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HADAMARD MATRICES AND 6-CODES OF LENGTH 3n

C. H. YANG!

ABSTRACT. It is found that four-symbol 6-codes of length ¢ = 3n can be
composed for odd n < 59 or n = 2910°26¢ 4 1, where all a, b and ¢ > 0.
Consequently new families of Hadamard matrices of orders 4tw and 20tw can
be constructed, where w is the order of Williamson matrices.

Introduction. An Hadamard matrix H, = (h;;) of order n is an n X n matrix
with entries 1 or —1 such that H, H Z; = nl,, where I, is the n X n identity matrix
and T indicates the transposed matrix. In H,, row vectors v; = (hs1, hs2, .- -, hin)
are orthogonal, i.e. v;-v; = Y p_; hiachjxk =0, 1 # 5. H, exists only if n = 1,2,
or 4k.

A sequence of vectors V = (vk)n = (v1,v2,...,Vn), Where vy is one of m
orthonormal vectors 71,1%3,...,%, or their negatives, is said to be an m-symbol
6-code of length n, if '

(I v(j) = 0 for j 5~ 0, where v(j) = Y 7] vk - Vkt; is the nonperiodic
auto-correlation function of V. Another characterization of V' = (vg), being
an m-symbol 6-code is that its associated polynomial V(2) = Y p_, vkzk—! =
7y Pi(2)i;, where Pj(2) = 3¢, 21, 1 < j < m, satisfies

() pjk € {0,1,—1} and 377, |pje] = 1 (1 < k < n); and

(W) 7, |Pj(2)> = n, for any 2 on the unit circle K = {z € C: |z| =1} =
{z = exp(iz): 0 < z < 2}, where C is the complex field and { = v/—1.

Hadamard matrices of orders 4tw and 20tw can be composed if there exist a
four-symbol é-code of length ¢ and Williamson matrices of order w (see [1]).

For four-symbol 6-codes, we can let ¢, = (1,0,0,0), .2 = (0,1,0,0), 23 =
(0,0,1, 0), 14 = (0,0,0, 1) and v = (gk, T, Sk, tk). Then

(1) ks Ty Sky e € {0,1,—1} and  |qe| + |re| + [sel + [te] = 1,

which corresponds to condition (II). Condition (I) becomes

(2) q(s) + () + s(7) +t(j) =0 forj 0,

where p(j) is the auto-correlation function of a sequence P = (px). And (IO)
becomes

QI + |RI* +S]* +|T|* =n foranyz€ K,
where P stands for the associated polynomial P(z) of a sequence (px). From now
on we shall use the same P to represent both a sequence (px) and its associated
polynomial Y~ prz*—1.
Four sequences @, R, S and T of length n satisfying conditions (1) and (2) are
called Turyn sequences (or T-sequences) of length n (abbreviated as T'S(n)).
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Four (1, —1) sequences U = (Uk)m+p, W = (Wk)m+p; X = (Tk)m and ¥ =
(yx)m (where p > 0) will be called Turyn base sequences for length 2m + p
(abbreviated as TBS(2m + p)) if they satisfy

3) w(g) +w() + (1) +y(5) =0 forj #0.
Condition (3) is also equivalent to
U2 + WP+ |IX|* 4+ [Y|* = 2(2m +p) for anyz € K.

If TBS(2m + p): U,W; X and Y exist, then T'S(2m + p) can be formed (cf.
(1]) as follows: 3(U + W,0), (U — W,0), 3(0/, X +Y), and %(0', X —Y'), where
0 = 0,, (the sequence of zeros of length m) and 0/ = 0pp4-p.

THEOREM. LetU = (Uk)mtp, W = (Wk)m+p; X = (Tk)m andY = (yx)m be
TBS(n) for n = 2m + p. Then the following are T'S(3n): 2

Q= SU+W,X +Y;0,0, —W)',0),

R= (U —W,X —Y;0,0;—(U +W)",0),

¥ § =50, 0,U +W,—(X + V)0, (X —Y))
T = 5(0,0,U — W, —(X — Y0, —(X +Y)"),
or
Q= 3(U—W), 06U +W,X +Y;0,0),
i R= %(—(U L W), 0,U —W,X —Y;0,0),
? § = 30, (X —Y)30,0U + W, —(X +Y)),
T= %(0’,—()( +Y)50,0U —W,—(X —Y)),
where A* = (an,aN—1,-..,a1) 1 the reverse of A = (a1,az,...,aN).

LEMMA. Leta, b, ¢ and d be polynomials with real coefficients in z € K. And
lete=a+b+c, f=a—b+d, g=a—c—d,andh=b—c+d. Then

lel? 4 1£1? + 191> + |hf* = 3(lal? + [b]> + [e|* + |d|*) foranyz € K.

The Lemma can be proved easily by straightforward computations and by ob-
serving that |p|? = pp/, where p’ = p(2—!) for any 2 € K.

PROOF OF THEOREM. Let a = U, b = —2""™X, ¢ = —2z?"~™Y"*,
and d = —2z?"W* in the Lemma. Then as sequences, e = (U,—X;0/,—Y™),
f=U,X;0,0,—W*), g = (U,0;0/,Y*;W*) and h = (0, —X;0,Y*;,—W*).
Consequently g* = (W,Y;0/,0;U*) and h* = (—W,Y;0/, —X*;0'). In case (4),
we have @ = (f+9¢*)/2, R=(f—¢*)/2, S = 2™(e—h*)/2,and T = z"(e-+h*)/2.
By noting that |2| = 1 and |p*|? = |p|? since |p*(2)| = |p(z—!)|, we obtain |@Q|? +

2This neat form of case (4), which contains less *’s than my original one, was suggested by
R. J. Turyn.
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IR1>+1S1? + T = (lel* + | 1> + 91> + |I*)/2 = 3(|al® + [b]* +[c|* +|d|?)/2 =
3(|UJ2 + [W)? 4 |X|? 4+ |Y|?)/2 = 3n, for any z € K. Similarly we can establish
case (5) by letting a = X*, b = 2™U*, ¢ = —2"T"W and d = 2?"Y in the
Lemma.

Since TBS(n) are known to exist for odd n < 59 or n = 2210°26¢ + 1 (cf. [1,
2, 3]), TS(3n) can be composed for these n. Consequently four-symbol é-codes of
length 3n can be found for these n.
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