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If a Williamson matrix of order 4w exists and a special type of design, a set 
of Baumert-Hall units of order 4t, exists, then there exists a Hadamard matrix 
of order 4tw. A number of special Baumert-Hall sets of units, including an 
infinite class, are constructed here; these give the densest known classes of 
Hadamard matrices. The constructions relate to various topics such as pulse 
compression and image encodings. 

1. INTRODUCTION 

The main purpose of this paper is the construction of some new 
Hadamard matrices. The particular approach here is the construction of 
sets of Baumert-Hall units; these are combinatorial designs first construc- 
ted by Baumert and Hall in [l] for t = 3. Given a Williamson matrix (an 
Hadamard matrix of quaternion type) of order h and a set of Baumert- 
Hall units of order 4t, an Hadamard matrix of order th can be constructed. 
The fact that the Paley Hadamard matrices of order 2(q + I), q a prime 
power = 1 (mod 4), can be put in the quaternion form (see [6]) means 
that every construction of a set of Baumert-Hall units with t odd con- 
structs CT(~) Hadamard matrices of order = 4 (mod 8) and < n, c > 0. 
(If the Baumert-Hall units are of order 4t, i.e., 4t x 4t matrices, c = 1/4t.) 
The only other known construction of Hadamard matrices which yields 
as many as cx(n) Hadamard matrices is that of Paley for the matrices of 
order q + 1, q a prime power = - 1 (mod 4). The constructions presented 
here depend on theorem 2 which uses a theorem of Goethals and Seidel 
[2], as well as an idea common in the fields of radar pulse compression 
and very recent work in surface wave encodings. Briefly, the construction 
depends on certain quadruples of sequences whose autocorrelation func- 
tions (when the sequences are viewed as periodic, i.e., functions on a 
finite cyclic group) add up to 0. Such quadruples are constructed here by 
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requiring that the non-periodic autocorrelations (i.e., as functions on Z) 
add up to zero, a more stringent requirement. A number of such quadruples 

are constructed here, some possible forms are suggested, and one infinite 
class is presented. Some other Baumert-Hall units are constructed and a 
composition for them is proved. It seems very probable that there is some 
construction of Hadamard matrices of all orders 4t which is very analogous 
to the matrices discussed here: Williamson matrices exist of all orders 4t 
fort,<31,t=9Sandt=(q+1)/2,qaprimepower-l(mod4).The 
theorem in [2] removes the necessity for the symmetry of the individual 
matrices for the construction of an Hadamard matrix; finally, we present 
here constructions both for the Hadamard matrices and the Baumert-Hall 
units which depend on various quadruples of commuting *I matrices of 
order t which satisfy 

AA’ + BB’ + CC’ + DD’ = 4tI, (1) 

and it seems likely that such quadruples exist for all t, e.g., with A, B, C, D 
multicirculants. 

Pairs of f 1 sequences (xi), (vi) which satisfy 

n-i 

were discussed in connection with spectrometry and radar pulse com- 
pression (see [3] and [5]). Since ej(x) + c,-j(x) = q(x) = Cln xixi+j , two 
fl sequences which satisfy the non-periodic condition cj(x) + cj(y) = 0 
for all j > 0 will certainly satisfy the periodic condition a&~) + aj(y) = 
x1” x~x~+~ + yiyi+j = 0. (If X is the circulant with first row (xi), a&) is 
the (m, m +,j) entry of XX’ for all m; a similar statement applies to 
multicirculants.) Quadruples of f 1 sequences which satisfy 

Cj(X) + Cj(Y> + Cj(z) + Cj(W) = 0 

had been used by Golay (see [3]) in applications to spectrometry, and 
n-tuples of sequences which satisfy CF=, cj(x(“)) = 0 have recently been 
considered in connection with surface wave encodings. It is interesting 
that the original Golay applications, described in [3], used the sequences 
for spatial encoding; the more recent ones use the sequences for phase 
encoding of waveforms. A pair of sequences (xi), (yi) which satisfies 
zlm x~x~+~ + yiyi+j = 0 for all j + 0 (mod m) will yield a quadruple of 
such sequences of length m/2 for m > 1. ([$ -,‘,I is an Hadamard matrix 
and thus m is even. The quadruple arises from the odd and even subscript 
subsequences of x and y; cf. [5] and Lemma 6 below.) 

I want to express my gratitude to Dr. L. D. Baumert for many helpful 
comments. 
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2. BAUMERT-HALL UNITS 

Williamson ([9], see also [4]) considered Hadamard matrices of order 4t 
which are constructed by means of a quadruple of symmetric commuting 
&l matrices of order t which satisfy equation (1) above. (It is only 
necessary to assume that A, B, C, D satisfy the six equations XY’ = YX’ 
but aside from a few examples, two mentioned in [7], all the known 
examples of such quadruples have A, B, C, D symmetric.) Williamson used 
symmetric commuting circulants; his construction is A x Z + B x i + 
C x j + D x k, where Z, i, j, k are the 4 x 4 matrices which correspond 
to the quaternion units. A generalization of this construction which 
removes symmetry requirements, but not the commutativity condition, 
was given by Goethals and Seidel in [2], by exhibiting the matrix 

Ml M,R M,R M,R 

-M,R Ml -M,‘R M,‘R 

-M,R Ma’R Ml -M,‘R 
(2) 

-M,R -MM,‘R M,R’ Ml 

where (see [8]) R is a monomial matrix which satisfies 

and 

R’ = R 

RM,R = Mi’ 

(or RM, = Mi’R). 

(3) 

For circulant or multicirculant Mi , R can be taken as the matrix which 
reverses the order of coordinates. If the Mi are &I matrices and com- 
mute, the matrix (2) is Hadamard. This is a generalization of the statement 
in [2]. 

The Baumert-Hall units arise from the idea (see [I]) of using quadruples 
of symmetric A, B, C, D satisfying (1) to form other Hadamard matrices 
by finding matrices of the form 

H=Axe,+Bxe,+Cxe,+Dxe, (4) 

where the ei are matrices of order 4t which are supplementary, in the 
sense that the entries of the e, are 0, + 1, - 1 and for each pair i, j precisely 
one of the four is not 0, i.e., 

i I(edij I = 1, 
k=l 

all i, j, 

and finally that the matrix H in (3) satisfy 

HH’ = t(A” + B2 + C2 + D2) Z (5) 
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for A, B, C, D symmetric. One such set was constructed in [l] for t = 3; 
since then, a very interesting set was constructed by Welch for t = 5. 
J. Wallis found some for t = 7, 9, 11 independently of this paper. If such 
a set of order 4t exists, and a Williamson matrix (A, B, C, D commuting, 
symmetric) of order n exists, then the matrix in (4) is Hadamard. 

THEOREM 1. e,,e,,e,, e4 are a set of Baumert-Hall units if and only if 
they are supplementary and 

e,ei’ = t1, 

eiej’ + eiei’ = 0, i#j. 

It follows from these two conditions that the matrices ejet’/t form a 
quaternion basis. The proof is completely straightforward (see [8]). 

The next theorem is the key to the constructions in this paper. To 
motivate it, the proof being completely elementary, we offer the following 
comments: We wish to construct a square matrix of order 4t whose 
elements are -&A, IB, &C, &D and which satisfies (5). The Goethals- 
Seidel construction (2) suggests that we need only find four circulants of 
order t whose entries are &-A ... &D, whose autocorrelation functions 
add up to zero and which together contain in any row precisely t terms 
5X for X = A, B, C, D. The second condition can be satisfied auto- 
matically if we think of the four circulants as a sequence of four-dimen- 
sional vectors, whose components are &A, &B, SC, 50, and we require 
each letter to occur once in each vector. We now restrict ourselves to a 
subset of eight of these 4! x 24 = 384 vectors: Let the vector (A, B, C, D) 
correspond to Q = A + Bi + Cj + Dk, where 1, i, j, k are the quater- 
nion units, and consider the eight vectors obtained by multiplying Q by 
one of the eight quaternion units. Thus, 

Q : (A, 4 C, D) -Q : (-A, -B, -C, -0) 

Qi : (-B, A, D, -C) -Qi : (B, -A, -D, C) 

Qj: (-C, -D, A, B) -Qj: (C, D, -A, -B) 

Qk : (-D, C, -B, A) -Qk : (D, -C, B, -A) 

It is clear that Qu, . Qvz = 0 if u1 i AU,, and Qvl . Q(uvz) = 
u(A2 + B2 + C2 -+ 0”) if u = il. For simplicity of notation, we write 
&I for &Q, etc. 

The preceding discussion (which depends on the Goethals-Seidel 
construction), immediately suggests Baumert-Hall units of orders 12 and 
20: It is clear that the two sequences of vectors 

1, i, .i 

1, i, i, j, -j 
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give rise to two quadruples of sequences (of lengths 3 and 5, respectively) 
with terms &A, &B, -&C, fD whose autocorrelation functions add up to 
zero. Specifically, these are, e.g., 

A, -B, -C 

B, A, -D 

C, D, A 

D, -C, B 

A, -B, -B, -C, C 

B, A, A, -D, D 

C, D, D, A, -A 

D, -C, -C, B, -B 

We summarize the preceding in 

LEMMA 1. If there exists a circulant or multicirculant of order t whose 
terms are &l, fi, +j, fk, subject to the rules m2 = 1, m * (-m) = - 1 
and mn = 0 for m # -&In and a, = 0 for j # 0, then there exists a set of 

Baumert-Hall units of order 4t. 

We shall refer to sequences whose terms are fvj where the vj are any of 
n orthonormal vectors (n = 4 above) as n-symbol sequences. Thus, 
ordinary binary sequences (terms 51) would be called one-symbol 
sequences. 

Quadruples of sequences such as those above must clearly have the 
property that the sum of the four autocorrelation functions is zero if we 
replace each of A, B, C, D by fl or -1 (independently); if we replace 
each of A, B, C, D by + 1, the eight vectors we use are precisely those 
four-dimensional vectors with all components f 1 which have an even 
number of the components + 1, or, equivalently, for which the product of 
the components is + 1. Replacing one or three of A, B, C, D by - 1 would 
simply require the product to be -1. (This applies to 4-dimensional 
vectors, i.e., quadruples of sequences. In general, an m-symbol sequence 
can be realized as a sequence of n-dimensional vectors, with components 
&l, i.e., n sequences, where n > m and there are m orthogonal vectors 
with components & 1 of dimension n. In general, assuming the truth of the 
Paley conjecture that there are Hadamard matrices of all orders = 0 
(mod 4) n = 4 [m + 3/4] if m > 2; n = 2 if m = 2.) 

The preceding motivates the following theorem, whose proof is trivial: 

. 
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THEOREM 2. Let Ml, M,, M3, M4 be four commuting matrices of 
order t with entries & 1 which are symmetrized by R (i.e., ikfi , R satisfy (3)) 
which satisfy (1) and such that xl4 Mi has all entries 0, 54. Then there 
exists a set of Baumert-Hall units of order 4. 

The construction has been described above. The four matrices ei are all 
of the form (2). The explicit formulas are as follows: Let Mi be the four 
commuting t x t matrices, and let 

Then (specifying the ei by the first rows of the form (2)) 

e, : [aI -&!i,R -&i,R -&i4R] 

e2 : [i@, &?f,R R,R -m3R] 

e3 : [a3 -Mi,R &?,R - &RI 
e,: [R, ilij,R --R,R HA 

(6) 

are a set of Baumert-Hall units, and the Baumert-Hall matrix is 
Ae, + Be, + Ce, + De, . It is immediate that the Ri have 0, &l entries 
and are supplementary. 

3. n-SYMBOL 6 CODES 

We now turn to the construction of other sets of Baumert-Hall units, 
based on Theorem 2. Our discussion depends on the elementary properties 
of various convolution algebras, most often functions defined on Z with 
values in .Z4 or Z2; we do not reprove well-known elementary properties. 

We shall now define an n-symbol 6 code of length m as a sequence V of 
length m of vectors, each of which is -&I~, where the uj are a set of n 
orthonormal vectors and such that c#) = 0 for j # 0. For n = 2 or 4, 
such a set of vectors can be realized with components &I. Thus a 2- 
symbol 6 code corresponds to a pair of binary sequences X and Y such 
that q(X) + ci(Y) = 0 for j # 0; these were called complementary 
sequences by Golay. Some properties of such pairs were rediscovered by 
Welti; all this is discussed in [5]. It is interesting that Welti approached 
the subject from the point of view of two orthonormal vectors, each 
corresponding to one of two orthogonal waveforms. Golay and Welti 
independently proved the theorem (also discovered by the late 



HADAMARD MATRICES 319 

Arthur Kohlenberg; as he was then editor of PGZT,l he would not allow 
mention of his name in [5]) which states that, if there is a 2-symbol S code 
of length m, there is also one of length 2m. The proof can be stated as 
follows: If X, Y are the two binary sequences, then X; Y (X followed by Y) 
and X; -Y will also have the complementary property. We can restate 
this elegantly by saying that the sequence of length 2m is X written in 
terms of +l followed by Yin terms of kk (k a symbol orthogonal to 1). 
In this paper, we are concerned with 6 codes of odd length. 

LEMMA 3. If there is an n-symbol 6 code of length m, then there is also 
an (n + 1)-symbol6 code of length m + 1. 

This lemma is proved trivially by following the length m code by one 
new orthogonal symbol. Together with the theorem alluded to above, and 
the results of the previous section, this gives Baumert-Hall units of all 
orders 4. (2” + l), since 2-symbol6 codes of length 2” exist for all k. (I do 
not believe even Hadamard matrices of all these orders were known 
previously.) We can extend this result. We first make the following 
definition: If S is a sequence, we will say the sequence T is an orthogonal 
complement of S if S*T -= 0. S*T is the correlation function: S*T(v) = 
& S(w) T(u + w). We are mainly interested in the case of S, T sequences 
of vectors with all components & 1, i.e., S, T n-tuples of binary sequences. 
In the “engineering” literature, orthogonal complements are called 
“mates” of S. 

LEMMA 4. An n-symbol sequence S (n even) has at least one n-symbol 
orthogonal complement. 

Arrange the symbols in pairs: (vr , v,), (v3, v,), etc. To construct T, we 
first write S backwards, and then interchange the symbols by the mono- 
mial permutation which generalizes the quaternion units: vziel -+ u,~ , 
Vzi + -Vzi-l . It can be verified immediately that T is an orthogonal 
complement. This gives, in fact, several such (for n > 2) since the 
n symbols can be paired in different ways. It would be interesting to find a 
family of more than two orthogonal sequences (Si * Sj = 0 for i # j). In 
terms of binary (real) sequences, if we have n sequences, n even 

1 Professional Group Information Theory. 
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then an orthogonal complement is 

where X* denotes X backwards: X*(w) = X(-w). This, of course, yields 
an orthogonal complement even when S is not an n-symbol sequence, and 
is a S code if S is. 

Golay proved that, if A, B and X, Y are two pairs of complementary 
sequences of lengths m, and m2, then A x X; B x Y and A x Y*; 
-B x X* are also complementary, of length 2mlm, . We improve on 
this theorem. 

LEMMA 5. If U is an n-symbol 6 code qf length m, , n even and W is a 
2-symbol6 code of length m2 , there is an n-symbol S code of length m1m2 . 

To prove the lemma, we fix one orthogonal complement of U, say V. 
We then replace the occurrences of one of the two symbols in W by U, and 
of the other by V. In terms of binary sequences, e.g., for n = 2, if A, B are 
complementary of length m, and X, Y are complementary of length m, , 
we have 

Ax(yj-B*x(vj, Bx(vj+A*x(yj 

as the two complementary pairs. 

COROLLARY. There exist complementary binary sequences (two-symbol 
6 codes) of length 2a10b26c for all a, b, c, 3 0. 

By Lemma 5, we need only exhibit such codes of lengths 2, 10,26. Using 
1 and k as the two orthogonal symbols, we have 1, k of length 2 and 

I, -1, -1, k, -1, k, -1, -k, -k, k or l,k,l,k,-k,l,l,-k,-1,k 

(Golay, WI> 

1,1,1,-1,-1,1,1,1,-1,1,-1,-1,k,-1,k,-k,k,-k,-k,k,k,-k,k,k,k,k 
(Golay [l I], also [12]). 

The proof of Lemma 5 is suggested by the composition theorems for 
complex Hadamard matrices [7, 81. 
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THEOREM 3. There are three-symbol 6 codes of all lengths 2a10”26C + 1 
and, therefore, Baumert-Hall units of orders 4(2a10”26c + 1). 

This summarizes Lemma 5 and the corollary, in view of Theorem 2. It 
is interesting that Theorem 3 represents a sort of “bordering” of one 
Hadamard matrix to get one of size m + 4 from one of size m. 

Our main interest is in Baumert-Hall units of order 4t with t odd. In 
passing, we mention several constructions with t even. (Theorem 4 was 
also discovered by Plotkin [18].) 

THEOREM 4. If there are four commuting, symmetrized by R matrices of 
order t with entries &l which satisfy (l), then there is a set of Baumert-Hall 
units of order 8t. If the matrices are circulants of order t whose first rows 

satisfy c,(A) + c,(B) + cj(C) + cj(D) = 0, there are such matrices of 
order 2t which form a four-symbol 6 code. 

The second part of the theorem follows from the quadruple: 

A; B 

A; -B 

C; D 

C; -D 

((A, C) written in 1, i followed by (B, D) written in j, k) for which the 
product of corresponding elements is clearly 1. The first part follows from 
the analogous construction 

which are symmetrized by [OR i]. 

COROLLARY. There exist Baumert-Hall units of order 2(q + 1) or 
4(q + 1) if q is a prime power = - 1 or + 1 (mod 4), respectively. 

The four matrices can be taken as circulants if q = 1 (mod 4) or 
3 (mod 8) and as skew circulants whenever q = 3 (mod 4) (see [S]). The 
construction is not of much interest for Hadamard matrices since, if H is 
any Hadamard matrix of order h > 1, not necessarily of the Williamson 
type, and q is a prime power, then there are Hadamard matrices of order 
(q + 1) h or (q + l/2) h as q = 1 or -1 (mod 4). This follows from the 
existence of complex Hadamard matrices of order q + 1 or (q + 1)/2, 
respectively [8]. 
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THEOREM 5. For k = 2, 3,4, if there is a k-symbol 6 code of length m 
then m can be expressed as a sum of k squares. In particular, there are no 
three-symbol codes if m = - 1 (mod 8). 

For k = 2, this is well known and follows from the identity 
(C xJz + (C yJ2 = 2n + &.,, xi (x~x~+~ + yiyi+J so that the non- 
periodic condition is not necessary. For k = 3 or 4, replace the orthogonal 
vectors by the quaternion vectors with f 1 components. Then if (xi), (y,), 
(zJ, (wJ are the four sequences of length m we have 

(1 Xi)% + (C Yi)2 + (C zjjz + (1 wi)l = 4m 

or 

(C 
xi + Yi f zi + wj )2 f ic xi - yj ; zi + wj 12 

By the definition of a four-symbol code, the terms in parentheses are 
integers. If we had a three-symbol code, we can assume we do not use the 
vector (I, 1, 1, 1) in which case two of the four terms xi , yi , zi , wi are 
always + 1, the other two - 1, so that xi + yi + zi + wi = 0 for all i. Of 
course, the conclusion that m is a sum of four squares does not depend on 
the existence of a 6 code. Again, only the periodic conditions a? = 0 are 
necessary. 

We have now produced an infinite number of Baumert-Hall sets. These 
come from three-symbol codes, and the above theorem shows that there 
cannot be such codes of orders 7, 15, 23... . We now present some simple 
theorems and hand computations to produce other sets. 

We first produce four-symbol 6 codes of length 13. One such is to be 
found in [3]; it can be verified that the product of corresponding terms of 
the four binary sequences on p. 471 is - 1. The sequence is: 1, i,,j, k, 1, 1, 
--i, 1, -1, -j, j, j, -k. Another can be derived from the following 
lemma: 

LEMMA 6. If there is a two-symbol 6 code of length m > 1, then there is 
a four-symbol 6 code of length m/2. 

It is clear that m must be even. It is known that, if x, = f 1, then 
x,-,+~ is &k, where 1 and k are the two orthogonal vectors. (In terms of 
binary sequences (xi) and (y,), we have x~x~+~-~ yj yVn+l-i = - 1.) This is 
very easily checked; it does not extend to three-symbol 6 codes, as for 
example in 1, i, ,j, -i, j. If we have a two-symbol 6 code S, decompose it as 
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S, and S, , the odd index and even index terms. (S = S,/S,). Then (S, , S,*) 
is a 8 code; the terms are (f 1, fk) or (fk, -i-l) so that we have four 
orthogonal vectors and their negatives. The S code of length 13 derived in 
this way is: 1, 1, -1, 1, -1, -1, i, i, j, -i,,j, i, j. 

The converse of Lemma 6 cannot be true, since there are four-symbol 
6 codes of length 6. 

Because the discussion of the following point is not quite complete in [5], 
we point out that a two-symbol 6 code of length m is equivalent to a pair 
of complementary binary sequences of length m and implies the existence 
of a doubled or interleaved two-symbol S code of length 2m where doubled 
means 1 * X, k * Y with X, Y binary and interleaved means 1 * X/k * Y: 

1x1, ky,, 1x2, ky, 7.‘. . A two-symbol 6 code of length m is equivalent to 
a binary sequence of length 2m with cZj = 0 for all j > 0; the sequence 
corresponds to X/Y with X, Y the two binary sequences. 

LEMMA 7. IfX is a binary sequence of odd length m, then c,~-~(X) = 0 
for all j > 0 if and only if, with X = X,/X, , the odd-length sequence of 

X,, , X, is symmetric and the other one skew. 

By symmetric, we mean yj = yniI+, and by skew yi = -yn+rer, 
where n is the length of the sequence in question. The lemma is known 
and straightforward (the proof is analogous to part of Theorem 6). 

THEOREM 6. Suppose there are two binary sequences X and Y of length 
m + 1 and two of length m, Z and W, such that cj(X) + q(Y) + q(Z) + 

ci( W) = 0 for all j > 0. Then there is a four-symbol S code of length 
2m + 1, and 

%&+2-j = YiYm+z-j > 2<j<m, 

zjznz+l-j = wjwm+l-j 2 1 <j<m. 

The theorem assumes the existence of a S code of length m + 1 in which 
the vectors are not necessarily orthogonal and all but the last have com- 
ponents f 1; the last has two components 0. 

The four-symbol S code of length 2m + 1 can be realized as (X, Y) 
written in &l, *i followed by (Z, W) written in +j, *k; for example, 
as the quadruple of binary sequences 

x; z Xl z 

x; -z 
or also 

x/-z 
r; w y/ w 
Y; -w Y/-W 

where it is clear that the product of corresponding terms is 1. 
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The sequences produced in this way are analogous to the “doubled” 
sequences mentioned above, in that they are of the form A; B where the 
symbol sets in A and B are disjoint. 

The proof of the second assertion is standard; we use the fact that, if 
the ui are all &I, then xi” ui = 0 implies 

fi ui = (--ly. 

We have the equation for ci, 1 < j < m - 1, 

m+1-3 m-i 

; (Wi+j + YiYiJ + c (.wi+j + Wi+j) = 0, (7) 
1 

which involves 2(2(m - j) + 1) terms, so that, letting 

we get 

xi = xi&n+2-iYiYna+2-i 3 zI = zizm+l-iwi~m+l-i P 

m+14 m-j 

9 ZJZi=-l, l<j<m-1, (f-3) 
1 

since (7) involves, e.g., the first and last m + 1 - j of the xi . We also have 

from xlxm+l + Y~Y,+, = 0 that X, = -1. Multiplying two successive 
equations (8) and using %I = -1 with (8) forj = m - 1 

Z~,,.& = 1, 1 <i<m-1. 

Since Xi = X,+2-i , Ii = Zm+l-i , we get from (9) 

(9) 

- - 
%+1-iG?l+1-i = 1, 1 <j,<?.V--1, 

or (10) 
XiZi = 1, 2<i<m. 

Comparison of (9) and (10) shows & = Z, = *** = zm, and thus the 5& 
are also equal for 2 < i ,( m. Finally, we note that, if m is even, m = 2t, 

%+1 = x:+1 yF+l = 1, while, if m is odd, m = 2t - 1, Zt = zt2wt2 = 1, so 
that in either case Zi = 1 = zi+I , 1 ,( i < m - 1, the second assertion 
of the theorem. 

COROLLARY. If there are binary sequences X, Z, W of length m, such 

that 2ci(X) + ci(Z) + cj( W) = 0 f or all j > 0, then there are four-symbol 
6 codes of length 2m f 1. 

We have the sequences X; 1, X; - 1 of length m + 1 and Z, W of length 
m which satisfy the conditions of Theorem 6. This is also an example of 
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Theorem 4, with X = A = C, Z = B, W = D followed by one new 
symbol as in Theorem 3. 

THEOREM 7. Suppose X, Y, Z, W are as in Theorem 6, and that 

(a) for m even, X is symmetric and Z is skew; 
(b) for m odd, X is skew and Z is symmetric. 

Then there is a four-symbol 6 code of length 4m + 3 and 

(a) if m is even, 2m + 1 is a sum of two squares; 
(b) ifm is odd, 2m - 1 is a sum of two squares. 

Proof. By Lemma 7, the sequence X/Z has Cj = 0 for j odd. The 
required 6 code then is X/Z; iY/jW, k, where iY denotes the binary 
sequence Y written in terms of +i instead of -+l. The quadruple of 
binary sequences is 

x/z; Y/W ; 1 

-w2 Y/-W, -1 

x/z; - Y/-- w; 1 

x/z; -Y/W ; --I 

The proof of the second part is again a simple application of the sum of 
squares identity 

( 1 $ 
2 xi = c xi2 f nT1 (Cj(X) + &-j(X)). 

If m is even Z and, by Theorem 6, Ware skew so that zi + z,+,-~ = 0, and 
C zi = C wi = 0. Therefore, 

(C xtj2 + (C Yij’ + (2 26)’ + (C Wi), = 2(m + 1) + 2m + C 0 

so that 2(2m + 1) = (C xi>2 + (C yJ2, and therefore 2m + 1 is a sum of 
two squares. If m is odd, X is skew and, by Theorem 6, yi = -ym+2-i for 
2 < i < m, so that C xi = 0, C yd = 2y, , and we have 

and 

4 + (c wij2 + (c zij2 = 2(2m + 11, 

2(2m - 1) = (C wij2 + (1 z,j2. 

Theorems 6 and 7 provide an easy means of calculating four-symbol 6 
codes of small lengths. The two smallest multiples of 4 for which 
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Hadamard matrices are not known are 188 = 4.47 and 236 = 4.59. A 
construction of a four-symbol 6 code of length 47 by Theorem 7 is impos- 
sible since then m = 11 and 2m - 1 = 21 is not a sum of two squares. 
However, a construction of a four-symbol 6 code of length 59 is given 
below. Construction of quadruples of sequences satisfying the conditions 
of Theorem 7 is facilitated by the following considerations: We can 
reverse any of the sequences and multiply any of them by - 1. If m is even, 
we have X symmetric, and yr = -Y~+~, so that yz = ym is equal to 
either y1 or yrnfl , and we can, by reversing Y if necessary, assume that 
x, = y1 = yz = z1 = WI = 1. The same is true if m is.odd. Then c,-, = 0 
shows that x2 = 1. The equations which the sequences must satisfy can be 
halved in length by using the symmetry relations of Theorem 6, and the 
reduced equations can be used to extract product relations (as in the proof 
of Theorem 6) which are not independent, so that some relations are 
apparent immediately. The remaining conditions can be satisfied by various 
forms of trial and error, including the appeal to the sum of squares 
relations. As examples, using the normalizations x1 = y1 = yz = z1 = 
w1 = 1, and x2 = I proved above, we have the following examples for 
small m (note that for m < 4 the constructions are now immediate or 
almost immediate): 

+- +++ ++-- ++-++ +++--- 
++ Sf- ++-+ ++++- ++-+-+ 
+ +- +++ ++-- ++-++ 
+ +- +-+ +-+- ++-++ 

+++-+++ ++-+-+-- 
++---+- ++++---+ 
++-+-- +++-+++ 
++-+-- +--+--+ 

The above examples construct four-symbol 6 codes by Theorem 6 for 
length < 15 and by Theorem 7 for length E - 1 (mod 4) and < 31. 
Theorem 3 exhibits such codes of lengths 17,21. We now have different 
constructions for several lengths, e.g., 11, 15, 27. The Theorem 6 set of 
length 13 (m = 6) is identical to the one derived from the complementary 
sequence of length 26. The following example gives 6 codes of lengths 29 
and 59 (by Theorems 6 and 7, respectively). (This gives the first known 
example of an Hadamard matrix of order 4.59 = 236.) 

++-+++-+-+++-++ 
+++-++---++-++- 
++++--+-++---- 
+----+-+-++++- 
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4. REMARKS 

It seems very likely that four-symbol S codes of all lengths exist. This 
would require proof only for odd length. Theorems 6 and 7 suggest some 
possible forms for such codes. Theorem 7, of course, cannot give examples 
for all m, as shown by the second part of the theorem. m = 8 and 9, 
lengths 35 and 39, are not ruled out by Theorem 7 but no such codes of 
those lengths exist; this is very simple to verify using the method of 
computation described. 

The construction of Theorem 6 seems most promising. It can be viewed 
as finding a complementary pair of two-symbol sequences of lengths m and 
m + 1, respectively, to form a S code of length 2m + 1. It is analogous 
in this sense to Theorem 3, which uses a two-symbol S code of length n 
and a length 1 code to form a three-symbol S code of length n + 1. We 
now consider other possible analogous ways of forming S codes. As in 
Theorem 6, we consider two pairs of binary sequences X and Y of length 
n > m and Z and W of length m, with p = n - m odd, (in Theorem 6, 
p = l), such that the resulting quadruple has cj = 0 for j > 0. As in 
Theorem 6, we define 

xi = X&+1-iYiYn+G 7 

zi = z.z z m+l-iWiWmtl-i 9 

and we note that xi = 2,+1-i , Zi = Z,+l-i . 

THEOREM 8. If X, Y, 2, W are binary sequences such that cj = 0 for 

the sequence of four vectors, with X, Y of length n, Z, W of length m, 
n - m = p odd, p > 1, then m = kp + 1, n = (k + 1)p + 1. 

We remark that, for an arbitrary collection of binary sequences with 
cj = 0 for all j > 0, it is trivial that the number of sequences of each 
length is even. Other theorems analogous to Theorem 8 can be proved 
similarly; two pairs and p odd are the only case which interests us here. (In 
general, adding quadruples of sequences of the same length will not affect 
the conclusions.) 

We have the equations 

F (XiXi+j + yi yi+j) = 0, m < j < n - 1, 

n-i m-i 

T (xixi+j + YiYi+j) + ; (ZiZi+j + WiWi+j) = 0, 1 < j 9 m - 1, 
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from which we deduce, as in Theorem 6, 

n-5 
fl xi = (-I)“-‘, m <j < n - 1, 

1 

n-i m-5 

~fi&,,,=(.-l)P(m-j)+~= -1, 1 <j<m 

1 

Equation (11) with j = n - 1, is 

Xl = --I 

and then the product of two successive equations (11) gives 

xi = -1, 1 <i,(n--m=p. 

- 

(l!) 

1. (12) 

(13) 

(If we disregard z and w, we have derived the condition on two-symbol 
8 codes alluded to earlier.) 

Since we have, e.g., &-’ Xi = I-IF”-’ xiyi I&” Xjyj = 5Z1 , we also get 
from (12) 

qz, = -1, 
(14) 

Xn+l--i2m+l-i = XiZi = 1, 2<i<m-1. 

However, we get from (12), with k = m - j, 

n-i m-j 
-l=,,,,iI=~~i~~~i~ii, (15) 

valid for 1 < k < m - 1. Since we have L& = - 1 for 1 < i < p, 
Qjzi = - 1. Thus 

xk+& = 1, l,<k<m-1. (16) 

We can now see that 

Zja+l = 1, .ip + 1 -c m, 

Zjp+i = -1 = xj,+i 9 (jp + i) < m, 2 d i < p, (17) 

Rjs+l = 1, jp+l <m,j>O. 

We have already seen this for j = 0 in equations (13) and (14), and we 
showed x~+~ = 1 above. By induction on j, we have for I < jp + i < m -p 

zit+i = zm-j%+i+1 

= S,-je-i+l by (14) 
- 

= xn+l-Cn--ip-i+l) = %+1)9+i 

= ~(5+*)s+i by (14). 
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This proves equations (17). It is now clear that m 3 1 (modp). In fact, 
if this is not true, let I be the largest integer 2 1 (modp) and less than m. 
Then m - r < p, and (17) shows Z, = 1, so Z,++l = 1. Since 
4 - r + 1 < p, this contradicts (17), proving the theorem. 

The theorem actually reveals something of the structure of such sequen- 
ces (equations (17)). As an example, we have for p = 3, m = 4, n = 7, 

the quadruples 

ll--w--ww--11 

ll--w--1--wl-1 

lwlw 

lW--IW 

with w = &l. 

COROLLARY. A quadruple of sequences satisfying the conditions of 

Theorem 8 satisjies Xi = - 1, i < p, and equations (17). 

Theorem 8 shows that the variety of doubled four-symbol 6 codes of 
length t depends on the factorization of t - 2. It seems that the form 
suggested by Theorem 6 is the most likely form for the doubled codes. 

The corollary of Theorem 6 suggests another possible form (quadruples 
of the form X, X, Y, 2 of length t which yield four-symbol 6 codes of 
length 2t + 1). This is possible only when 4t = 2x2 + y2 + z2 with X, y, z 
of the same parity as t, so it is impossible, for example, for t = 14. 
However, it is easy to show that there are no such quadruples of length 6. 
We use the transformation A : vi + (- l>i vi applied to the three sequences. 
This leaves invariant the 6 code property (also the four-symbol property). 
We then see that we must have 

4 = xx, + x212 + (Yl + Y2j2 + @I + z212, 

4t = 2(x, - x212 + (Y1 - Y2j2 + (Zl - z212, 

where, e.g., x1 , x2 are the sums of the even subscript and odd subscript 
terms of X, xi, yi , Zi must have the parity of t/2 when t is even, or be even 
and odd in pairs when t is odd. For t = 6, it is easy to verify there is no 
such decomposition. 

The transformation A exhibits some interesting forms of 6 codes gotten 
by the method of Theorem 6 from sequences satisfying the conditions of 
Theorem 7. The transformation will preserve the symmetry of the odd 
length sequences but will change the skew sequences of even length into 
symmetric sequences (if the length is n, and the sequence wi , by symmetry 
we now mean wi = w,+~-~ ). The four-symbol code of length 2m + 1 
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obtained by the method of Theorem 6 from the four sequences obtained 
by applying A to the sequences satisfying the conditions of Theorem 7 
will then clearly be symmetric about the center of symmetry of the odd 
length sequences except at the one point corresponding to the end-points 
of the original two sequences of length m + 1. This applies to both of the 
constructions 

x; z xi z 

x; -z 
and 

X/-Z 

Y; w ri w 

Y; -w Y/-W 

Williamson [9] has shown that a four-symbol 6 code cannot be sym- 
metric: if the four binary sequences are symmetric and x,, = y,, = z,, = 
w0 = 1, then xiyiziwi = -1 for i # 0. 

By analogy with the theorem for two symbol 6 codes, i.e., complemen- 
tary sequences, we mention that a set of n sequences with ci = 0 is 
equivalent (by interleaving) to a single sequence with cj, = 0. Orthogonal 
complements translate into sequences whose cross-correlation with the 
original is 0 at all multiples of n. Finally, much of this has been phrased 
for functions on Z but is valid for finite Abelian groups. For example, in 
the next theorem, we need a four-symbol code but cj = 0 can be replaced 
by correlation zero on a finite Abelian group. 

We might also consider the possibility of constructing a four-symbol 6 
code from more than two pairs of sequences as in Theorems 6 and 8. The 
four-symbol condition then implies we must restrict ourselves to four 
sequences X, Y, Z, W of lengths m, m, n, p, respectively, such that the 
6-tuple of sequences X, Y, Z, Z, W, W has cj = 0 for j > 0, and we ask 
that m + IZ + p be odd. It is then easy to verify, proceeding as in 
Theorem 6, that the only such constructions are those of Theorem 3 for 
m < n (Z, W complementary, m = l), the construction of the corollary 
toTheorem6(m=n,p=l)orwhenm=n,p=m-1,whicharean 
example of Theorem 8 (k = 1, the four sequences are Z; W, Z; - W, 
X, Y). Examples of the last construction are (m = 4, 6, 8) 

x +-+- +-++-+ +--+---+ 

Y +--- +++--+ +++----+ 
Z +--+ +-+++- +z++--z- 

W +++ +---- +++-+++ 

with z either + I or - 1. 
The statements about the possibilities of constructions are proved as in 
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Theorem 8. If m, n, p are all > 1, then c, = 0 shows X, = 1, and thus 
either m = n, m > p or n = p, m < n. In the latter case, we conclude that 
Xi=-1 (assuming m+n+p is odd, so m=2t+l) for i>l so 
x t+1 = - 1, which is impossible. If m = n, m > p, we have, as in 
Theorem 8, that Xi = -1 for i <p, whereas Xi = 1 for i 3 p, so 
p=m-1. 

The method of calculation described after Theorem 6 is applicable 
whenever the reflection coefficients 

tits+1--i 

with s the length of the sequence (ti) are known for each of the four 
sequences X, Y, Z, W. In that case, we can use Theorem 6 to construct 
the 6 code. To fill the gap t = 25 in our examples, the following was 
derived with a somewhat arbitrarily chosen set of reflection coefficients: 

++-+-+++-+-++ 
+++-------++- 

++a-++-++a-- 
+--a+-+---a+- 

By a construction analogous to Theorem 3, we can prove another 
composition theorem. Welch has exhibited a very elegant set of Baumert- 
Hall units of order 20. To exhibit it, let m denote the matrix iV with the 
sign of the diagonal changed. We define four circulants by their first rows 

Nl = -D, B, -C, -C, -B 

N, = C, A, -D, -D, -A 

N3 = -B, -A, C, -C, -A 

N4 = A, -B, -D, D, -B 

Then the Welch construction is 

NI N, JJs NJ 
-N2’ N,’ -N4’ N3’ 

X3) -W,’ -IT, iv, 

Iv4 iv, -N,’ -iv,’ 

The only point which concerns us here is that we have a four-by-four 
matrix whose elements are multicirculants (here 5 x 5 circulants) in 
&A,..., fD. The matrix is Ae, + Be, + Ce, + De, with ei the Baumert- 
Hall units. 

THEOREM 9. Assume there exists a four-symbol 6 code of length t (not 
necessarily non-periodic; ajinite Abelian group of order t is allowable) and 
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a Baumert-Hall matrix which is partitioned as a 4 x 4 matrix of s x s 
multicirculants in &A,..., &D. Then there exists a set of Baumert-Hall 
units of order 4st. 

If the four-symbol code is defined on the Abelian group Gt and the 
special Baumert-Hall matrix is [W,,], 1 < m, n < 4, with the W,, 
defined on the finite Abelian group G, , we construct four multicirculants 
X, on G, x G, as follows: X, , 1 < m < 4 is defined by substituting in 
the four-symbol code W,, , W,, , W,, , W,, , for 1, i, j, k, respectively, 
with 1, i, j, k the four symbols. Then it is clear that the Xi satisfy 

2 &Xi = ts(A2 + B2 + C2 + D2) Z 
1 

and therefore can be used to form a Baumert-Hall matrix using the con- 
struction (2). We need only that the s x s matrices Wij and their transposes 
all commute and be symmetrizable by R, . 

We summarize our results: 

THEOREM 10. Four-symbol 6 codes of length t exist for t odd when 
t < 33, t = 59, and for t = 1 + 2a10b26c, a, b, c, > 0. Zf a four-symbol 

6 code of length t exists, then sets of Baumert-Hall units of orders 4t and 
20t exist. Thus, Hadamard matrices of orders 4tw and 20tw exist with t as 
above and w < 31, w = 43, w = (q + 1)/2, q a prime power = 1 (mod 4) 
and w = 9j. 

Since it depends on some ad hoc constructions and on prime powers, the 
theorem is most effective for small orders. It gives examples (with w = 1) 
of Hadamard matrices of orders 4.59 and 4.101 which, I believe, were 
previously unknown. The smallest orders not covered by the theorem are 
4.47, 4.67, 4.71, 4.73, 4.83, 4.89, 8.47 and 4.103; of these 4.71 and 4.83 are 
covered by the Paley construction of order q + 1, q a prime power = 3 
(mod 4). The density statement shows there are many new Hadamard 
matrices constructed. 
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