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Abstract

This paper presents a new large-scale dataset for recog-

nition and temporal localization of human actions collected

from Web videos. We refer to it as HACS (Human Action

Clips and Segments). We leverage both consensus and dis-

agreement among visual classifiers to automatically mine

candidate short clips from unlabeled videos, which are sub-

sequently validated by human annotators. The resulting

dataset is dubbed HACS Clips. Through a separate pro-

cess we also collect annotations defining action segment

boundaries. This resulting dataset is called HACS Seg-

ments. Overall, HACS Clips consists of 1.5M annotated

clips sampled from 504K untrimmed videos, and HACS Seg-

ments contains 139K action segments densely annotated

in 50K untrimmed videos spanning 200 action categories.

HACS Clips contains more labeled examples than any ex-

isting video benchmark. This renders our dataset both a

large-scale action recognition benchmark and an excellent

source for spatiotemporal feature learning. In our transfer

learning experiments on three target datasets, HACS Clips

outperforms Kinetics-600, Moments-In-Time and Sports1M

as a pretraining source. On HACS Segments, we evaluate

state-of-the-art methods of action proposal generation and

action localization, and highlight the new challenges posed

by our dense temporal annotations.

1. Introduction

Recent advances in computer vision [22, 23] have been

fueled by the steady growth in the scale of datasets. For

image categorization, in the span of just a few years we

transitioned from Caltech101 [15], which contained only

9.1K examples, to the ImageNet dataset [12], which in-

cludes over 1.2M examples. In object detection, we have

seen a similar trend in scaling-up dataset sizes. Pascal

VOC [13] was first released with 1.6K examples, while

the COCO dataset [36] today consists of 200K images and

500K object-instance annotations. Open Images V4 [28]

further scales up the size of image datasets to the next level.
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Figure 1: Comparisons of manually labeled action recog-

nition datasets (Top) and action localization datasets

(Bottom), where ours are marked as red. The marker size

encodes the number of action classes in logarithmic scale.

It currently contains 9M images with image-level label and

1.7M images with 14.6M bounding boxes, and has greatly

pushed the advances of research work in those fields [1, 19].

In the video domain, we have witnessed an analogous

growth in the scale of action recognition datasets. While

video benchmarks created a few years ago consists of only

a few thousands examples (7K videos in HMDB51 [29],

13K in UCF101 [52], 3.7K in Hollywood2 [38]), more re-

cent action recognition datasets, such as Sports1M [25],

Kinetics [27] and Moments-in-Time [39], include two or-

ders of magnitude more videos. However, for action local-

ization, we have not seen a comparable growth in dataset

sizes. THUMOS [24] was created in 2014 and contains

2.7K untrimmed videos with localization annotations over

20 classes. ActivityNet [6] only includes 20K videos and

30K annotations. AVA [42] includes 58K clips, and Cha-

rade [51] contains 67K temporally localized intervals. We

argue that the lack of large-scale action localization datasets

is impeding the exploration of more sophisticated models.

Motivated by the needs of large-scale action datasets, we

introduce a new video benchmark, named Human Action

Clips and Segments (HACS)∗. It includes two types of man-

∗Homepage: http://hacs.csail.mit.edu
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ual annotations. The first type is action labels on 1.5M clips

of 2-second duration sparsely sampled from a half million

of videos. We refer to this dataset as HACS Clips. It is de-

signed to serve as a benchmark and as a pretraining source

for action recognition. In our empirical study we compare

different clip sampling methods and we observe that both

consensus and disagreement over different visual classifiers

can be used as criteria to identify clips especially worthy

of annotation. Clips sampled from a large pool of videos

according to such criteria capture large variations in ac-

tion dynamics, context, viewpoint, lighting and other condi-

tions. We demonstrate that spatiotemporal features learned

on HACS Clips generalize well to other datasets.

The second type of annotation involves temporal local-

ization labels on 50K untrimmed videos, where both the

temporal boundaries and the action labels of action seg-

ments are annotated. We call it HACS Segments. Thanks

to our stringent guidelines on how to distinguish action and

non-action segments, the resulting dataset has 1.8× more

action segments per video and segments of shorter duration

compared to ActivityNet. We demonstrate that this poses

bigger challenges in action localization, as localizing short

segments requires finer temporal resolution and more dis-

criminative feature representations. Both types of annota-

tion share the same taxonomy of 200 action classes, which

we take from ActivityNet. We compare HACS with other

video datasets in Figure 1. Despite being in its very first

version, HACS compares favorably in scale to most prior

benchmarks in this area. In summary, we make the follow-

ing contributions in this paper.

1. We present a thorough empirical study on clip sam-

pling methods, and use the nontrivial findings to sam-

ple a large number of clips for further manual verifica-

tion. The resulting HACS Clips dataset has 2.5× more

clip annotations compared to Kinetics-600.

2. We benchmark state-of-the-art action recognition

models on HACS Clips. We show that HACS

Clips outperforms Kinetics-600, Moments-In-Time

and Sports1M as a pretraining dataset for action recog-

nition on other benchmarks.

3. We collect action segment boundaries on 50K videos,

based on annotation guidelines that reduce the ambigu-

ity in the action definition and localization. The result-

ing HACS Segments has 2.5× more videos and 4.7×

more action segments compared to ActivityNet.

4. On HACS Segments, we evaluate state-of-the-art meth-

ods of both action proposal generation and action lo-

calization, and highlight the new challenges.

2. Related Work

Action Recognition. In action recognition, the

HMDB51 [29] and the UCF101 [52] datasets were

created to provide benchmarks with higher variety of

actions compared to precedent datasets, such as KTH [47].

These benchmarks have have enabled hand-design of

motion features such as Spatial-Time Interest Point [30],

Spatiotemporal Histogram of Oriented Gradient and Opti-

cal Flow [56, 31] and Fisher Vector feature encoding [41].

However, these datasets are not large enough to support

modern end-to-end training of deep models. The large-

scale Sports1M [26] and Kinetics datasets [27], which are

over 20× larger than UCF101, were recently introduced to

fill this gap. They enable the training of deep models from

scratch [8, 43, 53]. However, these benchmarks cannot

be used to train action localization models as they do not

contain temporal boundary annotation. Collecting annota-

tions on large-scale video datasets is time-consuming [50].

Previous work [37, 32] have shown that Web action images,

which are widely available, can be exploited to train action

classifiers, but such images cannot be used to learn motion

features. Researchers have also explored synthetic gener-

ation of videos (e.g. VGAN [55], PHAV [11] for training

action recognition models. Although this eliminates the

need for human annotation, models trained on synthetic

videos are still inferior to those trained on natural videos

with human annotation.

Action Localization. Action localization in untrimmed

videos is crucial to understanding Internet videos. Re-

cently, several datasets for have been presented. THU-

MOS Challenge 2014 [24] includes 2.7K trimmed videos on

20 actions. It was subsequently extended into MultiTHU-

MOS [60] to have 65 action classes. Other datasets with fine

granularity of classes but focused on narrow domains in-

clude MPII Cooking [45, 46] and EPIC-Kitchens [10]. Un-

fortunately models trained on such domain-focused datasets

may not generalize well to every-day activities. Conversely,

the Charades dataset [51] was purposefully designed to in-

clude more general, daily activities. ActivityNet-v1.3 [6]

includes 20K untrimmed videos and 30K temporal action

annotations. More recently, the AVA dataset [20] was in-

troduced to provide person-centric spatiotemporal annota-

tions on atomic actions. These datasets have substantially

advanced the progress of research on action proposal gener-

ation [17, 18, 5, 35] and action localization [59, 48, 61, 34,

9, 2, 4].

3. Dataset Collection

3.1. HACS Dataset at a Glance

HACS uses a taxonomy of 200 action classes, which is

identical to that of the ActivityNet-v1.3 dataset. It has 504K

videos retrieved from YouTube. Each one is strictly shorter

than 4 minutes, and the average length is 2.6 minutes. A to-

tal of 1.5M clips of 2-second duration are sparsely sampled

by methods based on both uniform randomness and consen-
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sus/disagreement of image classifiers. 0.6M and 0.9M clips

are annotated as positive and negative samples, respectively.

We split the collection into training, validation and testing

sets of size 1.4M, 50K and 50K clips, which are sampled

from 492K, 6K and 6K videos, respectively. We refer to

this benchmark as HACS Clips. Furthermore, on a subset

of 50K videos (38K for training, 6k for validation and 6K

for testing) we collect manual boundaries defining the start,

the end and the action label of every action segment in the

video. All videos contain at least one action segment. We

refer to this collection as HACS Segments.

3.2. Video Retrieval and Deduplication

We use 200 action labels to query the YouTube

video search engine, and retrieve 890K potentially-relevant

videos. The number of videos per class ranges from 1100

to 6600. We then perform two types of de-duplications.

First, duplicate videos within HACS are removed. Second,

to support fair assessment on other benchmarks, we remove

videos that overlap with samples in the validation or test sets

of other datasets, including Kinetics, ActivityNet, UCF-101

and HMDB-51. More details of video de-duplication are in-

cluded in the supplement.

3.3. Sparse Clip Sampling

Manually annotating the start and the end of action seg-

ments in untrimmed videos is time-consuming. If the objec-

tive is to create a dataset for action recognition, it is more

efficient to sparsely sample clips of short duration from a

large number of videos, and ask annotators to quickly ver-

ify whether the presumed action is truly happening in the

clip. This procedure can be used to gather a large-scale ac-

tion clip dataset that can not only serve as an action recogni-

tion benchmark alone, but can also be leveraged for transfer

learning, e.g., by enabling the training of general deep mod-

els that can then be transferred for finetuning on smaller-

scale datasets or employed in other downstream tasks.

One challenge in sampling clips is that the frequency

of positive examples is arguably much smaller than that of

negative examples. Thus, uniform random clip sampling

would inevitably yield a large number of negative exam-

ples which are far less useful than positive examples for

video modeling. On the other hand, using machine learning

classifiers to guide the clip sampling can introduce dataset

biases. For example, the collection of Kinetics [27] clips

leveraged an image classifier trained on images automati-

cally labeled by user feedback from Google Image Search.

This classifier was used to sample clips with top action

scores. The bias induced by such image classifier is cer-

tainly present in the data, yet it is difficult to assess.

In this section we are interested in the following two

questions. First, how can we assess the quality of clips sam-

pled by different methods? Second, which clip-sampling

Video Crawling and De-duplication Shot Detection and Person Detection

Consensus

Annotation: Is this action happening? Skateboarding

Clip Sampling

Video Frame Classifier

Google Image Classifier
Random/

Consensus/

Disagreement

Figure 2: Our pipeline of sparse clip sampling and labeling.

method gives rise to the best training dataset? To answer

these questions, we present a thorough empirical study of

clip-sampling strategies. An overview of the clip sampling

pipeline used in our study is shown in Figure 2.

3.3.1 Preprocessing: Removing Non-Person Clips

As a preprocessing step, we exclude clips that do not con-

tain people since our aim is to create a dataset of human

actions. To accomplish this, we first run a shot detection

based on color histogram distance between video frames to

segment the video into shots. After that we run a Faster R-

CNN [44] person detector on two frames uniformly spaced

in each shot, and remove shots with low average person de-

tection scores.

3.3.2 A Study on Clip Sampling Methods

In this study, we compare three sampling methods: random

sampling and two image classifier-based sampling methods.

Prior work [37, 32, 21] on exploiting still images for action

recognition has shown that still-image classifiers can pre-

dict actions in video reasonably well, despite their inability

to model motion. Action context, such as objects typically

involved in the action, prototypical scenes where actions oc-

cur, and other visual patterns that frequently co-occur with

the action, can be captured by the image classifier for rec-

ognizing actions. To support our study, we first train two

distinct image classifiers using training data from two dif-

ferent domains:

• YouTube Frame Model. The first model is trained on

frames extracted from the top-500 videos retrieved by

YouTube for each action class. Only video frames with

person detected are used as positive samples for training.

This gives a total of over 600K frames. As background

(negative) samples we randomly choose frames with low

person-score.
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Clip Type ME Random MC

Positive clips 71.3K 82.2K 100.3K

Negative clips 168.7K 157.8K 139.7K

Table 1: Comparing the frequency of positive and negative

clips in three Train-mini sets sampled by different methods.

• Google Image Model. The second model is trained

on images retrieved from the Google Image Search en-

gine using the class labels as queries. We collect a total

of 304K images after thresholding on person detection

score. We use random samples from ImageNet as the ex-

amples of the background class. The image distribution

is different from that of video frames, in terms of scene

composition, background, and viewpoint.

For both classifiers we use a ResNet-50 trained with cross-

entropy loss over 201 classes (200 action classes and 1

background class). The classifiers are applied to the central

frame in each shot to get a probabilistic action prediction.

Next, we consider three different clip sampling methods:

1. Random. We randomly sample frames from each video.

2. Maximum Entropy (ME). Within each video, we de-

fine the unnormalized sampling probability for the cen-

tral frame of each shot as the average entropy of prob-

abilistic predictions from the two image classifiers. We

then apply L1-normalization to obtain a proper sampling

distribution over the video. This method prefers to sam-

ple frames where the two classifiers disagree the most.

3. Maximum Consensus (MC). Different from ME, the

MC method defines the unnormalized sampling proba-

bility as the average action score from the two image

classifiers for the action label that is used to retrieve the

video. L1-normalization is also used. This method bi-

ases the sampling towards clips that receive a high score

from both classifiers for the action label of interest.

Using these 3 sampling strategies, we collect 3 different sets

of clips from a subset of training videos, which are denoted

as Train-mini-Random, Train-mini-ME and Train-mini-MC,

respectively. For each strategy, we randomly select 400

training videos per class, and sample 3 frames per video.

Clips of 2-second duration centered around these sampled

frames are sent to human annotators for manual verification,

and each clip is marked as either positive or negative w.r.t

the label of interest. Most action classes in our taxonomy

are sufficiently distinct when observed in 2-second clips and

annotating 2-second clips is also efficient.

Statistics of sampled clips. As shown in Table 1, MC

method samples the highest number of true positive clips

since clips with high scores based on the consensus of im-

age classifiers are more likely to be true positive. However,

these are also likely to be easy positive examples as they can

be recognized by image classifiers. On the other side, ME

20
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Figure 3: Evaluating Res3D-18 and I3D models trained on

3 different Train-mini sets on 4 different validation sets.

yields the smallest number of true positives since it sam-

ples clips with conflicting predictions from image classi-

fiers. This implies more uncertainty about the action class.

Evaluating clip sampling methods. We perform an em-

pirical evaluation to address the two questions we asked in

Section 3.3. Two models are used. A Res3D model [53]

with 18 residual units (i.e. Res3D-18) and a I3D model [8].

Both take sequences of 16 frames as input. At training time,

a random sequence of 16 frames within the clip is used. At

evaluation time, 4 evenly spaced sequences of 16 frames are

used and their predictions are averaged to obtain the final

prediction. We train 3 separate instances of each model on

the 3 different Train-mini sets. Since positive and negative

clips are imbalanced, we adopt weighted sampling during

training where the weight of each example is inversely pro-

portional to the square root of the size of its class.

We also apply each sampling method to validation

videos, and obtain 3 different sets of clips, namely

Validation-Random, Validation-ME and Validation-MC, re-

spectively, They are also manually verified by humans. We

also combine all of 3 validation sets into a single one,

namely Validation-Combined. We evaluate each trained

model instance on all of 4 validation sets. Since the vali-

dation sets are also class-imbalanced, we report mean class

accuracy (Class@1), which is obtained by averaging per-

class accuracy over the 201 classes.

The results are shown in Figure 3. Models trained on the

Train-mini-MC set consistently outperforms models trained

on Train-mini-Random and Train-mini-ME sets on all vali-

dation sets. This suggests that for constructing a large-scale

training set of clips under a constant human annotation bud-

get, MC is the best method among those considered here be-

cause models trained on Train-mini-MC generalize best to

all types of validation sets. On the other side, the Validation-

MC set is easier than the others (models achieve higher ac-

curacy), while Validation-ME is the most difficult for all

models. This indicates that to construct a less biased vali-

dation/testing set, we should not rely on a single sampling

method. Therefore, we propose to combine clips sampled

by all of 3 methods in the final validation/testing set.
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Figure 4: Examples of dense segment annotations. Action definition is clarified in the guideline to reduce the ambiguity of

action boundaries.

3.4. Sparse Clip Annotation

We set up annotation tasks to label the sampled clips.

Annotation Guideline. Different people may have differ-

ent understandings of what constitutes a given action. To re-

duce the ambiguity, we prepare a detailed annotation guide-

line, which includes both clear action definitions as well as

positive/negative examples with clarifications separately for

each action. See more detailed guideline in the supplement.

Annotation Tool. Our annotation tool supports display of

up to 200 clips in a single page. We present clips sampled

from the same video together. This not only reduces anno-

tation inconsistency but also makes the annotation faster.

Quality Control. We make two efforts to improve the an-

notation quality. First of all, each clip is labeled by three an-

notators, and only those clips with consensus from at least

two annotators are included in the final dataset. Secondly,

we ensure clips from the same class are labeled by the same

group of annotators. This removes the inter-annotator noise.

3.5. Dense Segment Annotation

HACS Clips alone are not sufficient for training and eval-

uating action localization methods as they lack temporal

boundaries. Therefore, we ask annotators to densely label

the start, the end and the action class of all action segments

in a subset of 50K videos. A screenshot of our dense seg-

ment annotation tool is shown in Figure 5. We prepare clear

annotation guidelines on distinguishing foreground action

segments, where the action is being performed, and back-

ground segments, where both the person and the context

Figure 5: Action segment annotation tool. A timeline

overview is shown below the video player, and a zoom-in

view of current time window is shown in the bottom for ac-

curate temporal annotation.

(e.g. objects, scene) may appear but the action is not present.

More importantly, we identify common patterns of the start

and end of each action class. This helps annotators to better

annotate the action segment boundaries. Examples of dense

segment annotations are shown in Figure 4. For instance,

for action Belly Dance, we consider the part of the video

where dancers are being interviewed as background. For

action BMX, we suggest to mark as background the part of

the video where the person is explaining how to ride BMX

bikes even though the rider and BMX bikes are visible. For

action Layup drill in backetball, we clarify that the part of
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Figure 6: Comparing HACS Segments and ActivityNet. Top: comparing average number of action segments per video. On

average, HACS Segments has 1.8× action segments per video (2.8 Vs. 1.5 segments). Bottom: comparing average segment

duration. HACS segments are significantly shorter than those in ActivityNet (40.6 Vs. 51.4 seconds).

Input RGB Flow RGB+Flow

Class@1 80.3 72.2 83.5

Table 2: Evaluating I3D models [8] on the validation set of

HACS Clips.

the video where the player stands still or has finished the

shooting should be marked as background.

The efficacy of our guidelines can be measured in num-

bers: compared to ActivityNet, HACS has on average 1.8×

more action segments per video, and the average segment

duration is about 20% shorter, as shown in Figure 6. This

poses new challenges to action localization methods, which

have to localize more segments of shorter duration.

3.6. Distinguishing Properties of HACS

Unlike other recognition datasets where only a single

positive example is collected per video, HACS Clips in-

cludes also negative examples (each video contains 3 clips,

with the negative to positive ratio being roughly 1 to 2).

This could be used to model the discrepancy between ac-

tion and non-action content. Moreover, videos in HACS

Segments have both sparse clip annotation, which is a weak

form of supervision for localization [57, 49, 40], and dense

segment annotation, which can serve as the ground-truth

of localization. Such hybrid annotation can be used for

the task of weakly supervised action localization [57, 49],

reminiscent of point supervision [3] and scribble supervi-

sion [33] in image semantic segmentation.

4. Action Recognition on HACS Clips

4.1. Action Clip Classification

In this section, we train I3D [8] on the full HACS Clips

training set, and evaluate it on the validation set. We ex-

periment with both RGB frames and optical flow as in-

put. For efficiency, Farneback’s algorithm [14] is adopted

to compute optical flow. We also report results of combin-

ing RGB and optical flow by late fusion, where the final

prediction score is a weighted sum of the prediction scores

obtained from RGB and optical flow. We empirically set

fusion weights for RGB and optical flow to 0.6 and 0.4,

respectively. The results are shown in Table 2. We also

show the class-specific accuracy, as well as the distribution

of positive and negative clips per class in the supplement.

4.2. Results of Transfer Learning

Models trained on HACS Clips can be finetuned on other

recognition datasets. By comparing finetuned models with

models trained from scratch, we can assess the general-

ization performance of spatial-temporal features learned on

HACS Clips. We evaluate the transfer learning on 3 action

recognition benchmarks. On all benchmarks we observe

substantial gains by pre-training on HACS Clips.

Datasets. We use a total of 6 additional datasets for our

assessment. UCF-101, HMDB-51 and Kinetics-400 are

used as target benchmarks. Sports1M, Moments-in-Time

and Kinetics-600 [7], which is an extended version of the

original Kinetics-400 dataset, are used as comparative pre-

training datasets. For Kinetics-400, we report the accu-
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Input Pretraining UCF101 HMDB51 Kinetics400

RGB

None 75.0 39.4 69.9

Sports1M 92.8 68.3 71.0

Moments 92.4 69.6 71.6

Kinetics-600 94.9 73.4 72.9

HACS Clips 95.1 73.6 73.4

Flow

None 85.2 56.1 62.9

Sports1M 92.7 71.1 63.4

Moments 94.6 75.3 63.9

Kinetics-600 96.0 76.2 66.7

HACS Clips 95.7 76.5 67.2

Table 3: Comparisons of HACS Clips with other datasets

for pre-training I3D models. Results of UCF-101 and

HMDB-51 are computed on split 1. Moments denotes

Moments-In-Time dataset.

racy on the validation set. For evaluation metric, we use

Video@1 which is obtained by evenly sampling 10 clips in

the video, and averaging the predictions.

Results. We train I3D models [8] without any use of 2D-

to-3D inflation. When I3D models are pre-trained, we fur-

ther fine-tune them on target benchmarks. As shown in

Table 3, by pretraining on HACS Clips, the metrics are

substantially improved on all 3 benchmarks. On all tar-

get datasets, HACS Clips shows better generalization per-

formance compared to Sports1M, Moments-in-Time and

Kinetics-600, where Kinetics-600 is the strongest competi-

tor in this set. Sports1M annotations are noisy as they are

generated by a tag prediction algorithm. Also, the average

length of Sports1M videos is over 5 minutes and the tagged

action may only be present for a short period of time. This

introduces substantial temporal noise in learning spatial-

temporal feature representation. Compared to Moments-in-

Time, HACS Clips has a more fine-grained taxonomy for

human actions, which helps generalization to other datasets.

Compared to Kinetics-600, HACS Clips contains over 3×

more annotations in the training set, which also contributes

to the superior transfer learning performance.

Comparisons with other methods. In Table 4 we compare

with the state-of-the-art. Both I3D [8] and R(2+1)D [53]

model architectures are used here. For R(2+1)D, we report

results of models with both 34 and 101 residual units after

late fusion of RGB and flow scores. We compute video clas-

sifications by averaging predictions over 20 evenly-sampled

clips in each video. By using the off-the-shelf I3D and

R(2+1)D models, and leveraging a large-scale clip dataset,

our approach outperforms other methods [54, 16, 58, 8, 53]

on all 3 benchmarks.

Transfer learning on action localization. HACS Clips can

also be used to pretrain action localization models. Com-

pared with training from scratch, pretraining CDC mod-

els [48] on HACS Clips improves the average mAP by 8.6%

Pretrain Data Method UCF101 HMDB51 Kinetics-400

ImageNet

LTC-CNN [54] 92.7 67.2 N/A

ST-Multiplier Net [16] 94.2 68.9 N/A

TSN [58] 94.2 69.4 N/A

Sports1M T-S R(2+1)D-34 [53] 97.3 78.7 75.4

Kinetics-400 T-S I3D [8] 98.0 80.7 75.7

HACS Clips

T-S I3D 98.2 81.3 76.4

T-S R(2+1)D-34 98.0 79.8 76.1

T-S R(2+1)D-101 N/A N/A 77.0

Table 4: Comparing I3D and R(2+1)D models pretrained

on HACS Clips with prior work. For UCF-101 and HMDB-

51, average results over 3 splits are reported. Because

R(2+1)D-101 model has 2× more residual units and 1.3×

more parameters compared to R(2+1)D-34, it heavily over-

fits to the small datasets of UCF-101 and HDMB-51. Thus,

we omit these results. We use T-S to denote Two-Stream.

on THUMOS 14 and by 2.5% on ActivityNet, respectively.

See more detailed results in the supplement.

5. Action Localization on HACS Segments

We evaluate two action proposal generation methods and

one action localization approach on HACS Segments.

5.1. Results of Action Proposal Generation

Two action proposal generation methods are evaluated:

Boundary Sensitive Network (BSN) [35] and Temporal Ac-

tionness Grouping (TAG) [61]. We choose them because

they achieve SoTA results on THUMOS 14 and Activ-

ityNet benchmarks, and open-source implementations of

these methods are available. We mostly follow the original

training settings, and only highlight the differences below.

BSN Experiments. In the original work, snippet-level fea-

tures are 400D, arising from a concatenation of two 200D

probability vectors extracted from two TSN [58] models

trained on 200 action classes of ActivityNet using RGB in-

put and optical flow input, respectively. Analogously, here

we train two TSN models (respectively taking RGB and

flow as inputs) on HACS Clips with 200 action classes and

1 background class. The two 201D probability vectors from

the trained models are concatenated to form 402D snippet-

level features.

TAG Experiments. In the original work, two binary classi-

fiers (based on TSN [58]) are trained on ActivityNet using

RGB input and optical flow input, respectively. We use an-

notation in HACS Segments to train such binary classifiers.

We follow the original evaluation protocols, and report

two metrics: 1) Average Recall (AR) vs Average Num-

ber (AN) of proposals per video and 2) area under AR-AN

curve (AUC). Both are averaged over temporal Intersection

over Union (tIoU) thresholds from 0.5 to 0.95 at increments

of 0.05. Results are shown in Table 5 (Row 4 & 5) and
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Method Train/Test Dataset AR@100 AUC

BSN

ActivityNet 74.16 66.17

HACS Segments Mini 61.85 51.59

HACS Segments 63.62 53.41

TAG HACS Segments 55.88 49.15

Table 5: Action proposal generation results on ActivityNet

and HACS Segments. BSN results on ActivityNet are from

the original work [35]. Other results are obtained by run-

ning open-source implementations on HACS Segments.

Figure 7: Action proposal generation results of TAG (Left)

and BSN (Right) methods on HACS Segments.

Figure 7. Compared to TAG, BSN achieves both better

AR@100 and better AUC score. However, TAG achieves

higher AUC at high tIoU threshold 0.9 in Figure 7, indicat-

ing it is able to better localize action segment boundaries.

Comparing HACS Segments with ActivityNet. We use

BSN to compare the difficulty of action localization on

HACS Segments vs ActivityNet. While HACS Segments and

ActivityNet have validation sets of similar size (6K vs 5K

videos), the training set of HACS Segments is 3.8× larger

than that of ActivityNet (38K vs 10K videos). To have

a more fair comparison, we create HACS Segments Mini,

which contains 10K training videos (50 videos per class)

and the original HACS Segments validation set. We train

and test each model on the training and validation splits of

the same dataset (e.g., a model trained on HACS Segments

Mini is tested only on the validation set of HACS Segments,

not that of ActivityNet).

As shown in Table 5 (Row 2 & 3), compared to Activi-

tyNet, BSN achieves much lower AR@100 and AUC score

on HACS Segments Mini. This suggests HACS Segments

Mini is a more challenging localization benchmark as it has

more segments to localize in each video, and those seg-

ments have shorter duration. Note we do not experiment

with models trained on one dataset and tested on a differ-

ent one (say, trained on HACS Segments Mini and tested

on ActivityNet) as the definitions where actions start, last

and end may vary across datasets. Another finding is by

training BSN models on the HACS Segments full dataset,

AR@100 and AUC are improved by 1.77% and 1.82% in

Dataset 0.50 0.75 0.95 Average

ActivityNet [61] 43.26 28.70 5.63 28.28

HACS Segments Mini 24.89 16.04 4.50 15.93

HACS Segments 28.82 18.80 5.32 18.97

Table 6: Action localization results of SSN method for tIoU

thresholds ranging from 0.5 to 0.95. Metric is mAP (%) .

Results on ActivityNet are from the original work. Results

on HACS Segments are obtained by late fusion of scores

from RGB and Flow models.

Table 5 (Row 4), which suggests that larger training sets

lead to better accuracy.

Exploiting Negative Examples in HACS Clips. In HACS

Clips, we annotated 1M negative clips. Due to the proposed

clip sampling method, they include many hard negative ex-

amples, such as clips where both person and context are

present, but action is not happening. We have conducted

an ablation study on how they can help learn more useful

features for action proposal generation. Due to space con-

straints, the results are presented in supplement.

5.2. Results of Action Localization

We train and test the Structured Segment Network

(SSN) [61] on HACS Segments using its open-source im-

plementation.†. Results are reported in Table 6. Com-

pared to ActivityNet, localization average mAP on HACS

Segments Mini is 12.35% lower. Given that ActivityNet

and HACS Segments Mini have similar numbers and dura-

tions of untrimmed videos, the challenging nature of HACS

comes from precise segment annotations. The average mAP

gap between HACS Segments Mini and HACS Segments is

3.04%. This suggests that the reduction of training data hin-

ders the action localization performance, and that our full-

scale training set boosts the accuracy by a large margin.

6. Conclusion

We introduced a new video dataset with both sparse

and dense annotations. We have demonstrated the excel-

lent generalization performance of spatial-temporal feature

learned on HACS Clips due to its large scale. Compared

to other localization datasets, HACS Segments is not only

larger, but it also poses new challenges in action localiza-

tion through finer-scale temporal annotations. We hope the

new challenges in action recognition and localization posed

by HACS will inspire a new generation of methods and ar-

chitectures for modeling the high complexity of human ac-

tions.

†BSN [35] is not benchmarked because its open-source code does not

implement proposal classification.
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