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1. Introduction. An Hadamard matrix is a square matrix of ones and minus ones

whose row (and hence column) vectors are orthogonal. The order n of an Hadamard

matrix is necessarily 1, 2 or 4t, with t a positive integer. It has been conjectured that

this condition (n = 1, 2 or 4i) also insures the existence of an Hadamard matrix of

that order. Constructions have been given for particular values of n and even for

various infinite classes of values. While other constructions exist, those given in

[l]-[8] exhaust the known values of n. In'particular, R. E. A. C. Paley [5] gave

construction methods for various infinite classes of Hadamard matrices and in-

dicated for each value of n = it ^ 200 a construction which would supply an

Hadamard matrix of that order with the exceptions n = 92, 116, 156, 172, 184,

188. Since then matrices have been found for n = 92, 156, 172, 184 [1, 2, 7], leaving

Paley's list still incomplete. It is interesting to note that the matrices which removed

92, 156, 172, 184 from the unknown category are all related to a construction given

by Williamson [7]. The main purpose of this paper is to present a complete tabula-

tion of all the known Hadamard matrices of this Williamson type for n = 4¿, t odd.

Since an Hadamard matrix of order 2n = 2(4<) can easily be constructed from one

of order n, the question of existence for all possible orders can be reduced to the case

where t is odd. Thus, it is interesting to note that Hadamard matrices having the

additional structure imposed by Williamson exist for all odd values of t ^27 and,

in particular, that this includes every value of t for which an exhaustive search has

been performed.

2. Williamson Type and Related Hadamard Matrices. An Hadamard matrix

which has the form,

(2.1) H

A
-B
-C
-D

B
A
D

-C

C
D

A
B

D
C

-B

A

is said to be of the quaternion type, since, using the quaternion units,

e =

10 0 0
0 10 0
0 0 10
0   0   0    1

0    10       0
-10   0       0

0   0   0-1
0   0    1       0

J =

0
0

-1

0

0    1 0
0   0 1
0   0 0

-10 0

0 0
0 0
0 1

-1 0

0 1
-1 0

0 0
0 0
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we may express Hh<iA®e + B®i+C®j + D®k, where ® stands for the

"direct" or "Kronecker" product of matrices. If we assume that A, B, C, D are

symmetric matrices, the Hadamard property HHT = ni reduces to the equations

(2.2)

and

(2.3)

A2 + B2 + C2 + D2 ni,

BA - AB + DC - CD = 0,

CA - AC + BD - DB = 0,

DA - AD + CB - BC = 0.

Thus, in particular, if A, B, C, D are symmetric matrices of ones and minus ones

which satisfy (2.2) and which are commutative in pairs, then the associated matrix

H of equation (2.1) will be Hadamard. We note that any matrix of this type gener-

ates an infinite class of such matrices, specifically :

Theorem 1. Let H be an Hadamard matrix of the quaternion type of order n = it,

with A, B, C, D symmetric matrices which are commutative in pairs. Then there exist

such matrices of orders 2'nfor i = 1, 2, 3, • • • .

Proof. Let

A    B
B   A

ß
A

-B
-B

A y =
C   D
D   C

8 =
C
D

D

C

then a, ß, y, 8 are symmetric matrices which are commutative in pairs. Further,

a, ß, y, 8 satisfy (2.2), that is, a2 + ß2 + y2 + 52 = 2nl. Hence,

H = -y
-ô

ß
a

5
-y

y
-ô

a

ß

ô

y

-ß

a

is an Hadamard matrix of order 2n. Clearly this process may be iterated to provide

matrices of all the indicated orders. This theorem certainly is not significant with

respect to the general existence problem for Hadamard matrices, as it has long been

known that the existence of an Hadamard matrix of order n implies the existence of

those of orders 2'n for i = 1, 2, 3, • ■ • . Its significance lies in the fact that quaternion

type Hadamard matrices can be constructed for these orders also.

If we insist (as did Williamson [7]) that A, B, C, D be symmetric circulants satis-

fying equation (2.2), we get a class of Hadamard matrices, which we call the

Williamson type. Thus, Williamson type matrices form a subclass of the quaternion

type Hadamard matrices. In a Williamson type matrix A, B, C, D and / are simul-

taneously diagonalizable, and applying this transformation to equation (2.2) yields

the equation

/Í-1 \2 /i-l \2 /Í-1 \2 /Í-1 \2

(E ai co/j   + ( E bi co/j   + l g Cico/j   + I E dt co/j   = it,

which must hold for each of the ith roots of unity coy, where the at, bi, c», d, com-

prise the first rows of A, B, C, D, respectively. Now, restricting ourselves to odd

values of t and normalizing so that a% — b0 — c0 = d0 = +1, we can show [7, p. 73]
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H =

A
A
A
B
B
B
D
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A
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Figure 1

that exactly three of the ai, 6t-, c¿, di have the same sign, i 9a 0. Thus, from

a2 + b2 + c2 + d2 = it, with

<-i i-i i—i i-i

a = E Oiw",       b = E bid)',       c = E c*> i       d — E dioi',
i—0 »=0 1=0 !—0

we get

ia + b + c - d)2 + ia + b - c + d)2

+ (a - b + c + d)2 + i-a + b + c + d)2 = 16«,

and, hence, a representation,

(2.4) Tx2 + T2  + T3  + T2 = it,

where each T< is of the form 1 ± 2«' ± 2o>* ± • • • and each power of co occurs in

exactly one of the 7\ . Note that if we let a = 1, then equation (2.4) gives us a

representation of it as the sum of 4 odd squares.

3. Table of Williamson Type Hadamard Matrices. Williamson [7] lists many

solutions of equation (2.4) but does not indicate when all solutions for a particular

t (or for a particular representation of it as a sum of 4 squares) is listed. For this

reason we recomputed Williamson's table (in connection with the work of [1]) and

extended it somewhat. In particular, all solutions for all representations of it as a

sum of 4 odd squares are given for all odd t, 3 ^ t ^ 23. In addition, some solutions

are given for t = 25, 27, 37, 43. This exhaustive listing points up the fact that not

all such representations of it give rise to Hadamard matrices, see t = 19 or t = 23.

In the table the 4 squares are labeled A, B, C, D, respectively and w, = co* + to ~\

4. Paley's Exceptional Values (92, 156, 172, 184). Williamson type Hadamard

matrices of orders 92 and 172 can be read from the table directly. As 184 = 2(92), an

Hadamard matrix of this order can be constructed from the Hg2. This is most easily

done by the Kronecker product Hlsi = H2 ® Hi2. However, more specialized con-

structions may be used, that is, we can use Theorem 1 to provide us with a quater-

nion type matrix or we can use Theorem 3 of Williamson [7, p. 77] to provide us with

a Williamson type Hadamard matrix of this order. We note in passing that Theorem

3 of Williamson can only be applied to provide such matrices of orders 8i when t is

odd and Williamson type solutions are known for n = it, whereas our Theorem 1

provides quaternion matrices of all orders 2l+2t, i = 1, 2, 3, ; ■ • , provided such

exist for n = it.
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The remaining solution 156 = 3-4-13 is less obvious. In [2] it is shown that an

Hadamard matrix of order 12i exists whenever a Williamson type matrix of order

it is known. (Actually, a quaternion type with A, B, C, D symmetric and commuting

in pairs will suffice.) For 156, we use A, B, C, D from a Williamson matrix of order

52 = 4-13 (see Table 1) and build the solution by inserting them into the matrix

of Figure 1. Note that here the resulting matrix, while Hadamard, is not obviously

of the quaternion type, much less a Williamson matrix.
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