HADAMARD MATRICES AND δ-CODES OF LENGTH $3 n$

C. H. YANG ${ }^{1}$

Abstract

It is found that four-symbol δ-codes of length $t=3 n$ can be composed for odd $n \leq 59$ or $n=2^{a} 10^{b} 26^{c}+1$, where all a, b and $c \geq 0$. Consequently new families of Hadamard matrices of orders $4 t w$ and $20 t w$ can be constructed, where w is the order of Williamson matrices.

Introduction. An Hadamard matrix $H_{n}=\left(h_{i j}\right)$ of order n is an $n \times n$ matrix with entries 1 or -1 such that $H_{n} H_{n}^{T}=n I_{n}$, where I_{n} is the $n \times n$ identity matrix and T indicates the transposed matrix. In H_{n}, row vectors $v_{i}=\left(h_{i 1}, h_{i 2}, \ldots, h_{i n}\right)$ are orthogonal, i.e. $v_{i} \cdot v_{j} \equiv \sum_{k=1}^{n} h_{i k} h_{j k}=0, i \neq j . H_{n}$ exists only if $n=1,2$, or $4 k$.

A sequence of vectors $V=\left(v_{k}\right)_{n} \equiv\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, where v_{k} is one of m orthonormal vectors $i_{1}, i_{2}, \ldots, i_{m}$ or their negatives, is said to be an m-symbol δ-code of length n, if
(I) $v(j)=0$ for $j \neq 0$, where $v(j) \equiv \sum_{k=1}^{n-j} v_{k} \cdot v_{k+j}$ is the nonperiodic auto-correlation function of V. Another characterization of $V=\left(v_{k}\right)_{n}$ being an m-symbol δ-code is that its associated polynomial $V(z) \equiv \sum_{k=1}^{n} v_{k} z^{k-1}=$ $\sum_{j=1}^{m} P_{j}(z) i_{j}$, where $P_{j}(z)=\sum_{k=1}^{n} p_{j k} z^{k-1}, 1 \leq j \leq m$, satisfies
(II) $p_{j k} \in\{0,1,-1\}$ and $\sum_{j=1}^{m}\left|p_{j k}\right|=1(1 \leq k \leq n)$; and
(III) $\sum_{j=1}^{m}\left|P_{j}(z)\right|^{2}=n$, for any z on the unit circle $K=\{z \in \mathbf{C}:|z|=1\}=$ $\{z=\exp (i x): 0 \leq x \leq 2 \pi\}$, where \mathbf{C} is the complex field and $i=\sqrt{-1}$.

Hadamard matrices of orders $4 t w$ and $20 t w$ can be composed if there exist a four-symbol δ-code of length t and Williamson matrices of order w (see [1]).

For four-symbol δ-codes, we can let $i_{1}=(1,0,0,0), i_{2}=(0,1,0,0), i_{3}=$ $(0,0,1,0), i_{4}=(0,0,0,1)$ and $v_{k}=\left(q_{k}, r_{k}, s_{k}, t_{k}\right)$. Then

$$
\begin{equation*}
q_{k}, r_{k}, s_{k}, t_{k} \in\{0,1,-1\} \quad \text { and } \quad\left|q_{k}\right|+\left|r_{k}\right|+\left|s_{k}\right|+\left|t_{k}\right|=1, \tag{1}
\end{equation*}
$$

which corresponds to condition (II). Condition (I) becomes

$$
\begin{equation*}
q(j)+r(j)+s(j)+t(j)=0 \quad \text { for } j \neq 0 \tag{2}
\end{equation*}
$$

where $p(j)$ is the auto-correlation function of a sequence $P=\left(p_{k}\right)$. And (III) becomes

$$
|Q|^{2}+|R|^{2}+|S|^{2}+|T|^{2}=n \quad \text { for any } z \in K
$$

where P stands for the associated polynomial $P(z)$ of a sequence (p_{k}). From now on we shall use the same P to represent both a sequence $\left(p_{k}\right)$ and its associated polynomial $\sum p_{k} z^{k-1}$.

Four sequences Q, R, S and T of length n satisfying conditions (1) and (2) are called Turyn sequences (or T-sequences) of length n (abbreviated as $T S(n)$).

[^0]Four $(1,-1)$ sequences $U=\left(u_{k}\right)_{m+p}, W=\left(w_{k}\right)_{m+p} ; X=\left(x_{k}\right)_{m}$ and $Y=$ $\left(y_{k}\right)_{m}$ (where $p \geq 0$) will be called Turyn base sequences for length $2 m+p$ (abbreviated as $T B S(2 m+p)$) if they satisfy

$$
\begin{equation*}
u(j)+w(j)+x(j)+y(j)=0 \quad \text { for } j \neq 0 \tag{3}
\end{equation*}
$$

Condition (3) is also equivalent to

$$
|U|^{2}+|W|^{2}+|X|^{2}+|Y|^{2}=2(2 m+p) \quad \text { for any } z \in K
$$

If $T B S(2 m+p): U, W ; X$ and Y exist, then $T S(2 m+p)$ can be formed (cf. [1]) as follows: $\frac{1}{2}\left(U^{\prime}+W, 0\right), \frac{1}{2}(U-W, 0), \frac{1}{2}\left(0^{\prime}, X+Y\right)$, and $\frac{1}{2}\left(0^{\prime}, X-Y\right)$, where $0=0_{m}$ (the sequence of zeros of length m) and $0^{\prime}=0_{m+p}$.

ThEOREM. Let $U=\left(u_{k}\right)_{m+p}, W=\left(w_{k}\right)_{m+p} ; X=\left(x_{k}\right)_{m}$ and $Y=\left(y_{k}\right)_{m}$ be $T B S(n)$ for $n=2 m+p$. Then the following are $T S(3 n):{ }^{2}$

$$
\begin{align*}
Q & =\frac{1}{2}\left(U+W, X+Y ; 0^{\prime}, 0 ;(U-W)^{*}, 0\right) \\
R & =\frac{1}{2}\left(U-W, X-Y ; 0^{\prime}, 0 ;-(U+W)^{*}, 0\right) \\
S & =\frac{1}{2}\left(0^{\prime}, 0 ; U+W,-(X+Y) ; 0^{\prime},(X-Y)^{*}\right) \tag{4}\\
T & =\frac{1}{2}\left(0^{\prime}, 0 ; U-W,-(X-Y) ; 0^{\prime},-(X+Y)^{*}\right)
\end{align*}
$$

or

$$
\begin{align*}
Q & =\frac{1}{2}\left((U-W)^{*}, 0 ; U+W, X+Y ; 0^{\prime}, 0\right) \\
R & =\frac{1}{2}\left(-(U+W)^{*}, 0 ; U-W, X-Y ; 0^{\prime}, 0\right) \tag{5}\\
S & =\frac{1}{2}\left(0^{\prime},(X-Y)^{*} ; 0^{\prime}, 0 ; U+W,-(X+Y)\right) \\
T & =\frac{1}{2}\left(0^{\prime},-(X+Y)^{*} ; 0^{\prime}, 0 ; U-W,-(X-Y)\right),
\end{align*}
$$

where $A^{*}=\left(a_{N}, a_{N-1}, \ldots, a_{1}\right)$ is the reverse of $A=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$.
Lemma. Let a, b, c and d be polynomials with real coefficients in $z \in K$. And let $e=a+b+c, f=a-b+d, g=a-c-d$, and $h=b-c+d$. Then

$$
|e|^{2}+|f|^{2}+|g|^{2}+|h|^{2}=3\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}\right) \quad \text { for any } z \in K
$$

The Lemma can be proved easily by straightforward computations and by observing that $|p|^{2}=p p^{\prime}$, where $p^{\prime}=p\left(z^{-1}\right)$ for any $z \in K$.

PROOF OF THEOREM. Let $a=U, b=-z^{n-m} X, c=-z^{2 n-m} Y^{*}$, and $d=-z^{2 n} W^{*}$ in the Lemma. Then as sequences, $e=\left(U,-X ; 0^{\prime},-Y^{*}\right)$, $f=\left(U, X ; 0^{\prime}, 0 ;-W^{*}\right), g=\left(U, 0 ; 0^{\prime}, Y^{*} ; W^{*}\right)$ and $h=\left(0,-X ; 0^{\prime}, Y^{*} ;-W^{*}\right)$. Consequently $g^{*}=\left(W, Y ; 0^{\prime}, 0 ; U^{*}\right)$ and $h^{*}=\left(-W, Y ; 0^{\prime},-X^{*} ; 0^{\prime}\right)$. In case (4), we have $Q=\left(f+g^{*}\right) / 2, R=\left(f-g^{*}\right) / 2, S=z^{n}\left(e-h^{*}\right) / 2$, and $T=z^{n}\left(e+h^{*}\right) / 2$. By noting that $|z|=1$ and $\left|p^{*}\right|^{2}=|p|^{2}$ since $\left|p^{*}(z)\right|=\left|p\left(z^{-1}\right)\right|$, we obtain $|Q|^{2}+$

[^1]$|R|^{2}+|S|^{2}+|T|^{2}=\left(|e|^{2}+|f|^{2}+|g|^{2}+|h|^{2}\right) / 2=3\left(|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}\right) / 2=$ $3\left(|U|^{2}+|W|^{2}+|X|^{2}+|Y|^{2}\right) / 2=3 n$, for any $z \in K$. Similarly we can establish case (5) by letting $a=X^{*}, b=z^{m} U^{*}, c=-z^{n+m} W$ and $d=z^{2 n} Y$ in the Lemma.

Since $T B S(n)$ are known to exist for odd $n \leq 59$ or $n=2^{a} 10^{b} 26^{c}+1$ (cf. [1, 2, 3]), $T S(3 n)$ can be composed for these n. Consequently four-symbol δ-codes of length $3 n$ can be found for these n.

References

1. R. J. Turyn, Hadamard matrices, Baumert-Hall units, four symbol sequences, pulse compression, and surface wave encodings, J. Combin. Theory 16A (1974), 313-333.
2. \qquad Computation of certain Hadamard matrices, Notices Amer. Math. Soc. 20 (1973), A-1.
3. __, Personal communication (1980).
4. J. S. Wallis, On Hadamard matrices, J. Combin. Theory 18A (1975), 149-164.
5. A. V. Geramita and J. Seberry, Orthogonal designs, Dekker, New York, 1979.
6. A. C. Mukhopadyay, Some infinite classes of Hadamard matrices J. Combin. Theory 25A (1978), 128-141.
7. C. H. Yang, Hadamard matrices, finite sequences, and polynomials defined on the unit circle, Math. Comp. 33 (1979), 688-693.

Department of Mathematical Sciences, SUNY-College at Oneonta, Oneonta, New York 13820

[^0]: Received by the editors September 26, 1980 and, in revised form, February 6, 1981.
 1980 Mathematics Subject Classification. Primary 05B20, 62K05, 05A19.
 ${ }^{1}$ Partially supported by SUNY Summer Research Grant.

[^1]: ${ }^{2}$ This neat form of case (4), which contains less *'s than my original one, was suggested by R. J. Turyn.

