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In this note we prove the following theorem.

THEOREM 1. Let f be an analytic function defined in the unit disc {z \ \z\ < 1} by
X

f(z) = £ ckz"k where nk + l/nk ^ q > 1. Then f is normal if and only if f is Bloch if and
k = 0

only if Mm sup \ck\ < co.

J. S. Hwang [3] has proved the above theorem in the special case where ck = n'k" for
some m > 1 and (nk+x/nk) -> GO as k -> oo.

The proof of Theorem 1 is based on ideas of W. Fuchs and techniques which go
back to Hardy and Littlewood. Throughout the remainder of the paper p0 will denote
the maximum of 2 log 20/{q — 1 —log q) and log 10/(log q — 1 +q~l).

Consider the associated real valued function F defined by

oc

F{x)= X x"*, nk + l/nkq> 1 .
n = 0

By accentuating the dominance of the largest term of this series by successive
differentiations Fuchs [2] proved for all integers p with p ^ p0 that Fu'\x) behaves in
certain intervals like a single term. To be precise, if p ^ p0 and v is sufficiently large,
then for any s in the interval

we have the inequality

X nk(nk-l)...(nk-p+l)s'« ^ 1/4 n,{nv- l ) . . . (n r -p+ 1) s'". (1)

This observation about the associated real valued function F lets us prove the following
important result.

THEOREM 2. Let f be an analyticfunction defined in {z | \z\ < 1} by f(z) = £ ck z"\
nk + i/nk *> 4 > 1, where lim sup \ck\ = oo. Then for all integers p with p ^ p0 and all
M > 0, there is an s such that

(l-\z\)»\P"Xz)\> M

for every z on the circle \z\ = s.
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Proof. Let n(r) = sup \ck\r"k. The analyticity of / in \z\ < 1 and lim sup \ck\ = co
k

together imply that nif) is a monotone increasing function which tends to infinity
as r -> 1.

Let p be an arbitrary integer greater than p0. Choose r0 such that
Mro) ^ 4M(2e)p/p\. Let u be the largest integer such that

\cK>i4ro)/2. (2)

We note that r0 can be chosen near enough to 1 so that nv ^ p , and we assume
henceforth that r0 is so chosen. Now set s = soro where s0 = exp(—p/nL). Then

\s^-" (3)

Using (1) and (2) we obtain

X nk(nk-1)... K - P + l)|cfc|
**••

p k ^ o

< l/2nv(nv-1)

Thus from (3) and (4) we find

And therefore

which concludes the proof of Theorem 2.

Proof of Theorem I. Pommerenke [8] proved lim sup \ck\ < oo implies / is Bloch,
and it is well known that Bloch functions are normal [9, p. 268]. It therefore suffices to
prove that lim sup \ck\ = oo implies / is not normal.

Fix an integer p for which p > p0. Lappan [4] proved that if/ is normal, then there
is a finite constant K such that

K
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for all z in the unit disc. According to Theorem 2 there is a sequence of radii sn such that
for \z\ = sn

If min |/(z)| on \z\ = sn tends to oo, then / has Koebe arcs and is therefore non-normal
[9, p. 267]. If min |/(z)| on \z\ = sn does not tend to oo, then by passing to a subsequence
we can find an integer M and a sequence of points zn, \zn\ = sn, such that
| / ( z j | < M < oo. For this sequence of points

which proves that (6) cannot hold. Therefore / must be non-normal.

00

COROLLARY. Let f be defined in the unit disc by f{z) = £ kkz2k. Then all of its

derivatives and all of its integrals are non-normal functions which are analytic in

Remark 1. Motivated by a result of Mac Lane [5, p. 46], Bonar [1, p. 59] posed the
following question. If / is a strongly annular function, can / be written as
/(z) = g(z) + h{z) where g{z) = YJ

akz>lk> lim inf ̂ k + 1/^/ft > 3, and h{z) is bounded in the
unit disc? The answer is no. To see this, let F{z) = £2*z2\ Since nk + l/nk = 2, and
kfcl -• oo, it is an easy consequence of Theorem 2 that for an integer p > p0, there is an
increasing sequence of positive numbers sn such that (1 — |z|)p|F(p)(z)| ^ n for all z on the
circle \z\ = sn. Thus Flp) is strongly annular. Suppose F(p\z) could be written as
g(z) + h(z) where g(z) = J / i j A l iminf^ j + i /^ > 3, and h is bounded in the unit disc.
The coefficients in the power series expansion of h about zero must go to zero since h is
bounded. Therefore for k sufficiently large the index set {n}} must contain all exponents
of the form {2j-p}JJ

=k. Consequently, 3 < liminf/i j+1/^ ^ 2, which is absurd. An
appropriate modification works for any q > 1.

Remark 2. Piranian [7] asked whether a bounded function of finite area must
have a normal derivative. Theorem 1 lets us answer this in the negative. Let / be defined
by

j\z)= £ n(2"+l)-1z2lI+1 = £ ajzj.

Then / is bounded by £"2"" , and Y,J\aj\2 ^ Z " 2 2~" shows that / has finite area.
Theorem 1 guarantees that / '(z) = £ nz2" defines a non-normal function in the unit
disc.

We close with two open questions.

Question 1. If f(z) = Y^ckz"\ nk+i/nk ^ q > 1, limsup|cfc| = oo, must / be
annular? If the maximum modulus of / grows rapidly enough, the answer is yes [c.f. 6,
Thm. 4].

Question 2. What is the best value for p0 for which Theorem 2 is true?
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