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Abstract

In this paper we prove the Hadamard and the Fejér–Hadamard inequalities for the
extended generalized fractional integral operator involving the extended generalized
Mittag-Leffler function. The extended generalized Mittag-Leffler function includes
many known special functions. We have several such inequalities corresponding to
special cases of the extended generalized Mittag-Leffler function. Also there we note
the known results that can be obtained.

MSC: Primary 26A51; 26A33; secondary 33E15; 26D15

Keywords: Convex function;m-convex functions; Hadamard inequality;
Fejér–Hadamard inequality; Fractional integrals; Extended generalized Mittag-Leffler
function

1 Introduction

A real-valued function f : I →R, where I is an interval in R is called convex if

f
(

αx + (1 – α)y
)

≤ αf (x) + (1 – α)f (y),

where α ∈ [0, 1], x, y ∈ I .

Convex functions play a vital role in mathematical analysis. They have been considered

for defining and finding new dimensions of analysis. In [1] Toader define the concept of

m-convexity: an intermediate between usual convexity and star shape function.

Definition 1.1 A function f : [0,b]→R, b > 0, is said to bem-convex, wherem ∈ [0, 1], if

we have

f
(

tx +m(1 – t)y
)

≤ tf (x) +m(1 – t)f (y)

for all x, y ∈ [0,b] and t ∈ [0, 1].

If we take m = 1, then we recapture the concept of convex functions defined on [0,b],

and if we takem = 0, then we get the concept of starshaped functions defined on [0,b].We
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recall that f : [0,b] →R is called starshaped if

f (tx)≤ tf (x) for all t ∈ [0, 1] and x ∈ [0,b].

If we denote by Km(b) the set of m-convex functions on [0,b] for which f (0) < 0, then we

have

K1(b) ⊂ Km(b)⊂ K0(b),

whenever m ∈ (0, 1). Note that in the class K1(b) there are only convex functions f :

[0,b] →R for which f (0) ≤ 0 (see [2]). Anm-convex function need not be a convex func-

tion, as the following example shows.

Example 1.1 [3] The function f : [0,∞)→R, given by

f (x) =
1

12

(

x4 – 5x3 + 9x2 – 5x
)

is a 16
17
-convex function but it is not anm-convex function form ∈ ( 16

17
, 1].

For more results and inequalities related tom-convex functions one can consult for ex-

ample [2, 4–6]. In the literature the integral inequality

f

(

a + b

2

)

≤
1

b – a

∫ b

a

f (x)dx≤
f (a) + f (b)

2
, (1.1)

where f : I → R is a convex function on the interval I of real numbers and a,b ∈ I with

a < b, is known as the Hadamard inequality. If f is concave, then the above inequality

holds in the reverse direction. The Hadamard inequality has always retained the attention

ofmathematicians and a lot of results have been produced about it, for example see [6–12]

and the references cited therein.

In [13] Fejér gave a generalization of the Hadamard inequality as follows.

Theorem 1.1 Let f : [a,b]→R be a convex function and g : [a,b]→ R be a non-negative,

integrable and symmetric to a+b
2
. Then the following inequality holds:

f

(

a + b

2

)∫ b

a

g(x)dx≤

∫ b

a

f (x)g(x)dx≤
f (a) + f (b)

2

∫ b

a

g(x)dx. (1.2)

In the literature inequality (1.2) is known as the Fejér–Hadamard inequality.

Nowadays the Hadamard and the Fejér–Hadamard inequalities via fractional calculus

are in focus of researchers. Recently a lot of papers have been dedicated to this field (see

[4, 14–16] and the references therein). Fractional calculus refers to integration or differ-

entiation of fractional order, the origin of fractional calculus is as old as calculus. For a

historical survey of this field the reader is referred to [17–21].

Fractional integral inequalities are useful in establishing the uniqueness of solutions for

certain fractional partial differential equations. They also provide upper and lower bounds

for the solutions of fractional boundary value problems. Many researchers have explored
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certain extensions and generalizations of integral inequalities by involving fractional cal-

culus (see [14, 16, 22, 23]).

We are going to give the Hadamard and the Fejér–Hadamard inequalities for the

extended generalized fractional integral operator containing the extended generalized

Mittag-Leffler function [24]. We give a two sided definition of the extended generalized

fractional integral operator containing the extended generalized Mittag-Leffler function

as follows:

Definition 1.2 Let δ,α,β , τ , c ∈ C and R(δ),R(α),R(β),R(τ ),R(c) > 0, p ≥ 0 and q, r > 0.

Then the extended generalized fractional integral operator ǫ
ω,δ,q,r,c
·,α,β ,τ containing the ex-

tended generalized Mittag-Leffler function E
δ,r,q,c
α,β ,τ for a real-valued continuous function

f is defined by

(

ǫ
ω,δ,q,r,c
a+ ,α,β ,τ f

)

(x;p) =

∫ x

a

(x – t)β–1E
δ,r,q,c
α,β ,τ

(

ω(x – t)α ;p
)

f (t)dt, (1.3)

and

(

ǫ
ω,δ,q,r,c
b– ,α,β ,τ f

)

(x;p) =

∫ b

x

(t – x)β–1E
δ,r,q,c
α,β ,τ

(

ω(t – x)α ;p
)

f (t)dt, (1.4)

where the function E
δ,r,q,c
α,β ,τ (t;p) is the extended generalizedMittag-Leffler function defined

as

E
δ,r,q,c
α,β ,τ (t;p) =

∞
∑

n=0

βp(δ + nq, c – δ)

β(δ, c – δ)

(c)nq

Ŵ(αn + β)

zn

(τ )nr
, (1.5)

where the generalized beta function βp(x, y) is defined by

βp(x, y) =

∫ 1

0

t(x–1)(1 – t)y–1e
–p

t(1–t) dt. (1.6)

For ω = 0 along with p = 0, the integral operator ǫ
ω,δ,q,r,c
·,α,β ,τ would correspond essentially to

the two sided Riemann–Liouville fractional integral operator

Jβa+f (x) =
1

Ŵ(β)

∫ x

a

(x – t)β–1f (t)dt, β > 0,

J
β

b–f (x) =
1

Ŵ(β)

∫ b

x

(t – x)β–1f (t)dt, β > 0.

In [24–29] fractional boundary value problems and fractional differential equations are

studied along with properties of Mittag-Leffler function. In the following results we see

some properties of the Mittag-Leffler function [24].

Theorem 1.2 The series in (1.5) is absolutely convergent for all values of t provided that

q < r +R(α).Moreover, if q = r +R(α), then E
δ,r,q,c
α,β ,τ (t;p) converges for |t| < rrR(α)R(α)

qq
.



Kang et al. Journal of Inequalities and Applications  ( 2018)  2018:119 Page 4 of 11

Theorem 1.3 If α,β , τ , δ, c ∈C, ℜ(α),ℜ(β),ℜ(τ ) > 0, ℜ(c) > ℜ(δ) > 0 with p ≥ 0, r > 0 and

q < r +ℜ(α), then

E
δ,r,q,c
α,β ,τ (t;p) – E

δ,r,q,c
α,β ,τ–1(t;p) =

tr

1 – t

d

dt
E

δ,r,q,c
α,β ,τ–1(t;p), ℜ(τ ) > 1; (1.7)

E
δ,r,q,c
α,β ,τ (t;p) = βE

δ,r,q,c
α,β+1,τ (t;p) + αt

d

dt
E

δ,r,q,c
α,β+1,τ (t;p). (1.8)

We organize the paper so that in Sect. 2 we give the Hadamard and the Fejér–Hadamard

inequalities via the extended generalized fractional integral operator ǫ
ω,δ,q,r,c
·,α,β ,τ . Also we

mention the known results in particular. In Sect. 3 we extend the results of Sect. 2 via

m-convex functions and in particular we obtain the results of Sect. 2 on a reduced do-

main.

2 Hadamard and Fejér–Hadamard inequality for the extended generalized

Mittag-Leffler function

In the following we give the Hadamard and the Fejér–Hadamard inequalities for a convex

function via the extended generalized fractional integral operator containing the extended

generalized Mittag-Leffler function defined in (1.3) and (1.4). We also show that these

inequalities are generalizations of the Hadamard and the Fejér–Hadamard inequalities

for the fractional integrals given in [15, 16, 30].

Theorem 2.1 Let f : [a,b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a,b]. If

f is a convex function on [a,b], then the following inequality for the extended generalized

fractional integral holds:

f

(

a + b

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ 1

)

(b;p) ≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ f )(b;p) + (ǫ

ω′ ,δ,q,r,c
b– ,α,β ,τ f )(a;p)

2

≤

(

f (a) + f (b)

2

)

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ 1

)

(a;p), (2.1)

where ω′ = w
(b–a)α

.

Proof Since f is a convex function on [a,b], for t ∈ [0, 1] we have

f

(

(ta + (1 – t)b) + ((1 – t)a + tb)

2

)

≤
f (ta + (1 – t)b) + f ((1 – t)a + tb)

2
. (2.2)

Multiplying both sides of the above inequality with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p) we get

2tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

a + b

2

)

≤ tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)(

f
(

ta + (1 – t)b
)

+ f
(

(1 – t)a + tb
))

.
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Integrating with respect to t over [0, 1] we have

2f

(

a + b

2

)∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

dt

≤

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta + (1 – t)b
)

dt

+

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

(1 – t)a + tb
)

dt.

If we put u = at + (1 – t)b, then t = b–u
b–a

, and if v = (1 – t)a + tb, then t = v–a
b–a

. So using

Definition 1.2 one has

f

(

a + b

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ 1

)

(b;p) ≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ f )(b;p) + (ǫ

ω′ ,δ,q,r,c
b– ,α,β ,τ f )(a;p)

2
. (2.3)

Again by using the fact that f is a convex function on [a,b] and for t ∈ [0, 1] we have

f
(

ta + (1 – t)b
)

+ f
(

(1 – t)a + tb
)

≤ tf (a) + (1 – t)f (b) + (1 – t)f (a) + tf (b). (2.4)

Now multiplying with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p) and integrating over [0, 1] we get

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta + (1 – t)b
)

dt +

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

(1 – t)a + tb
)

dt

≤
[

f (a) + f (b)
]

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

dt,

from which by using a change of variables as for (2.3) and Definition 1.2 we get

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ f

)

(b;p) +
(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ f

)

(a;p) ≤
(

f (a) + f (b)
)(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ 1

)

(a;p). (2.5)

From the inequalities (2.3) and (2.5) we get the inequality in (2.1). �

In the following remark we mention some published results.

Remark 2.1 In Theorem 2.1:

(i) if we take p = 0, then we get [30, Theorem 2.1];

(ii) if we take ω = p = 0, then we get [16, Theorem 2];

(iii) if along ω = p = 0 we take α = 1, then we get (1.1).

In the following we give the Fejér–Hadamard inequality for the extended generalized

fractional integral operator containing the extended generalized Mittag-Leffler function

defined in (1.3) and (1.4).

Theorem 2.2 Let f : [a,b]→R be a convex function with 0≤ a < b and f ∈ L1[a,b]. Also,

let g : [a,b]→R be a function which is non-negative, integrable and symmetric about a+b
2
.
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Then the following inequality for the extended generalized fractional integral holds:

f

(

a + b

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ g

)

(b;p) ≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ fg)(b;p) + (ǫ

ω′ ,δ,q,r,c
b– ,α,β ,τ fg)(a;p)

2

≤
f (a) + f (b)

2

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(a;p), (2.6)

where ω′ = w
(b–a)α

.

Proof Multiplying (2.2) with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p)g(tb + (1 – t)a) we get

2tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

a + b

2

)

g
(

tb + (1 – t)a
)

≤ tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)(

f
(

ta + (1 – t)b
)

+ f
(

(1 – t)a + tb
))

g
(

tb + (1 – t)a
)

.

Integrating with respect to t over [0, 1] we have

2f

(

a + b

2

)∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

g
(

tb + (1 – t)a
)

dt

≤

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta + (1 – t)b
)

g
(

tb + (1 – t)a
)

dt

+

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

(1 – t)a + tb
)

g
(

tb + (1 – t)a
)

dt.

If we put u = at + (1 – t)b, then t = b–u
b–a

and if v = (1 – t)a + tb, then t = v–a
b–a

. So one has

2f

(

a + b

2

)∫ b

a

(b – u)β–1E
δ,r,q,c
α,β ,τ

(

ω

(

b – u

b – a

)α

: p

)

g(a + b – u)du

≤

∫ b

a

(b – u)β–1E
δ,r,q,c
α,β ,τ

(

ω

(

b – u

b – a

)α

;p

)

f (u)g(a + b – u)du

+

∫ a

b

(v – a)β–1E
δ,r,q,c
α,β ,τ

(

ω

(

v – a

b – a

)α

;p

)

f (v)g(a + b – v)dv.

By the symmetry of the function g about a+b
2

one can see g(a + b – x) = g(x), x ∈ [a,b],

therefore, using this fact and Definition 1.2, we have

f

(

a + b

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ g

)

(b;p) ≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ fg)(b;p) + (ǫ

ω′ ,δ,q,r,c
b– ,α,β ,τ fg)(a;p)

2
. (2.7)

Now multiplying (2.4) with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p)g(ta + (1 – t)b) and integrating with respect

to t over [0, 1] we get

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta + (1 – t)b
)

g
(

ta + (1 – t)b
)

dt

+

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

(1 – t)a + tb
)

g
(

ta + (1 – t)b
)

dt

≤
(

f (a) + f (b)
)

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

g
(

ta + (1 – t)b
)

dt.
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From this by a change of variables as for (2.7) Definition 1.2 we get

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ fg

)

(b;p) +
(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ fg

)

(a;p) ≤
(

f (a) + f (b)
)(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(a;p). (2.8)

From inequalities (2.8) and (2.7) we get the inequality in (2.6). �

In the following we mention some published results.

Remark 2.2 In Theorem 2.2:

(i) if we take g = 1, then we get Theorem 2.1;

(ii) if we take p = 0, then we get [30, Theorem 2.2];

(iii) if we take ω = p = 0, then we get [15, Theorem 2.2].

3 Hadamard and Fejér–Hadamard inequality form-convex function via the

extended generalizedMittag-Leffler function

In the following we give the Hadamard and the Fejér–Hadamard inequalities for an m-

convex function via the extended generalized fractional integral operator containing the

extended generalizedMittag-Leffler function defined in (1.3) and (1.4). We also show that

these inequalities are generalizations of the Hadamard and the Fejér–Hadamard inequal-

ities for the fractional integrals given in [4, 15, 16, 31].

Theorem 3.1 Let f : [0,∞) → R be a positive function. Let a,b ∈ [0,∞) with 0 ≤ a <mb

and f ∈ L1[a,mb]. If f is m-convex function on [a,mb], then the following inequality for the

extended generalized fractional integral holds:

f

(

a +mb

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ 1

)

(mb;p)

≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ f )(mb;p) +mβ+1(ǫ

mαω′ ,δ,q,r,c
b– ,α,β ,τ f )( a

m
;p)

2

≤
mβ+1

2

[

f (a) –m2f ( a
m2 )

mb – a

(

ǫ
mαω′ ,δ,q,r,c
b– ,α,β+1,τ 1

)

(

a

m
;p

)

+

(

f (b) +mf

(

a

m2

))

(

ǫ
mαω′ ,δ,q,r,c
b– ,α,β ,τ 1

)

(

a

m
;p

)]

, (3.1)

where ω′ = w
(mb–a)α

.

Proof Since f is anm-convex function on [a,mb], for t ∈ [0, 1] we have

f

(

(ta +m(1 – t)b) +m((1 – t) a
m
+ tb)

2

)

≤
f (ta +m(1 – t)b) +mf ((1 – t) a

m
+ tb)

2
. (3.2)
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Multiplying with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p) both sides of the above inequality we get

2tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

a +mb

2

)

≤ tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

(

f
(

ta +m(1 – t)b
)

+mf

(

(1 – t)
a

m
+ tb

))

.

Integrating with respect to t over [0, 1] we have

2f

(

a +mb

2

)∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

dt

≤

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta +m(1 – t)b
)

dt

+m

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

(1 – t)
a

m
+ tb

)

dt.

If we put u = at + m(1 – t)b, then t = mb–u
mb–a

and if v = (1 – t) a
m
+ tb, then t =

v– a
m

b– a
m
. So by

Definition 1.2 one has

f

(

a +mb

2

)

(

ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ 1

)

(mb;p)

≤
(ǫ

ω′ ,δ,q,r,c
a+ ,α,β ,τ f )(mb;p) +mβ+1(ǫ

mαω′ ,δ,q,r,c
b– ,α,β ,τ f )( a

m
;p)

2
. (3.3)

Again by using that f is anm-convex function we have

f
(

ta +m(1 – t)b
)

+mf

(

(1 – t)
a

m
+ tb

)

≤ tf (a) +m(1 – t)f (b) +m2(1 – t)f

(

a

m2

)

+mtf (b). (3.4)

Now multiplying with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p) and integrating with respect to t over [0, 1] we

get

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta +m(1 – t)b
)

dt

+m

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

(1 – t)
a

m
+ tb

)

dt

≤

[

f (a) –m2f

(

a

m2

)]∫ 1

0

tβE
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

dt

+m

[

f (b) +mf

(

a

m2

)]∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

dt.
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From this by using a change of variables as for (3.3) and Definition 1.2 we get

(ǫ
ω′ ,δ,q,r,c
a+ ,α,β ,τ f )(mb;p) +mβ+1(ǫ

mαω′ ,δ,q,r,c
b– ,α,β ,τ f )( a

m
;p)

2

≤
mβ+1

2

[

f (a) –m2f ( a
m2 )

mb – a

(

ǫ
mαω′ ,δ,q,r,c
b– ,α,β+1,τ 1

)

(

a

m
;p

)

+

(

f (b) +mf

(

a

m2

))

(

ǫ
mαω′ ,δ,q,r,c
b– ,α,β ,τ 1

)

(

a

m
;p

)]

. (3.5)

From inequalities (3.3) and (3.5) we get the inequality in (3.1). �

In the following remark we mention some published results.

Remark 3.1 In Theorem 3.1:

(i) if we take p = 0, then we get [31, Theorem 3];

(ii) if we take ω = p = 0, then we get [4, Theorem 2.1];

(iii) if along with ω = p = 0, m = 1, then we get [16, Theorem 2];

(iv) if we take ω = p = 0 along with α =m = 1, then we get (1.1);

(v) if we take m = 1, then the inequality (3.1) gives the inequality (2.1) of Theorem 2.1

on the domain of f as [0,b].

In the following we give the Fejér–Hadamard inequality for an m-convex function via

the extended generalized fractional integral operator defined in (1.3) and (1.4).

Theorem3.2 Let f : [0,∞) →R be am-convex function, a,b ∈ [0,∞)with 0≤ a <mband

f ∈ L1[a,mb]. Also, let g : [a,mb] → R be a function which is non-negative and integrable

on [a,mb]. If f (a+mb–mx) = f (x), then the following inequality for an extended generalized

fractional integral holds:

f

(

a +mb

2

)

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(

a

m
;p

)

≤
(1 +m)

2

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β+1,τ fg

)

(

a

m
;p

)

≤
1

2

[

f (a) –m2f ( a
m2 )

mb – a

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β+1,τ g

)

(

a

m
;p

)

+m

(

f (b) +mf

(

a

m2

))

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(

a

m
;p

)]

, (3.6)

where ω′ = w
(b– a

m )α
.

Proof Multiplying (3.2) with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p)g((1 – t) a
m
+ tb) we get

2tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

a +mb

2

)

g

(

(1 – t)
a

m
+ tb

)

≤ tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

(

f
(

ta +m(1 – t)b
)

+mf

(

(1 – t)
a

m
+ tb

))

g

(

(1 – t)
a

m
+ tb

)

.



Kang et al. Journal of Inequalities and Applications  ( 2018)  2018:119 Page 10 of 11

Integrating with respect to t over [0, 1] we have

2f

(

a +mb

2

)∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

g

(

(1 – t)
a

m
+ tb

)

dt

≤

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta +m(1 – t)b
)

g

(

(1 – t)
a

m
+ tb

)

dt

+m

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

(1 – t)
a

m
+ tb

)

g

(

(1 – t)
a

m
+ tb

)

dt. (3.7)

Setting x = (1 – t) a
m
+ tb and using f (a +mb –mx) = f (x) along with Definition 1.2 we get

f

(

a +mb

2

)

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(

a

m
;p

)

≤ (1 +m)
(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ fg

)

(

a

m
;p

)

. (3.8)

Now multiplying (3.4) with tβ–1E
δ,r,q,c
α,β ,τ (ωt

α ;p)g((1 – t) a
m
+ tb) and integrating with respect

to t over [0, 1] we get

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f
(

ta +m(1 – t)b
)

g

(

(1 – t)
a

m
+ tb

)

dt

+m

∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

f

(

(1 – t)
a

m
+ tb

)

g

(

(1 – t)
a

m
+ tb

)

dt

≤

[

f (a) –m2f

(

a

m2

)]∫ 1

0

tβE
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

g

(

(1 – t)
a

m
+ tb

)

dt

+m

[

f (b) +mf

(

a

m2

)]∫ 1

0

tβ–1E
δ,r,q,c
α,β ,τ

(

ωtα ;p
)

g

(

(1 – t)
a

m
+ tb

)

dt.

From this by setting x = (1 – t) a
m
+ tb and using f (a +mb –mx) = f (x) it can be seen

(1 +m)

2

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β+1,τ fg

)

(

a

m

)

≤
1

2

[

f (a) –m2f ( a
m2 )

mb – a

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β+1,τ g

)

(

a

m

)

+m

(

f (b) +mf

(

a

m2

))

(

ǫ
ω′ ,δ,q,r,c
b– ,α,β ,τ g

)

(

a

m

)]

. (3.9)

From inequalities (3.8) and (3.9) we get the inequality in (3.6). �

Remark 3.2 In Theorem 3.2:

(i) if we take g = 1, then we get Theorem 3.1;

(ii) if we take g = 1,m = 1, then we get Theorem 2.1 on the domain of f as [0,b];

(iii) if we take ω = p = 0 along with m = 1, then we get [15, Theorem 2.1].
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4. Farid, G., Ur Rehman, A., Tariq, B., Waheed, A.: On Hadamard type inequalities form-convex function via fractional

integrals. J. Inequal. Spec. Funct. 7(4), 150–167 (2016)
5. Farid, G., Tariq, B.: Some integral inequalities form-convex functions via fractional integrals. J. Inequal. Spec. Funct. 8,

2217–4303 (2017)
6. Ozdemir, M.E., Avci, M., Set, E.: On some inequalities of Hermite–Hadamard type viam-convexity. Appl. Math. Lett.

23(9), 1065–1070 (2010)
7. Azpeitia, A.G.: Convex functions and the Hadamard inequality. Rev. Colomb. Mat. 28, 7–12 (1994)
8. Bakula, M.K., Pecaric, J.: Note on some Hadamard type inequalities. J. Inequal. Pure Appl. Math. 5(3), 74 (2004)
9. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real

numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)
10. Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA

Monographs. Victoria University, Melbourne (2000)
11. Set, E., Ozdemir, M.E., Dragomir, S.S.: On the Hermite–Hadamard inequality and other integral inequalities involving

two functions. J. Inequal. Appl. 2010, Article ID 148102 (2010)
12. Set, E., Ozdemir, M.E., Dragomir, S.S.: On Hadamard-type inequalities involving several kinds of convexity. J. Inequal.

Appl. 2010, Article ID 286845 (2010)
13. Fejér, L.: Uberdie Fourierreihen, II. Math. Naturwise. Anz Ungar. Akad., Wiss. 24, 369–390 (1906) (in Hungarian)
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15. Şcan, I.: Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ.
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