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tWe dis
uss algorithms for the 
onstru
tion of Hadamard matri
es. We in
lude dis
ussionof 
onstru
tion using Williamson matri
es, Legendre pairs and the dis
ret Fourier transformand the two 
ir
ulants 
onstru
tion.Next we move to algorithms to determine the equivalen
e of Hadamard matri
es usingthe pro�le and proje
tions of Hadamard matri
es. A summary is then given whi
h 
onsidersinequivalen
e of Hadamard matri
es of orders up to 44.The �nal two se
tions give algorithms for 
onstru
ting orthogonal designs, short ami
ableand ami
able sets for use in the Kharaghani array.1 Algorithms for 
onstru
ting Hadamard matri
es1.1 Hadamard matri
es 
onstru
ted from Williamson matri
esAn Hadamard matrix H of order n has elements �1 and satis�es HHT = nIn. These matri
esare used extensively in 
oding and 
ommuni
ations (see Seberry and Yamada [90℄). The orderof an Hadamard matrix is 1, 2 or n � (0 mod 4). The �rst unsolved 
ase is order 428. Weuse Williamson's 
onstru
tion as the basis of our algorithm to 
onstru
t a distributed 
omputersear
h for new Hadamard matri
es. We brie
y des
ribe the theory of Williamson's 
onstru
-tion below. Previous 
omputer sear
hes for Hadamard matri
es using Williamson's 
ondition2



are des
ribed in Se
tion 1.1.1. The implementation of the sear
h algorithm is presented inSe
tion 1.1.2, and the results of the sear
h are des
ribed in Se
tion 1.1.3.Theorem 1 (Williamson [104℄) Suppose there exist four (1;�1) matri
es A, B, C, D oforder n whi
h satisfy XY T = Y XT;X; Y 2 fA;B;C;DgFurther, suppose AAT +BBT + CCT +DDT = 4nIn (1)Then H = 26664 A B C D�B A �D C�C D A �B�D �C B A 37775 (2)is an Hadamard matrix of order 4n 
onstru
ted from a Williamson array.Let the matrix T given below be 
alled the shift matrix:T = 2666664 0 1 0 � � � 00 0 1 � � � 0� � � � � � :0 0 0 � � � 11 0 0 � � � 0
3777775 (3)and note T n = I; (T i)T = T n�i (4)If n is odd, T is the matrix representation of the nth root of unity !, !n = 1.Let 8>>><>>>: A =Pn�1i=0 aiT i; ai = �1; an�i = aiB =Pn�1i=0 biT i; bi = �1; bn�i = biC =Pn�1i=0 
iT i; 
i = �1; 
n�i = 
iD =Pn�1i=0 diT i; di = �1; dn�i = di (5)Then matri
es A;B;C;D may be represented as polynomials. The requirement that xn�i =xi; x 2 fa; b; 
; dg for
es the matri
es A;B;C;D to be symmetri
.Sin
e A;B;C;D are symmetri
, (1) be
omes:A2 +B2 +C2 +D2 = 4nInand the relation XY T = Y XT be
omes XY = Y X whi
h is true for polynomials.De�nition 1 Williamson matri
es are (1;�1) symmetri
 
ir
ulant matri
es. As a 
onsequen
eof being symmetri
 and 
ir
ulant they 
ommute in pairs.We use the following theorem of Williamson's as the motivator for our sear
h algorithm:

3



Theorem 2 (Williamson [104℄) If there exist solutions to the equations�i = 1 + 2 sXj=1 tij(!j + !n�j); i = 1; 2; 3; 4 (6)where s = 12(n� 1); ! is a nth root of unity, exa
tly one of t1j; t2j ; t3j ; t4j is nonzero and equals�1 for ea
h 1 � j � s, and �21 + �22 + �23 + �24 = 4nthen there exist solutions to the equations:8>>><>>>: A =Pn�1i=0 aiT i; a0 = 1; ai = an�i = �1B =Pn�1i=0 biT i; b0 = 1; bi = bn�i = �1C =Pn�1i=0 
iT i; 
0 = 1; 
i = 
n�i = �1D =Pn�1i=0 diT i; d0 = 1; di = dn�i = �1 (7)That is, there exists an Hadamard matrix of order 4n.In matrix form, !j +!n�j is represented as T j + T n�j. Sin
e these are symmetri
, we write!j = !j + !n�jRemark 1 The solutions for (6) are independent of the parti
ular root !, so if n as de�nedby (1) is prime, we 
an 
hoose ! so that the �rst � having any !j assigned has !1. Sin
e theequations are true for all roots of unity !, they are also true for ! = 1.Theorem 3 (Williamson [104℄) Let n be odd, and matri
es A;B;C;D satisfy (1) and (5),suppose a0 = b0 = 
0 = d0, then exa
tly three of aj; bj ; 
j ; dj ; 1 � j � n� 1, have the same sign.1.1.1 Results from previous sear
hesIn many 
ases 
omplete sear
hes have been 
ondu
ted for Hadamard matri
es of Williamsontype. Sear
hes have also been 
ondu
ted for spe
ial 
lasses of Williamson type Hadamardmatri
es. Furthermore, an in�nite 
lass of su
h matri
es is known and will also be dis
ussedbrie
y.� Baumert and Hall [6℄ report results of a 
omplete sear
h for orders 4t, t odd and 3 � t � 23.Some in
omplete results for higher orders are also given.� Sawade [86℄ reports results of a 
omplete sear
h for orders 4t, t = 25; 27. The results fort = 25 were later demonstrated to be in
omplete by Djokovi
 [13℄.� Djokovi
 [11℄ reports results of a 
omplete sear
h for orders 4t, t = 29; 31. Only a singlenon-equivalent solution was found for t = 29 and is equivalent to an earlier result due toBaumert [4℄.� Koukouvinos and Kounias [64, 65℄ report results of a 
omplete sear
h for order 4t, t = 33and 39. These results were later demonstrated to be in
omplete by Djokovi
 [12℄.� Djokovi
 [12℄ reports results of a 
omplete sear
h for orders 4t, t = 33; 35; 39.4



� Djokovi
 [13℄ reports results of a 
omplete sear
h for orders 4t, t = 25; 37. This extendsresults obtained by Sawade [86℄ for t = 25 and, for t = 37, by Williamson [104℄ and laterYamada [105℄ for a spe
ial 
lass of matri
es.� Horton, Koukouvinos, and Seberry [53℄ report results of a 
omplete sear
h for orders 4t, todd and 25 � t � 37: No new results were found, 
on�rming existen
e results.An in�nite family of Hadamard matri
es of Williamson type has been proved to exist under
ertain 
onditions [98, 103℄:Theorem 4 If q is a prime power, q � 1 (mod 4), q + 1 = 2t, then there exists a Williamsonmatrix of order 4t; we have C = D, and A and B di�er only on the main diagonal.This theorem gives examples of Hadamard matri
es of Williamson type for orders 4t, t =31; 37; 41; 45; 49; 51; 55; : : :, for example.Yamada [105℄ has sear
hed for Hadamard matri
es of Williamson type, with 
ertain restri
-tions. These matri
es are referred to as Williamson type j matri
es. The Williamson equationfor su
h matri
es, of order 4n is:4n =  1� 2Xs2A 
s!s!2 + 1� 2Xs2A 
s!sj!2 + 1� 2Xs2B ds!s!2 + 1� 2Xs2B ds!sj!2 (8)where 
s; ds = �1, !s = !s + !�s, !n = 1, j2 � �1 (mod n), A;B; jA; jB is a partition off1; 2; : : : ; n�12 g. Su
h a j exists if and only if all prime divisors of n are � 1 (mod 4). This ledto some new results for n = 29; 37; 41.1.1.2 Sear
h methodThe sear
h method to �nd Williamson matri
es des
ribed in this se
tion was given in [53℄.Introdu
tion The basi
 sear
h method is to examine all possible 
ombinations of !j; 1 �j � 12(n � 1) for ea
h �i; i = 1; 2; 3; 4, testing ea
h set of � so generated to see if it satis�esWilliamson's 
ondition and 
an be used to form an Hadamard matrix of order 4n. This sear
hmethod is do
umented in more detail in the following se
tions.As a result of the large size of the sear
h spa
e, a distributed 
lient/server approa
h wastaken to the problem: the server breaks work up into smaller portions whi
h are then pro
essedby the 
lients; any results dis
overed are reported to the server by the 
lient. Very little work isdone by the server itself.Using a distributed approa
h, we are able to perform large amounts of work in a fra
tion ofthe time required for a single 
omputer to perform the same amount of work.At various times during the performan
e of the sear
hes, Ma
intosh 
omputers and 
omputersrunning some variety of UNIX have been available for use. To make best use of the availableresour
es, and to eliminate any need to install software beyond that of the 
lient program itself,all 
ommuni
ation was performed using low-level networking APIs, so
kets [93℄ on UNIX andOpen Transport [1℄ on the Ma
intosh, rather than using a pa
kage su
h as PVM [18℄ or MPI [42℄that in some 
ases 
an fa
ilitate the 
onstru
tion of distributed programs.Sear
hes for Hadamard matri
es of all orders up to and in
luding order 148 have beenperformed using Williamson's method implemented by a 
lient/server system. Towards the endof an initial sear
h of order 148, 37 
omputers were involved, 20 270MHz Ultra 5 
omputers5



from Sun Mi
rosystems, and 17 333MHz iMa
s from Apple Computer. No 
omputers notavailable on the lo
al area network were employed in the initial sear
h. However, a subsequentsear
h performed to verify results utilized 35 350MHz Pentium-II 
omputers at the Universityof New
astle in addition to 30 lo
al Ultra 5 
omputers.The details of the implementation of Williamson's method within the framework of a 
lient/server system are dis
ussed in the following se
tions.De
ompose 4n into sum-of-squares representation The �rst step in performing a sear
his to de
ompose 4n into all possible sums-of-squares representations. Observing the form of (6),we see that when ! = 1 ea
h �i satis�es:j�ij � 1 mod 4; �i > 0; orj�ij � 3 mod 4; �i < 0: (9)For example, the possible de
ompositions for 148 are:1, 1, 5, 111, 7, 7, 73, 3, 3, 113, 3, 7, 95, 5, 7, 7In the se
tions to follow, we write !sub to indi
ate some !k = !k+!n�k for 1 � k � 12 (n�1)when it is ne
essary to distinguish from an nth root of unity, !.De
ide on the number of !sub assigned to ea
h � The next step is to assign a numberof !sub to ea
h �. Using (9), we see that if j�ij � 1 mod 4, then of the !sub 
ontributing to�i, the number being added to �i will always be j�ij�14 greater than the number of !sub thatare subtra
ted. A similar 
ondition 
an be derived for j�ij � 3 mod 4. These !sub are termed\�xed"; others are \
oating" and always o

ur in pairs, one added and the other subtra
ted.These 
onditions are enfor
ed to help limit the size of the spa
e to be sear
hed.All possible permutations of the number of 
oating !sub are assigned to ea
h � over the
ourse of the sear
h of a parti
ular sum-of-squares representation, subje
t to 
ertain restri
tionsthat are useful for redu
ing the size of the spa
e to be sear
hed:1. The number of !sub assigned to �i must be greater than or equal to the number of !subassigned to �j where j < i and �i and �j 
orrespond to the same value in the sum-of-squares de
omposition. We may apply this 
ondition be
ause for the purposes of testingthe set of � to see if Williamson's 
ondition is satis�ed, �i and �j are inter
hangeable,and it is desirable to perform the test only on
e rather than twi
e. This may be extendedfurther if more than two � have the same value in the sum-of-squares de
omposition.2. If n is prime, then we may always pla
e !1 in the �rst � to whi
h any !sub are assigned.This 
orresponds to solving the set of � for some nth root of unity, !j, su
h that !1 ispresent in the �rst � to whi
h any !sub are assigned. Furthermore, if there are !sub bothadded and subtra
ted from this �, we may either subtra
t or add !1; we do not need to
he
k both. If this 
ondition is in for
e, then 
ondition 1 is not applied in the 
ase of the� to whi
h !1 is assigned, but remains appli
able for other � 
orresponding to the same6



value from the sum-of-squares de
omposition. Enfor
ing this 
ondition 
an greatly redu
ethe size of the spa
e to be sear
hed: for example, applying this 
ondition for sear
hingfor Hadamard matri
es of size 148 redu
es the size of the spa
e to be sear
hed to 37% ofits size were this 
ondition not to be enfor
ed (redu
ing from about 32,387,862,644,280 to12,062,406,963,464)For ea
h permutation of 
oating !sub that is generated, we must assign spe
i�
 identitiesto ea
h !sub and evaluate Williamson's 
ondition.Assign spe
i�
 identities to ea
h !sub We must now assign spe
i�
 identities to ea
h !subso that Williamson's 
ondition may be tested.Let the number of !sub added to �i be represented by 
2i�1 and the number of !subsubtra
ted from �i by 
2i. S2i�1 is the set of !sub added to �i and S2i is the set of !subsubtra
ted from �i. That is, there are eight sets S, two for ea
h �. Some of these sets S maybe empty. �i = 1 + 2 X8j2S2i�1 !j � 2 X8j2S2i !jDividing !sub into two groups, one added to a � and the other subtra
ted, helps to simplify thepro
edure for iterating over all possible 
ombinations of !sub .The sets Si are formed by 
hoosing 
i elements from the set of !sub not already allo
atedto an Sj ; j < i. Re
alling that s = 12(n� 1), ST;0 is de�ned as:ST;0 = f!1; !2; !3; : : : ; !sg:ST;i is de�ned as: ST;i = ST;i�1 � Si�1; i = 1; : : : ; 8: (10)For 
onvenien
e, we say that: S0 = ;Williamson's 
ondition may be tested on
e S1; : : : ; S8 have been generated. All possible
ombinations of 
i elements from ST;i are examined; on
e the 
ombinations are exhausted, thenext 
ombination for Si�1 is generated. The pro
ess is illustrated by the small segment ofpseudo
ode shown in Figure 1.So it should be easy to see that the number of tests of Williamson's 
ondition for a parti
ularset of 
1; : : : ; 
8 
an be 
al
ulated as follows:Evaluations = 8Yi=1 jST;ij
i ! (11)Usually, however, the total number of evaluations performed will be less than this, for tworeasons:1. If 
ondition 2 from Se
tion 1.1.2 is applied, we 
hoose one fewer !sub for the set S inwhi
h !1 is to appear.2. If �i and �j; i < j 
orrespond to the same value in the sum-of-squares de
omposition of4n and have the same number of !sub assigned, then we may require that if !x is the!sub of smallest subs
ript assigned to �i and !y has the smallest subs
ript assigned to7



j := 1;do for k from j to 8populate ST;k from ST;k�1 and Sk�1 using (10);generate 
ombination Sk by 
hoosing 
k elements from ST;k;Test Williamson Condition using S1; : : : ; S8 to generate �1; : : : ; �4;j := 8;g := false;while ((j > 0) and (g == false))generate new 
ombination Sj using 
j elements from ST;jif su

essfulg := true;j := j + 1;else j := j � 1;while (j > 0);Figure 1: Segment of pseudo
ode illustrating generation of 
ombinations for testing Williamson's
ondition.�j , that x < y. Otherwise, work will be repeated when �i repli
ates a sequen
e that hadpreviously o

urred in �j. Enfor
ing this 
ondition ensures that no repetition takes pla
eand redu
es the size of the sear
h spa
e slightly. The redu
tion is unfortunately not assubstantial as that for applying 
ondition 2 from Se
tion 1.1.2.Dividing up the work for distribution The obvious manner in whi
h to redu
e the amountof work performed by the 
lients to a reasonable level was to make the server perform part ofthe work des
ribed in Se
tion 1.1.2. The server performs no evaluations itself, but would 
hoosesets S1; : : : ; Si; for some i < 8. The 
lient would evaluate all the possibilities for the 
hoi
e ofthe remaining sets Si+1; : : : ; S8.The server de
ides what value i should take by estimating the amount of work involved ina subproblem using a modi�
ation of Equation (11). Two 
onstants Smin and Smax must bespe
i�ed to the server: a subproblem is of a

eptable size if its size lies between the two limits.Unfortunately, this does not yield subproblems with an even division of work: there are somevery large and very small subproblems. Very small subproblems 
an be solved qui
kly, andresult in a large number of reports of 
ompleted problems and requests for new problems beinghandled by the server over a short period of time. This 
an 
ause 
ongestion and is not desirable.The solution that was ultimately adopted was for the server to allo
ate multiple small sub-problems to a 
lient looking for work. The server also maintains a queue of pre-allo
atedsubproblems ready for assignment to 
lients, so that 
lient requests 
an be satis�ed as rapidlyas possible.
8



1.1.3 Sear
h resultsLemma 1 Let the Williamson de
omposition into four squares be s21+s22+s23+s24 = 4n. Further,let the row sums of the four Williamson matri
es A;B;C;D be m1;m2;m3;m4. LetM = 12 26664 �1 1 1 11 �1 1 11 1 �1 11 1 1 �1 37775 ; s� = 26664 s1s2s3s4 37775 ; m� = 26664 m1m2m3m4 37775Then s21 + s22 + s23 + s24 = 4n, m21 +m22 +m23 +m24 = 4nand Ms� = m�,Mm� = s�Proof. (6) gives, using the root ! = 1, a de
omposition withsi = �i = 1 + 4 sXj=1 tij ; i = 1; 2; 3; 4:By Williamson's assumption 
ondition,s21 + s22 + s23 + s24 = 4n:On the other hand,m1 = nXj=1 aj= 1� 2 n�12Xj=1 t1j + 2 n�12Xj=1 t2j + 2 n�12Xj=1 t3j + 2 n�12Xj=1 t4j= 1� 12(s1 � 1) + 12(s2 � 1) + 12(s3 � 1) + 12(s4 � 1)= 12(�s1 + s2 + s3 + s4)Similarly, m2 = 12(s1 � s2 + s3 + s4)m3 = 12(s1 + s2 � s3 + s4)m4 = 12(s1 + s2 + s3 � s4)and Ms� = m�. Inverting we have, as M�1 =M , Mm� = s�. It is easy to 
he
k thatm21 +m22 +m23 +m24 = s21 + s22 + s23 + s24 = 4n:9



Unfortunately, no new matri
es were found as a result of the sear
hes run so far. However, weare able to provide independent veri�
ation of results from previous sear
hes. This is 
onsideredof utility sin
e some previous sear
hes, su
h as that 
ondu
ted by Sawade [86℄, for example,failed to reveal all solutions that are now known for the order sear
hed, in that 
ase, order 100.In parti
ular, we provide veri�
ation of results reported by Djokovi
 [12, 13℄ for orders 100, 140and 148. Results for order 100 are also veri�ed by Christos Koukouvinos.For referen
e purposes, tables of Hadamard matri
es derived from Williamson matri
es using
ir
ulant symmetri
 (1;�1) matri
es in the Williamson array for orders 100 through 180 arepresented in Appendix 1 of [53℄. A 
omplete sear
h of order 156 is 
laimed by Djokovi
 [12℄.Results for orders 164, 172 and 180 are in
omplete.1.2 Hadamard matri
es from Williamson matri
es for non prime ordersAn eÆ
ient algorithm to �nd Williamson matri
es of order n = p � q; i.e. n is not a prime hasbeen des
ribed in [64℄. This algorithm 
omputes the solutions in groups of order p and q. Infa
t with the aim of this algorithm we 
an �nd all the inequivalent solutions whi
h satisfy theWilliamson equation in groups of orders p and q respe
tively. Then we 
an merge these solutionsin order to �nd the solution in the group of order n: Of 
ourse this algorithm 
an also be usedwhen n is prime power but it is not too eÆ
ient in this 
ase. More details for this algorithm 
anbe found in [64℄.1.2.1 The methodIn this se
tion we give the ne
essary tools needed for our algorithm. We want to 
onstru
t the(1;�1) 
ir
ulant matri
es:A = (a0; a1; : : : ; am�1); B = (b0; b1; : : : ; bm�1);C = (
0; 
1; : : : ; 
m�1); D = (d0; d1; : : : ; dm�1);su
h that A2 +B2 + C2 +D2 = 4mIm: (12)The symmetry requirement gives vi = vm�i; i = 1; 2; : : : ; 12(m � 1); vi 2 fai; bi; 
i; dig: LetGTq = (Ip; Ip; : : : ; Ip) be a p� p � q matrix, i.e., the unit matrix Ip of order p is repeated q times.The following theorems have been proved in [64℄ and are essential tools for our algorithm.Theorem 5 If1. m = p � q; p; q > 1:2. V = (v0; v1; : : : ; vm�1) is 
ir
ulant of order m; then(a) GTq � V = U �GTq ; where U = (u0; u1; : : : ; up�1) is 
ir
ulant of order p withuj = Xi�j(mod p);i<m vi; j = 0; 1; : : : ; p� 1;(b) U is symmetri
 if V is symmetri
. 10



Now multiplying on the left A;B;C;D by GTq we obtain:GTq A = XpGTq ; GTq B = YpGTq ; GTq C = ZpGTq ; GTq D =WpGTqwhere Xp = (x0; x1; : : : ; xp�1); with xj =Xi ai;Yp = (y0; y1; : : : ; yp�1); with yj =Xi bi;Zp = (z0; z1; : : : ; zp�1); with zj =Xi 
i;Wp = (w0; w1; : : : ; wp�1); with wj =Xi di (13)
and the summations are over all i � j(mod p); i < m:If we multiply both members of (12), on the left by GTq and on the right by Gq we obtain inthe symmetri
 
ase: X2p + Y 2p + Z2p +W 2p = 4mIp: (14)Of 
ourse we do not know A;B;C;D so we do not know Xp; Yp; Zp;Wp: However it is easierto �nd Xp; Yp; Zp;Wp satisfying (14) than A;B;C;D be
ause p is mu
h smaller than m: Now to
onstru
t Xp; Yp; Zp;Wp note that:Theorem 6 If1. A;B;C;D are 
ir
ulant and symmetri
 (1;�1)-matri
es satisfying (12) with row (andhen
e 
olumn) sums a; b; 
; d,2. Xp; Yp; Zp;Wp are as de�ned in (13),then1. p�1Xj=0xj = a; p�1Xj=0yj = b; p�1Xj=0zj = 
; p�1Xj=0wj = d;a2 + b2 + 
2 + d2 = 4m; �q � xj ; yj; zj ; wj � q; xj ; yj; zj ; wj odd;xj = xp�j; yj = yp�j; zj = zp�j; wj = wp�j; j = 1; 2; : : : ; 12 (p� 1); (15)2. If moreover a0 + b0 + 
0 + d0 = 0; �4; then(x0 + y0 + z0 +w0)� (a0 + b0 + 
0 + d0) = ( 0(mod 8); if q � 1(mod 4);4(mod 8); if q � 3(mod 4); (16)xj + yj + zj + wj � 2(mod 4); j = 1; 2; : : : ; 12(p� 1):1.2.2 The algorithmFor a given de
omposition 4m = a2 + b2+ 
2 + d2; with m = p � q; p < q; the algorithm 
onsistsof four stages: 11



I) 1. Form all sequen
es Xp = fx0; x1; : : : ; xp�1g satisfying:(i) p�1Xi=0xi = a; (ii) � q � xi � q (iii) xi odd;(iv) xi = xp�i; i = 1; 2; : : : ; 12(p� 1):2. Repeat the 
onstru
tion for Yp; Zp;Wp repla
ing a with b; 
; d respe
tively.3. Examine whi
h quadruples Xp; Yp; Zp;Wp satisfy X2p + Y 2p + Z2p +W 2p = 4mIp:II) 1. Repeat stage I inter
hanging p and q:2. Find all inequivalent solutions by applying the transformation j ! j � s(mod q) toea
h solution Xq; Yq; Zq;Wq; where (s;m) = 1 for every s < q:III) 1. If there are h1 solutions Xp; Yp; Zp;Wp; and h2 inequivalent solutions X̂q; Ŷq; Ẑq; Ŵq;form the h1 � h2 
ombined solutions Xp; Yp; Zp;Wp; X̂q; Ŷq; Ẑq; Ŵq:2. Find A = (a0; a1; : : : ; am�1) from:ai = am�i; i = 1; 2; : : : ; 12(m� 1);Xi�j(mod p);i<m ai = xj ; j = 0; 1; 2; : : : ; 12(p� 1);Xi�j(mod q);i<m ai = x̂j; j = 0; 1; 2; : : : ; 12(q � 1);where Xp = (x0; x1; : : : ; xp�1); X̂q = (x̂0; x̂1; : : : ; x̂q�1):3. Find B;C;D similarly.IV) Examine whi
h quadruples A;B;C;D satisfy A2 +B2 + C2 +D2 = 4mIm:Now repeat stages, I, II, III, IV for every de
omposition of 4m as the sum of four odd squares.If p = q then the algorithm is:1) 1. Perform steps 1, 2 ,3 of stage I of the previous algorithm.2. Find all inequivalent solutions by applying the transformation j ! j � s(mod p) toea
h solution Xp; Yp; Zp;Wp; where (s;m) = 1 for every s < p:2) 1. Find A = (a0; a1; : : : ; am�1) from:ai = am�i; i = 1; 2; : : : ; 12(m� 1); Xi�j(mod p);i<m ai = xj ; j = 0; 1; 2; : : : ; 12(p� 1);where Xp = (x0; x1; : : : ; xp�1):2. Find B;C;D similarly.3) Examine whi
h quadruples A;B;C;D satisfy A2 +B2 + C2 +D2 = 4mIm:Now repeat stages, 1, 2, 3, for every de
omposition of 4m as the sum of four odd squares.This algorithm was used in [64, 65℄ for a 
omplete sear
h for orders 4t; t = 33; 39: Thesame algorithm was used later by Djokovi
 [12℄ for orders 4t; t = 33; 35; 39: He noted one moresolution for t = 33 and t = 39 whi
h was missing in [64, 65℄. He also 
laimed the non existen
eresults for t = 35: 12



1.3 Hadamard matri
es from generalized Legendre pairs using the dis
reteFourier transform1.3.1 De�nitions and notationsLet U be a sequen
e of ` real numbers u0; u1; :::; u`�1. The periodi
 auto
orrelation fun
tion,PAF, PU (j) of su
h a sequen
e is de�ned, redu
ing i+ j modulo `; by:PU (j) = `�1Xi=0 uiui+j ; j = 0; 1; :::; ` � 1:Two sequen
es U and V of identi
al length ` are said to be 
ompatible if the sum of their periodi
auto
orrelations is a 
onstant, say a, ex
ept for the 0-th term. That is,PU (j) + PV (j) = a; j 6= 0: (17)(Su
h pairs are said to have 
onstant periodi
 auto
orrelation even though it is the sum of theauto
orrelations that is a 
onstant.) If U and V are both �1 sequen
es, 
ompatible and a = �2,then they are 
alled a generalized Legendre pair (or GL{pair).In this se
tion we are interested for 
ompatible �1 sequen
es whi
h are a GL{pair, and may beused as below to 
onstru
t Hadamard matri
es of order 2`+ 2. The Legendre or Ja
obi symbolis written (ajn) if n is prime or 
omposite, respe
tively. When referring to the elements of a�1; 0; 1 sequen
e we often write `�' instead of �1 and `+' instead of 1.The dis
rete Fourier transform (DFT) of a sequen
e U is given byDFTU (k) = �k = `�1Xi=0 ui!ik; k = 0; 1; :::; ` � 1where ! is a primitive `-th root of unity e 2�i` . If we take the squared magnitude of ea
h term inthe DFT of U , the resulting sequen
e is 
alled the power spe
tral density (PSD) of U . Be
ausewe use them so often, the k-th terms in the PSDs of U and V will be denoted by j�kj2 and j�kj2,respe
tively.Example 1 The PSD of the sequen
e 1 2 2 -2 0 0 0 is49.000 19.988 13.220 7.792 7.792 13.220 19.988If a sequen
e u is transformed by the operation of 
y
li
ally taking every d-th element, whereg
d(d; `) = 1, the sequen
e U is said to be de
imated by d. That is, if V = U de
imated by d,then vi = udi mod `.Example 2 1111000 de
imated by 2 = 11001101111000 de
imated by 3 = 110101013



The set of all possible de
imations of a sequen
e is 
alled a de
imation 
lass. Sin
e d is requiredto be relatively prime to `, a sequen
e of length ` has �(`) de
imations, though sometimes theyare not all distin
t. We note that de
imation by �1 is the same as reversing a sequen
e. Hen
e,by assuming that ea
h sequen
e also represents its reverse, the maximum size of any de
imation
lass is �(`)=2. Finally, we de�ne 
ompatibility between de
imation 
lasses. Two de
imation
lasses are said to be 
ompatible if and only if some sequen
e belonging to one 
lass is 
ompatiblewith some sequen
e in the other 
lass.1.3.2 Some preliminary resultsWe make use of the following well-known theorem [84, Chapter 12℄, [97, Chapter 10℄.Theorem 7 (Wiener{Khin
hin Theorem) The PSD of a sequen
e is equal to the DFT ofits periodi
 auto
orrelation fun
tion j�kj2 = `�1Xj=0PU (j)!jk: (18)The periodi
 auto
orrelation fun
tion is equal to the inverse DFT of the sequen
e's PSDPU (j) = 1̀ `�1Xk=0 j�kj2!�jk: (19)The next main theorem was proved in [17℄.Theorem 8 Two sequen
es are 
ompatible if and only if their PSDs sum to a 
onstant (i.e.j�kj2 + j�kj2 = 
 i� PU (j) + PV (j) = a).Example 3 Two 
ompatible sequen
es and their PSDs are shown below.Sequen
es PSD (terms 1 to 3)1 2 2 -2 0 0 0 19.988 13.220 7.7922 1 -1 2 -1 0 0 5.012 11.780 17.20825.000 25.000 25.000 (hen
e 
 = 25)In fa
t, the 
onstant 
 depends only on the set of numbers 
omprising the sequen
es U and V .It is easily shown that
 = `P`�1i=0 u2i � (P`�1i=0 ui)2`� 1 + `P`�1i=0 v2i � (P`�1i=0 vi)2`� 1 : (20)Hen
e, all permutations of the sequen
es yield the same 
onstant. Theorem 8 is a generalizationof results that have appeared in the literature in other forms, see for example Kounias, Kouk-ouvinos, Nikolaou and Kakos [75℄.The following useful relationships are easily proved by dire
t appli
ation of the de�nitions ofde
imation, auto
orrelation and DFT. 14



� If a sequen
e is de
imated by d, then its auto
orrelation is likewise de
imated by d, andits DFT and PSD are de
imated by d�1 mod `.� It follows immediately that 
ompatible sequen
es remain 
ompatible if they are de
imatedby the same amount.Remark 2 If U , V are �1; 0{sequen
es then the above 
onstant 
 is 
 = w � a, where w isthe total number of non{zero entries and a is the 
onstant from the periodi
 auto
orrelationfun
tion of U and V .1.3.3 Legendre sequen
es and modi�ed Legendre sequen
esFor the remainder of this se
tion we 
onsider only GL{pairs. The following is well known (seefor example [101℄) and is in
luded for 
ompleteness only. Let p be an odd prime. The �1; 0; 1sequen
e U of length p is 
alled a Legendre sequen
e L if its elements xi = li satisfyli = (ijp):In other words, l0 = 0 and for i 6= 0, li = 1 if i is a square modulo p and li = �1, otherwise. We
all (�1; L), (0; L), or (1; L) a modi�ed Legendre sequen
e. The values of the modi�ed Legendresequen
e are exa
tly the same as those of the unmodi�ed one ex
ept for l0 whi
h is set to �1,0, or +1, respe
tively. ((0; L) is of 
ourse the original Legendre sequen
e but sometimes it is
onvenient to refer to it as an modi�ed Legendre sequen
e.) Two sequen
es (e1; L), (e2; L) withe1; e2 2 f�1; 0; 1g are 
alled modi�ed Legendre sequen
es and they are de�ned in the obviousmanner.Example 4 Let p = 7. The modi�ed Legendre sequen
es (0; L) and (1; L) are given by(0; L) = 0 + +�+��(1; L) = + ++�+��The following two lemmas (see [17℄) say that GL-pairs exist for lengths `, where:(i) ` is a prime (see for example [17℄).(ii) 2` + 1 is a prime power (these arise from Szekeres di�eren
e sets, see for example [17℄ or[37℄).Lemma 2 Let p be an odd prime then (1;�L), (1; L) is a GL{pair.This lemma shows the existen
e of a GL{pair for every odd prime p. We also note thatLemma 3 Let p = 2`+ 1 be a prime power then there is a GL{pair.Theorem 9 Suppose there is a GL-pair of length `. Then there exists an Hadamard matrix oforder 2`+ 2.Proof. The sequen
es are used to make two 
ir
ulant matri
es A and B of order `: Then thefollowing matrix is the required Hadamard matrix.15



2666666666666664
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3777777777777775Corollary 1 Suppose that there are 2�f`; `+12 ; `+12 ; `+12 g SDS. Then there exists an Hadamardmatrix of order 2`+ 2.GL-pairs also exist for lengths `, where:(i) ` = 2k � 1, k � 2 (two Galois sequen
es are a GL-pair, see for example [85℄).(ii) ` = 49; 57 (these have been found by a non-exhaustive 
omputer sear
h that uses general-ized 
y
lotomy and master-swit
h te
hniques, see [37, 44℄).(iii) ` = 3; 5; : : : ; 45 (these have been found and 
lassi�ed by exhaustive 
omputer sear
hes, see[17℄).(iv) ` = 47; 49 and 51 (these have been found and 
lassi�ed by partial 
omputer sear
hes, see[17℄).(v) ` = 143 (also veri�ed the results for ` = 3; 5; 7; 11; 13; 15; 17; 19; 23; 25; 31; 35; 37; 41; 43; 53;59; 61; 63 see [22℄).GL-pairs do not exist for even lengths. It is indi
ated in [17℄ that the following lengths ` � 200are unresolved: 55; 77; 85; 87; 91; 93; 115; 117; 121; 123; 129; 133; 145; 147; 159; 161; 169; 171; 175;177; 185; 187 and 195.We note here that a GL-pair for length ` = 143 is 
onstru
ted easily sin
e 143 = 11 � 13 is aprodu
t of twin primes as indi
ated in Corollary 2.1.3.4 The PSD testWe suppose that the set of numbers 
omprising sequen
es U and V are �xed and that onlypermutations of these sequen
es will be 
onsidered. Now every term in a PSD is non{negative.Hen
e if the sequen
es U and V are 
ompatible, then no term in their PSDs 
an ex
eed the
onstant 
 in Theorem 8. That is,j�kj2 + j�kj2 = 
 =) j�kj2 � 
:Equivalently, if any term of a sequen
e's PSD ex
eeds 
, then the sequen
e 
annot be a memberof a 
ompatible pair and so maybe dis
arded from our sear
h. This test 
an be generalized in astraightforward manner to any family of sequen
es over any alphabet that have 
onstant periodi
auto
orrelation fun
tion. (Sin
e, the nonperiodi
 auto
orrelation fun
tion being 
onstant impliesthat the periodi
 auto
orrelation fun
tion is 
onstant, the above test is also appli
able for su
h
andidate sequen
es.) 16



1.3.5 Empiri
al performan
e of the PSD test for binary sequen
esExhaustive sear
hes over the spa
e of all binary 0; 1{sequen
es were performed for various lengthsand weights (number of ones) to see what fra
tion of sequen
es a
tually pass the PSD test. Thelengths ` and weights w were 
hosen to 
orrespond to supplementary di�eren
e sets used in the
onstru
tions of D{optimal designs [75℄ and Hadamard matri
es (as des
ribed above) while 
,the threshold for the PSD test, was determined by (20). The results are shown Table 1 of [17℄.(The last three rows in this table are derived from a 
ount of de
imation 
lasses rather thansequen
es, but the per
entage redu
tion is approximately the same either way.) It is evidentthat very substantial redu
tions in the number of 
andidate sequen
es 
an be realized throughthe use of the PSD test.The exhaustive sear
h algorithm was divided into three steps. In the �rst step, all de
imation
lasses of length ` and weight w = `+12 are exhaustively generated, and ea
h one that passes thePSD test is saved in a list. In the se
ond step, the list is sorted by o�set. In this manner, pairsof 
lasses with equal and opposite o�sets 
an be qui
kly found, and the third step is to 
omputethe auto
orrelation fun
tions of su
h pairs to 
on�rm whether they are 
ompatible or not.The results from these three steps for ` = 15 are illustrated in Table 2 of [17℄.The results from the exhaustive sear
hes for ` � 45 are shown in Table 3 of [17℄.1.4 Hadamard matri
es from generalized Legendre pairs using supplemen-tary di�eren
e sets1.4.1 Some preliminary resultsWe say that two sets of residues modulo `, say P and Q, are 2� f`; k1; k2; �g supplementarydi�eren
e sets mod ` (abbreviated as sds) if jP j = k1, jQj = k2, and for ea
h non-zero residuek(mod`) the 
ongruen
es i � j � k; i; j 2 P , i � j � k; i; j 2 Q, have in total exa
tly �solutions.If P , Q are 2 � f`; k1; k2; �g sds, then we 
onstru
t the �rst row of the 
orresponding(�1; 1) 
ir
ulant in
iden
e matri
es A = (aij) and B = (bij), i; j = 0; 1; : : : ; `� 1, as follows:a0j = �1; if j 2 P and a0j = 1; otherwise;and b0j = �1; if j 2 Q and b0j = 1; otherwiseWe know (see [7℄ or [101℄) that:Theorem 10 (i) If P, Q are supplementary di�eren
e sets 2 � f`; k1; k2; �g and A, B the
orresponding (�1; 1) in
iden
e matri
es, thenAAT +BBT = 4(k1 + k2 � �)I` + 2(`� 2(k1 + k2 � �))J` (21)(ii) Given two ` � ` 
ir
ulant matri
es A, B satisfying (21), then the 
orresponding sets P , Qare supplementary di�eren
e sets 2�f`; k1; k2; �g, where k1, k2 is the number of �1's in ea
hrow of A, B respe
tively. 17



We note that two 
ompatible sequen
es may 
ontain elements from any alphabet. If theelements of two 
ompatible sequen
es are �1,1 then they are des
ribed as 2 � f`; k1; k2;�gsds as the previous theorem say. In this se
tion we are interested in the parti
ular 
ase of2 � f`; `+12 ; `+12 ; `+12 g sin
e these give, 
ompatible �1 sequen
es whi
h are a GL-pair, and maybe used to 
onstru
t Hadamard matri
es of order 2`+ 2.In this parti
ular 
ase, relation (21) be
omesAAT +BBT = (2`+ 2)I` � 2J` (22)Multiplying on the left by eT and on the right by e both sides of (22) we obtain:(`� 2k1)2 + (`� 2k2)2 = 2 (23)where e is the ` � 1 ve
tor of one's. Sin
e k1 = k2 = (` + 1)=2, we 
on
lude that, the sumof the elements in ea
h row and 
olumn of the 
ir
ulant matri
es A and B must be minus one.Sin
e multipli
ation by �1 of the �rst row of A and/or B leaves relation (22) invariant, wededu
e that the �rst element in the �rst rows of A and B will be +1 and from the remainingelements half will have positive sign and half negative one. Thus, a ne
essary 
ondition for theexisten
e of the (�1; 1) 
ir
ulant matri
es A and B satisfying (22), or for the existen
e of the
orresponding sds is that, ` should be odd.Now we 
onsider the �rst rows of A and B as two sequen
es of length `. Using (19) it is easyto see that relation (22) is equivalent toPA(0) + PB(0) = 2` (24)PA(s) + PB(s) = �2; for s = 1; 2; : : : ; `� 1 (25)If a sequen
e A of length ` is transformed by the operation of 
y
li
ally taking every d-thelement, where (d; `) = 1, the sequen
e A is said to be de
imated by d. That is, if A0 = Ade
imated by d, then a0i = adi, redu
ing di modulo `. The set of all possible de
imationsof a sequen
e is 
alled a de
imation 
lass. Sin
e d is required to be relatively prime to `, asequen
e of length ` has �(`) de
imations, though sometimes they are not all distin
t. Wenote that de
imation by �1 is the same as reversing a sequen
e. Hen
e, by assuming thatea
h sequen
es also represents its reverse, the maximum size of any de
imation 
lass is �(`)=2.Any pair of sequen
es that 
an be transformed into another pair by ex
hanging the sequen
es,
y
li
ally shifting or reversing either of the sequen
es, or de
imating both by the same amountare 
onsidered equivalent. The 
orresponding sds are also 
onsidered equivalent. This noti
e ofequivalent sds was also 
onsidered in [75℄.Sin
e in our 
ase the parameters k1 and k2 of the sds are equal, we investigate multipliersof 2�f`; `+12 ; `+12 ; `+12 g sds. This eÆ
ient te
hnique has already applied for some other familiesof sds in [19, 74℄. In these 
ases the authors 
onstru
t the set P and sear
h for all possible w'sprime to the `, i.e. (w; `) = 1 su
h that Q = wP (mod`), and P , Q 
onstitute a sds, if su
hw's exist. They found many multipliers of the sds and 
onstru
ted D-optimal designs for someorders.In parti
ular, Koukouvinos, Seberry, Whiteman, and Xia [74℄ used 
y
lotomy to prove thefollowing theorem, where Ci are the 
y
lotomi
 
lasses inGF (v) 
onstru
ted by using a generatorg of GF (v) n f0g.Theorem 11 (see [74℄) Let g be a generator of the 
y
li
 group GF (v) n f0g. Suppose18



(i ) v = 2q2 + 2q + 1 is a prime power,(ii) A and B are 2�fv; q2; q2; �g sds su
h that 2q+1 is a multiplier ie B = (2q+1)A, and2q + 1 2 Ci,(iii) A and B are unions of 
y
lotomi
 
lasses.Then every � 2 Ci or � 2 C�1i is also a multiplier i.e. B = �A.1.4.2 Twin prime power 
onstru
tionFor a 
omprehensive introdu
tion to 
y
lotomy see [37℄ and [94℄.Stanton and Sprott [92℄, Storer [94℄, and Whiteman [102℄, showed 
onstru
tions of di�eren
e setsover GF (p)�GF (p+ 2), with p, p+ 2 both prime powers. Gysin and Seberry [45℄ 
onstru
tedp+ 12 � fp(p+ 2); p2 � 12 ; 2; : : : ; 2; (p� 1)24 gsds over GF (p)�GF (p+2), where p, p+2 are two prime powers, p > 2. In fa
t if x, y generateGF (p)�, GF (p+ 2)� respe
tively, they de�ned the following 
y
lotomi
 
lassesCi = f(xs; ys+i) : s = 0; : : : ; f � 1gEk = f(x p�12 s+k; 0) : s = 0; 1gwhere i = 0; 1, k = 0; : : : ; p�12 � 1, and f = p2�12 = l
m(p� 1; p+ 1).Furthermore they de�ned E = f(xs; 0) : s = 0; : : : ; p� 2g, D = f(0; ys) : s = 0; : : : ; pg. Thenusing the 
lasses C0, E, and D they reproved the following theorem, whi
h was originally provedby Stanton and Sprott [92℄, and Whiteman [102℄. This is also in
luded in [5℄.Theorem 12 (Stanton-Sprott-Whiteman restated) Let C0, E be de�ned as above, thenfC0 [E [ f0gg is a fp(p+ 2); p2 � 12 + p; (p+ 1)24 � 1gdi�eren
e set over GF (p)�GF (p+ 2).Gysin and Seberry [45℄ also noted the following 
orollary.Corollary 2 Let C0, D be de�ned as above, then fC0 [Dg is afp(p+ 2); (p+ 1)22 ; (p+ 1)24 gdi�eren
e set over GF (p)�GF (p+ 2).Example 5 Let p = 3, p+ 2 = 5, (x; y) = (2; 2) = 2. NowC0 = f1; 2; 4; 8gD = f3; 6; 12; 9gE = E0 = E1 = f5; 10g19



in this 
ase fC0 [Dg = f1; 2; 4; 8; 3; 6; 12; 9g;is a f15; 8; 4g di�eren
e set over GF (3) �GF (5) ' Z15.Example 6 Let p = 5, p+ 2 = 7, (x; y) = (2; 3) = 17. NowC0 = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33gD = f15; 10; 30; 20; 25; 5gE = f21; 7; 14; 28gE0 = f21; 14gE1 = f7; 28g;In this 
ase fC0 [Dg = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33; 15; 10; 30; 20; 25; 5g;is a f35; 18; 9g di�eren
e set over GF (5) �GF (7) ' Z35.We observe that the parameters of the di�eren
e sets 
onstru
ted in 
orollary 2, are f`; `+12 ; `+14 g.Hen
e, the above 
orollary motivate us to �nd 2� f`; `+12 ; `+12 ; `+12 g sds. Thus we have:Theorem 13 There exist 2 � f`; `+12 ; `+12 ; `+12 g sds, where ` = p(p + 2) and p, p + 2 are twoprime powers, p > 2.Proof. Let D1 be the f`; `+12 ; `+14 g di�eren
e set 
onstru
ted in 
orollary 2. Then D1 andD2 = D1 
onstitute a 2� f`; `+12 ; `+12 ; `+12 g sds. 2Thus we 
on
lude that:Corollary 3 Let ` = p(p + 2), with p; p + 2 both prime powers. Then there exist GL-pairs oflength `.1.4.3 The algorithmFor the 
onstru
tion of 2�f`; `+12 ; `+12 ; `+12 g sds, we use the following algorithm, whi
h is givenin [22℄. A modi�ed version of this algorithm has been applied in [19℄. This algorithm usesthe idea of multipliers and is mu
h faster than the algorithms that have been used in [7℄ and[43℄. This algorithm provides the sds that 
an be 
onstru
ted using multipliers and performs anexhaustive sear
h for the multipliers of these sds. Not only the 
omplexity of the algorithm isredu
ed but also using some powerful but elementary results from group theory the 
onstru
tionused in this algorithm give us a theoreti
al result on the multipliers of the 
orresponding sds.Modi�
ations of the algorithm 
an be used for sear
hing sds with same parameters k1 = k2 andtheir multipliers.For a given ` odd(i) Find positive integers k1; k2; � satisfying:k1 = k2 = � = `+12 . 20



(ii) For an integer t; 1 � t < `; (t; `) = 1, form all sets fa; at; : : : ; atm�1g with atm � amod(`)for all a = 0; 1; : : : ; ` � 1. Sort the sets by the smallest element and 
all them ai; i =0; 1; : : : ;m.(iii) Find all possible multipliers using Lemmas 4 and 5. Try only one element from the groupsai and a�1i ; and do not try multipliers w; unless (w; `) = 1:(iv) Form one set P with k1 elements as union of sets found in step (ii).(v) For ea
h multiplier w found in step (iii), set Q = wP:(vi) Examine if P;Q are supplementary di�eren
e sets 2� f`; k1; k2;�g.(vii) If the answer in (vi) is positive then save the set P and multiplier w:(viii) If the multiplier that used was not the last, then go to step (v) and try the next multiplier.(ix) Repeat steps (iv)-(viii) until all possible 
ombinations of unions of sets P are examined.(x) If the last possible union of sets P is rea
hed, then go to step (ii) and use the next integert to form the sets ai:(xi) Repeat steps (ii)-(x) until all values of t; 1 < t < `; (t; `) = 1 are examined.Next Lemmas whi
h are essential in our sear
h for multipliers of sds were proved in [22℄.Lemma 4 Let ai; i = 0; 1; : : : ;m be the subsets 
onstru
ted in step (ii) of our algorithm andP = ai1 [ ai2 [ : : : [ ain , Q = w1P; w1 2 aj; j 2 f1; : : : ;mg be 2 � fv; k; k;�g supplementarydi�eren
e set ( we say that w1 is a multiplier for the di�eren
e set ). Then(i) Every w 2 aj is a multiplier for the supplementary di�eren
e set. That is 8w 2 aj,P; R = wP 
onstitute a 2� fv; k; k;�g supplementary di�eren
e set.(ii) Every w 2 a�1j is also a multiplier.Lemma 5 If (w; `) > 1 then w 
annot be a multiplier.The above algorithm 
an perform an exhaustive sear
h for multipliers but only a partialsear
h for the 
orresponding sds. If the sds 
an be 
onstru
ted using multipliers then they willbe easily found otherwise the sds 
an not be 
onstru
ted using multipliers but they may exist.21



1.5 Hadamard matri
es 
onstru
ted from two 
ir
ulant matri
esLet A = fAj : Aj = faj1; aj2; :::; ajng; j = 1; : : : ; `g, be a set of ` sequen
es of length n. Thenon-periodi
 auto
orrelation fun
tion (NPAF ) NA(s) of the above sequen
es is de�ned asNA(s) = X̀j=1 n�sXi=1 ajiaj;i+s; s = 0; 1; :::; n � 1: (26)If Aj(z) = aj1 + aj2z + : : :+ ajnzn�1 is the asso
iated polynomial of the sequen
e Aj, thenA(z)A(z�1) = X̀j=1 nXi=1 nXk=1 ajiajkzi�k = NA(0) + X̀j=1 n�1Xs=1NA(s)(zs + z�s): (27)It is 
lear that PA(s) = NA(s) +NA(n � s); s = 1; : : : ; n � 1: Therefore, if NA(s) = 0 forall s = 1; : : : ; n � 1; then PA(s) = 0 for all s = 1; : : : ; n � 1: But, PA(s) may equal zero for alls = 1; : : : ; n� 1; even though the NA(s) are not.De�nition 2 (Golay sequen
es) Two sequen
es A = fa1; a2; : : : ; ang andB = fb1; b2; : : : ; bngof length n, with elements �1, are de�ned as Golay sequen
es of length n, if the following equa-tions NA(s) +NB(s) = 0 s s = 1; 2; : : : ; n� 1:hold, where NA(s) is the nonperiodi
 auto
orrelation fun
tion.Example 7 The following binary sequen
es, with elements �1, are Golay sequen
es of lengthn = 2; 10 and 26 respe
tively.(a) n = 2; A = f1; 1g; B = f1;�1g(b) n = 10A = f1;�1;�1; 1;�1; 1;�1;�1;�1; 1gB = f1;�1;�1;�1;�1;�1;�1; 1; 1;�1g.(
) n = 26 A = f 1; 1; 1;�1;�1; 1; 1; 1;�1; 1;�1;�1;�1;�1;�1;1;�1; 1; 1;�1;�1; 1;�1;�1;�1;�1 gB = f �1;�1;�1; 1; 1;�1;�1;�1; 1;�1; 1; 1;�1; 1;�1;1;�1; 1; 1;�1;�1; 1;�1;�1;�1;�1 g:Lemma 6 If A and B are n � n 
ir
ulant �1 matri
es with �rst rows two Golay sequen
esfa1; a2; : : : ; ang, fb1; b2; : : : ; bng of length n respe
tively, thenAAT +BBT =  nXi=1(a2i + b2i )! In = 2nIn:Lemma 7 Let A = fa1; a2; : : : ; ang and B = fb1; b2; : : : ; bng are two Golay sequen
es of ordern. Suppose that k1 of the elements ai are positive (+1) and k2 of the elements bi are also positive(+1). Then n = (k1 + k2 � n)2 + (k1 � k2)2and n is even. 22



This 
ondition is ne
essary but not suÆ
ient for the existen
e of Golay sequen
es of order n.Theorem 14 If A = fa1; a2; : : : ; ang and B = fb1; b2; : : : ; bng are Golay sequen
es of length nand, C = f
1; 
2; : : : ; 
mg and D = fd1; d2; : : : ; dmg are Golay sequen
es of length m, then thesequen
es: X = A� �C +D2 �+B � �C �D2 �Y = A� �C� �D�2 ��B � �C� +D�2 �are Golay sequen
es of length nm.So, as we know that Golay sequen
es of length n = 2; 10; 26 exist, then with the previoustheorem we obtain that they exist in lengths n = 2a10b26
, where a; b; 
 are non-negative integers.These results obtained by Golay [41℄ and Turyn [99℄, and these are the only known values ofn that Golay sequen
es exist, These are the Golay numbers. It has been proved by Eliahou,Kervaire and Sa�ari [15℄ that Golay sequen
es do not exist for values n = 34; 50; 58; 68 and forevery n that is divided by a prime number p � 3 (mod 4). The existen
e of Golay sequen
es oflength n, if n; n < 200 : n = 74; 82; 106; 116; 122; 130; 136; 146; 148; 164; 170; 178; 194, is an openproblem.The following theorem is analogous to Theorem 10 and 
an be used for the 
onstru
tion ofHadamard matri
es, see [101℄ or [106℄.Theorem 15 If A, B are v � v (v even) 
ir
ulant matri
es with entries �1, satisfying:AAT +BBT = 2vIv (28)Then the matrix H = " A B�BT AT #is a Hadamard matrix of order 2v.Corollary 4 If there are two (1;�1) sequen
es of length n with zero PAF or NPAF then thereexists a Hadamard matrix of order 2n:Theorem 16 There exist two sequen
es (1;�1) with zero PAF for all lengths n = 2e �10f �26h �34for all non negative integers e; f; h:Proof. There are Golay sequen
es X;Y of length 2e � 10f � 26h. The following sequen
es A andB of length 34 have zero PAF, and are given in [21℄.A = fa; a; a; �a; �a; �a;�b; �a;�b; b;�b; b; a;�b;�b; b; b; a; b;�b; a; b;�b; b; b; a; a; �a; b;�b; a; b; b; agB = fb; �a; �a; b; a; �a;�b; b; b; �a; �a; a; �a; b; a; �a; b; �a; �a; a; a; b; �a; a; �a; a;�b; a;�b;�b;�b; b; b; bgIn these sequen
es we repla
e variables a; b by the sequen
es X;Y respe
tively to obtain thedesired result. 223



2 On inequivalent Hadamard matri
es2.1 Basi
 de�nitions and preliminariesA Hadamard matrix is said to be normalized if it has its �rst row and 
olumn all 1's. Thuswe 
an normalize the Hadamard matrix by multiplying rows and 
olumns by �1 where needed.In these matri
es, n is ne
essarily 2 or a multiple of 4: Two Hadamard matri
es H1 and H2are 
alled equivalent (or Hadamard equivalent, or H-equivalent) if one 
an be obtained fromthe other by a sequen
e of row negations, row permutations, 
olumn negations and 
olumnspermutations.The dis
ussion of Hadamard equivalen
e is quite diÆ
ult, prin
ipally be
ause of the la
k ofa good 
anoni
al form. The exa
t results whi
h have been dis
overed are as follows : Hadamardmatri
es of orders less than 16 are unique up to equivalen
e. There are pre
isely �ve equivalen
e
lasses at order 16, and three equivalen
e 
lasses at order 20; see [46, 47℄. There are pre
isely60 equivalen
e 
lasses at order 24; see [54, 59℄. There are pre
isely 487 equivalen
e 
lasses atorder 28; see [60, 61℄. The 
lassi�
ation of Hadamard matri
es of orders n � 32 is still remainsan open and diÆ
ult problem sin
e an algorithmi
 approa
h of an exhaustive sear
h is an NPhard problem.Given two Hadamard matri
es of the same order, it 
an be quite diÆ
ult to de
ide whetheror not they are equivalent.The next two subse
tions dis
uss the use of the \pro�le" and \proje
tions" of Hadamardmatri
es to determine inequivalen
e.The following 
riterion (pro�le) was given in [8℄.2.2 The pro�le 
riterionCooper, Milas and Wallis in [8℄ suggested the pro�le 
riterion to investigate the equivalen
e ofHadamard matri
es. Later Lin, Wallis and Zhu in [78, 80, 81℄ proposed some modi�
ations ofthis 
riterion. Suppose H is a Hadamard matrix of order 4n with typi
al entries hij : We writePijk` for the absolute value of the generalized inner produ
t of rows i; j; k and ` :Pijk` = j 4nXx=1hixhjxhkxh`xjThis 
riterion does not work in the 
ase of Hadamard matri
es of order n = 20 be
ause itgives the same pro�le for all three equivalent 
lasses of Hadamard matri
es of this order.Proposition 1 (see [8℄) Pijk` � 4n (mod 8):We shall write �(m) for the number of sets fi; j; k; `g of four distin
t rows su
h that Pijk` = m:The de�nition and the above give that �(m) = 0 unless m � 0 and m � 4n (mod 8): We 
all�(m) the pro�le (or 4-pro�le) of H:The (unique) matri
es of order 4; 8 and 12 have pro�les�(4) = 1�(0) = 56; �(8) = 14�(4) = 495; �(12) = 024



respe
tively.The �ve inequivalent 
lasses of order 16 gave four distin
t pro�les.
lass H0 : �(0) = 1680; �(8) = 0; �(16) = 140
lass H1 : �(0) = 1488; �(8) = 256; �(16) = 76
lass H2 : �(0) = 1392; �(8) = 484; �(16) = 44
lass H3 : �(0) = 1344; �(8) = 448; �(16) = 28
lass H4 : �(0) = 1344; �(8) = 448; �(16) = 28The matri
es of 
lass H4 are the transposes of the matri
es of 
lass H3:The three 
lasses of order 20 all gave the same pro�le:�(4) = 4560; �(12) = 285; �(20) = 0:Similarly we 
an de�ne a more general pro�le 
riterion based on more than 4 rows. For somemodi�
ations of the pro�le su
h as extended pro�le and generalized pro�le we refer the readerto [80℄. We now give a modi�ed version of the pro�le that was given in [8℄. We observe that allthe 
onditions whi
h hold for the rows of a Hadamard matrix also hold for its 
olumns.We write Q(m) for the absolute value of the generalized inner produ
t of m 
olumns, say
1; 
2; : : : ; 
m and we 
all this m-
olumn pro�le.Q(m) = j 4nXx=1hxa1hxa2 � � � hxam jWe shall write q(s) for the number of sets fa1; a2; : : : ; amg ofm distin
t rows su
h that Q(m) = s:The de�nition and the above give that q(s) = 0 unless s � 0: We 
all q(s) the m-
olumn pro�le(or m-
pro�le) of H:This 
riterion as well does not work in the 
ase of Hadamard matri
es of order n = 16; 20be
ause it also gives the same m-
pro�le for the last two 
lasses in order 16 and the same m-
pro�le for all three equivalent 
lasses of Hadamard matri
es of order n = 20 for all 1 � m � n�1:Two more useful 
riterions to determine inequivalen
e of Hadamard matri
es whi
h are 
alled\K-matri
es" and \K-boxes" are also developed in [57, 58℄. To save spa
e we do not dis
ussthese 
riteria here.2.3 The proje
tion and Hamming distan
e distribution algorithmsIn this se
tion we des
ribe two new 
riteria, to test inequivalen
e in Hadamard matri
es of ordern, based on their proje
tion properties and their Hamming distan
es.Let H be a n � n Hadamard matrix. A n � k submatrix of H whi
h 
onsist of n rows andk 
olumns is 
alled a proje
tion of H into k 
olumns. In some statisti
al appli
ations the rowsof H refer to the runs of a fa
torial experiment and the 
olumns refer to the fa
tors, see [77℄ or[10℄.The proje
tion properties of the 2q�pR fra
tional fa
torials are well known and have been usede�e
tively in a number of published examples of experimental investigations. Here in, we useinequivalent proje
tions of Hadamard matri
es to 
he
k inequivalent Hadamard matri
es. Usingthis 
riterion we are able to �nd all inequivalent proje
tions in k fa
tors as well as to 
lassifyHadamard matri
es of that order. As an example we apply this 
riterion to orders 16 and 20.25



The idea of the �rst 
riterion is that if two Hadamard matri
es of order n are inequivalentthen these matri
es should have at least one di�erent proje
tion for some k � n and vi
e versa(if there exist a k � n su
h that the two Hadamard matri
es give some di�erent, inequivalentproje
tions then these Hadamard matri
es are inequivalent). So if we �nd all proje
tions of aHadamard matrix of order n we have a bonus. We 
an de
ide the equivalen
e of Hadamardmatri
es and moreover use the proje
tions for statisti
al analysis of experiments.Now we give in brief the des
ription of our algorithm that 
an be used to determine allinequivalent proje
tions for n and k.First we give the de�nition of inequivalent proje
tions of a Hadamard matrix of order n:Two proje
tions in k fa
tors of Hadamard matri
es of order n are equivalent if one 
an beobtained from the other by one or more of the following transformations(a) Sign 
hanges in the 
olumns (multiply one or more 
olumns by �1).(b) Permutations of the 
olumns(
) Rearrangements of the rows.The next algorithm gives us all the inequivalent proje
tions of Hadamard matri
es andthrough them the inequivalent Hadamard matri
es.The inequivalent proje
tions algorithm:(i) Set k = 2:(ii) Normalize the Hadamard matri
es given by multiplying, whenever this is ne
essary, anyrows or 
olumns by �1: Then remove the �rst 
olumn (with all 1's);(iii) Find all proje
tions for ea
h Hadamard matrix of a given order n and k fa
tors by takingall possible k 
olumns of the remaining n� (n� 1) matrix. These are �n � 1k � proje
tionsin total.(iv) From the proje
tions found in step (iii) �nd the inequivalent ones.(v) Che
k if the set of all proje
tions of the �rst Hadamard matrix is di�erent (inequivalent)from the set of all proje
tions of the se
ond Hadamard matrix.(vi) If the answer in step (v) is true then stop and say that these two Hadamard matri
es areinequivalent, otherwise in
rease k by 1.(vii) If now k � n � 1 then go to step (iii) and 
ontinue, otherwise stop and say that theseHadamard matri
es are equivalent.Lemma 8 When we proje
t a Hadamard matrix of order 4m into k = 2 
olumns we alwaysobtain � 4m� 12 � identi
al proje
tions. Ea
h of these is m times over the full 22 design.Proof. A Hadamard matrix has its 
olumns orthogonal to ea
h other. Therefore, in any two
olumns ea
h of the pairs (1; 1), (1;�1), (�1; 1), (�1;�1) appear exa
tly m times. 2Using the above lemma we 
an slightly improve this algorithm by not 
he
king the proje
tionsin k = 2 
olumns, and starting the algorithm with k = 3.26



Lemma 9 Let hk be a proje
tion, in k fa
tors, of a Hadamard matrix of order n: Then hk
annot 
ontain a full 2k design if k > log2(n):Proof. A full 2k experimental design has 2k rows. A Hadamard matrix of order n has n rows.So if 2k > n there 
annot be a full 2k design in a k 
olumn proje
tion of this Hadamard matrix.We have that 2k > n =) k � log2(2) > log2(n) =) k > log2(n):Now if k is not an integer we take the next integer number. Thus, if k is not an integer we havethat k � [log2(n)℄ + 1: 2Corollary 5 For a Hadamard matrix of order n we have that if 2m < n � 2m+1 then k � m+1:Proof. We know that log fun
tion is 
ontinuous and in
reasing fun
tion. Sin
e log2(2m) = m;we have that if 2m < n � 2m+1 then m < log2(n) � m+ 1 and so k � m+ 1: 2Theorem 17 Let H1;H2 be two inequivalent Hadamard matri
es of order n: The �rst Hadamardmatrix H1 will give at least one proje
tion di�erent (inequivalent) from all the proje
tions of H2for some k > log2(n):Proof. The result follows from lemma 9. 2Example 8 We give some orders of Hadamard matri
es and the bound for k:� For n = 2m we obtain k � m:� For n = 12 we obtain k � 4:� For n = 20 we obtain k � 5:� For n = 24 we obtain k � 5:� For n = 28 we obtain k � 5:Theorem 18 If two Hadamard are equivalent then their proje
tions for all k = 2; 3; : : : ; n � 1are equivalent as well.Proof. Suppose that H1 and H2 are two equivalent Hadamard matri
es of order n: Then,for a given k; both of them have �n � 1k � proje
tions in total. The equivalen
e of the Hadamardmatri
es indi
ates that ea
h proje
tion of the �rst Hadamard matrix is equivalent with oneproje
tion of the se
ond Hadamard matrix and vi
e versa. 2We will now dis
uss the 
omplexity of the �rst new algorithm. First, we observe that thetotal number of all possible proje
tions of a Hadamard matrix of order n in k fa
tors is �n� 1k �.We note that the �nding the inequivalent proje
tions by applying the de�nition of inequivalentproje
tions is 
omputationally-intensive. This is an NP hard problem when n and k in
rease.The sign 
hanges in the 
olumns (multiply one or more 
olumns by �1) required 2k possiblemultipli
ations. The permutations of the 
olumns and rearrangements of the rows need k!27



possible permutations. That is in total we have 2k � k! � �n � 1k � 
ases to 
he
k and that's a large
omplexity when k in
reases. So, if we are not interested in �nding all inequivalent proje
tionsof Hadamard matri
es we 
an apply the following algorithm whi
h uses all proje
tions and theHamming distan
e distribution. The Hamming distan
e distribution is de�ned to beW (x) = a0 + a1x1 + : : :+ akxkwhere am is the number des
ribing how many pairs of runs of the proje
tion have distan
e m:Example 9 Consider the proje
tions for k = 3 and n = 8: We �rst normalize the Hadamardmatrix of order 8 so it's �rst 
olumn is all 1s. We then remove the �rst 
olumn so we have the8� 7 matrix 1 1 1 1 1 1 11 1 �1 1 �1 �1 �11 �1 �1 �1 1 1 �11 �1 1 �1 �1 �1 1�1 1 1 �1 1 �1 �1�1 1 �1 �1 �1 1 1�1 �1 1 1 �1 1 �1�1 �1 �1 1 1 �1 1Sin
e k = 3 the proje
tions are all possible 3-sets of 
olumns. We will just illustrate withthe sets of 
olumns (fa
tors) 1, 2, 3 and 1, 2, 4.1 1 1 and 1 1 11 1 �1 1 1 11 �1 �1 1 �1 �11 �1 1 1 �1 �1�1 1 1 �1 1 �1�1 1 �1 �1 1 �1�1 �1 1 �1 �1 1�1 �1 �1 �1 �1 1We now 
onsider the distan
e between all pairs of rows (runs) of these 8�3 matri
es. The �rstset has distan
e 3 (4 times), 2 (12 times) and 1 (12 times) so its Hamming distan
e distributionis W (x) = 0 + 12x + 12x2 + 4x3;while the se
ond sets has 0 (4 times) and 2 (24 times) so its Hamming distan
e distribution isW (x) = 4 + 24x2: 2Lemma 10 Two equivalent proje
tions have the same Hamming distan
e distribution.Proof. Let Pa = fa1; a2; : : : ; akg; Pb = fb1; b2; : : : ; bkg be two runs in a given proje
tion in kfa
tors. The result follows from the fa
t that the Hamming distan
e of these two runs is nota�e
ted if we apply some sign 
hanges to fa
tors or ex
hange the runs or fa
tors. 228



The modi�ed algorithm (Hamming distan
e distribution algorithm) is mu
h faster than theprevious algorithm as it only gives us an answer to the question \are the two Hadamard matri
esare equivalent or not". It does not not give us all inequivalent proje
tions of the Hadamardmatri
es.The Hamming distan
e distribution algorithm:(i) Set k = 2:(ii) Normalize the Hadamard matri
es given by multiplying, whenever this is ne
essary, anyrows or 
olumns by �1: Then remove the �rst 
olumn (with all 1's);(iii) Find all proje
tions for ea
h Hadamard matrix of a given order n and k fa
tors by takingall possible k 
olumns of the remaining n� (n� 1) matrix. There are �n � 1k � proje
tionsin total.(iv) In the proje
tions found in step (iii) 
al
ulate the Hamming distan
e distributions for anytwo runs (rows) of the proje
tion. There are �n � 12 � Hamming distan
e distributions. Savethe di�erent Hamming distan
e distributions and how many times ea
h of them appears.(v) Che
k if the set of all di�erent Hamming distan
e distributions of the �rst Hadamardmatrix is the same with the set of all di�erent Hamming distan
e distributions of these
ond Hadamard matrix.(vi) If the answer in step (v) is false, then stop and say that these two Hadamard matri
es areinequivalent, otherwise in
rease k by 1.(vii) If now k � n � 1 then go to step (iii) and 
ontinue, otherwise stop and say that theseHadamard matri
es are equivalent.Let us dis
uss the 
omplexity of the Hamming distan
e distribution algorithm. First, weobserve again that all possible proje
tions in k fa
tors of a Hadamard matrix of order n is �n� 1k �.We note that �nding the Hamming distan
e distribution of all proje
tions is not 
omputationally-intensive. It needs only n(n�1) 
al
ulations. A 
al
ulation of the Hamming distan
e of two runsin a proje
tion takes k 
omparisons and thus we have in total �n� 1k � n(n� 1)k multipli
ations,summations and 
omparisons. This is not an NP hard problem when n and k in
rease butpolynomial in nk+2. It is mu
h faster than the inequivalent proje
tions algorithm.2.4 Appli
ation of the new 
riterion to Hadamard matri
es of small ordersIn this se
tion we apply our new algorithm to the 
ases of Hadamard matri
es of small orders.As we 
an see from the next tables when the Hadamard matri
es are equivalent we have to
he
k the Hamming distan
e distributions for all proje
tions into k = 2; : : : ; n� 1 fa
tors. If theHadamard matri
es are inequivalent there exist k 2 f2; 3; : : : ; n � 1g su
h that the Hammingdistan
e distributions for the proje
tions in k fa
tors are di�erent for ea
h Hadamard matrix.To save spa
e, we give here the table with Hamming distan
e distribution only for orders4; 8; 12: For larger orders the reader should 
onsider [23℄.29



2.4.1 Hadamard matri
es of order n = 4; 8; 12We know that there exists only one Hadamard matrix of these orders up to equivalen
e, see [9℄for example. The results of the appli
ation of the Hamming distan
e distribution algorithm forthese orders are given in Table 1. Sin
e there is only one Hadamard matrix in ea
h 
ase the
riterion needs to test Hamming distan
e distributions for all proje
tions into k = 2; : : : ; n� 1fa
tors. In Table 1 the word \times" is used to show the number of times that the given Hammingdistan
e distribution o

urs in the proje
tions. For example there are � 73 � = 35 proje
tions ina Hadamard matrix of order n = 8 in k = 3 fa
tors and � 82 � = 28 Hamming weights in ea
hHamming distan
e distribution of ea
h proje
tion.When we say that the Hamming distan
e distribution is 0; 12; 12; 4 and times 28 that meansthat there are 0 pairs of runs in the proje
tion with Hamming distan
e 0, 12 pairs of runs in theproje
tion with Hamming distan
e 1, 12 pairs of runs in the proje
tion with Hamming distan
e2 and 4 pairs of runs in the proje
tion with Hamming distan
e 3. This distribution o

urs for28 of the 35 proje
tions.When we say that the Hamming distan
e distribution is 4; 0; 24; 0 and times 7 that meansthat there are 4 pairs of runs in the proje
tion with Hamming distan
e 0, 0 pairs of runs inthe proje
tion with Hamming distan
e 1 and 24 pairs of runs in the proje
tion with Hammingdistan
e 2, 0 pairs of runs in the proje
tion with Hamming distan
e 2. This distribution o

ursfor 7 of the 35 proje
tions.As you 
an see the total number of Hamming distan
e (the sum of all Hamming distan
es inthe Hamming distan
e distribution) is � 82 � = 28 and the total number of times ea
h distributiono

urs (the sum of all di�erent Hamming distan
e distributions) is � 73 � = 35:2.4.2 Hadamard matri
es of order n = 16We know that there are exa
tly �ve inequivalent Hadamard matri
es of this order, see [46℄. Theresults of the appli
ation of the Hamming distan
e distribution algorithm for this order are givenin [23℄. Observe that for k = 2 the Hamming distan
e distributions of all proje
tions of all �vematri
es are exa
tly the same. For k = 3 we have four di�erent Hamming distan
e distributions(thus four inequivalent Hadamard matri
es) and we have to go up to k = 6 to obtain all �ve ofthem.2.4.3 Hadamard matri
es of order n = 20We know that there are exa
tly three inequivalent Hadamard matri
es of this order, see [47℄.The results of the appli
ation of the Hamming distan
e distribution algorithm for this order aregiven in [23℄. Observe that for k = 2; 3; 4 the Hamming distan
e distributions of all proje
tionsof all three matri
es are exa
tly the same. For k = 5 we have all three di�erent Hammingdistan
e distributions and thus we obtain all three of the inequivalent Hadamard matri
es.2.5 Inequivalent Hadamard matri
es2.5.1 Hadamard matri
es of order n = 24We know that there are exa
tly 60 inequivalent Hadamard matri
es of this order, see [54, 59℄.For Hadamard matri
es of order 24 it is not 
onvenient to give all di�erent Hamming distan
e30



Hname n k Hamming distan
e timesH4 4 2 0,4,2 3H4 4 3 0,0,6 1H8 8 2 4,16,8 21H8 8 3 0,12,12,4 28H8 8 3 4,0,24,0 7H8 8 4 0,0,24,0,4 7H8 8 4 0,4,12,12,0 28H8 8 5 0,0,8,16,4,0 21H8 8 6 0,0,0,16,12,0,0 7H8 8 7 0,0,0,0,28,0,0,0 1H12 12 2 12,36,18 55H12 12 3 4,24,30,8 165H12 12 4 1,12,30,20,3 330H12 12 5 0,5,20,30,10,1 396H12 12 5 1,0,30,20,15,0 66H12 12 6 0,0,15,20,30,0,1 66H12 12 6 0,1,10,30,20,5,0 396H12 12 7 0,0,3,20,30,12,1,0 330H12 12 8 0,0,0,8,30,24,4,0,0 165H12 12 9 0,0,0,0,18,36,12,0,0,0 55H12 12 10 0,0,0,0,0,36,30,0,0,0,0 11H12 12 11 0,0,0,0,0,0,66,0,0,0,0,0 1Table 1: Appli
ation of Hamming distan
e distribution algorithm for n = 4; 8; 12distributions for all k: We shall only dis
uss the results our algorithm gives. The algorithmmoves to k = 3 and �nds 31 di�erent Hamming distan
e distributions and thus 31 of the sixtyinequivalent Hadamard matri
es. Then for k = 4 we obtain 42 di�erent Hamming distan
edistributions and thus 42 of the sixty inequivalent Hadamard matri
es. Finally for k = 5 weobtain 60 di�erent Hamming distan
e distributions and thus all 60 of the inequivalent Hadamardmatri
es. For more details in this order the reader should 
onsider [23℄.2.5.2 Hadamard matri
es of order n = 28In the 
ase n = 28 there are 487 inequivalent Hadamard matri
es, see [60, 61℄. If we applyour algorithm to this 
ase we obtain the following results. The algorithm moves to k = 3 and�nds 17 di�erent Hamming distan
e distributions and thus 17 of the 487 inequivalent Hadamardmatri
es. Then for k = 4 we obtain 216 di�erent Hamming distan
e distributions and thus 216of the 487 inequivalent Hadamard matri
es. Finally for k = 5 we obtain 487 di�erent Hammingdistan
e distributions and thus all 487 of the inequivalent Hadamard matri
es. For more detailsin this order the reader should 
onsider [23℄. 31



2.5.3 Hadamard matri
es of order 32The 
lassi�
ation of Hadamard matri
es of orders n � 32 is still remains an open and diÆ
ultproblem sin
e an algorithmi
 approa
h using an exhaustive sear
h is an NP hard problem. Inparti
ular, in this 
ase, Lin, Wallis and Zhu [79℄ found 66104 inequivalent Hadamard matri
esof order 32: Extensive results appear in [82℄ and [83℄. Thus the lower bound for inequivalentHadamard matri
es of order 32 is 66104.2.5.4 Hadamard matri
es of order 36There are at least 762 inequivalent Hadamard matri
es of order 36: In fa
t this number is ob-tained as follows: Seberry's home page http://www.uow. edu.au/�jennie gives 192 inequivalentHadamard matri
es of order 36: These are supplied by E. Spen
e (180 matri
es) see [91℄, Z.Janko, (1 matrix of Bush-type) see [55℄ and V. D. Ton
hev (11 matri
es) see [95℄. Using aneÆ
ient algorithm Georgiou and Koukouvinos [24℄ found that 190 of their transposes, are in-equivalent to these. This was also 
on�rmed in [16℄. Georgiou and Koukouvinos in [24℄ improvedfurther this bound to 762 by 
onstru
ting 380 new Hadamard matri
es of order 36.2.5.5 Hadamard matri
es of order 40Lam, Lam and Ton
hev [76℄ showed that the lower bound for inequivalent Hadamard matri
esof order 40 is 3:66 � 1011:2.5.6 Hadamard matri
es of order 44Re
ently Topalova [96℄ 
lassi�ed the Hadamard matri
es of order 44 with an automorphism oforder 7, and found 384 inequivalent Hadamard matri
es of this order. Georgiou and Koukouvinosin [25℄ further improved this lower bound to 2507 by 
onstru
ting 2123 new Hadamard matri
es.3 Algorithms for 
onstru
ting orthogonal designs3.1 Basi
 de�nitions and preliminariesAn orthogonal design of order n and type (s1; s2; : : : ; su) (si > 0), denoted OD(n; s1; s2; : : : ; su),on the 
ommuting variables x1; x2; : : : ; xu is an n�nmatrix A with entries from f0;�x1;�x2; : : : ;�xug su
h that AAT = ( uXi=1 six2i )In:Alternatively, the rows of A are formally orthogonal and ea
h row has pre
isely si entries of thetype �xi. In [33℄, where this was �rst de�ned, it was mentioned thatATA = ( uXi=1 six2i )Inand so our alternative des
ription of A applies equally well to the 
olumns of A. It was alsoshown in [33℄ that u � �(n), where �(n) (Radon's fun
tion) is de�ned by �(n) = 8
 + 2d, whenn = 2ab, b odd, a = 4
+ d, 0 � d < 4.Some small orthogonal designs are given in the following example, see [88℄.32



Example 10 Some small orthogonal designs."x yy �x# ; 26664a �b �
 �db a �d 

 d a �bd �
 b a37775 ; 26664 a b b d�b a d �b�b �d a b�d b �b a37775 ; 26664a 0 �
 00 a 0 

 0 a 00 �
 0 a37775OD(2; 1; 1) OD(4; 1; 1; 1; 1) OD(4; 1; 1; 2) OD(4; 1; 1)OD(4; 1; 1; 1; 1) is the Williamson array. 2A weighing matrix W = W (n; k) is a square matrix with entries 0;�1 having k non-zeroentries per row and 
olumn and inner produ
t of distin
t rows zero. Hen
e W satis�es WW T =kIn, and W is equivalent to an orthogonal design OD(n; k). The number k is 
alled the weightof W .We make extensive use of the book of Geramita and Seberry [37℄. We quote the followingtheorems, giving their referen
e from the aforementioned book, that we use:Lemma 11 [37, Lemma 4.11, The Doubling Lemma℄ If there exists an orthogonal designOD(n; s1; s2; : : : ; su) then there exists an orthogonal design OD(2n; s1; s1; es2; : : : ; esu) wheree = 1 or 2. 2Lemma 12 [37, Lemma 4.4, The Equating and Killing Lemma℄ If A is an orthogonaldesign OD(n; s1; s2; : : : ; su) on the 
ommuting variables f0;�x1;�x2; : : : ;�xug then there is anorthogonal design OD(n; s1; s2; : : : ; si + sj; : : : ; su) and OD(n; s1; s2; : : : ; sj�1; sj+1; : : : ; su) onthe u� 1 
ommuting variables f0;�x1;�x2; : : : ;�xj�1;�xj+1; : : : ;�xug. 2Theorem 19 [37, Theorems 2.19 and 2.20℄ Suppose n � 0(mod 4). Then the existen
eof a W (n; n � 1) implies the existen
e of a skew-symmetri
 W (n; n � 1). The existen
e of askew-symmetri
 W (n; k) is equivalent to the existen
e of an OD(n; 1; k). 2Theorem 20 [37, Proposition 3.54 and Theorem 2.20℄ An orthogonal design OD(n; 1; k)
an only exist in order n � 4(mod 8) if k is the sum of three squares. An orthogonal designOD(n; 1; n� 2) 
an only exist in order n � 4(mod 8) if n� 2 is the sum of two squares. 2Theorem 21 [37, Theorem 4.49℄ Suppose there exist four 
ir
ulant matri
es A, B, C, D oforder n satisfying AAT +BBT + CCT +DDT = fInLet R be the ba
k diagonal matrix. ThenGS = 0BBB� A BR CR DR�BR A DTR �CTR�CR �DTR A BTR�DR CTR �BTR A 1CCCAis a W (4n; f) when A, B, C, D are (0; 1;�1) matri
es, and an orthogonal design OD(4n; s1; s2;: : : ; su) on x1; x2; : : : ; xu when A, B, C, D have entries from f0;�x1; : : : ;�xug and f =Puj=1(sjx2j). 233



Corollary 6 If there are four sequen
es A, B, C, D of length n with entries from f0;�x1;�x2;�x3;�x4g with zero periodi
 or non-periodi
 auto
orrelation fun
tion, then these sequen
es 
anbe used as the �rst rows of 
ir
ulant matri
es whi
h 
an be used in the Goethals-Seidel arrayto form an OD(4n; s1; s2; s3; s4). We note that if there are sequen
es of length n with zeronon-periodi
 auto
orrelation fun
tion, then there are sequen
es of length n+m for all m � 0. 23.2 Constru
tion algorithmsIn this se
tion we are interested in the 
onstru
tion of orthogonal designs using four 
ir
ulantmatri
es in the Goethals-Seidel array. Spe
i�
ally, for positive integers s1; s2; : : : ; su and oddn, the method sear
hes for four 
ir
ulant matri
es A1; A2; A3; A4 or order n with entries fromf0;�x1;�x2; : : : ;�xug, u � 4, su
h thatA1AT1 +A2AT2 +A3AT3 +A4AT4 =  uXi=1six2i! In: (29)In the remainder of this se
tion, when four 
ir
ulant (or group 
ir
ulant) matri
es of ordern, with entries from the set f0;�x1;�x2; : : : ;�xug, satisfy equation (29) will be said that thesematri
es satisfy the additive property.3.2.1 The matrix based algorithmSuppose the row and 
olumn sum of Ai isri = p1ix1 + p2ix2 + p3ix3 + p4ix4; i = 1; 2; 3; 4Let eT be the 1� n ve
tor of 1's, then eTAi = rieT . Multiplying on the left of (29) by eT andthe right of (29) by e we have 4Xi=1(eTAi)(eTAi)T = n 4Xi=1 six2ior 4Xi=1(rieT )(rieT )T = n 4Xi=1 r2i = n 4Xi=1 six2i
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Thus we have s1x21 + s2x22 + s3x23 + s4x24 = x21 4Xi=1 p21i + x22 4Xi=1 p22i + x23 4Xi=1 p23i+x24 4Xi=1 p24i + 2x1x2 4Xi=1 p1ip2i+2x1x3 4Xi=1 p1ip3i + 2x1x4 4Xi=1 p1ip4i+2x2x3 4Xi=1 p2ip3i + 2x2x4 4Xi=1 p2ip4i+2x3x4 4Xi=1 p3ip4iHen
e we have four integer ve
tors pT1 = (p11; p12; p13; p14), pT2 = (p21; p22; p23; p24), pT3 =(p31; p32; p33; p34), pT4 = (p41; p42; p43; p44), whi
h are pairwise orthogonal. Also jpT1 j2 = s1,jpT2 j2 = s2, jpT3 j2 = s3, jpT4 j2 = s4.Form these ve
tors into an orthogonal integer matrix P with P T = (p1; p2; p3; p4). ThenPP T = diag (s1; s2; s3; s4) and det P = ps1s2s3s4. But P is integer so s1s2s3s4 is a square.Thus we haveLemma 13 The Goethals-Seidel 
onstru
tion for an orthogonal design OD (4n; s1; s2; s3; s4)
an only be used if(i) there is an integer matrix P satisfying PP T = diag (s1; s2; s3; s4) and hen
e(ii) s1s2s3s4 is a square. 2Sin
e the row sum of Aj is 4Xi=1 pijxi for 1 � j � 4, the 4 � 4 matrix P = (pij) is 
alled thesum matrix of A1, A2, A3, A4.In this se
tion we are interested in the 
onstru
tion of orthogonal designs using four 
ir
ulantmatri
es in the Gorthals-Seidel array. Spe
i�
ally, for positive integers s1; s2; : : : ; su and oddn, the method sear
hes for four 
ir
ulant matri
es A1; A2; A3; A4 or order n with entries fromf0;�x1;�x2; : : : ;�xug that satisfy equation (29).De�nition 3 IfA1; A2; A3; A4 are n�n 
ir
ulant matri
es with entries from f0;�x1;�x2; : : : ;�xugand the �rst row of Aj has mij entries of the kind �xi, then the u � 4 matrix M = (mij) is
alled the entry matrix of (A1; A2; A3; A4): 2
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The elements of the entry matri
es satisfy the following 
onditions.4Xj=1mij = si for 1 � i � uuXi=1mij � n for 1 � j � 4 (30)Thus the rows of the entry matri
es refer to the variables xi and the 
olumns to the 
ir
ulantmatri
es A1; A2; A3; A4 whi
h are 
onstru
ted from four sequen
es of length n as des
ribed inCorollary 6.De�nition 4 Suppose that the row sum of Aj is uXi=1pijxi for 1 � j � 4: Then the u� 4 integralmatrix P = (pij) is 
alled the sum matrix of (A1; A2; A3; A4): The �ll matrix of (A1; A2; A3; A4)is M � abs(P ); where abs(P ) denotes the matrix having as elements the absolute values ofelements of P . The 
ontent of Ai is determined by the i-th 
olumns of the sum and �ll matri
es.2 The following theorem may be used to �nd the sum matrix of a solution of (29).Theorem 22 (Eades Sum Matrix Theorem) The sum matrix P of a solution of (29) satis-�es PP T = diag(s1; s2; : : : ; su): 2The algorithmStep 1. Find all sum matri
es P of the desirable orthogonal design using theorem 22.Step 2. Sele
t the �rst sum matrix.Step 3. For the sele
ted sum matrix P �nd all entry matri
es M and the 
orresponding �llmatri
es (Q=M-abs(P)) using equations given by (30).Step 4. Sele
t the �rst entry matrix M and the 
orresponding �ll matrix Q.Step 5. Using P, M and Q write down the elements of sequen
es Aj ; j = 1; 2; 3; 4:Step 6. Constru
t all possible sequen
es Aj with entries we found in Step 5 and their 
orre-sponding PAF.Step 7a. Combine the lists �nd in Step 6 and 
he
k if a 
ombination gives zero PAF and if sosave these sequen
es into PAF solution �le.Step 7b. If a zero PAF solution exist then sear
h if some permutation of these sequen
es havezero NPAF and if so save these sequen
es into NPAF solution �le.Step 8. If there are more entry matri
es then sele
t the next entry matrix M and the 
orre-sponding �ll matrix Q and go to Step 5.Step 9. If there are more sum matri
es then sele
t the next sum matrix P and go to Step 3.For more details about the 
onstru
tion of orthogonal designs whi
h uses entry matri
es, see[37℄. 36



3.2.2 The extension algorithmThis algorithm extents already known orthogonal designs on t variables into new orthogonaldesigns on t+ 1 variables. The algorithm is given brie
y in the next steps.Step 1. Input the sequen
es of the known orthogonal design OD(4n; s1; : : : ; st) on t variables(a1; a2; : : : ; at), you wish to extent.Step 2. In these sequen
es repla
e all zeros with variables xi (a deferent variable on ea
h zero).Step 3. Using the new sequen
es and the equationPA1(s) + PA2(s) + PA3(s) + PA4(s) = 0; s = 1; 2; : : : ; (n� 1)2
reate a system of equations.Step 4. Solve this system ofequations and �nd all possible values xi, where xi 2 f�1; 0; 1g,that satisfy equations given in Step 3.Step 5. For all solutions, diferent from the zero solution, (of weight k 6= 0) repla
e �1 by �at+1respe
tively and obtain the OD(4n; s1; : : : ; st; k) on t+ 1 variables (a1; a2; : : : ; at; at+1).Then next example illustrates how this algorithm works.Example 11 Start with the four sequen
es of length 9 and type (5; 9) withNPAF = 0 (Step 1).b 0 �b 0 0 0 0 0 0b a �b 0 0 0 0 0 0b a 0 a �b 0 0 0 0b a b �a b 0 0 0 0Now �ll ea
h zero position with one of the 22 variables x1; x2; : : : ; x22 (Step 2). Thus we obtainb x1 �b x2 x3 x4 x5 x6 x7b a �b x8 x9 x10 x11 x12 x13b a x14 a �b x15 x16 x17 x18b a b �a b x19 x20 x21 x22Using relationsPA1(s) + PA2(s) + PA3(s) + PA4(s) = 0; s = 1; 2; : : : ; (n� 1)2we 
onstru
t the following twelve equations (Step 3):
37



2x14 = 0x7 � x2 + x13 � x8 + x18 � x15 + x22 + x19 = 0x3x2 + x4x3 + x5x4 + x6x5 + x7x6 + x9x8 + x10x9 + x11x10 + x12x11 + x13x12 + x16x15+ x17x16 + x18x17 + x20x19 + x21x20 + x22x21 = 0x13 + x8 + x18 + x15 + x22 � x19 = 0x6 � x3 + x12 � x9 + x17 � x16 + x21 + x20 = 0x1x7 + x2x1 + x4x2 + x5x3 + x6x4 + x7x5 + x10x8 + x11x9 + x12x10 + x13x11 + x17x15+ x18x16 + x21x19 + x22x20 = 0x12 + x9 + x17 + x16 + x21 � x20 = 0x5 � x7 + x2 � x4 + x11 � x13 + x8 � x10 + x16 � x17 + x20 + x22 + x19 + x21 = 0x1x6 + x3x1 + x5x2 + x6x3 + x7x4 + x11x8 + x12x9 + x13x10 + x14x18 + x15x14 + x18x15+ x22x19 = 0x11 + x10 + x16 + x18 + x15 + x17 + x20 � x22 + x19 � x21 = 0x4 � x6 + x3 � x5 + x10 � x12 + x9 � x11 + x15 � x18 + x19 + x21 + x20 + x22 = 0x1x5 + x2x7 + x4x1 + x6x2 + x7x3 + x8x13 + x12x8 + x13x9 + x14x17 + x16x14 = 0By solving this system of equations (Step 4) we �nd, among others, the following solutionsof weight 9; 14; 16:x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x130 �1 0 0 0 0 �1 �1 �1 0 �1 1 00 �1 �1 �1 0 �1 1 0 �1 0 1 �1 �10 �1 �1 �1 �1 �1 1 1 �1 0 0 1 �1x14 x15 x16 x17 x18 x19 x20 x21 x220 1 1 �1 0 0 0 0 00 1 0 1 �1 0 �1 0 10 1 0 0 �1 1 �1 �1 1The �rst one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 9) (Step5, by repla
ing �1 by �
 respe
tively). (5; 9; 9)b 0 �b �
 0 0 0 0 �
b a �b �
 �
 0 �
 
 0b a 0 a �b 
 
 �
 0b a b �a b 0 0 0 0The se
ond one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 14)(Step 5, by repla
ing �1 by �
 respe
tively).(5; 9; 14)b 0 �b �
 �
 �
 0 �
 
b a �b 0 �
 0 
 �
 �
b a 0 a �b 
 0 
 �
b a b �a b 0 �
 0 
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The third one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 16)(Step 5, by repla
ing �1 by �
 respe
tively).(5; 9; 16)b 0 �b �
 �
 �
 �
 �
 
b a �b 
 �
 0 0 
 �
b a 0 a �b 
 0 0 �
b a b �a b 
 �
 �
 
3.2.3 The merge algorithmThis algorithm relies on the two previously mentioned algorithms (the matrix based algorithmand the extension algorithm) given in [14, 37, 67℄ and in [27, 66℄ respe
tively.The merge algorithm 
ombines features of both algorithms with a new result given here toobtain a new, mu
h faster, algorithm. It is an exhaustive sear
h algorithm (i.e. if the orthogonaldesign exists it will be found otherwise it does not exist 
onstru
ted from four sequen
es).Notation 1 For the remainder of this se
tion we use the following notations.1. N denotes the set of non negative integers.2. N k denotes the spa
e N k = N �N � � � � � N| {z }k times with elementsv 2 N k; vT = [v1; v2; : : : ; vk℄; vi 2 N ; i = 1; 2; : : : ; k:3. N k�` will be the matrix spa
e with dimension k � ` and elements from N . That is ifM 2 N k�` then M = 266664 m11 m12 : : : m1`m21 m22 : : : m2`... ... ...mk1 mk2 : : : mk` 377775 = 266664 mT1mT2...mTk 377775with mij 2 N , mi 2 N `, i = 1; 2; : : : ; k, j = 1; 2; : : : ; `. 2Let D be an OD(4n;u1; u2; : : : ; ut) with entries from the set f0;�x1;�x2; : : : ;�xtg wherex1; x2; : : : ; xt are 
ommuting variables. Using the terminology of [37℄, the symbols Mi representthe non-isomorphi
 entry matri
es of the orthogonal design.>From the above 
onstru
tion of the sequen
es, we observe that we 
an permute rows and/or
olumns of the sum matrix P and the entry matrixM without obtaining an essentially di�erentsum or entry matrix. It would be as though we inter
hanged the variables and/or the sequen
esof the orthogonal design. When we form the 
ontent of the sequen
es, we should take intoa

ount that the row and 
olumn order of the sum and the entry matri
es must agree. That isto say that the same permutations of rows and/or 
olumns should be operated to both thesematri
es. In the same way, we 
an multiply by �1 any rows and/or 
olumns of the sum matrixP without obtaining an essentially di�erent sum matrix.Herein (be
ause we use many non-isomorphi
 entry matri
es from di�erent orthogonal de-signs) we will use the type of the orthogonal design in the symbol of the entry matri
es, so that39



seeing the entry matrix we 
an tell from whi
h orthogonal design it 
omes. For D we will writeM(u1;u2;:::;ut);i for its non-isomorphi
 entry matri
es. Then we 
an write the entry matri
es usingtheir rows as followsM(u1;u2;:::;ut);i = 266664 vT1vT2...vTt 377775 2 N t�4; vj 2 N 4; j = 1; 2; : : : ; t:Let D(u1;u2;:::;ut) be the set of all non isomorphi
 entry matri
es of the orthogonal designOD(4n;u1; u2; : : : ; ut). We will write M(u1;u2;:::;ut);ijDuk;uj for the entry matrix M(u1;u2;:::;ut);iafter we eliminate all rows ex
ept from rows k and j. That isM(u1;u2;:::;ut);ijDuk;uj = 264 vTkvTj 375 2 N 2�4:In order to illustrate the above notations and de�nitions we give the following example.Example 12 Suppose we are sear
hing for the OD(4n;u1; u2; u3; u4) = OD(20; 2; 3; 6; 9). Thereis up to isomorphism only one sum matrixP = 26664 1 1 0 01 �1 1 0�1 1 2 00 0 0 3 37775satisfying PP T = diag(2; 3; 6; 9) as des
ribed in Theorem 22. >From this matrix P we obtainthe following three non-isomorphi
 entry matri
es.M1 = 26664 1 1 0 01 1 1 03 1 2 00 2 2 5 37775 ; M2 = 26664 1 1 0 01 1 1 01 1 4 02 2 0 5 37775 ; M3 = 26664 1 1 0 01 1 1 01 1 2 22 2 2 3 37775 :Using our terminology these are:M(u1;u2;u3;u4);1=26664 1 1 0 01 1 1 03 1 2 00 2 2 5 37775 ; M(u1;u2;u3;u4);2=26664 1 1 0 01 1 1 01 1 4 02 2 0 5 37775 ;M(u1;u2;u3;u4);3=26664 1 1 0 01 1 1 01 1 2 22 2 2 3 37775 :With this terminology we 
an easily see that by setting the �rst variable equal to zero (i.e.eliminating the �rst row vT1 ) in the above entry matri
es, we obtain the following entry matri
es40



of an orthogonal design OD(20; 3; 6; 9):M(u2;u3;u4);1=264 1 1 1 03 1 2 00 2 2 5 375 ;M(u2;u3;u4);2=264 1 1 1 01 1 4 02 2 0 5 375 ;M(u2;u3;u4);3=264 1 1 1 01 1 2 22 2 2 3 375 :Similarly the entry matri
es of an orthogonal design OD(20; 5; 6; 9) obtained by setting �rst andse
ond variable be the same symbol (i.e. repla
ing rows vT1 ;vT2 by row vT1 + vT2 ) areM(u1+u2;u3;u4);1=264 2 2 1 03 1 2 00 2 2 5 375 ;M(u1+u2;u3;u4);2= " 1 1 4 02 2 0 5 # ;M(u1+u2;u3;u4);3=264 2 2 1 01 1 2 22 2 2 3 375 : 2Now from [37℄ we have that from an orthogonal design over t variables we 
an obtain anorthogonal design over t � 1 variables by \killing" one variable (i.e. setting one variable equalto zero) or \equating" two variables (i.e. setting two variables be the same symbol). If we dothese many times we obtain the following lemma:Lemma 14 If an orthogonal design OD(4n;u1; u2; : : : ; ut) exist then the following orthogonaldesigns exist:i) All orthogonal designs OD(4n;ui1 ; ui2 ; : : : ; uik) for all k = 1; 2; : : : ; t, over k variables andfor all fi1; i2; : : : ; ikg � f1; 2; : : : ; tg.ii) All orthogonal designsOD0�4n; k1Xj=k0=1uij ; k2Xj=k1+1uij ; : : : ; kmXj=km�1+1uij1Aover m variables where 1 � m � t, 1 � ki � t, 8 i = 1; 2; : : : m, k1 � k2 � : : : � km,uij 6= ui`, 8 j; ` = 1; 2; : : : ; km and i 6= `, km[j=1uij � fu1; u2; : : : ; utg.Proof. By equating and killing variables we obtain the desirable result. 2>From the above lemma it is obvious thatCorollary 7 If there exist k : 1 � k � t and fi1; i2; : : : ; ikg � f1; 2; : : : ; tg su
h that an orthogo-nal design OD(4n;ui1 ; ui2 ; : : : ; uik) does not exist then an orthogonal design OD(4n;u1; u2; : : : ; ut)
an not exist. 41



Our method relies on sear
hing for OD(4n;uk; uj), 1 � k; j � t, in two variables, whi
h ismu
h faster, rather than using the matrix based algorithm, des
ribed in [37℄ for OD(4n;u1; u2; : : : ; ut),in t variables, whi
h is mu
h slower. Then we use the extension algorithm to 
onstru
t the or-thogonal design we want.Moreover we do not have to 
he
k all non-isomorphi
 entry matri
es M(uk;uj);i but only afew of them. We also 
an sele
t the k; j in su
h way that we minimize the set of M(uk;uj);i wehave to sear
h.Let D be the orthogonal design OD(4n;u1; u2; : : : ; ut). The steps of our algorithm are:Step 0: Find all non-isomorphi
 entry matri
es M(s1;s2;:::;su);i for D as it is des
ribed in[37℄.Step 1: For k; j 2 f1; 2; : : : ; ug; k < j �nd all non-isomorphi
 entry matri
es M(sk;sj);i forthe orthogonal design OD(4n; sk; sj):Step 2: For all the above �u2� 
ombinations 
he
k ifM(s1;s2;:::;su);ijD(sk;sj ) is equal with anyM(sk;sj);` 2 D(sk;sj). Ignore similar matri
es M(s1;s2;:::;su);ijD(sk;sj ) produ
ed afterusing the two rows of M(s1;s2;:::;su);i and eliminate all others rows. These are thematri
es that 
an be extended to M(s1;s2;:::;su);i and thus these might produ
e theorthogonal design D.Step 3: Sele
t the k; j whi
h give the smallest number of entry matri
esM(s1;s2;:::;su);ijD(sk;sj) :Step 4: Apply �rst algorithm (matrix based algorithm) to the sele
ted entry matri
esspe
i�ed in Step 3, and �nd all OD(4n; sk; sj):Step 5: For ea
h OD(4n; sk; sj) found in Step 4, apply the se
ond algorithm (extensionalgorithm), by repla
ing ea
h zero by a unique variable xp, p = 1; 2; : : : ; 4n �(sk + sj):Step 6: Exhaustively sear
h all possibilities then if the solution exists, it will be found,otherwise an OD(4n; s1; s2; : : : ; su) does not exist 
onstru
ted by four sequen
es.Example 13 We will apply our algorithm to sear
h for an orthogonal designD = OD(36;u1; u2; u3) =OD(36; 6; 7; 21).Step 0: The following ten matri
es are all the non-isomorphi
 entry matri
es M(u1;u2;u3);ifor D as it is des
ribed in [37℄:1)264 3 1 2 03 1 1 22 6 6 7 375 ; 2)264 3 1 2 01 3 1 24 4 6 7 375 ; 3)264 3 1 2 01 1 1 44 6 6 5 375 ;
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4)264 3 1 2 01 1 3 24 6 4 7 375 ; 5)264 1 1 4 03 1 1 24 6 4 7 375 ; 6)264 1 1 4 01 1 3 26 6 2 7 375 ;7)264 1 1 4 01 1 1 46 6 4 5 375 ; 8)264 1 1 2 23 1 1 24 6 6 5 375 ; 9)264 1 1 2 21 1 3 26 6 4 5 375 ;10)264 1 1 2 21 1 1 46 6 6 3 375 2Step 1: We have that jD(u1;u2)j = 10; jD(u1;u3)j = 53; jD(u2;u3)j = 21Step 2: By setting the �rst variable equal to zero (i.e. eliminating the �rst row vT1 ) we get only5 non-isomorphi
 entry matri
esM(u1;u2;u3);ijD(u2;u3) from the 21 entry matri
es of the orthogonaldesign OD(36; 7; 21). Those 
ome from the matri
es M(u1;u2;u3);i numbered i=1,2,3,8, and 10above by deleting the �rst row.By setting the se
ond variable equal to zero we get 10 non-isomorphi
 entry matri
esM(u1;u2;u3);ijD(u1;u3) from the 53 entry matri
es of the orthogonal design OD(36; 6; 21). Those
ome from the matri
esM(u1;u2;u3);i numbered i = 1; 2; : : : ; 10 above by deleting the se
ond row.By setting the third variable equal to zero we get only 10 non-isomorphi
 entry matri
esM(u1;u2;u3);ijD(u1;u2) from the 10 entry matri
es of the orthogonal design OD(36; 6; 7). Those
ome from the matri
es M(u1;u2;u3);i numbered i = 1; 2; : : : ; 10 above by deleting the third row.Step 3: Clearly in the 
ase k = 2 and j = 3 we have fewer entry matri
es to 
he
k than in anyof the other 
ases, i.e �ve.Step 4: Now we get all the quadruples of sequen
es with PAF=0 or NPAF=0, whi
h 
an beused for the 
onstru
tion of OD(36; 7; 21), via the Goethals-Seidel Array. This is applied to all�ve entry matri
es des
ribed in steps 2 and 3.Step 5: For ea
h OD(4n;uk; uj) = OD(36; 7; 21) found in Step 4, apply the se
ond algorithm(extension algorithm), by repla
ing the zero of the sequen
es by the unique variables xp, p =1; 2; : : : ; 8:We want to make 
lear that if an OD(36; 6; 7; 21) existed it would have been found. Wedid not �nd any solutions by step 5 and thus, sin
e our sear
h is exhaustive for the orthogonaldesign OD(36; 6; 7; 21), this design does not exist using four sequen
es. 2Example 14 Applying our algorithm we try to �nd the OD(36; 6; 8; 19) and theOD(36; 7; 8; 19):There are 22 non-isomorphi
 entry matri
es M(6;8;19);i 
orresponding to the orthogonal designOD(36;u1; u2; u3)=OD(36; 6; 8; 19) and 22 for the se
ond orthogonal design OD(36;u4; u2; u3) =OD(36; 7; 8; 19). 43



By setting the �rst variable equal to zero we get only 17 non-isomorphi
 entry matri
esM(6;8;19);ijD(u2;u3) for the OD(36; 8; 19).We observe that the matri
esM(6;8;19);ijD(u2;u3) are exa
tly the same as the matri
esM(7;8;19);ijD(u2;u3)for the se
ond orthogonal design.Thus by sear
hing those 17 non-isomorphi
 entry matri
es we 
an perform an exhaustivesear
h for both orthogonal designs. Using the matrix based algorithm we would have had to
he
k 44 entry matri
es using three variables for both designs.Applying our algorithm and following the same pro
ess as in the previous example we �nd,among others, the following solutions, whi
h have PAF=0:OD(36; 6; 8; 19)b -
 0 b b b a 
 -ab b -b b 
 -a -b 
 a
 b -b -b -a -b b -a 0b -b -b -
 b -a b -a 0OD(36; 7; 8; 19)a -b -b -b 
 -a -
 -b -
b -a a b -
 -b b -b -
b -b a a b b -b 0 -
a -b -b -b b a b 0 
 2The interesting reader 
an �nd more on this algorithm in [28℄.Remark 3 Using the above algorithms, 
ases where n � 0( mod 4), have been studied. Inparti
ular all orthogonal designs of orders 4n; n = 1; 3; 5; 7; 9 had been 
ompletely studied, (see[26, 28, 62, 63, 67, 70℄).3.3 Ami
able sets of matri
es and 
onstru
tions of orthogonal designs usingthe Kharaghani arrayA pair of matri
es A;B is said to be ami
able (anti-ami
able) if ABT �BAT = 0 (ABT +BAT =0). Following [56℄ a set fA1; A2; : : : ; A2ng of square real matri
es is said to be ami
able ifnXi=1 �A�(2i�1)AT�(2i) �A�(2i)AT�(2i�1)� = 0 (31)for some permutation � of the set f1; 2; : : : ; 2ng. For simpli
ity, we will always take �(i) = iunless otherwise spe
i�ed. So nXi=1 �A2i�1AT2i �A2iAT2i�1� = 0: (32)44



Clearly a set of mutually ami
able matri
es is ami
able, but the 
onverse is not true in general.Throughout the se
tion Rk denotes the ba
k diagonal identity matrix of order k.A set of matri
es fB1; B2; : : : ; Bng of order m with entries in f0;�x1;�x2; : : : ;�xug is said tosatisfy an additive property of type (s1; s2; : : : ; su) ifnXi=1BiBTi = uXi=1(six2i )Im: (33)Let fAig8i=1 be an ami
able set of 
ir
ulant matri
es (or type 1) of type (s1; s2; : : : ; su) oforder t. Then the Kharaghani array from [56℄
H = 0BBBBBBBBBB�

A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn�A2 A1 A3Rn �A4Rn A5Rn �A6Rn A7Rn �A8Rn�A4Rn �A3Rn A1 A2 �AT8 Rn AT7 Rn AT6 Rn �AT5 Rn�A3Rn A4Rn �A2 A1 AT7 Rn AT8 Rn �AT5 Rn �AT6 Rn�A6Rn �A5Rn AT8 Rn �AT7 Rn A1 A2 �AT4 Rn AT3 Rn�A5Rn A6Rn �AT7 Rn �AT8 Rn �A2 A1 AT3 Rn AT4 Rn�A8Rn �A7Rn �AT6 Rn AT5 Rn AT4 Rn �AT3 Rn A1 A2�A7Rn A8Rn AT5 Rn AT6 Rn �AT3 Rn �AT4 Rn �A2 A1
1CCCCCCCCCCA (34)

is a Kharaghani type orthogonal design OD(8m; s1; s2; : : : ; su).We present an algorithm whi
h uses the known sets of four 
ir
ulant matri
es to 
onstru
tan ami
able set of eight matri
es suitable for the array given by (34).The algorithmStep 1 Find four 
ir
ulants matri
es A, B, C, D of order n with variables a; b; 
; d satisfyingAAT +BBT + CCT +DDT = (r1a2 + r2b2 + r3
2 + r4d2)Infor some integers ri, by using any of the above algorithms.Step 2 Form four new 
ir
ulant matri
es E; F; G; H from A; B; C; D just by repla
inga; b; 
; d with e; f; g; h respe
tively. Obviously the new matri
es satisfy the previous 
ondi-tions but on variables e; f; g; h.Step 3 Sear
h the set fA;B;C;D;E; F;G;Hg for a 
ombination suitable to form an ami
ableset of eight matri
es.Step 4 If we �nd su
h a set, we repla
e the matri
es in the array given by (34).Notation 2 With the expression 
ir
(a; b; 
; : : : ; z) we will denote the 
ir
ulant matrix with�rst row the sequen
e in the bra
kets.Example 15 Let A = 
ir
(a; b; 
), B = 
ir
(d;�a; b), C = 
ir
(�
; d; a) andD = 
ir
(�b; 
; d).Then AAt+BBt+CCt+DDt = 3(a2+ b2+ 
2+d2)I3. We form the matri
es E = 
ir
(e; f; g),F = 
ir
(h � e; f), G = 
ir
(�g; h; e) and H = 
ir
(�f; g; h). Then obviously we have thatEET + FF T +GGT +HHT = 3(e2 + f2 + g2 + h2)I3. A 
omputer sear
h �nds thatAHT �HAT +BGT �GBT +CF T � FCT +DET �EDT = 0So, we have found an ami
able set of eight 
ir
ulant matri
es, the fA,H,B,G,C,F,D,Eg. Ifwe substitute these matri
es in the array of the 
orollary, we get an OD(24; 3; 3; 3; 3; 3; 3; 3; 3).45



Example 16 Let A = 
ir
(a; b; b; d;�d), B = 
ir
(�b; a; a; 
;�
), C = 
ir
(d; 
; 
;�a; a), D =
ir
(�
; d; d;�b; b). Then AAT + BBT + CCT + DDT = 5(a2 + b2 + 
2 + d2)I5. We formthe matri
es E = 
ir
(e; f; f; h;�h), F = 
ir
(�f; e; e; g;�g), G = 
ir
(h; g; g;�e; e), H =
ir
(�g; h; h;�f; f) just by substituting the variables a,b,
,d for e,f,g,h respe
tively. Then wehave EET +FF T +GGT +HHT = 5(e2+f2+g2+h2)I5. A 
omputer sear
h �nds the ami
ableset AET �EAT +BHT �HBT +GCT � CGT +DF T � FDT = 0So, we have the fA;E;B;H;G;C;D; Fg ami
able set of matri
es. If we substitute these matri
esin Kharaghani array we obtain the OD(40; 5; 5; 5; 5; 5; 5; 5; 5).Remark 4 Using the above algorithm, and the Kharaghani array many new orthogonal designsof orders 8n are 
onstru
ted, (see [20, 29, 30, 31, 49, 50, 56, 71, 72℄).4 Short ami
able sets and Kharaghani type orthogonal designs4.1 Preliminary results and basi
 de�nitionsShort ami
able set were de�ned in [32℄ as a set of matri
es fAig4i=1 of order m and type(u1; u2; u3; u4), abbreviated as 4 � SAS(m;u1; u2; u3; u4;G), if (32) and (33) are satis�ed forn = 4 and u � 4. 4� SAS(m;u1; u2; u3; u4;G) 
an be used in either the Goethals-Seidel arrayor the short Kharaghani array 26664 A B CR DR�B A DR �CR�CR �DR A B�DR CR �B A 37775to form an OD(4m;u1; u2; u3; u4). In all 
ases, the group G of the matri
es in the ami
able setis su
h that the extension by Seberry and Whiteman [89℄ of the group from 
ir
ulant to type 1allows the same extension to R:In general a set of 2n matri
es of order m and type (s1; s2; : : : ; su) that satisfy equations(32) and (33) will be denoted as 2n� SAS(m; s1; s2; : : : ; su;G): Moreover if these matri
es are
ir
ulant they will be denoted as 2n� SCAS(m; s1; s2; : : : ; su;Zm):In [32℄ where short ami
able sets were �rst de�ned, it was mentioned that:Remark 5 1. If there exists a 2 � SAS(n; s1; s2;G) and a 2 � SAS(n; s3; s4;G) then thereexists a 4� SAS(n; s1; s2; s3; s4;G):2. If there exists a 2 � SAS(n; s1; s2;G); 2 � SAS(n; s3; s4;G); 2 � SAS(n; s5; s6;G) and a2� SAS(n; s7; s8;G) there exists an 8�AS(n; s1; s2; s3; s4; s5; s6; s7; s8;G):3. If there exists a 4� SAS(n; s1; s2; s3; s4;G) and a 4� SAS(n; s5; s6; s7; s8;G) there existsan 8�AS(n; s1; s2; s3; s4; s5; s6; s7; s8;G):Thus we 
an obtain many 
lasses of 4�SAS(n; s1; s2; s3; s4;G) 
ombining together two pairsof the given 2�SAS(n; s1; s2;G) and 2�SAS(n; s3; s4;G): Moreover, in Table 4.2, we give some4� SAS(m;u1; u2; u3; u4;Zm) that 
an not be 
onstru
ted by this method.46



Generally, unless we have other information regarding the stru
ture, we are unable to ensurethat the matrix R with the desired properties for the Kharaghani, Goethals-Seidel or shortKharaghani arrays exists unless the ami
able sets have been group generated (
ir
ulant or type1) or 
onstru
ted from blo
ks of these kinds. Thus is we have the required matrix Ri for thegroup Gi, i = 1; 2 then RG = R1 �R2 will be the required matrix for G = G1 �G2, (see [89℄).Let A1 and A2 be matri
es of order m. We de�ne 
ir
(A1; A2) = " A1 A2A2 A1 # : Ami
ablesets made from 2n su
h blo
k 
ir
ulant matri
es will be 
alled blo
k ami
able sets, short blo
kami
able sets or 2-short blo
k ami
able sets, 2n�SBAS(2m; s1; s2; : : : ; su;G); n = 1; 2; 4, where,using Rt for the ba
k-diagonal matrix of order t, G = Z2 � Zm and RG = R2 � Rm. Here, ifA1 and A2 are 
ir
ulant, then we use the ba
kdiagonal matrix of the same order for R ensuringAi(AjR)T = AjRATi . The required RG = R2 �R:We denote the produ
t Zp�Zp�� � ��Zp(r times) by EA(pr) the Elementary Abelian group.Moreover �a is denoted by �a:Throughought this se
tion we use the symbol 0m to denote the sequen
e of length m withall elements zero and the symbol Ot to denote the t� t matrix with all entries zero.For the unde�ned terms we refer the reader to the book by Geramita and Seberry [37℄.4.2 Constru
tionsTheorem 23 Write 0s for the sequen
e of s zeros, and let a, b, 
 and d be 
ommuting variables.Use the matri
es A1, A2, A3 and A4 given byA1 = 
ir
(0sba�b0s); A2 = 
ir
(0s
0
0s);A3 = 
ir
(0s�
�d
0s); A4 = 
ir
(0sb0b0s);
an be used in the Goethals-Seidel array to obtain an OD(8s+ 12; 1; 1; 4; 4).Proof. Observe thatA1AT1 +A2AT2 +A3AT3 +A4AT4 = (a2 + d2 + 4b2 + 4d2)Inand A1AT1 �A2AT2 +A3AT3 �A4AT4 = 0:Thus A2; A2; A3; A4 are a short ami
able set and satisfy the additive property (33) so they 
anbe used in the Goethals-Seidel array to obtain an OD(8s+ 12; 1; 1; 4; 4). 2The Melding Constru
tionSuppose the matri
es A1, A2, A3 and A4 are are short ami
able sets, on the set of 
ommutingvariables f0;�x1;�x2; � � � ;�xug or from f0;�1g, and satisfy the additive property4Xi=1 �AiATi � = uXj=1 pjx2jIn; (35)and the matri
es A5, A6, A7 and A8 are also short ami
able sets, on the set of 
ommutingvariables f0;�y1;�y2; � � � ;�yvg or from f0;�1g, and satisfy the additive property8Xi=5 �AiATi � = vXj=1 qjy2j In: (36)47



Then the eight matri
es will form an ami
able set so we 
an use the two together in theKharaghani array to obtain an OD(8n; p1; p2; � � � ; pu; q1; q2; � � � ; qv). 2order type group order type group order type group order type groupn 1; 1 Zn 6n 4; 4 Z6n 10n 4; 4 Z10n 14n 8; 8 Z14n2n 2; 2 Z2n 6n 5; 5 Z6n 10n 9; 9 Z10n 14n 10; 10 Z14n4n 1; 4 Z4n 7n 4; 4 Z7n 12n 8; 8 Z12n 14n 13; 13 Z14n4n 4; 4 Z4n 8n 8; 8 Z8n 13n 9; 9 Z13nTable 2: Order and type for small 2-short ami
able sets for all n � 1:Using table 2, remark 5 and the above Melding Constru
tion we obtain many 4-short ami-
able sets and 8-ami
able sets. A1 A3Type A2 A4 ZERO(1,1,1,1) a b NPAF
 d n(1,1,1,4) 0 -d a d 0 b 0 0 NPAF0 d 0 d 0 
 0 0 4n(1,1,2,2) a 0 
 d NPAFb 0 
 -d 2n(1,1,2,8) 0 -
 a 
 0 -
 b -
 NPAF0 
 b 
 0 -
 d 
 4n(1,1,4,4) a b -a a 0 a NPAF
 0 
 
 d -
 3n(1,1,5) -a a a a 0 a NPAF
 0 0 0 b 0 4n(1,1,5,5) -
 a 
 0 -d b d 0 NPAF
 -d 
 0 d 
 d 0 4n(1,1,8,8) 0 -
 -d a d 
 0 
 -d 0 -d 
 NPAF0 
 d 0 d 
 0 -
 d b -d 
 6n(1,2,2,4) 0 -d a d 
 0 b 0 NPAF0 d 0 d 
 0 -b 0 4n(1,4,4,4) 0 -b a b d 
 -d 
 NPAF0 b 0 b -
 d 
 d 4n(2,2,2,2) a b a -b NPAF
 d 
 -d 2n(2,2,4,4) a 0 b 0 d 
 -d 
 NPAFa 0 -b 0 -
 d 
 d 4n(2,2,5,5) 0 a 0 0 b 0 
 -d 0 -d 
 d NPAF0 a 0 0 -b 0 d 
 0 
 d -
 6n(2,2,8,8) -d 
 a 
 d 0 d -
 b 
 d 0 NPAF-d -
 a -
 d 0 -d -
 b 
 -d 0 6nTable 3: Short ami
able sets.48



A1 A3Type A2 A4 ZERO(3,3) a b b-a NPAFa 0 b 0 2n(4,4,4,4) a a b-b b b-a a NPAFd d-
 
 
 
 d-d 4n(4,4,8,8) d a -
 
 a -d d b 
 -
 b -d NPAF-d -b 
 
 b -d d -a 
 
 a d 6n(5,5) a a -a a 0 a NPAFb b -b b 0 b 3n(5,5,5,5) -a b a 0 a b -
 d 
 0 
 d NPAFb a -b 0 -b a d 
 -d 0 -d 
 6n(6,6) a -b a a a -a NPAFb a b b b -b 3n(6,6,12) 
 a 
 b-
 a 
 a 
-a 
-a NPAF-
 b-
-a 
 b -
 b 
-b-
-b 6n(8,8) a a a-a b b-b b NPAFb b b-b a a-a a 4n(8,8,8,8) a a a-a b b-b b b b b-b a a-a a NPAF
 
 
-
 d d-d d d d d-d 
 
-
 
 8n(10,10,10,10) dijoint from Golay NPAFn � 10(13,13) 
 0 -
 
 -
 0 0 
 
 
 
 -
 
 
 
 0 0 -
 NPAFg 0 -g g -g 0 0 g g g g -g g g g 0 0 -g 9n(13,13,13,13) from disjoint sequen
es NPAFlength 18 weight 13 n � 18(16,16,16,16) disjoint from Golay NPAFn � 16(17,17,17,17) disjoint sequen
es NPAFlength 26 weight 17 n � 26(20,20,20,20) dijoint from Golay NPAFn � 20(25,25,25,25) disjoint sequen
es NPAFlength 36 weight 25 n � 36(26,26,26,26) disjoint from Golay NPAFn � 26(14,14) a b -b -b b a a -b a -b a -b b b NPAFb -a a a -a b b a b a b a -a -a 7n(17,17) a -a a a a a -a a 0 
 -
 -
 
 
 
 
 -
 -
 PAF
 -
 
 
 
 
 -
 
 0 a -a -a a a a a -a -a 9nTable 3: (
ontinued).4.3 Some general resultsWe now 
onsider the use of sequen
es with zero non-periodi
 auto
orrelation fun
tion to makean ami
able set of matri
es. We refer the reader to [88, 90℄ for any unde�ned terms.The next theorem was proved in [73℄.Theorem 24 (General 
onstru
tion) Let X; Y be two disjoint (0;�1) sequen
es with zeronon-periodi
 auto
orrelation fun
tion of length n and weight k, Let a; b; 
; d be 
ommuting49



Type ZERO(1,1,1,1) NPAF n � 1(2,2,2,2) NPAF n � 2(4,4,4,4) NPAF n � 4(5,5,5,5) NPAF n � 6(8,8,8,8) NPAF n � 8(10,10,10,10) NPAF n � 10(13,13,13,13) NPAF n � 18(16,16,16,16) NPAF n � 16(17,17,17,17) NPAF n � 26(20,20,20,20) NPAF n � 20(25,25,25,25) NPAF n � 36(26,26,26,26) NPAF n � 26Table 4: Short ami
able sets from 
orollary 8variables and write aV , bW for the 
ir
ulant (type 1) matri
es of order n formed by usingthe �rst rows with the elements of X multiplied by a and the elements of Y multiplied by brespe
tively.Let Ai be the 
ir
ulant matri
es of order n given byA1 = aV + bW A2 = 
V + dW A3 = dV � 
W A4 = bV � aW (37)then fAig4i=1 is a short ami
able set satisfying2Xi=1 �A2i�1AT2i �A2iAT2i�1� = 0; (38)and the additive property 4Xi=1 �AiATi � = k(a2 + b2 + 
2 + d2)In: (39)Corollary 8 Let X; Y be a pair of disjoint (0;�1) sequen
es with zero non-periodi
 auto
or-relation fun
tion of length n and weight k. Then there exists a short ami
able set whi
h 
an beused to form an OD(4n; k; k; k; k).For �; �; 
; Æ; �; �;  , �; � non-negative integers, Koukouvinos and Seberry [69, p. 160℄ showthat there exist two disjoint (0;�1) sequen
es, with zero non-periodi
 auto
orrelation fun
-tion, of length � n; n 2 N = f2 � 2�6�10
9Æ14�18�26 24�34�g and weight k; k 2 K =f2�5�10
13Æ17�25�26 34�50�g: These give the results presented in Table 4.For more details about short ami
able sets and their use in the 
onstru
tion of Kharaghanitype orthogonal designs the interesting reader is refer to [32, 73℄.50
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