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Abstract

We discuss algorithms for the construction of Hadamard matrices. We include discussion
of construction using Williamson matrices, Legendre pairs and the discret Fourier transform
and the two circulants construction.

Next we move to algorithms to determine the equivalence of Hadamard matrices using
the profile and projections of Hadamard matrices. A summary is then given which considers
inequivalence of Hadamard matrices of orders up to 44.

The final two sections give algorithms for constructing orthogonal designs, short amicable
and amicable sets for use in the Kharaghani array.

1 Algorithms for constructing Hadamard matrices

1.1 Hadamard matrices constructed from Williamson matrices

An Hadamard matrix H of order n has elements +1 and satisfies HHT = nI,. These matrices
are used extensively in coding and communications (see Seberry and Yamada [90]). The order
of an Hadamard matrix is 1, 2 or n = (0 mod 4). The first unsolved case is order 428. We
use Williamson’s construction as the basis of our algorithm to construct a distributed computer
search for new Hadamard matrices. We briefly describe the theory of Williamson’s construc-
tion below. Previous computer searches for Hadamard matrices using Williamson’s condition



are described in Section 1.1.1. The implementation of the search algorithm is presented in
Section 1.1.2, and the results of the search are described in Section 1.1.3.

Theorem 1 (Williamson [104]) Suppose there exist four (1,—1) matrices A, B, C, D of
order m which satisfy

Xy"=vX" X,Y € {A,B,C,D}

Further, suppose

AAT + BB+ CC" +DD" = 4nI, (1)
Then
A B C D
-B A -D C
H=1 ¢ p 4 -B 2)
-D -C B A

is an Hadamard matriz of order 4n constructed from a Williamson array.

Let the matrix T given below be called the shift matrix:

010 --- 0
001 --- 0
T = . (3)
000 1
100 0
and note
" =1, (Tz')T :Tn—i (4)

If n is odd, T is the matrix representation of the nth root of unity w, w"™ = 1.
Let
A= ZZT_Lz—Ol aiTia a; = j:]-a Gp—; = 45
B =310 0T bi=%1,by = b;
C= Zznz_ol CiTia C; = :l:]-a Cpn—i = G4
D=1 dT, di==*l,dy;=d;

(5)

Then matrices A, B,C, D may be represented as polynomials. The requirement that =, ; =
z;,z € {a,b,c,d} forces the matrices A, B,C, D to be symmetric.
Since A, B, C, D are symmetric, (1) becomes:

A%+ B? 4+ C? + D? = 4nlI,
and the relation XY = Y X1 becomes XY = Y X which is true for polynomials.

Definition 1 Williamson matrices are (1, —1) symmetric circulant matrices. As a consequence
of being symmetric and circulant they commute in pairs.

We use the following theorem of Williamson’s as the motivator for our search algorithm:



Theorem 2 (Williamson [104]) If there exist solutions to the equations

S
pi =142 tij(w +w"7),i=1234 (6)
=1
where s = %(n —1),w is a nth root of unity, exactly one of t1j,to;,t35,t4; is nonzero and equals

+1 for each 1 < j <s, and
13+ p3 + s+ pd = 4n
then there exist solutions to the equations:
A= Z?;UI o', ag=1,a;=a,_;==1
B=3Y07 biT,  bo=1,b; =by—; = £1

C = Z?:_Ul T,  co=1,¢i=ch; ==l
D=7 dT, do=1,di=dp ==l

That is, there exists an Hadamard matriz of order 4n.
In matrix form, w’ + w7 is represented as 77 4+ T™ 7. Since these are symmetric, we write
wj =w! +w"?

Remark 1 The solutions for (6) are independent of the particular root w, so if n as defined
by (1) is prime, we can choose w so that the first ;1 having any w; assigned has wy. Since the
equations are true for all roots of unity w, they are also true for w = 1.

Theorem 3 (Williamson [104]) Let n be odd, and matrices A, B,C,D satisfy (1) and (5),
suppose ag = by = co = dy, then exactly three of a;,b;,c;,d;j,1 < j <n—1, have the same sign.

1.1.1 Results from previous searches

In many cases complete searches have been conducted for Hadamard matrices of Williamson
type. Searches have also been conducted for special classes of Williamson type Hadamard
matrices. Furthermore, an infinite class of such matrices is known and will also be discussed
briefly.

e Baumert and Hall [6] report results of a complete search for orders 4¢, ¢t odd and 3 < ¢ < 23.
Some incomplete results for higher orders are also given.

e Sawade [86] reports results of a complete search for orders 4¢, t = 25,27. The results for
t = 25 were later demonstrated to be incomplete by Djokovic [13].

e Djokovic [11] reports results of a complete search for orders 4¢, ¢ = 29,31. Only a single
non-equivalent solution was found for ¢ = 29 and is equivalent to an earlier result due to
Baumert [4].

e Koukouvinos and Kounias [64, 65] report results of a complete search for order 4¢, t = 33
and 39. These results were later demonstrated to be incomplete by Djokovic [12].

e Djokovic [12] reports results of a complete search for orders 4t, ¢t = 33, 35, 39.



e Djokovic [13] reports results of a complete search for orders 4¢, ¢ = 25,37. This extends
results obtained by Sawade [86] for ¢ = 25 and, for ¢ = 37, by Williamson [104] and later
Yamada [105] for a special class of matrices.

e Horton, Koukouvinos, and Seberry [53] report results of a complete search for orders 4, ¢
odd and 25 < t < 37. No new results were found, confirming existence results.

An infinite family of Hadamard matrices of Williamson type has been proved to exist under
certain conditions [98, 103]:

Theorem 4 If q is a prime power, ¢ =1 (mod 4), ¢+ 1 = 2t, then there exists a Williamson
matriz of order 4t; we have C = D, and A and B differ only on the main diagonal.

This theorem gives examples of Hadamard matrices of Williamson type for orders 4¢, ¢ =
31,37,41,45,49, 51,55, ..., for example.

Yamada [105] has searched for Hadamard matrices of Williamson type, with certain restric-
tions. These matrices are referred to as Williamson type 7 matrices. The Williamson equation
for such matrices, of order 4n is:

dn = (1 —2chws> + (1 —2chwsj> + (1 —2stws> + (1 —2stwsj> 8)

SEA SEA SEB SEB
where cg,d; = +1, wy = W+ w *, W" =1, 52 = =1 (mod n), A, B,jA,jB is a partition of
{1,2,..., "51} Such a j exists if and only if all prime divisors of n are =1 (mod 4). This led

to some new results for n = 29, 37,41.

1.1.2 Search method

The search method to find Williamson matrices described in this section was given in [53].

Introduction The basic search method is to examine all possible combinations of w;,1 <
j < %(n — 1) for each pu;, i = 1,2,3,4, testing each set of u so generated to see if it satisfies
Williamson’s condition and can be used to form an Hadamard matrix of order 4n. This search
method is documented in more detail in the following sections.

As a result of the large size of the search space, a distributed client/server approach was
taken to the problem: the server breaks work up into smaller portions which are then processed
by the clients; any results discovered are reported to the server by the client. Very little work is
done by the server itself.

Using a distributed approach, we are able to perform large amounts of work in a fraction of
the time required for a single computer to perform the same amount of work.

At various times during the performance of the searches, Macintosh computers and computers
running some variety of UNIX have been available for use. To make best use of the available
resources, and to eliminate any need to install software beyond that of the client program itself,
all communication was performed using low-level networking APIs, sockets [93] on UNIX and
Open Transport [1] on the Macintosh, rather than using a package such as PVM [18] or MPI [42]
that in some cases can facilitate the construction of distributed programs.

Searches for Hadamard matrices of all orders up to and including order 148 have been
performed using Williamson’s method implemented by a client/server system. Towards the end
of an initial search of order 148, 37 computers were involved, 20 270MHz Ultra 5 computers



from Sun Microsystems, and 17 333MHz iMacs from Apple Computer. No computers not
available on the local area network were employed in the initial search. However, a subsequent
search performed to verify results utilized 35 350MHz Pentium-II computers at the University
of Newcastle in addition to 30 local Ultra 5 computers.

The details of the implementation of Williamson’s method within the framework of a client/
server system are discussed in the following sections.

Decompose 4n into sum-of-squares representation The first step in performing a search
is to decompose 4n into all possible sums-of-squares representations. Observing the form of (6),
we see that when w = 1 each u; satisfies:

1 mod 4, u; > 0; or
3 mod 4, u; < 0.

| 4]
|4

(9)

For example, the possible decompositions for 148 are:

1, 1, 5 11
1, 7,7 7
3, 3, 3, 11
3, 3, 7, 9
5 5, 7, T

) )

In the sections to follow, we write wg,p to indicate some wy = w* +w F for 1 < k < %(n —1)
when it is necessary to distinguish from an nth root of unity, w.

Decide on the number of wy,, assigned to each p The next step is to assign a number
of wgyn to each p. Using (9), we see that if |4;] = 1 mod 4, then of the wg,p, contributing to
i, the number being added to u; will always be % greater than the number of wg,, that
are subtracted. A similar condition can be derived for |u;| = 3 mod 4. These wg,, are termed
“fixed”; others are “floating” and always occur in pairs, one added and the other subtracted.
These conditions are enforced to help limit the size of the space to be searched.

All possible permutations of the number of floating wg,, are assigned to each u over the
course of the search of a particular sum-of-squares representation, subject to certain restrictions

that are useful for reducing the size of the space to be searched:

1. The number of wg,}, assigned to p; must be greater than or equal to the number of wgyy,
assigned to p; where 7 < 4 and p; and p; correspond to the same value in the sum-of-
squares decomposition. We may apply this condition because for the purposes of testing
the set of i to see if Williamson’s condition is satisfied, p; and p; are interchangeable,
and it is desirable to perform the test only once rather than twice. This may be extended
further if more than two p have the same value in the sum-of-squares decomposition.

2. If n is prime, then we may always place w; in the first u to which any wg,}, are assigned.
This corresponds to solving the set of p for some nth root of unity, w’, such that w; is
present in the first u to which any wq,, are assigned. Furthermore, if there are wg,p both
added and subtracted from this y, we may either subtract or add wy; we do not need to
check both. If this condition is in force, then condition 1 is not applied in the case of the
1 to which w; is assigned, but remains applicable for other u corresponding to the same



value from the sum-of-squares decomposition. Enforcing this condition can greatly reduce
the size of the space to be searched: for example, applying this condition for searching
for Hadamard matrices of size 148 reduces the size of the space to be searched to 37% of
its size were this condition not to be enforced (reducing from about 32,387,862,644,280 to
12,062,406,963,464)

For each permutation of floating wg,, that is generated, we must assign specific identities
to each wg,p, and evaluate Williamson’s condition.

Assign specific identities to each wg,;, We must now assign specific identities to each wgyp
so that Williamson’s condition may be tested.

Let the number of wg,, added to u; be represented by co;—1 and the number of wgyp
subtracted from p; by cg;. So;—1 is the set of wgy, added to p; and So; is the set of wqyp
subtracted from p;. That is, there are eight sets S, two for each yu. Some of these sets S may

be empty.
pi =142 Z wj — 2 Z wj
Vj€Sai—1 Vj€ESa;

Dividing wg,, into two groups, one added to a p and the other subtracted, helps to simplify the
procedure for iterating over all possible combinations of wgyy, .
The sets S; are formed by choosing ¢; elements from the set of wg,, not already allocated

to an Sj,j < i. Recalling that s = 1(n —1), St is defined as:

2
St = {wi, w2, w3, ..., ws}.
St is defined as:
Sti=Sri-1— Si—1,i=1,...,8. (10)
For convenience, we say that:
So=10
Williamson’s condition may be tested once Si,...,Sg have been generated. All possible

combinations of ¢; elements from St ; are examined; once the combinations are exhausted, the
next combination for S;_; is generated. The process is illustrated by the small segment of
pseudocode shown in Figure 1.

So it should be easy to see that the number of tests of Williamson’s condition for a particular
set of ¢1,...,cg can be calculated as follows:

8
Evaluations = H < \S:,1| > (11)
VA

=1

Usually, however, the total number of evaluations performed will be less than this, for two
reasons:

1. If condition 2 from Section 1.1.2 is applied, we choose one fewer wg,, for the set S in
which wy is to appear.

2. If p; and pj,% < j correspond to the same value in the sum-of-squares decomposition of
4n and have the same number of wg,, assigned, then we may require that if w, is the
weup of smallest subscript assigned to p; and wy has the smallest subscript assigned to



j=1
do
for k from j to 8
populate St from St k1 and Si_; using (10);
generate combination Sy by choosing ¢, elements from St ;

‘ Test Williamson Condition using Sy, ..., Ss to generate uy, ..., f4;

j=8

g := false;

while ((j > 0) and (g == false))
generate new combination S; using c; elements from St ;
if successful

g 1= true;

Ji=3+1
else

J=3-1

while (5 > 0);

Figure 1: Segment of pseudocode illustrating generation of combinations for testing Williamson’s
condition.

pj, that © < y. Otherwise, work will be repeated when p; replicates a sequence that had
previously occurred in f;. Enforcing this condition ensures that no repetition takes place
and reduces the size of the search space slightly. The reduction is unfortunately not as
substantial as that for applying condition 2 from Section 1.1.2.

Dividing up the work for distribution The obvious manner in which to reduce the amount
of work performed by the clients to a reasonable level was to make the server perform part of
the work described in Section 1.1.2. The server performs no evaluations itself, but would choose
sets S1,...,95;, for some 7 < 8. The client would evaluate all the possibilities for the choice of
the remaining sets S;;1,...,Ss.

The server decides what value ¢ should take by estimating the amount of work involved in
a subproblem using a modification of Equation (11). Two constants S;,;;, and Smax must be
specified to the server: a subproblem is of acceptable size if its size lies between the two limits.
Unfortunately, this does not yield subproblems with an even division of work: there are some
very large and very small subproblems. Very small subproblems can be solved quickly, and
result in a large number of reports of completed problems and requests for new problems being
handled by the server over a short period of time. This can cause congestion and is not desirable.

The solution that was ultimately adopted was for the server to allocate multiple small sub-
problems to a client looking for work. The server also maintains a queue of pre-allocated
subproblems ready for assignment to clients, so that client requests can be satisfied as rapidly
as possible.



1.1.3 Search results

Lemma 1 Let the Williamson decomposition into four squares be s3+s3+s3+s3 = 4n. Further,
let the row sums of the four Williamson matrices A, B,C, D be my, mg, m3, my. Let

-1 1 1 1 S1 mq
1 -1 1 1 S9 ma
M=s51 1 1 21 18 s |"™ | ms
1 1 1 -1 Sy myq
Then
s%—l—s%—i—sg%—si:4n<:)m%+m%+m§+mi:4n
and

Ms =m < Mm = s

Proof. (6) gives, using the root w = 1, a decomposition with

S
si=pi=14+4> tj, i=1234.
=1

By Williamson’s assumption condition,
524 52 4+ 52 4+ 52 = 4n.

On the other hand,

n
m; = Z aj
J=1

n—1 n—1 n—1 n—1
SR EEINIREI AP AP o
i=1 i=1 i=1 i=1

1 1 1 1
= 1—5(31—1)-1-5(32—1)4‘5(33—1)"‘5(34_1)
1
= 5(—31—1—52—1—83‘|‘<94)
Similarly,
1
mo = 5(81—824-834-34)
ms = §(Sl+82—33+34)
1
my = §(Sl+32+53_84)

and Ms = m. Inverting we have, as M~! = M, Mm = 5. It is easy to check that

m%—i—m%—l—mg—l—mi:s%—{—s%—i—sg—l—sizéln.



Unfortunately, no new matrices were found as a result of the searches run so far. However, we
are able to provide independent verification of results from previous searches. This is considered
of utility since some previous searches, such as that conducted by Sawade [86], for example,
failed to reveal all solutions that are now known for the order searched, in that case, order 100.
In particular, we provide verification of results reported by Djokovic [12, 13] for orders 100, 140
and 148. Results for order 100 are also verified by Christos Koukouvinos.

For reference purposes, tables of Hadamard matrices derived from Williamson matrices using
circulant symmetric (1, —1) matrices in the Williamson array for orders 100 through 180 are
presented in Appendix 1 of [53]. A complete search of order 156 is claimed by Djokovic [12].
Results for orders 164, 172 and 180 are incomplete.

1.2 Hadamard matrices from Williamson matrices for non prime orders

An efficient algorithm to find Williamson matrices of order n = p - ¢, i.e. n is not a prime has
been described in [64]. This algorithm computes the solutions in groups of order p and ¢. In
fact with the aim of this algorithm we can find all the inequivalent solutions which satisfy the
Williamson equation in groups of orders p and ¢ respectively. Then we can merge these solutions
in order to find the solution in the group of order n. Of course this algorithm can also be used
when n is prime power but it is not too efficient in this case. More details for this algorithm can
be found in [64].

1.2.1 The method

In this section we give the necessary tools needed for our algorithm. We want to construct the
(1, —1) circulant matrices:

A = (ao,al,... ,am,l), B = (bg,bl,...,bmfl),
C’:(co,cl,...,cm_l), D:(do,dl,...,dm_l),

such that

A*+ B? + C? + D? = dml,,. (12)
The symmetry requirement gives v; = vy, @ = 1,2,...,2(m — 1), v; € {a;,b;,c;,d;}. Let
GqT = (I, Ip,...,I,) be a p X p-q matrix, i.e., the unit matrix I, of order p is repeated ¢ times.

The following theorems have been proved in [64] and are essential tools for our algorithm.

Theorem 5 If
1. m=p-q, p,g>1.
2. V= (vg,v1,...,0m—1) 18 circulant of order m, then

(a) GqT V=U- G:‘IF, where U = (ug, u1,...,up—1) is circulant of order p with

u; = > vi, j=0,1,....p—1,
i=j(mod p),i<m

(b) U is symmetric if V is symmetric.

10



Now multiplying on the left A, B,C, D by GqT we obtain:
T g _ T ATp _ T AT _ T AT _ T
G, A=X,G,, G,B=Y,G,, G, C=27,G,, G,D=W,G,

where
Xy = (zo,21,...,2p—1), withz; = Zai,

I3
Yy = (Yo, 91, Yp-1),  withy; = b,
[
Zy = (20,21, - - ,Zp_l), with z; = Zci’

7
Wy = (wo, w1, ..., wp—1), with w; = Zdi
i

(13)

and the summations are over all i = j(mod p), i < m.
If we multiply both members of (12), on the left by G:‘IF and on the right by G, we obtain in

the symmetric case:
2 2 2 2 _
X, +Y, + 2, + Wy =4ml). (14)

Of course we do not know A, B, C, D so we do not know X,,,Y),, Z,, W,,. However it is easier
to find X,,Y,,. Z,, W), satisfying (14) than A, B, C, D because p is much smaller than m. Now to
construct X, Y),, Z,, W, note that:

Theorem 6 If

1. A,B,C,D are circulant and symmetric (1, —1)-matrices satisfying (12) with row (and
hence column) sums a,b,c,d,

2. X, Yy, Z,, W, are as defined in (13),
then

1.

p—1 p—1 p—1 p—1
dowi=a, Yyi=b Y z=c > wi=d
j=0 j=0 7=0 7=0

= j= (15)
A+ ++d>=4m, —q< zj, Y, 25, wj < q, Tj,Y;j,2j,w; odd,
Ti=Tp g, Yi=Yp g Z=2p g Wi=wp 4, j=12,...,5(p—1),
2. If moreover ag + by + cg + dy = 0, 4, then
) 0(mod 8), if ¢ =1(mod 4),
($U+y0+z0+w0) (aU+bU+CU+dU) — { 4(m0d 8), if qE3(m0d 4)’ (16)

zj+y; + zj + w; = 2(mod 4), j:1,2,...,%(p—1).

1.2.2 The algorithm

For a given decomposition 4m = a® + b? + ¢® + d?, with m = p- ¢, p < ¢, the algorithm consists
of four stages:

11



I) 1. Form all sequences X, = {z¢,z1,...,2p—1} satisfying:
p—1
(1) le =a, (i1) —q <xz; <q (i1i) x; odd,
(iv)l x[l =Ty, i=12,..., %(p —1).
2. Repeat the construction for Yy, Z,, W, replacing a with b, c, d respectively.
3. Examine which quadruples X,,.Y),, Z,, W, satisfy Xg + Yp2 + Zg + Wp2 = 4mlI,.

IT) 1. Repeat stage I interchanging p and q.

2. Find all inequivalent solutions by applying the transformation j — j - s(mod q) to
each solution X,,Y,, Z,, W, where (s,m) =1 for every s < q.

IIT) 1. If there are h; solutions X,,Y),, Z,, W), and hy inequivalent solutions Xq, Yq, Zq, Wq,
form the h; - h2 combined solutions X,,, Y, Z,, W, X,,Y,, Z,, W,.

2. Find A = (ag,a1,...,apm—1) from:
. 1
a; = Gm—q; z:1,2,...,§(m—1),
. 1
Z a; = zj, ]:0,1,2,...,§(p—1),

i=j(mod p),i<m
1
> a; = ij, j:0,1,2,...,§(q—1),
i=j(mod q),i<m
where Xp = (xo, Tlygee- ,xp_l), Xq = ({i‘g,{i‘l, e ,{L‘q_l).
3. Find B, C, D similarly.
IV) Examine which quadruples A, B, C, D satisfy A? + B? + C? + D? = 4ml,,.

Now repeat stages, I, II, ITI, IV for every decomposition of 4m as the sum of four odd squares.

If p = ¢ then the algorithm is:

1) 1. Perform steps 1, 2 ,3 of stage I of the previous algorithm.

2. Find all inequivalent solutions by applying the transformation j — j - s(mod p) to
each solution X, Y}, Z,, W, where (s,m) =1 for every s < p.

2) 1. Find A = (ag,a1,...,an—1) from:

1 1
@i =t ii = 1,2, 5 (m = 1), > ai =, j =0,1,2,...,5(p = 1),
i=j(mod p)i<m
where X, = (2o, 21,...,Zp-1).
2. Find B, C, D similarly.

3) Examine which quadruples A, B, C, D satisfy A? + B2 4+ C? + D? = 4mI,,.

Now repeat stages, 1, 2, 3, for every decomposition of 4m as the sum of four odd squares.

This algorithm was used in [64, 65] for a complete search for orders 4¢, ¢t = 33,39. The
same algorithm was used later by Djokovic [12] for orders 4¢, ¢ = 33,35,39. He noted one more
solution for ¢ = 33 and ¢ = 39 which was missing in [64, 65]. He also claimed the non existence
results for ¢ = 35.
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1.3 Hadamard matrices from generalized Legendre pairs using the discrete
Fourier transform

1.3.1 Definitions and notations

Let U be a sequence of £ real numbers ug, u1,...,u¢_1. The periodic autocorrelation function,
PAF, Py(j) of such a sequence is defined, reducing ¢ + j modulo ¢, by:

-1
Py(j) = wtirj, 5=0,1,..,0—1.
=0

Two sequences U and V of identical length £ are said to be compatible if the sum of their periodic
autocorrelations is a constant, say a, except for the 0-th term. That is,

Py(G) + Pv(j) =a, j#0. (17)
(Such pairs are said to have constant periodic autocorrelation even though it is the sum of the
autocorrelations that is a constant.) If U and V are both £1 sequences, compatible and a = —2,

then they are called a generalized Legendre pair (or G L-pair).

In this section we are interested for compatible £1 sequences which are a G L-pair, and may be
used as below to construct Hadamard matrices of order 2¢ + 2. The Legendre or Jacobi symbol
is written (a|n) if n is prime or composite, respectively. When referring to the elements of a
—1,0, 1 sequence we often write ‘—’ instead of —1 and ‘+’ instead of 1.

The discrete Fourier transform (DFT) of a sequence U is given by
-1 )
DFTy(k) = pr, =Y uw™, k=01,.,0-1
i=0

where w is a primitive £-th root of unity ¢*F . Tf we take the squared magnitude of each term in
the DFT of U, the resulting sequence is called the power spectral density (PSD) of U. Because
we use them so often, the k-th terms in the PSDs of U and V will be denoted by |ux|? and |vg|?,
respectively.

Example 1 The PSD of the sequence 1 22-200 0 is

49.000 19.988 13.220 7.792 7.792 13.220 19.988

If a sequence u is transformed by the operation of cyclically taking every d-th element, where
ged(d, £) = 1, the sequence U is said to be decimated by d. That is, if V. = U decimated by d,
then V; = Udi mod ¢£-

Example 2

1111000 decimated by 2 = 1100110
1111000 decimated by 3 = 1101010

13



The set of all possible decimations of a sequence is called a decimation class. Since d is required
to be relatively prime to ¢, a sequence of length ¢ has ¢(¢) decimations, though sometimes they
are not all distinct. We note that decimation by —1 is the same as reversing a sequence. Hence,
by assuming that each sequence also represents its reverse, the maximum size of any decimation
class is ¢(¢)/2. Finally, we define compatibility between decimation classes. Two decimation
classes are said to be compatible if and only if some sequence belonging to one class is compatible
with some sequence in the other class.

1.3.2 Some preliminary results
We make use of the following well-known theorem [84, Chapter 12], [97, Chapter 10].

Theorem 7 (Wiener—Khinchin Theorem) The PSD of a sequence is equal to the DFT of
its periodic autocorrelation function

l? = ZPU Jwik, (18)

The periodic autocorrelation function is equal to the inverse DFT of the sequence’s PSD
1 -1 ) .
=53 2, (19)
k=0

The next main theorem was proved in [17].

Theorem 8 Two sequences are compatible if and only if their PSDs sum to a constant (i.e.
|ukl® + [vk|? = ¢ iff Pu(5) + Pv(j) = a).

Example 3 Two compatible sequences and their PSDs are shown below.

Sequences PSD (terms 1 to 3)

1222000 19.988 13.220  7.792
21-12-100 5012 11.780 17.208
25.000 25.000 25.000 (hence ¢ = 25)

In fact, the constant ¢ depends only on the set of numbers comprising the sequences U and V.
It is easily shown that

-1
Zz (]U - (Zz (]Uz) n €320 z2 (Zz (]’Uz)
‘-1 £—1 '
Hence, all permutations of the sequences yield the same constant. Theorem 8 is a generalization
of results that have appeared in the literature in other forms, see for example Kounias, Kouk-

ouvinos, Nikolaou and Kakos [75].

(20)

The following useful relationships are easily proved by direct application of the definitions of
decimation, autocorrelation and DFT.
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e If a sequence is decimated by d, then its autocorrelation is likewise decimated by d, and
its DFT and PSD are decimated by d~! mod /.

e It follows immediately that compatible sequences remain compatible if they are decimated
by the same amount.

Remark 2 If U, V are +1,0-sequences then the above constant ¢ is ¢ = w — a, where w is
the total number of non—zero entries and a is the constant from the periodic autocorrelation
function of U and V.

1.3.3 Legendre sequences and modified Legendre sequences

For the remainder of this section we consider only GL-pairs. The following is well known (see
for example [101]) and is included for completeness only. Let p be an odd prime. The —1,0,1
sequence U of length p is called a Legendre sequence L if its elements x; = [; satisfy

li = (ilp).

In other words, Iy = 0 and for ¢ # 0, I; = 1 if 7 is a square modulo p and I; = —1, otherwise. We
call (=1, L), (0,L), or (1, L) a modified Legendre sequence. The values of the modified Legendre
sequence are exactly the same as those of the unmodified one except for /y which is set to —1,
0, or +1, respectively. ((0,L) is of course the original Legendre sequence but sometimes it is
convenient to refer to it as an modified Legendre sequence.) Two sequences (e1, L), (e2, L) with
e1,eg € {—1,0,1} are called modified Legendre sequences and they are defined in the obvious
manner.

Example 4 Let p = 7. The modified Legendre sequences (0, L) and (1, L) are given by

0,L) = 0++—+——
(LL) = +++-+—-

The following two lemmas (see [17]) say that G L-pairs exist for lengths ¢, where:
(i) £ is a prime (see for example [17]).

(ii) 2¢+ 1 is a prime power (these arise from Szekeres difference sets, see for example [17] or
[37]).

Lemma 2 Let p be an odd prime then (1,—L), (1,L) is a GL—pair.
This lemma shows the existence of a G L—pair for every odd prime p. We also note that
Lemma 3 Let p =20 + 1 be a prime power then there is a G L—pair.

Theorem 9 Suppose there is a GL-pair of length €. Then there exists an Hadamard matriz of
order 20 + 2.

Proof. The sequences are used to make two circulant matrices A and B of order £. Then the
following matrix is the required Hadamard matrix.
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Corollary 1 Suppose that there are 2 — {¥; E"'Tl, E"'Tl; HTI} SDS. Then there exists an Hadamard
matriz of order 2¢ + 2.

G L-pairs also exist for lengths £, where:
(i) £=2F —1, k > 2 (two Galois sequences are a G L-pair, see for example [85]).

(ii) £ = 49,57 (these have been found by a non-exhaustive computer search that uses general-
ized cyclotomy and master-switch techniques, see [37, 44]).

(iii) £=3,5,...,45 (these have been found and classified by exhaustive computer searches, see
[17]).

(iv) £ =47.49 and 51 (these have been found and classified by partial computer searches, see
[17]).

(v) £ =143 (also verified the results for £ = 3,5,7,11,13,15,17,19, 23,25, 31, 35,37, 41,43, 53,
59,61, 63 see [22]).

G L-pairs do not exist for even lengths. It is indicated in [17] that the following lengths ¢ < 200
are unresolved: 55,77,85,87,91,93,115,117,121,123,129, 133, 145,147,159,161, 169,171,175,
177,185,187 and 195.

We note here that a G L-pair for length £ = 143 is constructed easily since 143 = 11-13 is a
product of twin primes as indicated in Corollary 2.

1.3.4 The PSD test

We suppose that the set of numbers comprising sequences U and V are fixed and that only
permutations of these sequences will be considered. Now every term in a PSD is non—negative.
Hence if the sequences U and V are compatible, then no term in their PSDs can exceed the
constant ¢ in Theorem 8. That is,

lul® + [v)? = ¢ = | |* < c

Equivalently, if any term of a sequence’s PSD exceeds ¢, then the sequence cannot be a member
of a compatible pair and so maybe discarded from our search. This test can be generalized in a
straightforward manner to any family of sequences over any alphabet that have constant periodic
autocorrelation function. (Since, the nonperiodic autocorrelation function being constant implies
that the periodic autocorrelation function is constant, the above test is also applicable for such
candidate sequences.)
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1.3.5 Empirical performance of the PSD test for binary sequences

Exhaustive searches over the space of all binary 0, 1-sequences were performed for various lengths
and weights (number of ones) to see what fraction of sequences actually pass the PSD test. The
lengths ¢ and weights w were chosen to correspond to supplementary difference sets used in the
constructions of D-optimal designs [75] and Hadamard matrices (as described above) while c,
the threshold for the PSD test, was determined by (20). The results are shown Table 1 of [17].
(The last three rows in this table are derived from a count of decimation classes rather than
sequences, but the percentage reduction is approximately the same either way.) It is evident
that very substantial reductions in the number of candidate sequences can be realized through
the use of the PSD test.

The exhaustive search algorithm was divided into three steps. In the first step, all decimation
classes of length ¢ and weight w = ”Tl are exhaustively generated, and each one that passes the
PSD test is saved in a list. In the second step, the list is sorted by offset. In this manner, pairs
of classes with equal and opposite offsets can be quickly found, and the third step is to compute
the autocorrelation functions of such pairs to confirm whether they are compatible or not.

The results from these three steps for £ = 15 are illustrated in Table 2 of [17].
The results from the exhaustive searches for £ < 45 are shown in Table 3 of [17].

1.4 Hadamard matrices from generalized Legendre pairs using supplemen-
tary difference sets

1.4.1 Some preliminary results

We say that two sets of residues modulo ¢, say P and @, are 2 — {¢; k1, ko; A} supplementary
difference sets mod ¢ (abbreviated as sds) if |P| = ki, |Q| = k2, and for each non-zero residue
k(modf) the congruences i —j = k; i,j € P, i—j = k; 14,7 € @, have in total exactly A
solutions.

If P, Q are 2 — {¢; ki, ko; A} sds, then we construct the first row of the corresponding
(—1,1) circulant incidence matrices A = (a;;) and B = (b;;), 4,7 =0.1,...,¢—1, as follows:

agj = =1, if 7€ P and ag; =1, otherwise,

and
boj = -1, if j€Q and by; =1, otherwise

We know (see [7] or [101]) that:

Theorem 10 (i) If P, Q are supplementary difference sets 2 — {€; ki, ko; A} and A, B the
corresponding (—1,1) incidence matrices, then

AAT + BBT = 4(ky + ky — NI +2( — 2(k1 + k2 — \)J; (21)

(11) Given two £ X £ circulant matrices A, B satisfying (21), then the corresponding sets P, Q
are supplementary difference sets 2 —{€; ky, ka; A}, where ky, ko is the number of —1’s in each
row of A, B respectively.

17



We note that two compatible sequences may contain elements from any alphabet. If the
elements of two compatible sequences are —1,1 then they are described as 2 — {/;ky, ko; A}
sds as the previous theorem say. In this section we are interested in the particular case of
2 —{¢; ”Tl, HTI; ”Tl} since these give, compatible +1 sequences which are a G L-pair, and may
be used to construct Hadamard matrices of order 24 + 2.

In this particular case, relation (21) becomes

AAT + BBT = (20 + 2)I, — 2J, (22)
Multiplying on the left by e’ and on the right by e both sides of (22) we obtain:

(0 — 2k1)% 4 (£ — 2ky)? =2 (23)

where e is the £ x 1 vector of one’s. Since k1 = ko = (£ + 1)/2, we conclude that, the sum
of the elements in each row and column of the circulant matrices A and B must be minus one.
Since multiplication by —1 of the first row of A and/or B leaves relation (22) invariant, we
deduce that the first element in the first rows of A and B will be +1 and from the remaining
elements half will have positive sign and half negative one. Thus, a necessary condition for the
existence of the (—1,1) circulant matrices A and B satisfying (22), or for the existence of the
corresponding sds is that, £ should be odd.

Now we consider the first rows of A and B as two sequences of length ¢. Using (19) it is easy
to see that relation (22) is equivalent to

PA(0) + Pp(0) = 2¢ (24)
Pa(s)+ Pp(s) = =2, for s=1,2,...,0-1 (25)

If a sequence A of length ¢ is transformed by the operation of cyclically taking every d-th
element, where (d,?) = 1, the sequence A is said to be decimated by d. That is, if A=A
decimated by d, then a; = ag;, reducing di modulo ¢. The set of all possible decimations
of a sequence is called a decimation class. Since d is required to be relatively prime to /4, a
sequence of length ¢ has ¢(¢) decimations, though sometimes they are not all distinct. We
note that decimation by —1 is the same as reversing a sequence. Hence, by assuming that
each sequences also represents its reverse, the maximum size of any decimation class is ¢(¢)/2.
Any pair of sequences that can be transformed into another pair by exchanging the sequences,
cyclically shifting or reversing either of the sequences, or decimating both by the same amount
are considered equivalent. The corresponding sds are also considered equivalent. This notice of
equivalent sds was also considered in [75].

Since in our case the parameters k; and ks of the sds are equal, we investigate multipliers
of 2 —{¢; HTI, HTI; ”Tl} sds. This efficient technique has already applied for some other families
of sds in [19, 74]. In these cases the authors construct the set P and search for all possible w’s
prime to the £, i.e. (w,£) = 1 such that Q@ = wP (modf), and P, @ constitute a sds, if such
w’s exist. They found many multipliers of the sds and constructed D-optimal designs for some
orders.

In particular, Koukouvinos, Seberry, Whiteman, and Xia [74] used cyclotomy to prove the
following theorem, where C; are the cyclotomic classes in GF(v) constructed by using a generator
g of GF(v) \ {0}.

Theorem 11 (see [74]) Let g be a generator of the cyclic group GF(v) \ {0}. Suppose
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(i)v= 2¢% +2q + 1 is a prime power,

(ii) A and B are 2 — {v; ¢%, ¢*; A} sds such that 2q + 1 is a multiplier ie B = (2¢+ 1)A, and
2qg+1 € C;,

(11i) A and B are unions of cyclotomic classes.

Then every a € C; or a € C’;l s also a multiplier i.e. B = aA.

1.4.2 Twin prime power construction

For a comprehensive introduction to cyclotomy see [37] and [94].
Stanton and Sprott [92], Storer [94], and Whiteman [102], showed constructions of difference sets
over GF(p) x GF(p + 2), with p, p + 2 both prime powers. Gysin and Seberry [45] constructed

12
" p(p +2); (v 41) }

sds over GF(p) x GF(p+2), where p, p+ 2 are two prime powers, p > 2. In fact if z, y generate
GF(p)*, GF(p + 2)* respectively, they defined the following cyclotomic classes

p+1 pQ—l

b2, 2

Ci ={(z*,y*™) :5=0,...,f -1}

_{( —s+k ) 8:0,1}

where i = 0,1, k =0, . —1and f =25 —lem(p—1,p+1).

Furthermore they deﬁned E={(2%,0):s=0,...,p—2}, D={(0,4°) : s=0,...,p}. Then
using the classes Cy, E, and D they reproved the following theorem, which was originally proved
by Stanton and Sprott [92], and Whiteman [102]. This is also included in [5].

Theorem 12 (Stanton-Sprott-Whiteman restated) Let Cy, E be defined as above, then
{CoUEU{0}} is a

2 2
p°—1 p+1
{p(p+2); 5 +p;( 1 ) -1}

difference set over GF(p) x GF(p + 2).
Gysin and Seberry [45] also noted the following corollary.
Corollary 2 Let Cy, D be defined as above, then {Cy U D} is a

2 2
{p(p +2); (pzl) ;(pzl) }

difference set over GF(p) x GF(p + 2).
Example 5 Let p=3, p+2 =5, (z,y) = (2,2) = 2. Now

Co = {1,2,4,8)
D {3,6,12,9}
E=FEy=FE = {510}
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in this case
{CU U D} = {1a274a873a67 12,9}7

is a {15;8;4} difference set over GF(3) x GF(5) ~ Zi5.
Example 6 Let p=5,p+2=7, (z,y) = (2,3) = 17. Now

Co = {1,17,9,13,11,12,29,3,16,27,4,33}
D = {15,10,30,20,25,5}

E = {21,7,14,28}
Ey, = {21,14}
E, = {7,28},

In this case
{CoUDY = {1,17,9,13,11,12,29,3, 16,27, 4, 33, 15, 10, 30, 20, 25, 5},
is a {35;18;9} difference set over GF(5) x GF(7) ~ Zss.

We observe that the parameters of the difference sets constructed in corollary 2, are {/, HTI, EZI .

Hence, the above corollary motivate us to find 2 — {/; E"'Tl, E"'Tl; HTI} sds. Thus we have:

Theorem 13 There exist 2 — {/; E"'Tl, HTI; E"'Tl} sds, where £ = p(p +2) and p, p+ 2 are two
prime powers, p > 2.

Proof. Let D; be the {/, ”Tl, %} difference set constructed in corollary 2. Then D; and

Dy = D constitute a 2 — {/; E"'Tl, HTI; E"'Tl} sds. O

Thus we conclude that:

Corollary 3 Let £ = p(p + 2), with p,p + 2 both prime powers. Then there exist GL-pairs of
length £.

1.4.3 The algorithm

Gl L 1Y o5, we use the following algorithm, which is given

For the construction of 2 — {£; ==, =~; =5

in [22]. A modified version of this algorithm has been applied in [19]. This algorithm uses
the idea of multipliers and is much faster than the algorithms that have been used in [7] and
[43]. This algorithm provides the sds that can be constructed using multipliers and performs an
exhaustive search for the multipliers of these sds. Not only the complexity of the algorithm is
reduced but also using some powerful but elementary results from group theory the construction
used in this algorithm give us a theoretical result on the multipliers of the corresponding sds.
Modifications of the algorithm can be used for searching sds with same parameters k1 = kg and

their multipliers.

For a given £ odd

(i) Find positive integers ki, ko, A satisfying:
ki =ky =) =41
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(ii) For an integer t, 1<t < ¥, (t,£) =1, form all sets {a,at,...,at™ '} with at™ = amod(¢)
for all a = 0,1,...,¢£ — 1. Sort the sets by the smallest element and call them a;, @ =
0,1,...,m.

(iii) Find all possible multipliers using Lemmas 4 and 5. Try only one element from the groups
a; and a;l, and do not try multipliers w, unless (w, ) = 1.

(iv) Form one set P with k; elements as union of sets found in step (ii).
(v) For each multiplier w found in step (iii), set @Q = wP.
(vi) Examine if P, Q are supplementary difference sets 2 — {/; k1, ko; A}.
(vii) If the answer in (vi) is positive then save the set P and multiplier w.
(viii) If the multiplier that used was not the last, then go to step (v) and try the next multiplier.
(ix) Repeat steps (iv)-(viii) until all possible combinations of unions of sets P are examined.

(x) If the last possible union of sets P is reached, then go to step (ii) and use the next integer
t to form the sets a;.

(xi) Repeat steps (ii)-(x) until all values of ¢, 1 <t < ¥, (t,£) =1 are examined.
Next Lemmas which are essential in our search for multipliers of sds were proved in [22].

Lemma 4 Let a;, i = 0,1,...,m be the subsets constructed in step (ii) of our algorithm and
P=a;Ua,U...Uaq;, Q=wP, wi €aj, je{l,...,m} be2—{v;k, k;\} supplementary
difference set (we say that wy is a multiplier for the difference set ). Then

(i) Every w € aj is a multiplier for the supplementary difference set. That is Yw € aj,
P, R=wP constitute a 2 — {v; k, k; A\} supplementary difference set.

(1) Every w € aj_l is also a multiplier.
Lemma 5 If (w,f) > 1 then w cannot be a multiplier.

The above algorithm can perform an exhaustive search for multipliers but only a partial
search for the corresponding sds. If the sds can be constructed using multipliers then they will
be easily found otherwise the sds can not be constructed using multipliers but they may exist.
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1.5 Hadamard matrices constructed from two circulant matrices
Let A= {A; : A = {aj1,a42,...,a5n}, 7 =1,.... £}, be a set of £ sequences of length n. The
non-periodic autocorrelation function (NPAF) N4(s) of the above sequences is defined as

{ n—s

= ZZajiaj,H_s, s:0,1,...,n—1. (26)

j=1i=1

If Aj(z) = aji + ajoz+ ... +aj,z2""" is the associated polynomial of the sequence A;, then

{ n n { n—1

A(z Z Z Z ajiajrz' " = N (0) + Z Z Na(s)(z® 4+ 27°). (27)
j=li=1k=1 7j=1s=1

It is clear that P4(s) = Na(s) + Na(n —s), s =1,...,n — 1. Therefore, if Ny(s) = 0 for

all s =1,...,n — 1, then Ps(s) =0 for all s = 1,...,n — 1. But, P4(s) may equal zero for all
s=1,...,n —1, even though the N4(s) are not.

Definition 2 (Golay sequences) Two sequences A = {ay,as,...,a,}and B = {by,ba,...,b,}
of length n, with elements +1, are defined as Golay sequences of length n, if the following equa-
tions

Na(s)+ Np(s) =0 s s=1,2,...,n—1.

hold, where N4(s) is the nonperiodic autocorrelation function.

Example 7 The following binary sequences, with elements 41, are Golay sequences of length
n = 2,10 and 26 respectively.

(a) n=2, A={1,1}, B={1,-1}

(b) n=10
A={1,-1,-1,1,-1,1,-1,-1,-1,1}
B={1,-1,-1,-1,-1,-1,-1,1,1,~1}.
(c) n=26
A=1{ 1,1,1,-1,-1,1,1,1,-1,1, -1, -1,-1, -1, -1,
1,-1,1,1,-1,-1,1,-1,-1,-1, -1 }
B={ -1,-1,-1,1,1,-1,-1, - 1,1, 1,1,1,-1,1, -1,
1,-1,1,1,-1,-1,1,—-1,-1,-1, -1 }.

Lemma 6 If A and B are n x n circulant £1 matrices with first rows two Golay sequences
{ay,a9,...,an}, {b1,be,...,by} of length n respectively, then

AAT + BBT = (Z(a + b2)> w = 2nl,.
i=1

Lemma 7 Let A = {ay,a9,...,an} and B = {b1,be,...,b,} are two Golay sequences of order
n. Suppose that k1 of the elements a; are positive (+1) and ko of the elements b; are also positive
(+1). Then

n= (ki +ky —n)?+ (k — ky)?

and n is even.
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This condition is necessary but not sufficient for the existence of Golay sequences of order n.

Theorem 14 If A = {ay,a9,...,a,} and B = {by,be, ... by} are Golay sequences of length n
and, C = {c1,c2,...,¢m} and D = {d1,ds,...,dy} are Golay sequences of length m, then the

Sequences:
X =Ax (C;D> + B X (C_TD>

Y:Ax<70 ;D>—Bx<70 ;D)

are Golay sequences of length nm.

So, as we know that Golay sequences of length n = 2,10,26 exist, then with the previous
theorem we obtain that they exist in lengths n = 2210°26¢, where a, b, ¢ are non-negative integers.
These results obtained by Golay [41] and Turyn [99], and these are the only known values of
n that Golay sequences exist, These are the Golay numbers. It has been proved by Eliahou,
Kervaire and Saffari [15] that Golay sequences do not exist for values n = 34,50, 58,68 and for
every n that is divided by a prime number p = 3 (mod 4). The existence of Golay sequences of
length n, if n, n < 200 : n = 74,82,106,116,122,130, 136, 146,148,164, 170,178,194, is an open
problem.

The following theorem is analogous to Theorem 10 and can be used for the construction of
Hadamard matrices, see [101] or [106].

Theorem 15 If A, B are v x v (v even) circulant matrices with entries +1, satisfying:
AAT + BBT = 21, (28)

Then the matriz

A B
e

is a Hadamard matriz of order 2v.

Corollary 4 If there are two (1,—1) sequences of length n with zero PAF or NPAF then there
exists a Hadamard matriz of order 2n.

Theorem 16 There exist two sequences (1, —1) with zero PAF for all lengths n = 2°-10/.26" .34
for all non negative integers e, f, h.

Proof. There are Golay sequences X, Y of length 2¢-10/ - 26". The following sequences A and
B of length 34 have zero PAF, and are given in [21].

A ={a,a,a,a,a,a,b,a,b,b,b,b,a,b,bbba,bb,a,bbbba,a,d,b,babbal

B = {b,a,a,b,a,a,b,b,b,a,a,a,a,b,a,a,b,a,a,a,a,b,a,a,a,a,b,a,b,b, bbb, b}

In these sequences we replace variables a,b by the sequences X,Y respectively to obtain the
desired result. O
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2 On inequivalent Hadamard matrices

2.1 Basic definitions and preliminaries

A Hadamard matrix is said to be normalized if it has its first row and column all 1’s. Thus
we can normalize the Hadamard matrix by multiplying rows and columns by —1 where needed.
In these matrices, n is necessarily 2 or a multiple of 4. Two Hadamard matrices H; and Ho
are called equivalent (or Hadamard equivalent, or H-equivalent) if one can be obtained from
the other by a sequence of row negations, row permutations, column negations and columns
permutations.

The discussion of Hadamard equivalence is quite difficult, principally because of the lack of
a good canonical form. The exact results which have been discovered are as follows : Hadamard
matrices of orders less than 16 are unique up to equivalence. There are precisely five equivalence
classes at order 16, and three equivalence classes at order 20, see [46, 47]. There are precisely
60 equivalence classes at order 24, see [54, 59]. There are precisely 487 equivalence classes at
order 28, see [60, 61]. The classification of Hadamard matrices of orders n > 32 is still remains
an open and difficult problem since an algorithmic approach of an exhaustive search is an NP
hard problem.

Given two Hadamard matrices of the same order, it can be quite difficult to decide whether
or not they are equivalent.

The next two subsections discuss the use of the “profile” and “projections” of Hadamard
matrices to determine inequivalence.

The following criterion (profile) was given in [8].

2.2 The profile criterion

Cooper, Milas and Wallis in [8] suggested the profile criterion to investigate the equivalence of
Hadamard matrices. Later Lin, Wallis and Zhu in [78, 80, 81] proposed some modifications of
this criterion. Suppose H is a Hadamard matrix of order 4n with typical entries h;;. We write
P;jie for the absolute value of the generalized inner product of rows 4, j,k and £ :

4n
Pijke = 1> highjahighes]

r=1

This criterion does not work in the case of Hadamard matrices of order n = 20 because it
gives the same profile for all three equivalent classes of Hadamard matrices of this order.

Proposition 1 (see [8]) P;jxe = 4n (mod 8).

We shall write (m) for the number of sets {i, j, k, £} of four distinct rows such that Pj;z, = m.
The definition and the above give that 7(m) = 0 unless m > 0 and m = 4n (mod 8). We call
w(m) the profile (or 4-profile) of H.

The (unique) matrices of order 4,8 and 12 have profiles

m(4)
7(0)
m(4)

1
56, 7(8) =14
495, w(12) =0
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respectively.
The five inequivalent classes of order 16 gave four distinct profiles.

class Hy: m(0) = 1680, =(8) =0,  m(16) = 140
class Hy : w(0) = 1488, m(8) =256, =(16) =76
class Hy: m(0) = 1392, =(8) =484, =(16) =44
class Hy : w(0) = 1344, m(8) =448, =(16) =28
class Hy: m(0) = 1344, =(8) =448, =(16) =28

The matrices of class H, are the transposes of the matrices of class Hj.
The three classes of order 20 all gave the same profile:

m(4) = 4560, m(12) = 285, 7(20) = 0.

Similarly we can define a more general profile criterion based on more than 4 rows. For some
modifications of the profile such as extended profile and generalized profile we refer the reader
to [80]. We now give a modified version of the profile that was given in [8]. We observe that all
the conditions which hold for the rows of a Hadamard matrix also hold for its columns.

We write Q(m) for the absolute value of the generalized inner product of m columns, say
C1,Co,...,Cn and we call this m-column profile.

- | Z hxalhxag o :vam|

We shall write g(s) for the number of sets {a1, as, ..., an, } of m distinct rows such that Q(m) = s.
The definition and the above give that g(s) = 0 unless s > 0. We call ¢(s) the m-column profile
(or m-cprofile) of H.

This criterion as well does not work in the case of Hadamard matrices of order n = 16,20
because it also gives the same m-cprofile for the last two classes in order 16 and the same m-
cprofile for all three equivalent classes of Hadamard matrices of ordern = 20 forall1 <m < n—1.

Two more useful criterions to determine inequivalence of Hadamard matrices which are called
“K-matrices” and “K-boxes” are also developed in [57, 58]. To save space we do not discuss
these criteria here.

2.3 The projection and Hamming distance distribution algorithms

In this section we describe two new criteria, to test inequivalence in Hadamard matrices of order
n, based on their projection properties and their Hamming distances.

Let H be a n x n Hadamard matrix. A n x k submatrix of H which consist of n rows and
k columns is called a projection of H into k columns. In some statistical applications the rows
of H refer to the runs of a factorial experiment and the columns refer to the factors, see [77] or
[10].

The projection properties of the 2477 fractional factorials are well known and have been used
effectively in a number of published examples of experimental investigations. Here in, we use
inequivalent projections of Hadamard matrices to check inequivalent Hadamard matrices. Using
this criterion we are able to find all inequivalent projections in & factors as well as to classify
Hadamard matrices of that order. As an example we apply this criterion to orders 16 and 20.
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The idea of the first criterion is that if two Hadamard matrices of order n are inequivalent
then these matrices should have at least one different projection for some k£ < n and vice versa
(if there exist a & < n such that the two Hadamard matrices give some different, inequivalent
projections then these Hadamard matrices are inequivalent). So if we find all projections of a
Hadamard matrix of order n we have a bonus. We can decide the equivalence of Hadamard
matrices and moreover use the projections for statistical analysis of experiments.

Now we give in brief the description of our algorithm that can be used to determine all
inequivalent projections for n and k.

First we give the definition of inequivalent projections of a Hadamard matrix of order n.

Two projections in k factors of Hadamard matrices of order n are equivalent if one can be
obtained from the other by one or more of the following transformations

(a) Sign changes in the columns (multiply one or more columns by —1).
(b) Permutations of the columns

(c) Rearrangements of the rows.

The next algorithm gives us all the inequivalent projections of Hadamard matrices and
through them the inequivalent Hadamard matrices.

The inequivalent projections algorithm:
(i) Set k= 2.

(ii) Normalize the Hadamard matrices given by multiplying, whenever this is necessary, any
rows or columns by —1. Then remove the first column (with all 1’s);

(iii) Find all projections for each Hadamard matrix of a given order n and k factors by taking

all possible £ columns of the remaining n x (n — 1) matrix. These are (” . 1) projections

in total.
(iv) From the projections found in step (iii) find the inequivalent ones.

(v) Check if the set of all projections of the first Hadamard matrix is different (inequivalent)
from the set of all projections of the second Hadamard matrix.

(vi) If the answer in step (v) is true then stop and say that these two Hadamard matrices are
inequivalent, otherwise increase k by 1.

(vii) If now k& < n — 1 then go to step (iii) and continue, otherwise stop and say that these
Hadamard matrices are equivalent.

Lemma 8 When we project a Hadamard matriz of order 4m into k = 2 columns we always

obtain < 4m2_1 ) identical projections. Each of these is m times over the full 2% design.

Proof. A Hadamard matrix has its columns orthogonal to each other. Therefore, in any two
columns each of the pairs (1,1), (1,-1), (—1,1), (=1, —1) appear exactly m times. O

Using the above lemma we can slightly improve this algorithm by not checking the projections
in k = 2 columns, and starting the algorithm with &£ = 3.
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Lemma 9 Let hy be a projection, in k factors, of a Hadamard matriz of order n. Then hy
cannot contain a full 2% design if k > logy(n).

Proof. A full 2% experimental design has 2¥ rows. A Hadamard matrix of order n has n rows.
So if 2% > n there cannot be a full 2¥ design in a k column projection of this Hadamard matrix.
We have that

28 > n = k- loga(2) > loga(n) = k > loga(n).

Now if k£ is not an integer we take the next integer number. Thus, if £ is not an integer we have
that k > [loga(n)] + 1. O

Corollary 5 For a Hadamard matriz of order n we have that if 2™ < n < 2™*! then k > m+1.

Proof. We know that log function is continuous and increasing function. Since logs(2™) = m,
we have that if 2™ < n < 2™*! then m < loga(n) < m + 1 and so k > m + 1. O

Theorem 17 Let Hy, Hy be two inequivalent Hadamard matrices of order n. The first Hadamard
matriz Hy will give at least one projection different (inequivalent) from all the projections of Hs
for some k > loga(n).

Proof. The result follows from lemma 9. O

Example 8 We give some orders of Hadamard matrices and the bound for k.
e For n = 2™ we obtain k > m.
e For n = 12 we obtain k£ > 4.
e For n = 20 we obtain k > 5.
e For n = 24 we obtain k > 5.

e For n = 28 we obtain k > 5.

Theorem 18 If two Hadamard are equivalent then their projections for all k = 2,3,...,n —1
are equivalent as well.

Proof. Suppose that H; and Hy are two equivalent Hadamard matrices of order n. Then,

for a given k, both of them have (” . 1) projections in total. The equivalence of the Hadamard

matrices indicates that each projection of the first Hadamard matrix is equivalent with one
projection of the second Hadamard matrix and vice versa. O

We will now discuss the complexity of the first new algorithm. First, we observe that the

total number of all possible projections of a Hadamard matrix of order n in k factors is (” . 1).

We note that the finding the inequivalent projections by applying the definition of inequivalent
projections is computationally-intensive. This is an NP hard problem when n and k increase.
The sign changes in the columns (multiply one or more columns by —1) required 2% possible
multiplications. The permutations of the columns and rearrangements of the rows need k!
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possible permutations. That is in total we have 2% - k! - (” o

) cases to check and that’s a large
complexity when k increases. So, if we are not interested in finding all inequivalent projections
of Hadamard matrices we can apply the following algorithm which uses all projections and the

Hamming distance distribution. The Hamming distance distribution is defined to be

W(z) =ao+az' + ... +apa®

where ay, is the number describing how many pairs of runs of the projection have distance m.

Example 9 Consider the projections for k¥ = 3 and n = 8. We first normalize the Hadamard
matrix of order 8 so it’s first column is all 1s. We then remove the first column so we have the

8 x 7 matrix
1 1 1 1 1 1

1

1 1 -1 1 -1 -1 -1

1 -1 -1 -1 1 1 -1

1 -1 1 -1 -1 -1 1
-1 1 1 -1 1 -1 -1
-1 1 -1 -1 -1 1 1
-1 -1 1 1 -1 1 -1
-1 -1 -1 1 1 -1 1

Since k = 3 the projections are all possible 3-sets of columns. We will just illustrate with
the sets of columns (factors) 1, 2, 3 and 1, 2, 4.

1 1 1 and 1 1 1

1 1 -1 1 1 1
1 -1 -1 1 -1 -1
1 -1 1 1 -1 -1
-1 1 1 -1 1 -1
-1 1 -1 -1 1 -1
-1 -1 1 -1 -1 1
-1 -1 -1 -1 -1 1

We now consider the distance between all pairs of rows (runs) of these 8 x3 matrices. The first
set has distance 3 (4 times), 2 (12 times) and 1 (12 times) so its Hamming distance distribution
is

W(z) =0+ 12z + 1222 + 42°,

while the second sets has 0 (4 times) and 2 (24 times) so its Hamming distance distribution is

W (z) = 4 + 242

Lemma 10 Two equivalent projections have the same Hamming distance distribution.
Proof. Let P, = {a1,aq9,...,a;}, P, = {b1,ba,...,b;} be two runs in a given projection in k

factors. The result follows from the fact that the Hamming distance of these two runs is not
affected if we apply some sign changes to factors or exchange the runs or factors. O
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The modified algorithm (Hamming distance distribution algorithm) is much faster than the
previous algorithm as it only gives us an answer to the question “are the two Hadamard matrices
are equivalent or not”. It does not not give us all inequivalent projections of the Hadamard
matrices.

The Hamming distance distribution algorithm:
(i) Set k= 2.

(ii) Normalize the Hadamard matrices given by multiplying, whenever this is necessary, any
rows or columns by —1. Then remove the first column (with all 1’s);

(iii) Find all projections for each Hadamard matrix of a given order n and k factors by taking

all possible k£ columns of the remaining n x (n — 1) matrix. There are (” . 1) projections

in total.

(iv) In the projections found in step (iii) calculate the Hamming distance distributions for any

two runs (rows) of the projection. There are (” N 1) Hamming distance distributions. Save

the different Hamming distance distributions and how many times each of them appears.

(v) Check if the set of all different Hamming distance distributions of the first Hadamard
matrix is the same with the set of all different Hamming distance distributions of the
second Hadamard matrix.

(vi) If the answer in step (v) is false, then stop and say that these two Hadamard matrices are
inequivalent, otherwise increase k by 1.

(vii) If now k& < n — 1 then go to step (iii) and continue, otherwise stop and say that these
Hadamard matrices are equivalent.

Let us discuss the complexity of the Hamming distance distribution algorithm. First, we

observe again that all possible projections in k factors of a Hadamard matrix of order n is (” Pk

We note that finding the Hamming distance distribution of all projections is not computationally-
intensive. It needs only n(n—1) calculations. A calculation of the Hamming distance of two runs

in a projection takes k£ comparisons and thus we have in total (" ') n(n — 1)k multiplications,

summations and comparisons. This is not an NP hard problem when n and k increase but
polynomial in n*+2. Tt is much faster than the inequivalent projections algorithm.

2.4 Application of the new criterion to Hadamard matrices of small orders

In this section we apply our new algorithm to the cases of Hadamard matrices of small orders.
As we can see from the next tables when the Hadamard matrices are equivalent we have to
check the Hamming distance distributions for all projections into k = 2,...,n — 1 factors. If the
Hadamard matrices are inequivalent there exist k¥ € {2,3,...,n — 1} such that the Hamming
distance distributions for the projections in k factors are different for each Hadamard matrix.

To save space, we give here the table with Hamming distance distribution only for orders
4,8,12. For larger orders the reader should consider [23].
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2.4.1 Hadamard matrices of order n = 4,8,12

We know that there exists only one Hadamard matrix of these orders up to equivalence, see [9]
for example. The results of the application of the Hamming distance distribution algorithm for
these orders are given in Table 1. Since there is only one Hadamard matrix in each case the
criterion needs to test Hamming distance distributions for all projections into £k =2,...,n —1
factors. In Table 1 the word “times” is used to show the number of times that the given Hamming

distance distribution occurs in the projections. For example there are ( : ) = 35 projections in

a Hadamard matrix of order n = 8 in £ = 3 factors and ( 5 ) = 28 Hamming weights in each
Hamming distance distribution of each projection.

When we say that the Hamming distance distribution is 0,12, 12,4 and times 28 that means
that there are 0 pairs of runs in the projection with Hamming distance 0, 12 pairs of runs in the
projection with Hamming distance 1, 12 pairs of runs in the projection with Hamming distance
2 and 4 pairs of runs in the projection with Hamming distance 3. This distribution occurs for
28 of the 35 projections.

When we say that the Hamming distance distribution is 4,0,24,0 and times 7 that means
that there are 4 pairs of runs in the projection with Hamming distance 0, 0 pairs of runs in
the projection with Hamming distance 1 and 24 pairs of runs in the projection with Hamming
distance 2, 0 pairs of runs in the projection with Hamming distance 2. This distribution occurs
for 7 of the 35 projections.

As you can see the total number of Hamming distance (the sum of all Hamming distances in

the Hamming distance distribution) is ( 5 ) = 28 and the total number of times each distribution

occurs (the sum of all different Hamming distance distributions) is ( : ) = 35.

2.4.2 Hadamard matrices of order n = 16

We know that there are exactly five inequivalent Hadamard matrices of this order, see [46]. The
results of the application of the Hamming distance distribution algorithm for this order are given
in [23]. Observe that for £ = 2 the Hamming distance distributions of all projections of all five
matrices are exactly the same. For k = 3 we have four different Hamming distance distributions
(thus four inequivalent Hadamard matrices) and we have to go up to k = 6 to obtain all five of
them.

2.4.3 Hadamard matrices of order n = 20

We know that there are exactly three inequivalent Hadamard matrices of this order, see [47].
The results of the application of the Hamming distance distribution algorithm for this order are
given in [23]. Observe that for k£ = 2,3,4 the Hamming distance distributions of all projections
of all three matrices are exactly the same. For £ = 5 we have all three different Hamming
distance distributions and thus we obtain all three of the inequivalent Hadamard matrices.

2.5 Inequivalent Hadamard matrices
2.5.1 Hadamard matrices of order n = 24
We know that there are exactly 60 inequivalent Hadamard matrices of this order, see [54, 59].

For Hadamard matrices of order 24 it is not convenient to give all different Hamming distance
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Huome n k Hamming distance times
H, 4 2 0,4,2 3
H, 4 3 0,0,6 1
Hg 8 2 4,16,8 21
Hg 8 3 0,12,12,4 28
Hg 8 3 4,0,24,0 7
Hg 8 4 0,0,24,0,4 7
Hg 8 4 0,4,12,12.0 28
Hyg 8 5 0,0,8,16,4.,0 21
Hyg 8 6 0,0,0,16,12,0,0
Hg 8 7 0,0,0,0,28.,0,0,0 1
Hyy 12 2 12,36,18 55
Hys 12 3 4,24,30,8 165
Hy 12 4 1,12,30,20,3 330
Hys 12 5 0,5,20,30,10,1 396
Hys 12 5 1,0,30,20,15,0 66
Hys 12 6 0,0,15,20,30,0,1 66
Hys 12 6 0,1,10,30,20,5,0 396
Hys 12 7 0,0,3,20,30,12,1,0 330
Hys 12 8 0,0,0,8,30,24,4,0,0 165
Hys 12 9 0,0,0,0,18,36,12,0,0,0 55
Hys 12 10 0,0,0,0,0,36,30,0,0,0,0 11
Hys 12 11 0,0,0,0,0,0,66.0,0,0,0,0 1

Table 1: Application of Hamming distance distribution algorithm for n = 4,8, 12

distributions for all k. We shall only discuss the results our algorithm gives. The algorithm
moves to £ = 3 and finds 31 different Hamming distance distributions and thus 31 of the sixty
inequivalent Hadamard matrices. Then for kK = 4 we obtain 42 different Hamming distance
distributions and thus 42 of the sixty inequivalent Hadamard matrices. Finally for £ = 5 we
obtain 60 different Hamming distance distributions and thus all 60 of the inequivalent Hadamard
matrices. For more details in this order the reader should consider [23].

2.5.2 Hadamard matrices of order n = 28

In the case n = 28 there are 487 inequivalent Hadamard matrices, see [60, 61]. If we apply
our algorithm to this case we obtain the following results. The algorithm moves to £ = 3 and
finds 17 different Hamming distance distributions and thus 17 of the 487 inequivalent Hadamard
matrices. Then for £ = 4 we obtain 216 different Hamming distance distributions and thus 216
of the 487 inequivalent Hadamard matrices. Finally for £ = 5 we obtain 487 different Hamming
distance distributions and thus all 487 of the inequivalent Hadamard matrices. For more details
in this order the reader should consider [23].
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2.5.3 Hadamard matrices of order 32

The classification of Hadamard matrices of orders n > 32 is still remains an open and difficult
problem since an algorithmic approach using an exhaustive search is an NP hard problem. In
particular, in this case, Lin, Wallis and Zhu [79] found 66104 inequivalent Hadamard matrices
of order 32. Extensive results appear in [82] and [83]. Thus the lower bound for inequivalent
Hadamard matrices of order 32 is 66104.

2.5.4 Hadamard matrices of order 36

There are at least 762 inequivalent Hadamard matrices of order 36. In fact this number is ob-
tained as follows: Seberry’s home page http://www.uow. edu.au/~jennie gives 192 inequivalent
Hadamard matrices of order 36. These are supplied by E. Spence (180 matrices) see [91], Z.
Janko, (1 matrix of Bush-type) see [55] and V. D. Tonchev (11 matrices) see [95]. Using an
efficient algorithm Georgiou and Koukouvinos [24] found that 190 of their transposes, are in-
equivalent to these. This was also confirmed in [16]. Georgiou and Koukouvinos in [24] improved
further this bound to 762 by constructing 380 new Hadamard matrices of order 36.

2.5.5 Hadamard matrices of order 40
Lam, Lam and Tonchev [76] showed that the lower bound for inequivalent Hadamard matrices
of order 40 is 3.66 x 10'".

2.5.6 Hadamard matrices of order 44

Recently Topalova [96] classified the Hadamard matrices of order 44 with an automorphism of
order 7, and found 384 inequivalent Hadamard matrices of this order. Georgiou and Koukouvinos
in [25] further improved this lower bound to 2507 by constructing 2123 new Hadamard matrices.

3 Algorithms for constructing orthogonal designs

3.1 Basic definitions and preliminaries

An orthogonal design of order n and type (s1, S2,...,8y) (8; > 0), denoted OD(n; s1, So, ..., 8y),
on the commuting variables x1, z9, .. ., x, is an nXn matrix A with entries from {0, +z1, +zo, ...,
+xz,} such that

AAT = (Z sz ).
=1

Alternatively, the rows of A are formally orthogonal and each row has precisely s; entries of the
type £z;. In [33], where this was first defined, it was mentioned that

ATA = (Z siz) 1,
=1

and so our alternative description of A applies equally well to the columns of A. It was also
shown in [33] that u < p(n), where p(n) (Radon’s function) is defined by p(n) = 8c + 2%, when
n=2%,bodd, a=4c+d,0<d<4.

Some small orthogonal designs are given in the following example, see [88].
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Example 10 Some small orthogonal designs.

a —b —c —d a b b d a 0 —c 0
T Y b a —d c —-b a d -b 0 a 0 c
y —x| ' |l¢c d a —-bl’|-b —d a b|’|c 0 a O
d —c b «a —d b —-b a 0 — 0 a
OD(2;1,1) OD(4;1,1,1,1) OD(4;1,1,2) OD(4;1,1)
OD(4;1,1,1,1) is the Williamson array. O

A weighing matrix W = W(n, k) is a square matrix with entries 0,41 having k non-zero
entries per row and column and inner product of distinct rows zero. Hence W satisfies WIW7T =
kI,, and W is equivalent to an orthogonal design OD(n; k). The number k is called the weight
of W.

We make extensive use of the book of Geramita and Seberry [37]. We quote the following
theorems, giving their reference from the aforementioned book, that we use:

Lemma 11 [37, Lemma 4.11, The Doubling Lemma) If there exists an orthogonal design
OD(n; s1,82,...,84) then there exists an orthogonal design OD(2n; sy, s1,€89,...,€es,) where
e=1 or2. O

Lemma 12 [37, Lemma 4.4, The Equating and Killing Lemma)| If A is an orthogonal

design OD(n;s1,89,...,8,) on the commuting variables {0, £z, £xo, ..., £x,} then there is an
orthogonal design OD(n;s1,52,...,8; + 8j,...,8y) and OD(n;s1,82,...,8j-1,8j41,-..,84) 0N
the u — 1 commuting variables {0, xx1,*xo, ..., *xj_1,*xj41,..., F£2,}. O

Theorem 19 [37, Theorems 2.19 and 2.20] Suppose n = 0(mod 4). Then the existence
of a W(n,n — 1) implies the existence of a skew-symmetric W (n,n — 1). The existence of a
skew-symmetric W (n, k) is equivalent to the existence of an OD(n;1,k). O

Theorem 20 [37, Proposition 3.54 and Theorem 2.20] An orthogonal design OD(n; 1, k)
can only exist in order n = 4(mod 8) if k is the sum of three squares. An orthogonal design
OD(n;1,n — 2) can only exist in order n = 4(mod 8) if n — 2 is the sum of two squares. O

Theorem 21 [37, Theorem 4.49] Suppose there exist four circulant matrices A, B, C, D of
order n satisfying
AAT + BBT + cc” + DDT = f1,

Let R be the back diagonal matriz. Then

A BR CR DR
—-BR A DR —-C"R
—-CR -DTR A BTR
-DR CTR -BTR A

GS =

is a W(4n, f) when A, B, C, D are (0,1, —1) matrices, and an orthogonal design OD(4n; s, 82,
...y 8y) ON T1,T9,...,T, when A, B, C, D have entries from {0,%xy,...,xz,} and f =
> (s23). U
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Corollary 6 If there are four sequences A, B, C, D of length n with entries from {0, £z, £x2,
+xg, tx4} with zero periodic or non-periodic autocorrelation function, then these sequences can
be used as the first rows of circulant matrices which can be used in the Goethals-Seidel array
to form an OD(4n;sy,s9,s3,54). We note that if there are sequences of length n with zero
non-periodic autocorrelation function, then there are sequences of length n+m for allm > 0. O

3.2 Construction algorithms

In this section we are interested in the construction of orthogonal designs using four circulant
matrices in the Goethals-Seidel array. Specifically, for positive integers si, so,...,s, and odd
n, the method searches for four circulant matrices A, As, Az, A4 or order n with entries from
{0, £z, tz9,...,£x4}, u < 4, such that

u
A AT + AQ AT + A3 AT + A4AT = (Zsm?) I,. (29)
i=1

In the remainder of this section, when four circulant (or group circulant) matrices of order
n, with entries from the set {0, £z, £z, ..., £z, }, satisfy equation (29) will be said that these
matrices satisfy the additive property.

3.2.1 The matrix based algorithm
Suppose the row and column sum of A; is
Ti = P1iT1 + p2iTe + p3i®s + paire, 1=1,2,3,4

Let e’ be the 1 x n vector of 1’s, then e’ A; = r;e”. Multiplying on the left of (29) by e’ and
the right of (29) by e we have

4 4
Z(eTAi)(eTAi)T =n Z Si?
=1 =1
or
4 4 4
Z(rieT)(rieT)T =n Z rZ=n Z ;7
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Thus we have

4 4 4
2 2 2 2 _ .2 2 2 2 2 2
S$1%7] + S2x5 + S3x3 + sS4y = T Zpli + x5 Zp% + x3 Zp&-
i=1 i=1 i=1

4 4
7> Pl 42T Y pripai
4 4
+22123 Y p1ipsi + 2174 Y P1iPai
i=1 i=1
4 4
122973 Y pibsi + 2024 D P2iPai
i=1 i=1
4
+22314 Y P3iPai
i=1

Hence we have four integer vectors p! = (pi1,pi2,p13,p14), P35 = (p21,p22.p23, P2u), Py =
(P31, P32, P33, P34), p{ = (pa1,P42,P43,p4a), which are pairwise orthogonal. Also \P{\Q = 81,
p3|* = s2, [p3* = s3, [p] |* = su.

Form these vectors into an orthogonal integer matrix P with P = (py,p2,p3, ps). Then
ppT = diag (81,89, 83,84) and det P = \/81828384. But P is integer so s1s283s4 is a square.
Thus we have

Lemma 13 The Goethals-Seidel construction for an orthogonal design OD (4n; sy, o, S3,S4)
can only be used if

(i) there is an integer matriz P satisfying PPT = diag (s1, s2, s3,54) and hence
(71) $1898384 is a square. O

4

Since the row sum of A; is Zpijxi for 1 < j <4, the 4 x 4 matrix P = (p;;) is called the
sum matriz of Ay, Ag, As, Ay. o

In this section we are interested in the construction of orthogonal designs using four circulant
matrices in the Gorthals-Seidel array. Specifically, for positive integers si, s9,...,5, and odd
n, the method searches for four circulant matrices Ay, As, A3, A4 or order n with entries from
{0, £z, +z9,...,£x,} that satisfy equation (29).

Definition 3 If Ay, Ag, A3, A4 are nxn circulant matrices with entries from {0, £z, +z5,..., £z, }
and the first row of A; has m;; entries of the kind +z;, then the u x 4 matrix M = (my;) is
called the entry matriz of (A1, Ag, A3, Ay). O
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The elements of the entry matrices satisfy the following conditions.

4

Zmij:si for 1<i<u

= (30)
> mij<n for 1<j<4

i=1

Thus the rows of the entry matrices refer to the variables z; and the columns to the circulant
matrices Ay, Ag, Az, A4 which are constructed from four sequences of length n as described in
Corollary 6.

u
Definition 4 Suppose that the row sum of A; is Zpijaci for 1 < j < 4. Then the u X 4 integral
i=1
matrix P = (p;;) is called the sum matriz of (A, A, A, As4). The fill matriz of (A1, Ay, Az, As)
is M — abs(P), where abs(P) denotes the matrix having as elements the absolute values of
elements of P. The content of A; is determined by the i-th columns of the sum and fill matrices.
O

The following theorem may be used to find the sum matrix of a solution of (29).

Theorem 22 (Eades Sum Matrix Theorem) The sum matrix P of a solution of (29) satis-
fies PPT = diag(sy, s2,. .., 54). O

The algorithm
Step 1. Find all sum matrices P of the desirable orthogonal design using theorem 22.
Step 2. Select the first sum matrix.

Step 3. For the selected sum matrix P find all entry matrices M and the corresponding fill
matrices (Q=M-abs(P)) using equations given by (30).

Step 4. Select the first entry matrix M and the corresponding fill matrix Q.
Step 5. Using P, M and Q write down the elements of sequences A;, j =1,2,3,4.

Step 6. Construct all possible sequences A; with entries we found in Step 5 and their corre-
sponding PAF.

Step 7a. Combine the lists find in Step 6 and check if a combination gives zero PAF and if so
save these sequences into PAF solution file.

Step 7b. If a zero PAF solution exist then search if some permutation of these sequences have
zero NPAF and if so save these sequences into NPAF solution file.

Step 8. If there are more entry matrices then select the next entry matrix M and the corre-
sponding fill matrix Q and go to Step 5.

Step 9. If there are more sum matrices then select the next sum matrix P and go to Step 3.
For more details about the construction of orthogonal designs which uses entry matrices, see

[37).
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3.2.2 The extension algorithm

This algorithm extents already known orthogonal designs on ¢ variables into new orthogonal
designs on ¢ + 1 variables. The algorithm is given briefly in the next steps.

Step 1. Input the sequences of the known orthogonal design OD(4n; sy, ..., 8;) on t variables
(a1,a9,...,as), you wish to extent.

Step 2. In these sequences replace all zeros with variables z; (a deferent variable on each zero).
Step 3. Using the new sequences and the equation

(n—1)

PAl(s)+PA2(3)+PA3(3)+PA4(3):Oa s=1,2,..., 9

create a system of equations.

Step 4. Solve this system ofequations and find all possible values z;, where z; € {—1,0,1},
that satisfy equations given in Step 3.

Step 5. For all solutions, diferent from the zero solution, (of weight & # 0) replace £1 by +a;44
respectively and obtain the OD(4n; sy, ..., 8, k) on t + 1 variables (a1, a9, ..., a;, azi1).

Then next example illustrates how this algorithm works.

Example 11 Start with the four sequences of length 9 and type (5,9) with NPAF = 0 (Step 1).

b 0 -b 0 0 00 00
ba -b 0 0O0O0O00O0
b a 0 a —=b 0 0 0 0
ba b —-a b 0O0O00
Now fill each zero position with one of the 22 variables 1, z9,. .., 292 (Step 2). Thus we obtain
b I —b o I3 T4 I5 ZT6 Iy
b a —b x3 =Ty T T11 T2 T13
b a w4 a —-b m5 TI6 TI7T T18
b a b —a b r19 IToo IT21 T922

Using relations

Pa,(s) + Pa,(s) + Pay(s) + Pa,(s) =0, s=1,2,...,

we construct the following twelve equations (Step 3):
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2$14 =0
T7 — Ty +X13 —xg+ 218 — 15 + Too + 19 =0
T3T9 + T4x3 + T5T4 + TeTs + T7Te + T9xg + T10Z9 + T11T10 + L1211 + T13%12 + T16T15
+ Z17%16 + T18%17 + T20T19 + T21%20 + T22721 =0
T13 + T8 + 18 + T15 + Too2 — T19 = 0
Te — T3 + T12 — T9 + T17 — T16 + 21 + 220 =0
T1T7 + X9 + T4T2 + T5T3 + TeTq + T7T5 + T10T8 + T11T9 + L1210 + 13211 + T17T15
+ Z18T16 + T21%19 + T22T20 = 0
T12 + T9 + T17 + T16 + T21 — Too = 0
Ty — L7+ T2 — Ty + T11 — T1g + T8 — T10 + Tie — Ti7 + T2 + T2 + Tig + 221 =0
T1Te + 3L + 5T + TeT3 + T7T4 + T1128 + T12T9 + T13T10 + T14218 + T15T14 + T18%15
+ 229219 =0
T11 + Z10 + T16 + T1s + T15 + T17 + To0 — T2 + T19 — T21 =0
T4 — Tg+ T3 — T+ X190 — T12 + T9 — T11 + T15 — 18 + T19 + T2 + Tog + T2 =0
T1T5 + Tox7 + x4x1 + Texo + T7T3 + x8T13 + T1228 + T13T9 + T14T17 + T16%14 =0

By solving this system of equations (Step 4) we find, among others, the following solutions
of weight 9,14, 16:

z T2 T3 T4 Tz T T7| T8 X9 Tio T11 T12 T13
-1 0 0 0 0O —-1({-1 -1 0 -1 1 0
0 -1 1 0 -1 0 1 -1 -1

-1 -1 -1 -1 -1 1 1 -1 0 0 1 -1

o O O
|
—
|
—
|
—

T4 T15 Ti6 T17 T18 | T19 T T2l X22
0 1 1 -1 0 0 0 0 0
0 1 0 1 -1 0 -1 0 1
0 1 0 0 -1 1 -1 -1 1

The first one gives the orthogonal design of order 36 on three variables, OD(36;5,9,9) (Step
5, by replacing £1 by *c respectively).

b —c 0 0 0
b —¢c —c 0 —c
0 a -b ¢ ¢
b —a b 0 O

Sy o O O

ISISIS B en]

The second one gives the orthogonal design of order 36 on three variables, OD(36;5,9,14)
(Step 5, by replacing +1 by +c respectively).

(5,9,14)
b —¢c —c¢ —-¢ 0 —c c
—b 0 —¢c O c —c —c
0 a —b c 0 c —c
b —a b 0 —c O c

oY oY O O
Q@ 2 2 O
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The third one gives the orthogonal design of order 36 on three variables, OD(36;5,9,16)
(Step 5, by replacing £1 by =+c respectively).

(5,9,16)
0 b —¢ —¢c —¢ —-c¢ —c c
a —b c —c 0 0 c —c
a 0 a —b c 0 0 —c
a b —a b c —c¢ —c¢ c

Sy o O O

3.2.3 The merge algorithm

This algorithm relies on the two previously mentioned algorithms (the matrix based algorithm
and the extension algorithm) given in [14, 37, 67] and in [27, 66] respectively.

The merge algorithm combines features of both algorithms with a new result given here to
obtain a new, much faster, algorithm. It is an exhaustive search algorithm (i.e. if the orthogonal
design exists it will be found otherwise it does not exist constructed from four sequences).

Notation 1 For the remainder of this section we use the following notations.
1. N denotes the set of non negative integers.

2. N* denotes the space N* = N x N x --- x N with elements

k times

T .
ve Nk v = [v1,v2,..., 0], v EN, i =1,2,... k.

3. N >t will be the matrix space with dimension k£ x ¢ and elements from N. That is if
M € N*¥* then

T
mi1 M1 ... Miyy my
mo1 M22 ... Myy m%-.
M = =
T
mg1 Mg2 ... Miy m;
with m;; € N, my € N i=1,2,...,k, j=1,2,...,4 O

Let D be an OD(4n;uy, usg,...,u;) with entries from the set {0, £z, £x9,...,+x;} where
x1,T2,...,x; are commuting variables. Using the terminology of [37], the symbols M; represent
the non-isomorphic entry matrices of the orthogonal design.

JFrom the above construction of the sequences, we observe that we can permute rows and/or
columns of the sum matrix P and the entry matrix M without obtaining an essentially different
sum or entry matrix. It would be as though we interchanged the variables and/or the sequences
of the orthogonal design. When we form the content of the sequences, we should take into
account that the row and column order of the sum and the entry matrices must agree. That is
to say that the same permutations of rows and/or columns should be operated to both these
matrices. In the same way, we can multiply by —1 any rows and/or columns of the sum matrix
P without obtaining an essentially different sum matrix.

Herein (because we use many non-isomorphic entry matrices from different orthogonal de-
signs) we will use the type of the orthogonal design in the symbol of the entry matrices, so that
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seeing the entry matrix we can tell from which orthogonal design it comes. For D we will write
M uy s, ... oup),i for 1ts non-isomorphic entry matrices. Then we can write the entry matrices using
their rows as follows

vi

vy
tx4 4 .
Muyugygue)i = | eENPY vie Nt j=1,2,... L
3

Let Dy, us,....u;) be the set of all non isomorphic entry matrices of the orthogonal design

OD(4n;uy, ug,...,u;). We will write M(u1,u2,---,ut),i‘puk y for the entry matrix My, u,,...u),i
k)

after we eliminate all rows except from rows k£ and j. That is
T
Vi N2><4
= S .
Duk,u]‘ T

Yi

M(“l,’“?y---aut):i

In order to illustrate the above notations and definitions we give the following example.

Example 12 Suppose we are searching for the OD(4n; uy, ug, us, ug) = OD(20;2,3,6,9). There
is up to isomorphism only one sum matrix

|
oN = O
w o oo

satisfying PPT = diag(2,3,6,9) as described in Theorem 22. ;From this matrix P we obtain
the following three non-isomorphic entry matrices.

1100 1 1.0 0 1 1.0 0
1 110 1 110 1 110
Mi=lg 100 ™M=1 1 1407|1122
0 2 2 5 2 20 5 2 2 2 3
Using our terminology these are:
1100 1 1.0 0
1 110 1 110
My s uguq),1 = 31 2 0| My, uz,us,u),2= 11 4 0|
0 2 2 5 | 2 2 0 5
1 10 0]
1110
Muy s usu0),3= 11 92 2
2 2 2 3|
With this terminology we can easily see that by setting the first variable equal to zero (i.e.

eliminating the first row v ) in the above entry matrices, we obtain the following entry matrices
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of an orthogonal design OD(20;3,6,9):

1110 1110
M(UQ’U?”M)’I: 3 1 0 ’M(UQ,Us,u4),2: 11 4 0],
(022 5| 2 2 0 5
(1 1 1 0]
(usuzua)3= | 1 1 2 1.
2 2 2 3]

Similarly the entry matrices of an orthogonal design OD(20; 5, 6,9) obtained by setting first and
second variable be the same symbol (i.e. replacing rows vi,va by row vi + va1) are

2 210
1 1 4 0
M(u1+u2,u3,u4):1: 3120 ’M(U1+u2yusyu4):2:[2 2 0 5]’
02 25|
2 21 0|
M(u1+u2,U3,u4),3: 1 1 2 2
2 2 3_

d

Now from [37] we have that from an orthogonal design over ¢ variables we can obtain an
orthogonal design over ¢ — 1 variables by “killing” one variable (i.e. setting one variable equal
to zero) or “equating” two variables (i.e. setting two variables be the same symbol). If we do
these many times we obtain the following lemma:

Lemma 14 If an orthogonal design OD(4n;uy, us,...,u;) exist then the following orthogonal
designs exist:

i) All orthogonal designs OD(4n; ui,, Usy, ..., u;,) for all k =1,2,...,t, over k variables and
for all {i1,i9,... i} C{1,2,...,t}.

i1) All orthogonal designs

over m variables where 1 < m <t, 1 <k; <t, Vi=1,2,...m, kg <ks <...<kp,

km
Ui; F Uiy ¥ b =1,2,. .k and i # £, Uui]. C {ur,ug,...,us}.
j=1
Proof. By equating and killing variables we obtain the desirable result. O

iFrom the above lemma it is obvious that

Corollary 7 If there existk : 1 <k <t and {i1,i2,...,i} € {1,2,...,t} such that an orthogo-
nal design OD(4n; ui, , Wiy, . . ., u;, ) does not exist then an orthogonal design OD (4n;uy, ug, ..., ut)
can not exist.
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Our method relies on searching for OD(4n;u,u;), 1 < k,j < t, in two variables, which is
much faster, rather than using the matrix based algorithm, described in [37] for OD(4n;uy, ug, ..., uy),
in ¢ variables, which is much slower. Then we use the extension algorithm to construct the or-
thogonal design we want.

Moreover we do not have to check all non-isomorphic entry matrices My, 4;); but only a
few of them. We also can select the k,j in such way that we minimize the set of M, 4,); we
have to search.

Let D be the orthogonal design OD(4n;uy,ug,...,u;). The steps of our algorithm are:

52

Step 0: Find all non-isomorphic entry matrices M, s, ..4,); for D as it is described in
(37].
Step 1: For k,j € {1,2,...,u},k < j find all non-isomorphic entry matrices Mg, 5, for

the orthogonal design OD(4n; s, s;).

Step 2: For all the above () combinations check if M,
M( sknsj)

using the two rows of M(,, 5, . .); and eliminate all others rows. These are the
matrices that can be extended to M, , . s,),; and thus these might produce the

31,32,...,su),i\D(Sk L8 equal with any
i

)¢ € Dy . Ignore similar matrices M( : produced after

Sk»Sj 517527"':su):i|D(sk o
)

orthogonal design D.

Step 3: Select the k.7 which give the smallest number of entry matrices
M

31,32,...,51‘),1‘ D(Sk S‘)‘
i)
Step 4: Apply first algorithm (matrix based algorithm) to the selected entry matrices
specified in Step 3, and find all OD(4n; s, s5).

Step 5: For each OD(4n; sy, s;) found in Step 4, apply the second algorithm (extension
algorithm), by replacing each zero by a unique variable z,, p = 1,2,...,4n —
(s + Sj).

Step 6: Exhaustively search all possibilities then if the solution exists, it will be found,
otherwise an OD(4n; s1, S2,. .., Sy) does not exist constructed by four sequences.

Example 13 We will apply our algorithm to search for an orthogonal design D = OD(36; u1,us, ug) =
0OD(36;6,7,21).

Step 0: The following ten matrices are all the non-isomorphic entry matrices My, u; u3),i
for D as it is described in [37]:

3120 3120 3120
D311 2], 213 12,3111 4],
2 6 6 7 4.4 6 7 46 6 5
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1 20 1 1 4 0 1140
4H11 13 2], 513 112](,6]1132],
47 4647 166 2 7|
11 0 1 1 2 ] 11 2 2]
1114, 83112, 9113 2],
6 5 4 5] | 45 |
11 2 ]
1001 1 1 4 O
K 3

Step 1: We have that
|D(u1,u2)‘ = 10, ‘D(ul,u3)| = 53a |D(u2,u3)‘ =21

Step 2: By setting the first variable equal to zero (i.e. eliminating the first row v ) we get only

5 non-isomorphic entry matrices M(ul’u2’u3)’i|p( : from the 21 entry matrices of the orthogonal
uz,u3

design OD(36;7,21). Those come from the matrices My, v, 4;),; numbered i=1,2,3,8, and 10
above by deleting the first row.
By setting the second variable equal to zero we get 10 non-isomorphic entry matrices

M : from the 53 entry matrices of the orthogonal design OD(36;6,21). Those
u1,u3

come from the matrices My, 4, ;) numbered 1 = 1,2,...,10 above by deleting the second row.
By setting the third variable equal to zero we get only 10 non-isomorphic entry matrices

M : from the 10 entry matrices of the orthogonal design OD(36;6,7). Those
U,UP

come from the matrices My, u,,u,),; numbered ¢ = 1,2,...,10 above by deleting the third row.

ul,ug,ug),i|p(

ul,ug,ug),i|p(

Step 3: Clearly in the case £k = 2 and j = 3 we have fewer entry matrices to check than in any
of the other cases, i.e five.

Step 4: Now we get all the quadruples of sequences with PAF=0 or NPAF=0, which can be
used for the construction of OD(36;7,21), via the Goethals-Seidel Array. This is applied to all
five entry matrices described in steps 2 and 3.

Step 5: For each OD(4n;uy,uj) = OD(36;7,21) found in Step 4, apply the second algorithm
(extension algorithm), by replacing the zero of the sequences by the unique variables z,, p =
1,2,...,8.

We want to make clear that if an OD(36;6,7,21) existed it would have been found. We
did not find any solutions by step 5 and thus, since our search is exhaustive for the orthogonal
design OD(36;6,7,21), this design does not exist using four sequences. O

Example 14 Applying our algorithm we try to find the OD(36; 6, 8,19) and the OD(36;7,8,19).
There are 22 non-isomorphic entry matrices Mg 19); corresponding to the orthogonal design
OD(36;uq,us,u3)=0D(36;6,8,19) and 22 for the second orthogonal design OD(36; w4, ug, u3) =
OD(36;7,8,19).
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By setting the first variable equal to zero we get only 17 non-isomorphic entry matrices
M(6,8,19),i"D(u2,u3) for the OD(36;8,19).

We observe that the matrices Mg 19),
for the second orthogonal design.

Thus by searching those 17 non-isomorphic entry matrices we can perform an exhaustive
search for both orthogonal designs. Using the matrix based algorithm we would have had to
check 44 entry matrices using three variables for both designs.

Applying our algorithm and following the same process as in the previous example we find,
among others, the following solutions, which have PAF=0:

l-|p(u2,u3) are exactly the same as the matrices M7 5 19),

OD(36;6,8,19)

-¢c 0 b b b a c-a
-b ¢ a
b-b-b-a-b b-a 0
-b-b-c b-a b-a 0

o o o o
o
1
o
o
o
1
)

0OD(36;7,8,19)

a-b-b-b ¢ -a-c-b-c
b-a a b-c-b b-b-c
b-b a a b b-b 0 -c
a -b -b - b a b 0 c

The interesting reader can find more on this algorithm in [28].

Remark 3 Using the above algorithms, cases where n = 0( mod 4), have been studied. In
particular all orthogonal designs of orders 4n, n =1,3,5,7,9 had been completely studied, (see
[26, 28, 62, 63, 67, 70]).

3.3 Amicable sets of matrices and constructions of orthogonal designs using
the Kharaghani array

A pair of matrices A, B is said to be amicable (anti-amicable) if ABT — BAT =0 (ABT +BAT =

0). Following [56] a set {A;, Ao, ..., Ag,} of square real matrices is said to be amicable if
n
> (Aotoim1)Asn = Ao Asiry) = 0 (31)
i=1
for some permutation o of the set {1,2,...,2n}. For simplicity, we will always take o(i) = i

unless otherwise specified. So

n

> (Asim143; = Ag A1) = 0. (32)
i=1
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Clearly a set of mutually amicable matrices is amicable, but the converse is not true in general.
Throughout the section Ry denotes the back diagonal identity matrix of order &.
A set of matrices {B1, Ba,..., By} of order m with entries in {0, z1, £xz9,..., %z, } is said to
satisfy an additive property of type (s1,S2,...,8y) if

u

an BBl = (siz})Im. (33)
=1

=1

Let {4;}%_; be an amicable set of circulant matrices (or type 1) of type (si,sa,...,sy) of
order t. Then the Kharaghani array from [56]

Ay Ay A4R,  AsR,  AgR, AsR, AsR, AR,
— Ay Ay AsR, —A4R, AsR, —AgR, A:R, —AsR,
—A4R, —A3R, A A —AYR, AT'R, AIR, -AlR,
g | 4sBn  AiRn —As Ay ATR, ATR, -ATR, -AlR, (34)
~ | —46R, -AsR, ATR, —-ATR, A As —ATR, ATR,
—AsR, A¢R, —ATR, —AlR, —A, Ay ATR, ATR,
—AgR, —-A;R, —-AFfR, AR, ATR, -ATR, A As
-A7R, AgR, AT'R, AYR, -AYR, -ATR, —A Ay

is a Kharaghani type orthogonal design OD(8m; s1, S9,. .., Sy).
We present an algorithm which uses the known sets of four circulant matrices to construct
an amicable set of eight matrices suitable for the array given by (34).

The algorithm
Step 1 Find four circulants matrices A, B, C', D of order n with variables a, b, ¢, d satisfying
AAT + BBT + ¢CT + DDT = (r1a® + rob? + r3¢® + ryd?) 1,
for some integers r;, by using any of the above algorithms.

Step 2 Form four new circulant matrices F, F, G, H from A, B, C, D just by replacing
a,b,c,d with e, f, g, h respectively. Obviously the new matrices satisfy the previous condi-
tions but on variables e, f, g, h.

Step 3 Search the set {A,B,C,D,E,F,G,H} for a combination suitable to form an amicable
set of eight matrices.

Step 4 If we find such a set, we replace the matrices in the array given by (34).

Notation 2 With the expression circ(a,b,c,...,z) we will denote the circulant matrix with
first row the sequence in the brackets.

Example 15 Let A = circ(a, b, ¢), B = cire(d, —a,b), C = circ(—c,d,a) and D = circ(—b, ¢, d).
Then AA* 4+ BB!+ CC!'+ DD = 3(a? +b? + ¢ 4 d?)I3. We form the matrices E = circ(e, f,g),
F = circ(h — e, f), G = circ(—g,h,e) and H = circ(—f,g,h). Then obviously we have that
EET + FFT + GGT + HHT = 3(e® + f? + ¢®> + h?)I3. A computer search finds that

AHT" — HAT + BGT - GBT + CF" - FC" + DET —ED" =0

So, we have found an amicable set of eight circulant matrices, the {A,H,B,G,C,F,D,E}. If
we substitute these matrices in the array of the corollary, we get an OD(24;3,3,3,3,3,3,3,3).
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Example 16 Let A = circ(a,b,b,d,—d), B = cire(—b,a,a,c,—c), C = circ(d,c,c, —a,a), D =
circ(—c,d,d,—b,b). Then AAT + BBT + CCT + DDT = 5(a® + b* + ¢ + d*)I5. We form
the matrices F = circ(e, f, f,h,—h), F = circ(—f,e,e,g,—qg), G = circ(h,g,9,—e,e), H =
cire(—g, h,h, —f, f) just by substituting the variables a,b,c,d for e,f,g.h respectively. Then we
have EET + FFT 4+ GGT + HHT = 5(e® + f? 4+ ¢?> + h?)I5. A computer search finds the amicable
set

AET - EA" + BH" - HB" + GCT - G + DFT - FD" =0

So, we have the {A, E, B, H,G,C, D, F} amicable set of matrices. If we substitute these matrices
in Kharaghani array we obtain the OD(40;5,5,5,5,5,5,5,5).

Remark 4 Using the above algorithm, and the Kharaghani array many new orthogonal designs
of orders 8n are constructed, (see [20, 29, 30, 31, 49, 50, 56, 71, 72]).

4 Short amicable sets and Kharaghani type orthogonal designs

4.1 Preliminary results and basic definitions

Short amicable set were defined in [32] as a set of matrices {A4;}}_; of order m and type
(u1,us9,us, uyg), abbreviated as 4 — SAS(m;uy, us, us, ug; G), if (32) and (33) are satisfied for
n =4 and u <4.4— SAS(m;uy,uy, u3, ug; G) can be used in either the Goethals-Seidel array
or the short Kharaghani array

A B CR DR
-B A DR -CR
—-CR -DR A B
-DR CR -B A

to form an OD(4m;uy,ug,us, uq). In all cases, the group G of the matrices in the amicable set
is such that the extension by Seberry and Whiteman [89] of the group from circulant to type 1
allows the same extension to R.

In general a set of 2n matrices of order m and type (si,s9,...,8,) that satisfy equations
(32) and (33) will be denoted as 2n — SAS(m; s1,s2,...,s4; G). Moreover if these matrices are
circulant they will be denoted as 2n — SCAS(m; s1,82,. .., Su; Zm)-

In [32] where short amicable sets were first defined, it was mentioned that:

Remark 5 1. If there exists a 2 — SAS(n; s1,99;G) and a 2 — SAS(n; s3, 84; G) then there
exists a 4 — SAS(n; sy, s9, 83, s4; G).

2. If there exists a 2 — SAS(n;s1,s9;G), 2 — SAS(n; s3,84;G), 2 — SAS(n; s5,56;G) and a
2 — SAS(n; s7,ss; G) there exists an 8 — AS(n; sy, S92, 83, S4, S5, S6, $7, 88; G).

3. If there exists a 4 — SAS(n; sy, s9, 83,84; G) and a 4 — SAS(n; s5, sg, S7, s3; G) there exists
an 8 — AS(n; s1, 82, 83, 84, S5, S¢, S7, 88; G).
Thus we can obtain many classes of 4 — SAS(n; sy, s9, s3, s4; G) combining together two pairs
of the given 2 — SAS(n; s1, s2; G) and 2— SAS(n; s3, 84; G). Moreover, in Table 4.2, we give some
4 — SAS(m;uy,u9,us, us; Zy,) that can not be constructed by this method.
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Generally, unless we have other information regarding the structure, we are unable to ensure
that the matrix R with the desired properties for the Kharaghani, Goethals-Seidel or short
Kharaghani arrays exists unless the amicable sets have been group generated (circulant or type
1) or constructed from blocks of these kinds. Thus is we have the required matrix R; for the
group G, i = 1,2 then Rg = Ry x Ry will be the required matrix for G = G; x G2, (see [89]).
Ay A
Ay Ay
sets made from 2n such block circulant matrices will be called block amicable sets, short block
amicable sets or 2-short block amicable sets, 2n — SBAS(2m; s1,89,...,84;G), n = 1,2,4, where,
using R; for the back-diagonal matrix of order ¢, G = Z3 X Z,,, and Rg = Ry X R,,. Here, if
Ay and A, are circulant, then we use the backdiagonal matrix of the same order for R ensuring
A;(AjR)" = A;RA]. The required Rz = Ry X R.

We denote the product Z, x Z, x - - - x Z,(r times) by EA(p") the Elementary Abelian group.
Moreover —a is denoted by a.

Throughought this section we use the symbol 0,, to denote the sequence of length m with
all elements zero and the symbol O; to denote the ¢ x ¢ matrix with all entries zero.

For the undefined terms we refer the reader to the book by Geramita and Seberry [37].

Let A; and As be matrices of order m. We define circ(Ay, As) = . Amicable

4.2 Constructions

Theorem 23 Write 05 for the sequence of s zeros, and let a, b, ¢ and d be commuting variables.
Use the matrices Ay, Ag, A3 and Ay given by

A = circ(OstLBOs), Ag = circ(05c¢0c0s),
Ajg = circ(0sedc0g), Ay = circ(0sb0b0g),

can be used in the Goethals-Seidel array to obtain an OD(8s + 12;1,1,4,4).
Proof. Observe that
AAT + A AT + A3 AT + A AT = (a® + d* + 40* + 4dP)1,

and

A AT — Ao AT + AzAT — 4,AT =
Thus As, Ay, A3, Ay are a short amicable set and satisfy the additive property (33) so they can
be used in the Goethals-Seidel array to obtain an OD(8s + 12;1,1,4,4). O

The Melding Construction
Suppose the matrices A;, As, A3 and A4 are are short amicable sets, on the set of commuting
variables {0, £z, £xz9,- -, +x,} or from {0,+1}, and satisfy the additive property

4 u
Z; (4;47) = ;pjxﬁfn, (35)
i= j=

and the matrices As, Ag, A7 and Ag are also short amicable sets, on the set of commuting
variables {0, y1, £y, -+, £y, } or from {0,£1}, and satisfy the additive property

8 v
(4:47) =3 a1 (36)
i=5 j=1
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Then the eight matrices will form an amicable set so we can use the two together in the

Kharaghani array to obtain an OD(8n;p1,p2, s Pus 1,42, ** 5 Qv)-
order | type | group || order | type | group | order | type | group || order | type | group
n 1, 1 Zn 6n 4,4 Zgn 10n 4,4 ZlOn 14n 8,8 Zl4n
2n 2,2 | Zoy 6n 9,0 | Zgn 10n | 9,9 | Zion 14n | 10,10 | Zn
4dn 1,4 Z4n n 4,4 Z?n 12n 8,8 ZlQn 14n 13, 13 Zl4n
4dn 4,4 | Zy, 8n 8,8 | Zsn 13n | 9,9 | Zisn

Table 2: Order and type for small 2-short amicable sets for all n > 1.

a

Using table 2, remark 5 and the above Melding Construction we obtain many 4-short ami-
cable sets and 8-amicable sets.

Aq As

Type AQ A4 ZERO

(1,1,1,1) a b NPAF
c d n

(1,1,1,4) 0-dad 0b0O NPAF
0dod 0c0O0 4n

(1,1,2,2) al cd NPAF
b0 c-d 2n

(1,1,2,8) O-cac 0-cb-c NPAF
Ocbec 0-cdc 4an

(1,1,4,4) ab-a ala NPAF
cOc cd-c 3n

(1,1,5) -aaa ala NPAF
c00 0bO 4n

(1,1,5,5) cacO -dbdo0 NPAF
c-dcO dcdO 4an

(1,1,88) | 0-c-dadc | 0c-d0-dc | NPAF
OcdOdc O-cdb-dc 6n

(1,2,2,4) 0-dad c0bO NPAF
0dod c0-b0 4n

(1,4,4,4) O-bab dc-dc NPAF
ObO0Ob -cdcd 4an

(2,2,2,2) ab a-b NPAF
cd c-d 2n

(2,2,4,4) a0bo dc-dc NPAF
al0-b0 -cdcd 4n

(2,2,5,5) | 0a00bo0 c-d0-dcd | NPAF
0a00-bo0 dcOcd-c 6n

(2,2,8,8) | -dcacd0 d-cbcd0 | NPAF
-d-ca-cd0O|-d-cbc-d0 6n

Table 3: Short amicable sets.
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Ay As
Type AQ A4 ZERO
(3,3) ab b-a NPAF
a0 b0 2n
(4,4,4,4) aab-b b b-a a NPAF
dd-cc ccd-d 4dn
(4,4,8,8) da-cca-d dbc-cb-d NPAF
-d-bccb-d d-accad 6n
(5,5) aa-a ala NPAF
bb-b b0b 3n
(5,5,5,5) -abaOab -cdcOcd NPAF
ba-b0-ba dc-d0-dc 6n
(6,6) a-ba aa-a NPAF
bab b b -b 3n
(6,6,12) cacb-ca cac-aca NPAF
-cb-cach -c b ¢-b-c-b 6n
(8,8) aaa-a b b-bb NPAF
b b b-b aa-aa 4n
(8,8,8,8) aaaabb-bb bbb-baa-aa NPAF
ccccdd-dd ddd-dcc-cc 8n
(10,10,10,10) dijoint from Golay NPAF
n > 10
(13,13) cO0-ccc00cc | cc-cccc00-c | NPAF
g0-gg-800gg | gg-288800-g In
(13,13,13,13) from disjoint sequences NPAF
length 18 weight 13 n > 18
(16,16,16,16) disjoint from Golay NPAF
n > 16
(17,17,17,17) disjoint sequences NPAF
length 26 weight 17 n > 26
(20,20,20,20) dijoint from Golay NPAF
n > 20
(25,25,25,25) disjoint sequences NPAF
length 36 weight 25 n > 36
(26,26,26,26) disjoint from Golay NPAF
n > 26
(14,14) ab-b-bbaa -ba-ba-bbb NPAF
b-aaa-abb ababa-a-a ™
(17,17) a-aaaaa-aal | c-c-ccccc-c-c PAF
c-ccccc-cc(0 |a-a-aaaaa-a-a In

Table 3: (continued).

4.3 Some general results

We now consider the use of sequences with zero non-periodic autocorrelation function to make
an amicable set of matrices. We refer the reader to [88, 90] for any undefined terms.
The next theorem was proved in [73].

Theorem 24 (General construction) Let X, Y be two disjoint (0,£1) sequences with zero
non-periodic autocorrelation function of length n and weight k, Let a, b, ¢, d be commuting
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Type ZERO

(1,1,1,1) NPAF 7 > 1
(2,2,2,2) NPAF n > 2
(4,4,4,4) NPAF n >4
(5,5,5,5) NPAF n > 6
(8,8,8,8) NPAF n > 8
(10,10,10,10) | NPAF n > 10
(13,13,13,13) | NPAF n > 18
(16,16,16,16) | NPAF n > 16
(17,17,17,17) | NPAF n > 26
(20,20,20,20) | NPAF 1 > 20
(25,25,25,25) | NPAF n > 36
(26,26,26,26) | NPAF n > 26

Table 4: Short amicable sets from corollary 8

variables and write oV, bW for the circulant (type 1) matrices of order n formed by using
the first rows with the elements of X multiplied by a and the elements of Y multiplied by b
respectively.

Let A; be the circulant matrices of order n given by

Al =aV 4+ bW Ay=cV +dW Ay=dV —cW Ay=0bV —aW (37)
then {A;}}_, is a short amicable set satisfying
2
> (Asi1 A3 - A543 ) =0, (38)
i=1
and the additive property
4
Z(A AT) (a® + b + & + d)]I, (39)

i=1

Corollary 8 Let X, Y be a pair of disjoint (0,£1) sequences with zero non-periodic autocor-
relation function of length n and weight k. Then there exists a short amicable set which can be
used to form an OD(4n;k,k, k. k).

For «, 3,7, 0,€,$,1, u, v non-negative integers, Koukouvinos and Seberry [69, p. 160] show
that there exist two disjoint (0,+1) sequences, with zero non-periodic autocorrelation func-
tion, of length > n, n € N = {2 x 2%6°1079914°18%26Y24#34"} and weight k, k €¢ K =
{225010713917¢25%26%34#50" }. These give the results presented in Table 4.

For more details about short amicable sets and their use in the construction of Kharaghani
type orthogonal designs the interesting reader is refer to [32, 73].
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