice.

One distinguishing characteristic

might be the degree to which systems

rely on dovetail and hot glue joints to op-

erate. Where engineering methods strive

to cleanly integrate dovetails, mashups

often use both dovetail and hot glue con-

nections simultaneously. In mashup de-

sign, component selection is informed,

but not dictated, by the availability of a

suitable interface. If a clean integration

interface is available, the practitioner

will use it; if not, the practitioner will

resort to more brittle workarounds.

Furthermore, because component

vendors don’t sanction hot glue joints

and appropriations, the source of au-

thoritative information and support

shifts away from vendors and manu-

facturers and toward the community

of mashup designers.

We were curious to what extent inte-

gration practices are shared by mashup

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Participants’ mashups. Samples include applications for (a) planning an evening out, (b) plotting weather forecasts

on a map, and (c) fi nding train schedules. Participants (d) created a combination toy and fl ashlight and (e) a fl ying toy car,

(f) listened to audio in noisy environments, (g) developed an application for annotating printed documents with video,

(h) developed an indoor positioning prototype for smart shopping carts, and (i) built audio art installations.

JULY–SEPTEMBER 2008 PERVASIVE computing 49

designers across hardware and software

domains. We also wanted to know to

what extent current domain-specifi c

tools are appropriate to support ubi-

comp mashups. We approached these

questions through an exploratory inter-

view study.

Interview methodology
We interviewed 14 practitioners from

three areas of mashup design. Four

participants were involved in Web

2.0 development. Four others focused

on hardware hacking—working with

mechanisms and embedded electron-

ics. Six participants worked as ubi-

comp designers—creators of interactive

computing systems spanning hardware

and software components. In our inter-

views, we asked participants to describe

their work philosophy and general ap-

proach to problem solving, and then to

focus on one particular recent project.

To ground and structure the discus-

sion, we asked participants to produce

artifacts or visual representations (pho-

tographs or sketches) of their project.

Specifi cally, we asked participants to

describe third-party components they

integrated, how they decided to include

particular parts, and the trade-offs and

challenges they experienced.

Sampling mashups:
Who, what, why
Here we review the material collected:

who our participants are, what kinds

of systems they build, and how and

why they build them. For brevity, we

only mention a subset of the interview-

ees and focus on commonalities within

groups.

Web 2.0 programmers

Our participants were professional

programmers or Web developers who

didn’t feel that mashup programming’s

technical aspects were a hurdle.

Our fi rst participant, W1, owns a cell-

phone software company. In his spare

time, he developed a mashup Web site

that overlays restaurant and bar infor-

mation on an interactive map (see Figure

3a). Users build a graphical path from

one venue to the next to plan an evening

out with friends. They can also send these

paths to a compatible mobile phone. This

mashup combines three online services:

CitySearch for entertainment reviews,

Google Maps for mapping and naviga-

tion on the desktop, and Yahoo! Maps

for mapping on mobile devices.

A second mashup, written by partici-

pant W2, also builds on Google maps.

His Web site features georeferenced

weather forecasts and temperature

readings, integrated displays of user-

contributed webcam feeds, and weather

histories. His application aggregates

forecasts from more than a dozen na-

tional and regional weather data pro-

viders and locates these forecasts on a

map (see Figure 3b). The site is generat-

ing enough traffi c—and ad revenue—

that he is contemplating making this

side project his full-time job.

Aiming at the emerging mobile ap-

plication market, participants W3 and

W4 built a mashup that delivers relevant

train schedules for three US commuter

rail systems to mobile phones through

SMS or email (see Figure 3c). Users send

a short message with a station name ab-

breviation to their system, which replies

with upcoming train times. The system

links an SMS email gateway to a sched-

ule database gathered from the individ-

ual rail companies.

Screen scraping vs. Web APIs. One major

concern for our Web 2.0 participants is

access to and strategies for getting data:

“Getting the data is the absolute hard-

est part” (W3). The surveyed mashups

derived their value from integrating

disparate data sets in ways not previ-

ously possible. Although two of the

three projects used Google Maps’ open,

documented infrastructure service, all

three projects resorted to screen scrap-

ing (parsing) to gather at least part of

their data. Participants gave two pri-

mary reasons for scraping:

APIs simply weren’t available for ob-

taining the desired data, and

•

Web APIs are generally designed

for smaller data requests, so it’s still

easier to obtain large data sets by

scraping.

W2 reported building his own scrap-

ing toolkit so it now takes him as much

time to develop a scraper as it would to

integrate an available API.

Business models and obstacles. All par-

ticipants reported that their mashups

started as side projects to their full-

time jobs as consultants, business own-

ers, and developers. However, two of

the three projects expressed interest in

turning the mashup into a profi table

business. With Web mashups, shifting

from the personal sphere to the com-

mercial sphere can be challenging for

both legal and technical reasons. W1

reported that making money by using

scraped content is problematic because

of licensing restrictions. W2 reported

that he had to add redundant data

sources because individual weather pro-

viders could alter the format or with-

draw their data streams at any time.

Hardware hackers

In the physical and electronic design

realms, we interviewed three toy in-

ventors at two design companies and

a hobbyist who refashions consumer

goods into personalized tools and pub-

lishes instructions for creating these

tools online. The toy inventors build

prototypes that illustrate new interac-

tion design concepts. They don’t create

fi nished products. Project schedules are

very short, ranging from two days to

less than a month.

When we visited participant H1, she

was working on a toy that functioned

as a fl ashlight with sound effects. To

make the concept tangible, she bought a

pair of plastic monkeys from a local toy

store because the monkeys had a similar

opening mechanism to the one she envi-

sioned (see Figure 3d). She then embed-

ded a tactile switch into the mechanism’s

lever to trigger light and sound effects

using external electronics. A previous

•

50 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

project prototype combined a toy car

body with plastic rocket engines from a

model plane kit to create a new fl ying car

(see Figure 3e). To her, the aesthetics (the

“toyness”) of the repurposed packaging

mattered, even though the fi nal product

would have a radically different look.

At the second toy company, partici-

pants H2 and H3 described how they

prototyped a handheld wireless con-

troller for a TV game. They took the

controller’s barrel from a soda bottle,

and they built the grip from a Gyra-

tion wireless mouse that uses a gyro-

scope to sense tilt, transforming that

tilt data into cursor movement. A cus-

tom-made plastic mold joined the two

pieces into one unit using custom-made

plastic molds. They then used the wire-

less mouse’s cursor and click events to

animate graphics on a laptop (used as

a stand-in for a television set) running

Adobe Flash.

In contrast to the toy designers’

rough-and-ready prototypes, partici-

pant H4 builds his hardware-based

mashups for long-term private use.

Many of the artifacts he uses daily

were created by modifying consumer

goods. One project he created was a

pair of jackhammer hearing-protection

earmuffs that he retrofi tted with a pair

of airline headphones to listen to audio

books in noisy environments (see Fig-

ure 3f). According to H4, this design

offers better noise reduction than com-

mercial noise-canceling headphones

and is signifi cantly cheaper.

For all three toy inventors, visiting

large retail stores to purchase interest-

ing new toys was an integral part of

their core practice. They would later

disassemble these toys in their shop. We

identifi ed three strategies of appropriat-

ing store-bought toys:

Designers extract mechanisms and

reuse them in different skins (for

example, H2 and H3 transferred a

purchased toy’s animated movement

into a new prototype).

Designers keep a toy’s shell but em-

bed new electronics into it (H1 did

•

•

this “because it immediately looks

like a toy”).

Designers fuse different shells (such

as H1’s metal toy car with air plane

rocket engines) to produce a compos-

ite object.

While many Web mashups build on

a few high-value components, such as

Google Maps, our hardware hackers’

choices didn’t cluster around high-

value products. To the contrary, within

a given genre the toy designers collected

a wide variety of products in their stor-

age bins for later reuse.

In contrast to the toy designers, H4

saw the tailoring of existing artifacts as

a partial rejection of consumer culture.

The self-suffi ciency of “do it yourself”

offers a degree of intrinsic satisfaction

along with a level of personalization and

novelty unavailable in mass-produced

artifacts. For H4, the economies of scale

that mass-produced consumer goods le-

verage are incentives. Picking existing

parts is cheap: “It’s never cheaper to

start from scratch to make your own.”

Ubicomp designers

Our six ubicomp developers used mash-

ups as prototypes and proof-of-concept

deliverables, but also as a way to design

and implement site-specifi c tools for a

single user or a small community.

Participant U1, a design researcher,

worked on a system for design teams

to annotate printed documents with

short video messages. In his functional

prototype (see Figure 3g), users push a

button to initiate video message record-

ing on a laptop. After recording, the

system prints a small label displaying a

snapshot of the video and a bar code.

The user attaches this bar code to the

document described in the video. If an-

other user wants to access the video, she

waves the bar code in front of the same

camera, upon which the system retrieves

and plays back the desired video. U1 re-

lied heavily on commercial off-the-shelf

software, combining fi ve different ap-

plications through AppleScript. For ex-

ample, he scripted QuickTime to record

•

and play back video, and he used the

Excel spreadsheet software as a data-

base. To convey this project’s complex-

ity, Figure 4 shows our redrawn version

of his system architecture sketch.

Participant U2, an industrial re-

searcher, described a project where he

designed an indoor positioning proto-

type for smart shopping carts. This po-

sitioning system employed computer vi-

sion. To test the vision data quality, U2

attached a custom-built optical rotation

sensor to a shopping cart’s wheel and

soldered its contacts to the left button of

a gutted PC mouse, so that each revolu-

tion yielded one click (see Figure 3h). By

counting the total number of clicks on

the PC, he received ground truth data

about the total distance the cart had

traveled. (For more information, also

see “Hacking in Industrial Research

and Development” in this issue.)

U3 has been developing his own musi-

cal programming language and graphi-

cal environment for producing and

performing electronic music. He builds

audio installations that he shows at the

annual Burning Man festival (see Figure

3i). Although he spent years designing

his software from the ground up, the

physical controllers he used were off-the-

shelf game console input devices such as

“Dance Pad” fl oor mats. According to

him, “you can choose what level of ef-

fort you want to put in—you can buy the

next level of integration.” To him, a key

component enabling his installation was

a small hardware converter that lets him

connect controllers built for proprietary

game consoles to a PC USB port.

As Web 2.0 programmers employ

screen scraping to harvest informa-

tion from online databases, ubicomp

programmers use screen poking to re-

motely control software. In addition to

U2’s appropriation of a mouse button

for measuring turns of a wheel, U1 ini-

tially used the macro software Automate

as a means to control desktop applica-

tions by computationally injecting syn-

thetic mouse and keyboard events. U3

purchased a hardware converter that

transformed the output of pressure-

JULY–SEPTEMBER 2008 PERVASIVE computing 51

sensing dance pads into Windows plat-

form game controller events. U3 chose

these glueware techniques for simi-

lar reasons as screen scraping: APIs

are sometime unavailable, don’t yield

the desired information, or are more

time-consuming than surface-level

instrumentation.

Screen scraping can also be inter-

preted as an act of sensing, while screen

poking in turn is analogous to actua-

tion. As sensing the physical world yields

ambiguous, noisy data that must be con-

ditioned and fi ltered, data from screen

scraping often has to be cleaned and

processed. This suggests that mediation

techniques for ambiguous sensor input9

might transfer to Web scraping, and vice

versa. Despite the analogies, there are

barriers in crossing the chasm between

Web-centric applications and the physi-

cal realms of sensing and actuation.

One reason is that client-side Web tech-

nologies have increasingly moved into

secure-execution sandboxes that can’t

communicate directly with external

hardware. We still need design tool sup-

port for bridging these two domains to

enable experimentation by lead users.

Themes in opportunistic
programming
Our interviews uncovered some com-

mon concerns across the three design

domains. Choosing between levels of

integration, shopping, and connect-

ing to larger communities of mashup

designers emerged as unifying themes,

among others.

Dovetail joints versus

hot glue revisited

Across domains, our interviewees freely

mixed deep and surface-level integra-

tion techniques in their projects. Each

choice has important limitations: while

shallow hot glue is brittle, deeper inte-

gration might have limited reach. These

trade-offs are exemplifi ed by U1’s expe-

rience. He scripted an earlier version of

his document annotation system using

software that lets users record interac-

tion with GUI widgets and replay those

actions programmatically. Although

this system succeeded as an experience

prototype, it wasn’t robust enough for

any unsupervised deployment. Seeking

to improve on stability, U1 then switched

to AppleScript, which let him leverage

application-specifi c APIs. Although the

deeper glue that AppleScript provides is

signifi cantly cleaner for expressing logic

than GUI events, U1 found no program-

matic means within AppleScript for up-

loading the video clips to an online me-

dia-sharing site, a task that his previous

strategy could accomplish.

Beyond the technical consider-

ation of how to adjoin components is

a larger question about the relation-

ship between the designed intent of

the constitutive elements and that of

Excel

looks up ID XLS file

launchesGriffin
PowerMate

iSight

Proxi

iSight

Evo
Barcode

Record
AppleScript

Reuse
AppleScript

launches

writes

Label printer

Quicktime

DymoPrint

starts playback Quicktime

Video

Own code

COTS

Physical I/O

File I/O

Screenshot
(JPG)

pulls
snapshot

generates
doc

detects barcode

returns IDlaunches

retrieves video

Figure 4. System diagram of U1’s project. The project enabled designers to annotate printed documents with video messages.

52 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

the resulting mashup. Mashups might

appropriate technologies, repurposing

them as building blocks toward a goal

at odds with their original design.

One suitable defi nition of appropria-

tion is “the extent to which a violation

of a technology’s intended purpose oc-

curs.”10 This violation is easy to see

in toy hacking: toys were intended for

children to play with, not for design-

ers to take apart. Similarly, in the digi-

tal realm, screen scraping appropriates

output intended for human consump-

tion as program input. In contrast, us-

ing Web 2.0 APIs such as Google Maps

isn’t an act of appropriation because the

API’s providers give explicit permission

to use the service in new contexts.

It’s notable that in the Web 2.0 space,

where the general trend has been to open

up infrastructure services to allow reuse

without appropriation, all of our par-

ticipants still resorted to screen scraping

techniques. There are valid business rea-

sons not to make all company data avail-

able for automatic processing by others

through APIs. Simultaneously, those

same business reasons make capturing

the data valuable for third parties. We

conclude that support for both tight and

loose coupling (dovetail joints and hot

glue) will be inevitable for design tools.

Opportunistic design is based on inte-

grating existing artifacts that best fulfi ll

a functional or informational need, re-

gardless of their programming interface

or licensing agreement.

Mashing as a design activity

Next, we consider the activity of creat-

ing mashups: when, how, and why is

mashing preferable to other design and

development approaches? What value

do practitioners derive from it?

Short timelines, small audiences?

Mashup design in the physical world

tends to happen on short timelines—

the mashups we encountered were built

quickly, and many were discarded just

as quickly afterwards. By necessity,

the artifacts were intended for small

audiences; physical mashups are one-

offs that can’t be duplicated easily. The

emphasis on speed is a good match for

designers who want to rapidly proto-

type multiple ideas, consultants oper-

ating on compressed project schedules,

and hobbyists with limited leisure time.

Similarly, for these constituencies, the

audience of a user’s mashup is small: the

design team, a single client, or oneself.

The Web mashups we encountered

have different traits: they operate con-

tinuously, and their success is measured

in the number of users they attract.

Thus, engineering for robustness, re-

dundancy, and maintenance becomes

important—in this respect, building

Web mashups more closely resembles

traditional software engineering. This

difference could be an artifact of our

small survey population, but Web appli-

cations offer the unique opportunity to

reach larger audiences without reengi-

neering from the ground up: the proto-

type is the product. This opportunity to

scale could lead Web developers to con-

template robustness from the outset.

Although it’s certainly fast to get ap-

plications up and running by appropri-

ating existing technology, completing

the “last mile”—fi ne-tuning applica-

tion logic and interaction design—can

be diffi cult as desired functionality and

offered features of existing components

diverge. On the other hand, building

with lower-level blocks, or even from

scratch, incurs a large initial cost be-

cause developers must write their own

tooling. In exchange, they preserve fl ex-

ibility and can leverage their own tools

later in the project cycle. The sweet spot

for rapid, disposable mashups that our

interviews found is consistent with this

analysis. It also suggests an opportu-

nity for design tools that leverage op-

portunistic development early on while

preserving fl exibility or offering some

level of guaranteed robustness.

Epistemic, pragmatic, and intrinsic values.

We found that mashups provided both

pragmatic and epistemic value to our

participants. An artifact is pragmatic to

the extent that it enables actual use, and

it’s epistemic to the extent that it serves

as a locus of communication with other

stakeholders—clients, team members,

and users—and provides information

that can drive future design.11,12 For

some participants, creating mashups

also held intrinsic value generated by the

activity itself, rather than the utilitarian

or educational value of the outcome.

Pragmatic decisions for mashups are

made if using mashups is more effi cient

or effective than other techniques to

reach a goal. Participant U3 estimated

that by repurposing a mouse button to

fi re a click event with each revolution

of a wheel, he was able to complete the

sensing part of his project in a quar-

ter of the expected time. Furthermore,

incorporating existing pieces lets de-

signers leverage functionality that they

couldn’t build themselves. Framed this

way, we can think of the set of exist-

ing technologies in the world as a vast

library that we can use to lower the

threshold for development. For exam-

ple, U4 didn’t have suffi cient technical

knowledge to build his own physical

music controller, but, through adapt-

ers, he was able to leverage commer-

cially available game controllers.

Other times, practitioners employ

mashup design as a means of explo-

ration, learning, or inspiration. This

epistemic activity was most prevalent

among our toy inventors, who chose

mashups as effective means to illustrate

new concepts. What their clients paid

for was the idea, prototyped through

the mashup, not the implementation.

Furthermore, rapidly creating proto-

types gives designers concrete artifacts

they can expand on, react against, mod-

ify, and transform. This conversation

with materials (as opposed to thinking

in the abstract) is an important strategy

of refl ective practice.13 Refl ective prac-

titioners are concerned with problem

setting as much as problem solving, and

they let prototypes inform their under-

standing of the larger design space.

In the intrinsic case, practitioners

create mashups because they regarded

the activity of mashing as fulfi lling

JULY–SEPTEMBER 2008 PERVASIVE computing 53

in its own right. They derive intrin-

sic value from the joy of exercising a

craft (“what a great way to spend an

afternoon”) or from a personal ideol-

ogy (“recycling is my form of protest

against consumer culture”). Our inter-

views suggest that intrinsic activity is

most common among hobbyists.

Shopping for functionality. As Frederick

Brooks wrote, “The most radical pos-

sible solution for constructing software

is not to construct it at all.”14

How exactly does the activity of de-

signing and developing change when no

“new” software is created? Participants

reported spending signifi cant time on

fi nding and acquiring their ingredients.

In fact, some reported that this was the

most challenging or time-consuming

part of their process. U1 described the

processes of searching for components

and determining how to integrate them

into his design as “the main part of the

whole thing.” Or, as U3 put it, “The

real challenge is fi nding the interface

between the problem and commercially

available stuff.”

Our toy inventors also reported fre-

quent trips to the toy store without hav-

ing a shopping list for a project. U4 did

the same at electronics retail stores. We

found three reasons for shopping with-

out a project in mind:

It builds awareness of the state of the

art and shows designers what’s com-

mercially available.

It reduces the cost of future searches.

Like squirrels gathering nuts be-

fore the winter, designers stockpiled

mechanisms to have them ready later.

H2 said, “We collect [mechanical]

movements. … [During a project,

one of us will say] ‘Remember that

freaky belly movement?’”

It inspires new projects. “I go on shop-

ping trips and think about repurpos-

ing objects. ... I’ll walk around Wal-

greens and look at objects and think,

‘What could this be?’” (H1).

Searching for and acquiring pieces was

•

•

•

inspirational and helped steer projects

in a particular direction. This suggests

that shopping itself can take on an epis-

temic function.

Searching for bridges. Several times,

participants reported fi nding crucial

connecting pieces for their mashups in

fi elds only tangentially related to their

own. U4 discovered that a MIDI-to-

relay interface used by church-organ

builders would trigger lights based on

music commands for his Burning Man

installations. Adapters and bridges are

well-known design patterns for soft-

ware engineers. We focus on the social

side—the bridges that led practitioners

to discover these connections in the

fi rst place. While Web search was uni-

versally used, effective search requires

prior knowledge of the space of op-

portunity. Community sources play an

important role: for example, U1 inte-

grated two external button interfaces

into his project because he knew that

other researchers in his building had

used those particular models success-

fully. Scaling such community aware-

ness to geographically distributed

teams of designers is an important goal

for the future. In the hobbyist market,

Web sites like http://instructables.com

that publish instructions and parts lists

for do-it-yourself projects have begun

to address this need.

O
ur analysis raises several

suggestions for creat-

ing future mashup design

tools. First, it’s important

to recognize mashup programmers and

hardware hackers as a unique target au-

dience: they’re not professionals, in that

their primary job description isn’t cre-

ating mashups, but neither are they un-

trained end users. Our participants were

all technologically sophisticated and

used mashup techniques to achieve some

other goal in their domain of expertise.

So, design tools must strike a balance

between complexity and fl exibility.

Second, the use of both dovetail as

well as hot-glue combinations in many

of the projects suggests that we need

tools that better support fl uidly tran-

sitioning between the two integration

styles within the same project.

the AUTHORS

Björn Hartmann is a PhD candidate in HCI at Stanford University. His research

focuses on prototyping tools for designers and lead users. Hartmann received

his MSE in computer and information science from the University of Pennsylva-

nia. Contact him at bjoern@cs.stanford.edu.

Scott Doorley is the director of the environments lab at Stanford University’s

Hasso Plattner Institute of Design. His research interest is applying design

methods to creative domains such as writing, fi lm making, and informal learn-

ing. Doorley received his MA in learning, design, and technology from Stan-

ford University. Contact him at sdoorley@stanford.edu.

Scott R. Klemmer is an assistant professor of computer science at Stanford

University, where he codirects the Human-Computer Interaction Group. His

primary research focuses are interaction techniques and design tools that en-

able integrated interactions with physical and digital artifacts and environ-

ments. Klemmer received his PhD in computer science from the University of

California, Berkeley. Contact him at srk@cs.stanford.edu.

54 PERVASIVE computing www.computer.org/pervasive

THE HACKING TRADITION

Third, we can learn from product de-

signers who keep their studios stocked

with cannibalized parts by developing

tools that more fully embrace “design

by example modifi cation” or “design

by example augmentation” as a funda-

mental strategy.

Finally, design tool research often

focuses on the construction of appli-

cations. The important epistemic and

pragmatic functions of shopping sug-

gest that tools that support search, se-

lection, and sharing of existing compo-

nents could be equally valuable.

REFERENCES

 1. E. von Hippel, Democratizing Innova-
tion, MIT Press, 2005.

 2. A. Cypher, Watch What I Do: Programming
by Demonstration, MIT Press, 1993.

 3. H. Lieberman, F. Paterno, and V. Wulf,
End-User Development, Springer, 2005.

 4. J. Brandt et al., “Opportunistic Program-
ming: How Rapid Ideation and Prototyp-
ing Occur in Practice,” Workshop End-
User Software Eng., ACM Press, 2008,
pp. 1–5.

 5. E.A. Brewer, “Lessons from Giant-Scale
Services,” IEEE Internet Computing, vol.
5, no. 4, 2001, pp. 46–55.

 6. M. Weiser and J.S. Brown, “The Coming
Age of Calm Technology,” Beyond Calcu-
lation: The Next 50 Years of Computing,
P.J. Denning and R.M. Metcalfe, eds.,
Copernicus Books, 1997, pp. 75–86.

 7. J.K. Ousterhout, “Scripting: Higher Level
Programming for the 21st Century,”
Computer, Mar. 1998, pp. 23–30.

 8. B.A. Nardi, A Small Matter of Program-
ming: Perspectives on End User Comput-
ing, MIT Press, 1993.

 9. J. Mankoff, G.D. Abowd, and S.E. Hud-
son, “OOPS: A Toolkit Supporting Medi-
ation Techniques for Resolving Ambigu-
ity in Recognition-Based Interfaces,”
Computers and Graphics, vol. 24, no. 6,
2000, pp. 819–834.

 10. R. Eglash, “Appropriating Technology:
An Introduction,” Appropriating Tech-
nology: Vernacular Science and Social
Power, R. Eglash et al., eds., Univ. of Min-
nesota Press, 2004, pp. vii–xxi.

 11. D. Kirsh and P. Maglio, “On Distinguish-
ing Epistemic from Pragmatic Action,”
Cognitive Science, vol. 18, 1994, pp.
513–549.

 12. S.R. Klemmer, B. Hartmann, and L.
Takayama, “How Bodies Matter: Five
Themes for Interaction Design,” Proc.
6th Conf. Designing Interactive Systems,
ACM Press, 2006, pp. 140–149.

 13. D.A. Schön, and J. Bennett, “Refl ective
Conversation with Materials,” Bringing
Design to Software, T. Winograd, ed.,
ACM Press, 1996.

 14. F.P. Brooks, The Mythical Man-Month:
Essays on Software Engineering, Addison-
Wesley, 1995.

For more information on this or any other com-

puting topic, please visit our Digital Library at

www.computer.org/csdl.

The opportunistic paradigm requires a major change of mindset
from designing and writing original software to a world of few rules,
theories, or recipes. Some titles to look for:

“Pragmatic and Opportunistic Reuse in Two Innovative Startups”
“Creative Thinking through Opportunistic Software Development”
“Monoliths to Mashups: The Need for Opportunistic Integration”
“Situated Software—Concepts, Motivation, Technology, and
 the Future”
“Balancing Opportunities and Risks in Component-Based Software
 Development”
And more ….

Check the IEEE Software Web site www.computer.org/software in
November or email software@computer.org and ask to be notified
when it’s published.

•
•
•
•

•

•

If you’re enjoying this issue

on hacking, you’ll also enjoy

Opportunistic Software
Systems Development

The November/December ‘08 special issue from
IEEE Software magazine!

