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We show that if four suitable matrices of order m exist then there are Hadamard 
matrices of order 28 m, 36 m, and 44 m. In particular we show that Hadamard 
matrices of orders 14(q + 1), 18(q + 1), and 22(q + 1) exist when q is a prime 
power and q ~ l(mod 4). 

Also we show that if n is the order of a conference matrix there is an Hadamard 
matrix of order 4mn. 

As a consequence there are Hadamard matrices of the following orders less 
than 4000: 

476, 532, 836, 1036, 1012, 1100, 1148, 1276, 1364, 1372, 1476, 1672, 1836,2024, 
2052, 2156, 2212, 2380, 2484, 2508, 2548, 2716, 3036, 3476, 3892. 

All these orders seem to be new. 

Suppose a square matrix A = (aij) of side n has the property that the 
entry in position (i,j) always equals the entry in position (i + l,j + 1), 
where these coordinates are reduced modulo n if necessary. Then the 
matrix is completely determined by its first row; in fact if T = Tn = (to) 
is the n X n matrix defined by 

ti ,i+1 = 1, 

then A can be written 

tn ,1 = 1, 

ti,j = 0, 

i = 1,2, ... , n - 1, 

otherwise, 

n 

A L aljTH. 
j~1 
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We say A is a circulant matrix, formed by circulating the row 

Similarly, if P is an n X n array of m x m submatrices Pi; where 
PH1•H1 = Pi; (subscripts reduced modulo n), that is 

n 

P = L T;-1 x PH 
j~1 

(where x denotes Kronecker product), we shall say P is formed by circu
lating 

We denote by R a square back-diagonal matrix whose order shall be 
determined by context: if R = (rij) is of order n then 

rij = 1, 

rij = 0, 

when i + j = n + 1, 

otherwise. 

We consider a set of four n x n arrays X, Y, Z, and W which are formed 
by circulating their first rows; the entries shall be m X m matrices chosen 
from a set of four matrices {A, B, C, D}. 

LEMMA 1. If A, B, C, and D commute in pairs then X, Y, Z, and W 
commute in pairs. 

In particular, Lemma 1 is satisfied if A, B, C, and D are circulant. 

LEMMA 2. If Sand Pare chosen from {X, Y, Z, W} and if A, B, C, and 
D are circulant matrices then 

(1) 

Proof It is known (see [6]) that equation (1) would hold if Sand P 
were circulant. In particular 

EiRF/ = FjRE/ 

when Ei and Fj belong to {A, B, C, D}, and 

If we write 
n-l 

P = I Ti X F j , 

i~O 



then 

Suppose 

HADAMARD MATRICES 

n-l n-l 

SRPT = L L (Ti x Ei) R(rn-i x F/) 
i~O j~O 

= L L (Ti x Ei)(R x R)(rn-j x F/) 

= L L (TiRrn- j x EiRF/) 

= L L (Tj Rrn-i x FjRE/) 

= PRST. 
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XXT + yyT + ZZT + WWT = In X n(AAT + BBT + CCT + DDT). 
(2) 

Then it is easy to verify that the matrix 

~ 
X 

-YR X 
H= -ZR WTR 

-WR -ZTR 

YR 

(which is a form of block-matrix introduced by Goethals and Seidel in [2]) 
satisfies 

provided that X, Y, Z, and W pairwise commute and pairwise satisfy (1). 

LEMMA 3. If A, B, C, and D are such that ABT, ACT, ADT, BCT, 
BDT, and CDT are symmetric, then the first rows 

(C, A, -A, -B, -B, A, D) for X, 

(-D, -B, B, -A, -A, -B, C) for Y, 

(-A, C, -C, D, D, C, B) for Z, 

(B, -D, D, C, C, -D, A) for W 

give matrices which satisfy (2) for the case n = 7, the first rows 

(C, B, -A, -A, A, C, A, B, -D) for X, 

(A, -C, -D, A, B, B, -B, -D, -B) for Y, 

(A, -C, D, B, A, D, C, C, -C) for Z, 

(-B, D, C, A, -B, C, -D, -D, D) for W 
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give matrices which satisfy (2) for the case n.= 9, and the first rows 

(C, B, A, A, -A, B, -A, B, B, -B, A) 

(D, A, -B, -B, B, A, B, A, A, -A, -B) 

(-A, D, C, C, -C, D, -C, D, D, -D, C) 

(-B, C, -D, -D, D, C, D, C, C, -C, -D) 

give matrices which satisfy (2) for the case n = 11. 

The verification is straightforward. 

for X, 

for Y, 

for Z, 

for W 

If AAT + BBT + CCT + DDT = 4m1m and if H has all its entries 1 or 
-1, then equation (3) means that H is Hadamard. So, gathering together 
the foregoing results, we have the following theorem: 

THEOREM 4. If there exist square circulant (1, -1) matrices A, B, C, 
and D of order m which satisfy 

AAT + BBT + CCT + DDT = 4mI 

and are such that ABT, ACT, ADT, BCT, BDT, and CDT are symmetric, then 
there are Hadamard matrices of orders 28m, 36m, and 44m. 

Matrices A, B, C, and D satisfying the conditions of Theorem 4 were 
previously used to construct Hadamard matrices of orders 4m [11], 
12m [1], and 20m (unpublished result of L. R. Welch, communicated to 
the author by L. D. Baumert). They are known to exist when m is a member 
of the set 

M = {3, 5, 7, ... , 29, 37, 43} 

[3], and when 2m - 1 is a prime power congruent to 1 modulo 4 [4, 10]. 

COROLLARY 5. There exist Hadamard matrices of orders 28m, 36m, 
and 44m whenever m E M. 

COROLLARY 6. There exist Hadamard matrices of orders 14(q + 1), 
18(q + 1), and 22(q + 1) whenever q is a prime power congruent to 1 
modulo 4. 

This gives Hadamard matrices of twenty-two orders less than 4000 for 
which no matrices were previously known, namely, 

476, 532, 836, 1012, 1036, 1100, 1148, 1276, 1364, 1372, 1476, 
1672, 1836, 2024, 2052, 2156, 2212, 2380, 2484, 2508, 2548, 
2716, 3036, 3476, 3892. 
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A conference matrix N is a (0, 1, -1) matrix with zero diagonal and 
every other element + 1 or -1 which satisfies 

NNT = (n - 1) In , NJ=O, NT = eN, e = ±1, 

where J is the matrix with every element + 1. These are discussed in 
[5, 7, 8, 9] where they are sometimes called n-type and skew-Hadamard 
matrices. Some of Turyn's constructions for complex Hadamard matrices 
are equivalent to conference matrices when n == 2(mod 4). 

Symmetric conference matrices are known to exist for orders p + 1 
when p = l(mod 4) is a prime power and (h - 1)2 + 1 when h is the 
order of a skew-Hadamard matrix. The skew-Hadamard matrices (skew
symmetric conference matrices) are listed in [7, 8, 9] but in particular they 
exist for orders p + 1, p == 3(mod 4), a prime power. 

Then we have: 

THEOREM 7. Let 

~ 
1 ° ° n ~ -~ 

1 0 n Al= 
0 1 0 

A 2 = 
0 0 

0 0 0 0 
0 0 0 o -1 

~ -! 
0 1 

-~J roo 0 

~l A3 = 
0 0 o 0 1 
0 0 o ' A4 = 0 -1 0 
1 0 0 -1 0 0 

and let N be the core of a conference matrix of order n; if A, B, C, Dare 
four (1, -1) matrices which pairwise satisfy XyT = YXT and if 

then 

H = Al X N X A + Al X I X B + A2 X N X -B + A2 X I X A 

+ A3 X N X C + A3 X I X D + A4 X N X -D + A4 X I X C 

is an Hadamard matrix of order 4mn. 

COROLLARY 8. Let p be any prime power and mE M; then there exists 
an Hadamard matrix of order 4m(p + 1). 
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