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are desribed in Setion 1.1.1. The implementation of the searh algorithm is presented inSetion 1.1.2, and the results of the searh are desribed in Setion 1.1.3.Theorem 1 (Williamson [104℄) Suppose there exist four (1;�1) matries A, B, C, D oforder n whih satisfy XY T = Y XT;X; Y 2 fA;B;C;DgFurther, suppose AAT +BBT + CCT +DDT = 4nIn (1)Then H = 26664 A B C D�B A �D C�C D A �B�D �C B A 37775 (2)is an Hadamard matrix of order 4n onstruted from a Williamson array.Let the matrix T given below be alled the shift matrix:T = 2666664 0 1 0 � � � 00 0 1 � � � 0� � � � � � :0 0 0 � � � 11 0 0 � � � 0
3777775 (3)and note T n = I; (T i)T = T n�i (4)If n is odd, T is the matrix representation of the nth root of unity !, !n = 1.Let 8>>><>>>: A =Pn�1i=0 aiT i; ai = �1; an�i = aiB =Pn�1i=0 biT i; bi = �1; bn�i = biC =Pn�1i=0 iT i; i = �1; n�i = iD =Pn�1i=0 diT i; di = �1; dn�i = di (5)Then matries A;B;C;D may be represented as polynomials. The requirement that xn�i =xi; x 2 fa; b; ; dg fores the matries A;B;C;D to be symmetri.Sine A;B;C;D are symmetri, (1) beomes:A2 +B2 +C2 +D2 = 4nInand the relation XY T = Y XT beomes XY = Y X whih is true for polynomials.De�nition 1 Williamson matries are (1;�1) symmetri irulant matries. As a onsequeneof being symmetri and irulant they ommute in pairs.We use the following theorem of Williamson's as the motivator for our searh algorithm:
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Theorem 2 (Williamson [104℄) If there exist solutions to the equations�i = 1 + 2 sXj=1 tij(!j + !n�j); i = 1; 2; 3; 4 (6)where s = 12(n� 1); ! is a nth root of unity, exatly one of t1j; t2j ; t3j ; t4j is nonzero and equals�1 for eah 1 � j � s, and �21 + �22 + �23 + �24 = 4nthen there exist solutions to the equations:8>>><>>>: A =Pn�1i=0 aiT i; a0 = 1; ai = an�i = �1B =Pn�1i=0 biT i; b0 = 1; bi = bn�i = �1C =Pn�1i=0 iT i; 0 = 1; i = n�i = �1D =Pn�1i=0 diT i; d0 = 1; di = dn�i = �1 (7)That is, there exists an Hadamard matrix of order 4n.In matrix form, !j +!n�j is represented as T j + T n�j. Sine these are symmetri, we write!j = !j + !n�jRemark 1 The solutions for (6) are independent of the partiular root !, so if n as de�nedby (1) is prime, we an hoose ! so that the �rst � having any !j assigned has !1. Sine theequations are true for all roots of unity !, they are also true for ! = 1.Theorem 3 (Williamson [104℄) Let n be odd, and matries A;B;C;D satisfy (1) and (5),suppose a0 = b0 = 0 = d0, then exatly three of aj; bj ; j ; dj ; 1 � j � n� 1, have the same sign.1.1.1 Results from previous searhesIn many ases omplete searhes have been onduted for Hadamard matries of Williamsontype. Searhes have also been onduted for speial lasses of Williamson type Hadamardmatries. Furthermore, an in�nite lass of suh matries is known and will also be disussedbriey.� Baumert and Hall [6℄ report results of a omplete searh for orders 4t, t odd and 3 � t � 23.Some inomplete results for higher orders are also given.� Sawade [86℄ reports results of a omplete searh for orders 4t, t = 25; 27. The results fort = 25 were later demonstrated to be inomplete by Djokovi [13℄.� Djokovi [11℄ reports results of a omplete searh for orders 4t, t = 29; 31. Only a singlenon-equivalent solution was found for t = 29 and is equivalent to an earlier result due toBaumert [4℄.� Koukouvinos and Kounias [64, 65℄ report results of a omplete searh for order 4t, t = 33and 39. These results were later demonstrated to be inomplete by Djokovi [12℄.� Djokovi [12℄ reports results of a omplete searh for orders 4t, t = 33; 35; 39.4



� Djokovi [13℄ reports results of a omplete searh for orders 4t, t = 25; 37. This extendsresults obtained by Sawade [86℄ for t = 25 and, for t = 37, by Williamson [104℄ and laterYamada [105℄ for a speial lass of matries.� Horton, Koukouvinos, and Seberry [53℄ report results of a omplete searh for orders 4t, todd and 25 � t � 37: No new results were found, on�rming existene results.An in�nite family of Hadamard matries of Williamson type has been proved to exist underertain onditions [98, 103℄:Theorem 4 If q is a prime power, q � 1 (mod 4), q + 1 = 2t, then there exists a Williamsonmatrix of order 4t; we have C = D, and A and B di�er only on the main diagonal.This theorem gives examples of Hadamard matries of Williamson type for orders 4t, t =31; 37; 41; 45; 49; 51; 55; : : :, for example.Yamada [105℄ has searhed for Hadamard matries of Williamson type, with ertain restri-tions. These matries are referred to as Williamson type j matries. The Williamson equationfor suh matries, of order 4n is:4n =  1� 2Xs2A s!s!2 + 1� 2Xs2A s!sj!2 + 1� 2Xs2B ds!s!2 + 1� 2Xs2B ds!sj!2 (8)where s; ds = �1, !s = !s + !�s, !n = 1, j2 � �1 (mod n), A;B; jA; jB is a partition off1; 2; : : : ; n�12 g. Suh a j exists if and only if all prime divisors of n are � 1 (mod 4). This ledto some new results for n = 29; 37; 41.1.1.2 Searh methodThe searh method to �nd Williamson matries desribed in this setion was given in [53℄.Introdution The basi searh method is to examine all possible ombinations of !j; 1 �j � 12(n � 1) for eah �i; i = 1; 2; 3; 4, testing eah set of � so generated to see if it satis�esWilliamson's ondition and an be used to form an Hadamard matrix of order 4n. This searhmethod is doumented in more detail in the following setions.As a result of the large size of the searh spae, a distributed lient/server approah wastaken to the problem: the server breaks work up into smaller portions whih are then proessedby the lients; any results disovered are reported to the server by the lient. Very little work isdone by the server itself.Using a distributed approah, we are able to perform large amounts of work in a fration ofthe time required for a single omputer to perform the same amount of work.At various times during the performane of the searhes, Maintosh omputers and omputersrunning some variety of UNIX have been available for use. To make best use of the availableresoures, and to eliminate any need to install software beyond that of the lient program itself,all ommuniation was performed using low-level networking APIs, sokets [93℄ on UNIX andOpen Transport [1℄ on the Maintosh, rather than using a pakage suh as PVM [18℄ or MPI [42℄that in some ases an failitate the onstrution of distributed programs.Searhes for Hadamard matries of all orders up to and inluding order 148 have beenperformed using Williamson's method implemented by a lient/server system. Towards the endof an initial searh of order 148, 37 omputers were involved, 20 270MHz Ultra 5 omputers5



from Sun Mirosystems, and 17 333MHz iMas from Apple Computer. No omputers notavailable on the loal area network were employed in the initial searh. However, a subsequentsearh performed to verify results utilized 35 350MHz Pentium-II omputers at the Universityof Newastle in addition to 30 loal Ultra 5 omputers.The details of the implementation of Williamson's method within the framework of a lient/server system are disussed in the following setions.Deompose 4n into sum-of-squares representation The �rst step in performing a searhis to deompose 4n into all possible sums-of-squares representations. Observing the form of (6),we see that when ! = 1 eah �i satis�es:j�ij � 1 mod 4; �i > 0; orj�ij � 3 mod 4; �i < 0: (9)For example, the possible deompositions for 148 are:1, 1, 5, 111, 7, 7, 73, 3, 3, 113, 3, 7, 95, 5, 7, 7In the setions to follow, we write !sub to indiate some !k = !k+!n�k for 1 � k � 12 (n�1)when it is neessary to distinguish from an nth root of unity, !.Deide on the number of !sub assigned to eah � The next step is to assign a numberof !sub to eah �. Using (9), we see that if j�ij � 1 mod 4, then of the !sub ontributing to�i, the number being added to �i will always be j�ij�14 greater than the number of !sub thatare subtrated. A similar ondition an be derived for j�ij � 3 mod 4. These !sub are termed\�xed"; others are \oating" and always our in pairs, one added and the other subtrated.These onditions are enfored to help limit the size of the spae to be searhed.All possible permutations of the number of oating !sub are assigned to eah � over theourse of the searh of a partiular sum-of-squares representation, subjet to ertain restritionsthat are useful for reduing the size of the spae to be searhed:1. The number of !sub assigned to �i must be greater than or equal to the number of !subassigned to �j where j < i and �i and �j orrespond to the same value in the sum-of-squares deomposition. We may apply this ondition beause for the purposes of testingthe set of � to see if Williamson's ondition is satis�ed, �i and �j are interhangeable,and it is desirable to perform the test only one rather than twie. This may be extendedfurther if more than two � have the same value in the sum-of-squares deomposition.2. If n is prime, then we may always plae !1 in the �rst � to whih any !sub are assigned.This orresponds to solving the set of � for some nth root of unity, !j, suh that !1 ispresent in the �rst � to whih any !sub are assigned. Furthermore, if there are !sub bothadded and subtrated from this �, we may either subtrat or add !1; we do not need tohek both. If this ondition is in fore, then ondition 1 is not applied in the ase of the� to whih !1 is assigned, but remains appliable for other � orresponding to the same6



value from the sum-of-squares deomposition. Enforing this ondition an greatly reduethe size of the spae to be searhed: for example, applying this ondition for searhingfor Hadamard matries of size 148 redues the size of the spae to be searhed to 37% ofits size were this ondition not to be enfored (reduing from about 32,387,862,644,280 to12,062,406,963,464)For eah permutation of oating !sub that is generated, we must assign spei� identitiesto eah !sub and evaluate Williamson's ondition.Assign spei� identities to eah !sub We must now assign spei� identities to eah !subso that Williamson's ondition may be tested.Let the number of !sub added to �i be represented by 2i�1 and the number of !subsubtrated from �i by 2i. S2i�1 is the set of !sub added to �i and S2i is the set of !subsubtrated from �i. That is, there are eight sets S, two for eah �. Some of these sets S maybe empty. �i = 1 + 2 X8j2S2i�1 !j � 2 X8j2S2i !jDividing !sub into two groups, one added to a � and the other subtrated, helps to simplify theproedure for iterating over all possible ombinations of !sub .The sets Si are formed by hoosing i elements from the set of !sub not already alloatedto an Sj ; j < i. Realling that s = 12(n� 1), ST;0 is de�ned as:ST;0 = f!1; !2; !3; : : : ; !sg:ST;i is de�ned as: ST;i = ST;i�1 � Si�1; i = 1; : : : ; 8: (10)For onveniene, we say that: S0 = ;Williamson's ondition may be tested one S1; : : : ; S8 have been generated. All possibleombinations of i elements from ST;i are examined; one the ombinations are exhausted, thenext ombination for Si�1 is generated. The proess is illustrated by the small segment ofpseudoode shown in Figure 1.So it should be easy to see that the number of tests of Williamson's ondition for a partiularset of 1; : : : ; 8 an be alulated as follows:Evaluations = 8Yi=1 jST;iji ! (11)Usually, however, the total number of evaluations performed will be less than this, for tworeasons:1. If ondition 2 from Setion 1.1.2 is applied, we hoose one fewer !sub for the set S inwhih !1 is to appear.2. If �i and �j; i < j orrespond to the same value in the sum-of-squares deomposition of4n and have the same number of !sub assigned, then we may require that if !x is the!sub of smallest subsript assigned to �i and !y has the smallest subsript assigned to7



j := 1;do for k from j to 8populate ST;k from ST;k�1 and Sk�1 using (10);generate ombination Sk by hoosing k elements from ST;k;Test Williamson Condition using S1; : : : ; S8 to generate �1; : : : ; �4;j := 8;g := false;while ((j > 0) and (g == false))generate new ombination Sj using j elements from ST;jif suessfulg := true;j := j + 1;else j := j � 1;while (j > 0);Figure 1: Segment of pseudoode illustrating generation of ombinations for testing Williamson'sondition.�j , that x < y. Otherwise, work will be repeated when �i repliates a sequene that hadpreviously ourred in �j. Enforing this ondition ensures that no repetition takes plaeand redues the size of the searh spae slightly. The redution is unfortunately not assubstantial as that for applying ondition 2 from Setion 1.1.2.Dividing up the work for distribution The obvious manner in whih to redue the amountof work performed by the lients to a reasonable level was to make the server perform part ofthe work desribed in Setion 1.1.2. The server performs no evaluations itself, but would hoosesets S1; : : : ; Si; for some i < 8. The lient would evaluate all the possibilities for the hoie ofthe remaining sets Si+1; : : : ; S8.The server deides what value i should take by estimating the amount of work involved ina subproblem using a modi�ation of Equation (11). Two onstants Smin and Smax must bespei�ed to the server: a subproblem is of aeptable size if its size lies between the two limits.Unfortunately, this does not yield subproblems with an even division of work: there are somevery large and very small subproblems. Very small subproblems an be solved quikly, andresult in a large number of reports of ompleted problems and requests for new problems beinghandled by the server over a short period of time. This an ause ongestion and is not desirable.The solution that was ultimately adopted was for the server to alloate multiple small sub-problems to a lient looking for work. The server also maintains a queue of pre-alloatedsubproblems ready for assignment to lients, so that lient requests an be satis�ed as rapidlyas possible.
8



1.1.3 Searh resultsLemma 1 Let the Williamson deomposition into four squares be s21+s22+s23+s24 = 4n. Further,let the row sums of the four Williamson matries A;B;C;D be m1;m2;m3;m4. LetM = 12 26664 �1 1 1 11 �1 1 11 1 �1 11 1 1 �1 37775 ; s� = 26664 s1s2s3s4 37775 ; m� = 26664 m1m2m3m4 37775Then s21 + s22 + s23 + s24 = 4n, m21 +m22 +m23 +m24 = 4nand Ms� = m�,Mm� = s�Proof. (6) gives, using the root ! = 1, a deomposition withsi = �i = 1 + 4 sXj=1 tij ; i = 1; 2; 3; 4:By Williamson's assumption ondition,s21 + s22 + s23 + s24 = 4n:On the other hand,m1 = nXj=1 aj= 1� 2 n�12Xj=1 t1j + 2 n�12Xj=1 t2j + 2 n�12Xj=1 t3j + 2 n�12Xj=1 t4j= 1� 12(s1 � 1) + 12(s2 � 1) + 12(s3 � 1) + 12(s4 � 1)= 12(�s1 + s2 + s3 + s4)Similarly, m2 = 12(s1 � s2 + s3 + s4)m3 = 12(s1 + s2 � s3 + s4)m4 = 12(s1 + s2 + s3 � s4)and Ms� = m�. Inverting we have, as M�1 =M , Mm� = s�. It is easy to hek thatm21 +m22 +m23 +m24 = s21 + s22 + s23 + s24 = 4n:9



Unfortunately, no new matries were found as a result of the searhes run so far. However, weare able to provide independent veri�ation of results from previous searhes. This is onsideredof utility sine some previous searhes, suh as that onduted by Sawade [86℄, for example,failed to reveal all solutions that are now known for the order searhed, in that ase, order 100.In partiular, we provide veri�ation of results reported by Djokovi [12, 13℄ for orders 100, 140and 148. Results for order 100 are also veri�ed by Christos Koukouvinos.For referene purposes, tables of Hadamard matries derived from Williamson matries usingirulant symmetri (1;�1) matries in the Williamson array for orders 100 through 180 arepresented in Appendix 1 of [53℄. A omplete searh of order 156 is laimed by Djokovi [12℄.Results for orders 164, 172 and 180 are inomplete.1.2 Hadamard matries from Williamson matries for non prime ordersAn eÆient algorithm to �nd Williamson matries of order n = p � q; i.e. n is not a prime hasbeen desribed in [64℄. This algorithm omputes the solutions in groups of order p and q. Infat with the aim of this algorithm we an �nd all the inequivalent solutions whih satisfy theWilliamson equation in groups of orders p and q respetively. Then we an merge these solutionsin order to �nd the solution in the group of order n: Of ourse this algorithm an also be usedwhen n is prime power but it is not too eÆient in this ase. More details for this algorithm anbe found in [64℄.1.2.1 The methodIn this setion we give the neessary tools needed for our algorithm. We want to onstrut the(1;�1) irulant matries:A = (a0; a1; : : : ; am�1); B = (b0; b1; : : : ; bm�1);C = (0; 1; : : : ; m�1); D = (d0; d1; : : : ; dm�1);suh that A2 +B2 + C2 +D2 = 4mIm: (12)The symmetry requirement gives vi = vm�i; i = 1; 2; : : : ; 12(m � 1); vi 2 fai; bi; i; dig: LetGTq = (Ip; Ip; : : : ; Ip) be a p� p � q matrix, i.e., the unit matrix Ip of order p is repeated q times.The following theorems have been proved in [64℄ and are essential tools for our algorithm.Theorem 5 If1. m = p � q; p; q > 1:2. V = (v0; v1; : : : ; vm�1) is irulant of order m; then(a) GTq � V = U �GTq ; where U = (u0; u1; : : : ; up�1) is irulant of order p withuj = Xi�j(mod p);i<m vi; j = 0; 1; : : : ; p� 1;(b) U is symmetri if V is symmetri. 10



Now multiplying on the left A;B;C;D by GTq we obtain:GTq A = XpGTq ; GTq B = YpGTq ; GTq C = ZpGTq ; GTq D =WpGTqwhere Xp = (x0; x1; : : : ; xp�1); with xj =Xi ai;Yp = (y0; y1; : : : ; yp�1); with yj =Xi bi;Zp = (z0; z1; : : : ; zp�1); with zj =Xi i;Wp = (w0; w1; : : : ; wp�1); with wj =Xi di (13)
and the summations are over all i � j(mod p); i < m:If we multiply both members of (12), on the left by GTq and on the right by Gq we obtain inthe symmetri ase: X2p + Y 2p + Z2p +W 2p = 4mIp: (14)Of ourse we do not know A;B;C;D so we do not know Xp; Yp; Zp;Wp: However it is easierto �nd Xp; Yp; Zp;Wp satisfying (14) than A;B;C;D beause p is muh smaller than m: Now toonstrut Xp; Yp; Zp;Wp note that:Theorem 6 If1. A;B;C;D are irulant and symmetri (1;�1)-matries satisfying (12) with row (andhene olumn) sums a; b; ; d,2. Xp; Yp; Zp;Wp are as de�ned in (13),then1. p�1Xj=0xj = a; p�1Xj=0yj = b; p�1Xj=0zj = ; p�1Xj=0wj = d;a2 + b2 + 2 + d2 = 4m; �q � xj ; yj; zj ; wj � q; xj ; yj; zj ; wj odd;xj = xp�j; yj = yp�j; zj = zp�j; wj = wp�j; j = 1; 2; : : : ; 12 (p� 1); (15)2. If moreover a0 + b0 + 0 + d0 = 0; �4; then(x0 + y0 + z0 +w0)� (a0 + b0 + 0 + d0) = ( 0(mod 8); if q � 1(mod 4);4(mod 8); if q � 3(mod 4); (16)xj + yj + zj + wj � 2(mod 4); j = 1; 2; : : : ; 12(p� 1):1.2.2 The algorithmFor a given deomposition 4m = a2 + b2+ 2 + d2; with m = p � q; p < q; the algorithm onsistsof four stages: 11



I) 1. Form all sequenes Xp = fx0; x1; : : : ; xp�1g satisfying:(i) p�1Xi=0xi = a; (ii) � q � xi � q (iii) xi odd;(iv) xi = xp�i; i = 1; 2; : : : ; 12(p� 1):2. Repeat the onstrution for Yp; Zp;Wp replaing a with b; ; d respetively.3. Examine whih quadruples Xp; Yp; Zp;Wp satisfy X2p + Y 2p + Z2p +W 2p = 4mIp:II) 1. Repeat stage I interhanging p and q:2. Find all inequivalent solutions by applying the transformation j ! j � s(mod q) toeah solution Xq; Yq; Zq;Wq; where (s;m) = 1 for every s < q:III) 1. If there are h1 solutions Xp; Yp; Zp;Wp; and h2 inequivalent solutions X̂q; Ŷq; Ẑq; Ŵq;form the h1 � h2 ombined solutions Xp; Yp; Zp;Wp; X̂q; Ŷq; Ẑq; Ŵq:2. Find A = (a0; a1; : : : ; am�1) from:ai = am�i; i = 1; 2; : : : ; 12(m� 1);Xi�j(mod p);i<m ai = xj ; j = 0; 1; 2; : : : ; 12(p� 1);Xi�j(mod q);i<m ai = x̂j; j = 0; 1; 2; : : : ; 12(q � 1);where Xp = (x0; x1; : : : ; xp�1); X̂q = (x̂0; x̂1; : : : ; x̂q�1):3. Find B;C;D similarly.IV) Examine whih quadruples A;B;C;D satisfy A2 +B2 + C2 +D2 = 4mIm:Now repeat stages, I, II, III, IV for every deomposition of 4m as the sum of four odd squares.If p = q then the algorithm is:1) 1. Perform steps 1, 2 ,3 of stage I of the previous algorithm.2. Find all inequivalent solutions by applying the transformation j ! j � s(mod p) toeah solution Xp; Yp; Zp;Wp; where (s;m) = 1 for every s < p:2) 1. Find A = (a0; a1; : : : ; am�1) from:ai = am�i; i = 1; 2; : : : ; 12(m� 1); Xi�j(mod p);i<m ai = xj ; j = 0; 1; 2; : : : ; 12(p� 1);where Xp = (x0; x1; : : : ; xp�1):2. Find B;C;D similarly.3) Examine whih quadruples A;B;C;D satisfy A2 +B2 + C2 +D2 = 4mIm:Now repeat stages, 1, 2, 3, for every deomposition of 4m as the sum of four odd squares.This algorithm was used in [64, 65℄ for a omplete searh for orders 4t; t = 33; 39: Thesame algorithm was used later by Djokovi [12℄ for orders 4t; t = 33; 35; 39: He noted one moresolution for t = 33 and t = 39 whih was missing in [64, 65℄. He also laimed the non existeneresults for t = 35: 12



1.3 Hadamard matries from generalized Legendre pairs using the disreteFourier transform1.3.1 De�nitions and notationsLet U be a sequene of ` real numbers u0; u1; :::; u`�1. The periodi autoorrelation funtion,PAF, PU (j) of suh a sequene is de�ned, reduing i+ j modulo `; by:PU (j) = `�1Xi=0 uiui+j ; j = 0; 1; :::; ` � 1:Two sequenes U and V of idential length ` are said to be ompatible if the sum of their periodiautoorrelations is a onstant, say a, exept for the 0-th term. That is,PU (j) + PV (j) = a; j 6= 0: (17)(Suh pairs are said to have onstant periodi autoorrelation even though it is the sum of theautoorrelations that is a onstant.) If U and V are both �1 sequenes, ompatible and a = �2,then they are alled a generalized Legendre pair (or GL{pair).In this setion we are interested for ompatible �1 sequenes whih are a GL{pair, and may beused as below to onstrut Hadamard matries of order 2`+ 2. The Legendre or Jaobi symbolis written (ajn) if n is prime or omposite, respetively. When referring to the elements of a�1; 0; 1 sequene we often write `�' instead of �1 and `+' instead of 1.The disrete Fourier transform (DFT) of a sequene U is given byDFTU (k) = �k = `�1Xi=0 ui!ik; k = 0; 1; :::; ` � 1where ! is a primitive `-th root of unity e 2�i` . If we take the squared magnitude of eah term inthe DFT of U , the resulting sequene is alled the power spetral density (PSD) of U . Beausewe use them so often, the k-th terms in the PSDs of U and V will be denoted by j�kj2 and j�kj2,respetively.Example 1 The PSD of the sequene 1 2 2 -2 0 0 0 is49.000 19.988 13.220 7.792 7.792 13.220 19.988If a sequene u is transformed by the operation of ylially taking every d-th element, wheregd(d; `) = 1, the sequene U is said to be deimated by d. That is, if V = U deimated by d,then vi = udi mod `.Example 2 1111000 deimated by 2 = 11001101111000 deimated by 3 = 110101013



The set of all possible deimations of a sequene is alled a deimation lass. Sine d is requiredto be relatively prime to `, a sequene of length ` has �(`) deimations, though sometimes theyare not all distint. We note that deimation by �1 is the same as reversing a sequene. Hene,by assuming that eah sequene also represents its reverse, the maximum size of any deimationlass is �(`)=2. Finally, we de�ne ompatibility between deimation lasses. Two deimationlasses are said to be ompatible if and only if some sequene belonging to one lass is ompatiblewith some sequene in the other lass.1.3.2 Some preliminary resultsWe make use of the following well-known theorem [84, Chapter 12℄, [97, Chapter 10℄.Theorem 7 (Wiener{Khinhin Theorem) The PSD of a sequene is equal to the DFT ofits periodi autoorrelation funtion j�kj2 = `�1Xj=0PU (j)!jk: (18)The periodi autoorrelation funtion is equal to the inverse DFT of the sequene's PSDPU (j) = 1̀ `�1Xk=0 j�kj2!�jk: (19)The next main theorem was proved in [17℄.Theorem 8 Two sequenes are ompatible if and only if their PSDs sum to a onstant (i.e.j�kj2 + j�kj2 =  i� PU (j) + PV (j) = a).Example 3 Two ompatible sequenes and their PSDs are shown below.Sequenes PSD (terms 1 to 3)1 2 2 -2 0 0 0 19.988 13.220 7.7922 1 -1 2 -1 0 0 5.012 11.780 17.20825.000 25.000 25.000 (hene  = 25)In fat, the onstant  depends only on the set of numbers omprising the sequenes U and V .It is easily shown that = `P`�1i=0 u2i � (P`�1i=0 ui)2`� 1 + `P`�1i=0 v2i � (P`�1i=0 vi)2`� 1 : (20)Hene, all permutations of the sequenes yield the same onstant. Theorem 8 is a generalizationof results that have appeared in the literature in other forms, see for example Kounias, Kouk-ouvinos, Nikolaou and Kakos [75℄.The following useful relationships are easily proved by diret appliation of the de�nitions ofdeimation, autoorrelation and DFT. 14



� If a sequene is deimated by d, then its autoorrelation is likewise deimated by d, andits DFT and PSD are deimated by d�1 mod `.� It follows immediately that ompatible sequenes remain ompatible if they are deimatedby the same amount.Remark 2 If U , V are �1; 0{sequenes then the above onstant  is  = w � a, where w isthe total number of non{zero entries and a is the onstant from the periodi autoorrelationfuntion of U and V .1.3.3 Legendre sequenes and modi�ed Legendre sequenesFor the remainder of this setion we onsider only GL{pairs. The following is well known (seefor example [101℄) and is inluded for ompleteness only. Let p be an odd prime. The �1; 0; 1sequene U of length p is alled a Legendre sequene L if its elements xi = li satisfyli = (ijp):In other words, l0 = 0 and for i 6= 0, li = 1 if i is a square modulo p and li = �1, otherwise. Weall (�1; L), (0; L), or (1; L) a modi�ed Legendre sequene. The values of the modi�ed Legendresequene are exatly the same as those of the unmodi�ed one exept for l0 whih is set to �1,0, or +1, respetively. ((0; L) is of ourse the original Legendre sequene but sometimes it isonvenient to refer to it as an modi�ed Legendre sequene.) Two sequenes (e1; L), (e2; L) withe1; e2 2 f�1; 0; 1g are alled modi�ed Legendre sequenes and they are de�ned in the obviousmanner.Example 4 Let p = 7. The modi�ed Legendre sequenes (0; L) and (1; L) are given by(0; L) = 0 + +�+��(1; L) = + ++�+��The following two lemmas (see [17℄) say that GL-pairs exist for lengths `, where:(i) ` is a prime (see for example [17℄).(ii) 2` + 1 is a prime power (these arise from Szekeres di�erene sets, see for example [17℄ or[37℄).Lemma 2 Let p be an odd prime then (1;�L), (1; L) is a GL{pair.This lemma shows the existene of a GL{pair for every odd prime p. We also note thatLemma 3 Let p = 2`+ 1 be a prime power then there is a GL{pair.Theorem 9 Suppose there is a GL-pair of length `. Then there exists an Hadamard matrix oforder 2`+ 2.Proof. The sequenes are used to make two irulant matries A and B of order `: Then thefollowing matrix is the required Hadamard matrix.15
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3777777777777775Corollary 1 Suppose that there are 2�f`; `+12 ; `+12 ; `+12 g SDS. Then there exists an Hadamardmatrix of order 2`+ 2.GL-pairs also exist for lengths `, where:(i) ` = 2k � 1, k � 2 (two Galois sequenes are a GL-pair, see for example [85℄).(ii) ` = 49; 57 (these have been found by a non-exhaustive omputer searh that uses general-ized ylotomy and master-swith tehniques, see [37, 44℄).(iii) ` = 3; 5; : : : ; 45 (these have been found and lassi�ed by exhaustive omputer searhes, see[17℄).(iv) ` = 47; 49 and 51 (these have been found and lassi�ed by partial omputer searhes, see[17℄).(v) ` = 143 (also veri�ed the results for ` = 3; 5; 7; 11; 13; 15; 17; 19; 23; 25; 31; 35; 37; 41; 43; 53;59; 61; 63 see [22℄).GL-pairs do not exist for even lengths. It is indiated in [17℄ that the following lengths ` � 200are unresolved: 55; 77; 85; 87; 91; 93; 115; 117; 121; 123; 129; 133; 145; 147; 159; 161; 169; 171; 175;177; 185; 187 and 195.We note here that a GL-pair for length ` = 143 is onstruted easily sine 143 = 11 � 13 is aprodut of twin primes as indiated in Corollary 2.1.3.4 The PSD testWe suppose that the set of numbers omprising sequenes U and V are �xed and that onlypermutations of these sequenes will be onsidered. Now every term in a PSD is non{negative.Hene if the sequenes U and V are ompatible, then no term in their PSDs an exeed theonstant  in Theorem 8. That is,j�kj2 + j�kj2 =  =) j�kj2 � :Equivalently, if any term of a sequene's PSD exeeds , then the sequene annot be a memberof a ompatible pair and so maybe disarded from our searh. This test an be generalized in astraightforward manner to any family of sequenes over any alphabet that have onstant periodiautoorrelation funtion. (Sine, the nonperiodi autoorrelation funtion being onstant impliesthat the periodi autoorrelation funtion is onstant, the above test is also appliable for suhandidate sequenes.) 16



1.3.5 Empirial performane of the PSD test for binary sequenesExhaustive searhes over the spae of all binary 0; 1{sequenes were performed for various lengthsand weights (number of ones) to see what fration of sequenes atually pass the PSD test. Thelengths ` and weights w were hosen to orrespond to supplementary di�erene sets used in theonstrutions of D{optimal designs [75℄ and Hadamard matries (as desribed above) while ,the threshold for the PSD test, was determined by (20). The results are shown Table 1 of [17℄.(The last three rows in this table are derived from a ount of deimation lasses rather thansequenes, but the perentage redution is approximately the same either way.) It is evidentthat very substantial redutions in the number of andidate sequenes an be realized throughthe use of the PSD test.The exhaustive searh algorithm was divided into three steps. In the �rst step, all deimationlasses of length ` and weight w = `+12 are exhaustively generated, and eah one that passes thePSD test is saved in a list. In the seond step, the list is sorted by o�set. In this manner, pairsof lasses with equal and opposite o�sets an be quikly found, and the third step is to omputethe autoorrelation funtions of suh pairs to on�rm whether they are ompatible or not.The results from these three steps for ` = 15 are illustrated in Table 2 of [17℄.The results from the exhaustive searhes for ` � 45 are shown in Table 3 of [17℄.1.4 Hadamard matries from generalized Legendre pairs using supplemen-tary di�erene sets1.4.1 Some preliminary resultsWe say that two sets of residues modulo `, say P and Q, are 2� f`; k1; k2; �g supplementarydi�erene sets mod ` (abbreviated as sds) if jP j = k1, jQj = k2, and for eah non-zero residuek(mod`) the ongruenes i � j � k; i; j 2 P , i � j � k; i; j 2 Q, have in total exatly �solutions.If P , Q are 2 � f`; k1; k2; �g sds, then we onstrut the �rst row of the orresponding(�1; 1) irulant inidene matries A = (aij) and B = (bij), i; j = 0; 1; : : : ; `� 1, as follows:a0j = �1; if j 2 P and a0j = 1; otherwise;and b0j = �1; if j 2 Q and b0j = 1; otherwiseWe know (see [7℄ or [101℄) that:Theorem 10 (i) If P, Q are supplementary di�erene sets 2 � f`; k1; k2; �g and A, B theorresponding (�1; 1) inidene matries, thenAAT +BBT = 4(k1 + k2 � �)I` + 2(`� 2(k1 + k2 � �))J` (21)(ii) Given two ` � ` irulant matries A, B satisfying (21), then the orresponding sets P , Qare supplementary di�erene sets 2�f`; k1; k2; �g, where k1, k2 is the number of �1's in eahrow of A, B respetively. 17



We note that two ompatible sequenes may ontain elements from any alphabet. If theelements of two ompatible sequenes are �1,1 then they are desribed as 2 � f`; k1; k2;�gsds as the previous theorem say. In this setion we are interested in the partiular ase of2 � f`; `+12 ; `+12 ; `+12 g sine these give, ompatible �1 sequenes whih are a GL-pair, and maybe used to onstrut Hadamard matries of order 2`+ 2.In this partiular ase, relation (21) beomesAAT +BBT = (2`+ 2)I` � 2J` (22)Multiplying on the left by eT and on the right by e both sides of (22) we obtain:(`� 2k1)2 + (`� 2k2)2 = 2 (23)where e is the ` � 1 vetor of one's. Sine k1 = k2 = (` + 1)=2, we onlude that, the sumof the elements in eah row and olumn of the irulant matries A and B must be minus one.Sine multipliation by �1 of the �rst row of A and/or B leaves relation (22) invariant, wededue that the �rst element in the �rst rows of A and B will be +1 and from the remainingelements half will have positive sign and half negative one. Thus, a neessary ondition for theexistene of the (�1; 1) irulant matries A and B satisfying (22), or for the existene of theorresponding sds is that, ` should be odd.Now we onsider the �rst rows of A and B as two sequenes of length `. Using (19) it is easyto see that relation (22) is equivalent toPA(0) + PB(0) = 2` (24)PA(s) + PB(s) = �2; for s = 1; 2; : : : ; `� 1 (25)If a sequene A of length ` is transformed by the operation of ylially taking every d-thelement, where (d; `) = 1, the sequene A is said to be deimated by d. That is, if A0 = Adeimated by d, then a0i = adi, reduing di modulo `. The set of all possible deimationsof a sequene is alled a deimation lass. Sine d is required to be relatively prime to `, asequene of length ` has �(`) deimations, though sometimes they are not all distint. Wenote that deimation by �1 is the same as reversing a sequene. Hene, by assuming thateah sequenes also represents its reverse, the maximum size of any deimation lass is �(`)=2.Any pair of sequenes that an be transformed into another pair by exhanging the sequenes,ylially shifting or reversing either of the sequenes, or deimating both by the same amountare onsidered equivalent. The orresponding sds are also onsidered equivalent. This notie ofequivalent sds was also onsidered in [75℄.Sine in our ase the parameters k1 and k2 of the sds are equal, we investigate multipliersof 2�f`; `+12 ; `+12 ; `+12 g sds. This eÆient tehnique has already applied for some other familiesof sds in [19, 74℄. In these ases the authors onstrut the set P and searh for all possible w'sprime to the `, i.e. (w; `) = 1 suh that Q = wP (mod`), and P , Q onstitute a sds, if suhw's exist. They found many multipliers of the sds and onstruted D-optimal designs for someorders.In partiular, Koukouvinos, Seberry, Whiteman, and Xia [74℄ used ylotomy to prove thefollowing theorem, where Ci are the ylotomi lasses inGF (v) onstruted by using a generatorg of GF (v) n f0g.Theorem 11 (see [74℄) Let g be a generator of the yli group GF (v) n f0g. Suppose18



(i ) v = 2q2 + 2q + 1 is a prime power,(ii) A and B are 2�fv; q2; q2; �g sds suh that 2q+1 is a multiplier ie B = (2q+1)A, and2q + 1 2 Ci,(iii) A and B are unions of ylotomi lasses.Then every � 2 Ci or � 2 C�1i is also a multiplier i.e. B = �A.1.4.2 Twin prime power onstrutionFor a omprehensive introdution to ylotomy see [37℄ and [94℄.Stanton and Sprott [92℄, Storer [94℄, and Whiteman [102℄, showed onstrutions of di�erene setsover GF (p)�GF (p+ 2), with p, p+ 2 both prime powers. Gysin and Seberry [45℄ onstrutedp+ 12 � fp(p+ 2); p2 � 12 ; 2; : : : ; 2; (p� 1)24 gsds over GF (p)�GF (p+2), where p, p+2 are two prime powers, p > 2. In fat if x, y generateGF (p)�, GF (p+ 2)� respetively, they de�ned the following ylotomi lassesCi = f(xs; ys+i) : s = 0; : : : ; f � 1gEk = f(x p�12 s+k; 0) : s = 0; 1gwhere i = 0; 1, k = 0; : : : ; p�12 � 1, and f = p2�12 = lm(p� 1; p+ 1).Furthermore they de�ned E = f(xs; 0) : s = 0; : : : ; p� 2g, D = f(0; ys) : s = 0; : : : ; pg. Thenusing the lasses C0, E, and D they reproved the following theorem, whih was originally provedby Stanton and Sprott [92℄, and Whiteman [102℄. This is also inluded in [5℄.Theorem 12 (Stanton-Sprott-Whiteman restated) Let C0, E be de�ned as above, thenfC0 [E [ f0gg is a fp(p+ 2); p2 � 12 + p; (p+ 1)24 � 1gdi�erene set over GF (p)�GF (p+ 2).Gysin and Seberry [45℄ also noted the following orollary.Corollary 2 Let C0, D be de�ned as above, then fC0 [Dg is afp(p+ 2); (p+ 1)22 ; (p+ 1)24 gdi�erene set over GF (p)�GF (p+ 2).Example 5 Let p = 3, p+ 2 = 5, (x; y) = (2; 2) = 2. NowC0 = f1; 2; 4; 8gD = f3; 6; 12; 9gE = E0 = E1 = f5; 10g19



in this ase fC0 [Dg = f1; 2; 4; 8; 3; 6; 12; 9g;is a f15; 8; 4g di�erene set over GF (3) �GF (5) ' Z15.Example 6 Let p = 5, p+ 2 = 7, (x; y) = (2; 3) = 17. NowC0 = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33gD = f15; 10; 30; 20; 25; 5gE = f21; 7; 14; 28gE0 = f21; 14gE1 = f7; 28g;In this ase fC0 [Dg = f1; 17; 9; 13; 11; 12; 29; 3; 16; 27; 4; 33; 15; 10; 30; 20; 25; 5g;is a f35; 18; 9g di�erene set over GF (5) �GF (7) ' Z35.We observe that the parameters of the di�erene sets onstruted in orollary 2, are f`; `+12 ; `+14 g.Hene, the above orollary motivate us to �nd 2� f`; `+12 ; `+12 ; `+12 g sds. Thus we have:Theorem 13 There exist 2 � f`; `+12 ; `+12 ; `+12 g sds, where ` = p(p + 2) and p, p + 2 are twoprime powers, p > 2.Proof. Let D1 be the f`; `+12 ; `+14 g di�erene set onstruted in orollary 2. Then D1 andD2 = D1 onstitute a 2� f`; `+12 ; `+12 ; `+12 g sds. 2Thus we onlude that:Corollary 3 Let ` = p(p + 2), with p; p + 2 both prime powers. Then there exist GL-pairs oflength `.1.4.3 The algorithmFor the onstrution of 2�f`; `+12 ; `+12 ; `+12 g sds, we use the following algorithm, whih is givenin [22℄. A modi�ed version of this algorithm has been applied in [19℄. This algorithm usesthe idea of multipliers and is muh faster than the algorithms that have been used in [7℄ and[43℄. This algorithm provides the sds that an be onstruted using multipliers and performs anexhaustive searh for the multipliers of these sds. Not only the omplexity of the algorithm isredued but also using some powerful but elementary results from group theory the onstrutionused in this algorithm give us a theoretial result on the multipliers of the orresponding sds.Modi�ations of the algorithm an be used for searhing sds with same parameters k1 = k2 andtheir multipliers.For a given ` odd(i) Find positive integers k1; k2; � satisfying:k1 = k2 = � = `+12 . 20



(ii) For an integer t; 1 � t < `; (t; `) = 1, form all sets fa; at; : : : ; atm�1g with atm � amod(`)for all a = 0; 1; : : : ; ` � 1. Sort the sets by the smallest element and all them ai; i =0; 1; : : : ;m.(iii) Find all possible multipliers using Lemmas 4 and 5. Try only one element from the groupsai and a�1i ; and do not try multipliers w; unless (w; `) = 1:(iv) Form one set P with k1 elements as union of sets found in step (ii).(v) For eah multiplier w found in step (iii), set Q = wP:(vi) Examine if P;Q are supplementary di�erene sets 2� f`; k1; k2;�g.(vii) If the answer in (vi) is positive then save the set P and multiplier w:(viii) If the multiplier that used was not the last, then go to step (v) and try the next multiplier.(ix) Repeat steps (iv)-(viii) until all possible ombinations of unions of sets P are examined.(x) If the last possible union of sets P is reahed, then go to step (ii) and use the next integert to form the sets ai:(xi) Repeat steps (ii)-(x) until all values of t; 1 < t < `; (t; `) = 1 are examined.Next Lemmas whih are essential in our searh for multipliers of sds were proved in [22℄.Lemma 4 Let ai; i = 0; 1; : : : ;m be the subsets onstruted in step (ii) of our algorithm andP = ai1 [ ai2 [ : : : [ ain , Q = w1P; w1 2 aj; j 2 f1; : : : ;mg be 2 � fv; k; k;�g supplementarydi�erene set ( we say that w1 is a multiplier for the di�erene set ). Then(i) Every w 2 aj is a multiplier for the supplementary di�erene set. That is 8w 2 aj,P; R = wP onstitute a 2� fv; k; k;�g supplementary di�erene set.(ii) Every w 2 a�1j is also a multiplier.Lemma 5 If (w; `) > 1 then w annot be a multiplier.The above algorithm an perform an exhaustive searh for multipliers but only a partialsearh for the orresponding sds. If the sds an be onstruted using multipliers then they willbe easily found otherwise the sds an not be onstruted using multipliers but they may exist.21



1.5 Hadamard matries onstruted from two irulant matriesLet A = fAj : Aj = faj1; aj2; :::; ajng; j = 1; : : : ; `g, be a set of ` sequenes of length n. Thenon-periodi autoorrelation funtion (NPAF ) NA(s) of the above sequenes is de�ned asNA(s) = X̀j=1 n�sXi=1 ajiaj;i+s; s = 0; 1; :::; n � 1: (26)If Aj(z) = aj1 + aj2z + : : :+ ajnzn�1 is the assoiated polynomial of the sequene Aj, thenA(z)A(z�1) = X̀j=1 nXi=1 nXk=1 ajiajkzi�k = NA(0) + X̀j=1 n�1Xs=1NA(s)(zs + z�s): (27)It is lear that PA(s) = NA(s) +NA(n � s); s = 1; : : : ; n � 1: Therefore, if NA(s) = 0 forall s = 1; : : : ; n � 1; then PA(s) = 0 for all s = 1; : : : ; n � 1: But, PA(s) may equal zero for alls = 1; : : : ; n� 1; even though the NA(s) are not.De�nition 2 (Golay sequenes) Two sequenes A = fa1; a2; : : : ; ang andB = fb1; b2; : : : ; bngof length n, with elements �1, are de�ned as Golay sequenes of length n, if the following equa-tions NA(s) +NB(s) = 0 s s = 1; 2; : : : ; n� 1:hold, where NA(s) is the nonperiodi autoorrelation funtion.Example 7 The following binary sequenes, with elements �1, are Golay sequenes of lengthn = 2; 10 and 26 respetively.(a) n = 2; A = f1; 1g; B = f1;�1g(b) n = 10A = f1;�1;�1; 1;�1; 1;�1;�1;�1; 1gB = f1;�1;�1;�1;�1;�1;�1; 1; 1;�1g.() n = 26 A = f 1; 1; 1;�1;�1; 1; 1; 1;�1; 1;�1;�1;�1;�1;�1;1;�1; 1; 1;�1;�1; 1;�1;�1;�1;�1 gB = f �1;�1;�1; 1; 1;�1;�1;�1; 1;�1; 1; 1;�1; 1;�1;1;�1; 1; 1;�1;�1; 1;�1;�1;�1;�1 g:Lemma 6 If A and B are n � n irulant �1 matries with �rst rows two Golay sequenesfa1; a2; : : : ; ang, fb1; b2; : : : ; bng of length n respetively, thenAAT +BBT =  nXi=1(a2i + b2i )! In = 2nIn:Lemma 7 Let A = fa1; a2; : : : ; ang and B = fb1; b2; : : : ; bng are two Golay sequenes of ordern. Suppose that k1 of the elements ai are positive (+1) and k2 of the elements bi are also positive(+1). Then n = (k1 + k2 � n)2 + (k1 � k2)2and n is even. 22



This ondition is neessary but not suÆient for the existene of Golay sequenes of order n.Theorem 14 If A = fa1; a2; : : : ; ang and B = fb1; b2; : : : ; bng are Golay sequenes of length nand, C = f1; 2; : : : ; mg and D = fd1; d2; : : : ; dmg are Golay sequenes of length m, then thesequenes: X = A� �C +D2 �+B � �C �D2 �Y = A� �C� �D�2 ��B � �C� +D�2 �are Golay sequenes of length nm.So, as we know that Golay sequenes of length n = 2; 10; 26 exist, then with the previoustheorem we obtain that they exist in lengths n = 2a10b26, where a; b;  are non-negative integers.These results obtained by Golay [41℄ and Turyn [99℄, and these are the only known values ofn that Golay sequenes exist, These are the Golay numbers. It has been proved by Eliahou,Kervaire and Sa�ari [15℄ that Golay sequenes do not exist for values n = 34; 50; 58; 68 and forevery n that is divided by a prime number p � 3 (mod 4). The existene of Golay sequenes oflength n, if n; n < 200 : n = 74; 82; 106; 116; 122; 130; 136; 146; 148; 164; 170; 178; 194, is an openproblem.The following theorem is analogous to Theorem 10 and an be used for the onstrution ofHadamard matries, see [101℄ or [106℄.Theorem 15 If A, B are v � v (v even) irulant matries with entries �1, satisfying:AAT +BBT = 2vIv (28)Then the matrix H = " A B�BT AT #is a Hadamard matrix of order 2v.Corollary 4 If there are two (1;�1) sequenes of length n with zero PAF or NPAF then thereexists a Hadamard matrix of order 2n:Theorem 16 There exist two sequenes (1;�1) with zero PAF for all lengths n = 2e �10f �26h �34for all non negative integers e; f; h:Proof. There are Golay sequenes X;Y of length 2e � 10f � 26h. The following sequenes A andB of length 34 have zero PAF, and are given in [21℄.A = fa; a; a; �a; �a; �a;�b; �a;�b; b;�b; b; a;�b;�b; b; b; a; b;�b; a; b;�b; b; b; a; a; �a; b;�b; a; b; b; agB = fb; �a; �a; b; a; �a;�b; b; b; �a; �a; a; �a; b; a; �a; b; �a; �a; a; a; b; �a; a; �a; a;�b; a;�b;�b;�b; b; b; bgIn these sequenes we replae variables a; b by the sequenes X;Y respetively to obtain thedesired result. 223



2 On inequivalent Hadamard matries2.1 Basi de�nitions and preliminariesA Hadamard matrix is said to be normalized if it has its �rst row and olumn all 1's. Thuswe an normalize the Hadamard matrix by multiplying rows and olumns by �1 where needed.In these matries, n is neessarily 2 or a multiple of 4: Two Hadamard matries H1 and H2are alled equivalent (or Hadamard equivalent, or H-equivalent) if one an be obtained fromthe other by a sequene of row negations, row permutations, olumn negations and olumnspermutations.The disussion of Hadamard equivalene is quite diÆult, prinipally beause of the lak ofa good anonial form. The exat results whih have been disovered are as follows : Hadamardmatries of orders less than 16 are unique up to equivalene. There are preisely �ve equivalenelasses at order 16, and three equivalene lasses at order 20; see [46, 47℄. There are preisely60 equivalene lasses at order 24; see [54, 59℄. There are preisely 487 equivalene lasses atorder 28; see [60, 61℄. The lassi�ation of Hadamard matries of orders n � 32 is still remainsan open and diÆult problem sine an algorithmi approah of an exhaustive searh is an NPhard problem.Given two Hadamard matries of the same order, it an be quite diÆult to deide whetheror not they are equivalent.The next two subsetions disuss the use of the \pro�le" and \projetions" of Hadamardmatries to determine inequivalene.The following riterion (pro�le) was given in [8℄.2.2 The pro�le riterionCooper, Milas and Wallis in [8℄ suggested the pro�le riterion to investigate the equivalene ofHadamard matries. Later Lin, Wallis and Zhu in [78, 80, 81℄ proposed some modi�ations ofthis riterion. Suppose H is a Hadamard matrix of order 4n with typial entries hij : We writePijk` for the absolute value of the generalized inner produt of rows i; j; k and ` :Pijk` = j 4nXx=1hixhjxhkxh`xjThis riterion does not work in the ase of Hadamard matries of order n = 20 beause itgives the same pro�le for all three equivalent lasses of Hadamard matries of this order.Proposition 1 (see [8℄) Pijk` � 4n (mod 8):We shall write �(m) for the number of sets fi; j; k; `g of four distint rows suh that Pijk` = m:The de�nition and the above give that �(m) = 0 unless m � 0 and m � 4n (mod 8): We all�(m) the pro�le (or 4-pro�le) of H:The (unique) matries of order 4; 8 and 12 have pro�les�(4) = 1�(0) = 56; �(8) = 14�(4) = 495; �(12) = 024



respetively.The �ve inequivalent lasses of order 16 gave four distint pro�les.lass H0 : �(0) = 1680; �(8) = 0; �(16) = 140lass H1 : �(0) = 1488; �(8) = 256; �(16) = 76lass H2 : �(0) = 1392; �(8) = 484; �(16) = 44lass H3 : �(0) = 1344; �(8) = 448; �(16) = 28lass H4 : �(0) = 1344; �(8) = 448; �(16) = 28The matries of lass H4 are the transposes of the matries of lass H3:The three lasses of order 20 all gave the same pro�le:�(4) = 4560; �(12) = 285; �(20) = 0:Similarly we an de�ne a more general pro�le riterion based on more than 4 rows. For somemodi�ations of the pro�le suh as extended pro�le and generalized pro�le we refer the readerto [80℄. We now give a modi�ed version of the pro�le that was given in [8℄. We observe that allthe onditions whih hold for the rows of a Hadamard matrix also hold for its olumns.We write Q(m) for the absolute value of the generalized inner produt of m olumns, say1; 2; : : : ; m and we all this m-olumn pro�le.Q(m) = j 4nXx=1hxa1hxa2 � � � hxam jWe shall write q(s) for the number of sets fa1; a2; : : : ; amg ofm distint rows suh that Q(m) = s:The de�nition and the above give that q(s) = 0 unless s � 0: We all q(s) the m-olumn pro�le(or m-pro�le) of H:This riterion as well does not work in the ase of Hadamard matries of order n = 16; 20beause it also gives the same m-pro�le for the last two lasses in order 16 and the same m-pro�le for all three equivalent lasses of Hadamard matries of order n = 20 for all 1 � m � n�1:Two more useful riterions to determine inequivalene of Hadamard matries whih are alled\K-matries" and \K-boxes" are also developed in [57, 58℄. To save spae we do not disussthese riteria here.2.3 The projetion and Hamming distane distribution algorithmsIn this setion we desribe two new riteria, to test inequivalene in Hadamard matries of ordern, based on their projetion properties and their Hamming distanes.Let H be a n � n Hadamard matrix. A n � k submatrix of H whih onsist of n rows andk olumns is alled a projetion of H into k olumns. In some statistial appliations the rowsof H refer to the runs of a fatorial experiment and the olumns refer to the fators, see [77℄ or[10℄.The projetion properties of the 2q�pR frational fatorials are well known and have been usede�etively in a number of published examples of experimental investigations. Here in, we useinequivalent projetions of Hadamard matries to hek inequivalent Hadamard matries. Usingthis riterion we are able to �nd all inequivalent projetions in k fators as well as to lassifyHadamard matries of that order. As an example we apply this riterion to orders 16 and 20.25



The idea of the �rst riterion is that if two Hadamard matries of order n are inequivalentthen these matries should have at least one di�erent projetion for some k � n and vie versa(if there exist a k � n suh that the two Hadamard matries give some di�erent, inequivalentprojetions then these Hadamard matries are inequivalent). So if we �nd all projetions of aHadamard matrix of order n we have a bonus. We an deide the equivalene of Hadamardmatries and moreover use the projetions for statistial analysis of experiments.Now we give in brief the desription of our algorithm that an be used to determine allinequivalent projetions for n and k.First we give the de�nition of inequivalent projetions of a Hadamard matrix of order n:Two projetions in k fators of Hadamard matries of order n are equivalent if one an beobtained from the other by one or more of the following transformations(a) Sign hanges in the olumns (multiply one or more olumns by �1).(b) Permutations of the olumns() Rearrangements of the rows.The next algorithm gives us all the inequivalent projetions of Hadamard matries andthrough them the inequivalent Hadamard matries.The inequivalent projetions algorithm:(i) Set k = 2:(ii) Normalize the Hadamard matries given by multiplying, whenever this is neessary, anyrows or olumns by �1: Then remove the �rst olumn (with all 1's);(iii) Find all projetions for eah Hadamard matrix of a given order n and k fators by takingall possible k olumns of the remaining n� (n� 1) matrix. These are �n � 1k � projetionsin total.(iv) From the projetions found in step (iii) �nd the inequivalent ones.(v) Chek if the set of all projetions of the �rst Hadamard matrix is di�erent (inequivalent)from the set of all projetions of the seond Hadamard matrix.(vi) If the answer in step (v) is true then stop and say that these two Hadamard matries areinequivalent, otherwise inrease k by 1.(vii) If now k � n � 1 then go to step (iii) and ontinue, otherwise stop and say that theseHadamard matries are equivalent.Lemma 8 When we projet a Hadamard matrix of order 4m into k = 2 olumns we alwaysobtain � 4m� 12 � idential projetions. Eah of these is m times over the full 22 design.Proof. A Hadamard matrix has its olumns orthogonal to eah other. Therefore, in any twoolumns eah of the pairs (1; 1), (1;�1), (�1; 1), (�1;�1) appear exatly m times. 2Using the above lemma we an slightly improve this algorithm by not heking the projetionsin k = 2 olumns, and starting the algorithm with k = 3.26



Lemma 9 Let hk be a projetion, in k fators, of a Hadamard matrix of order n: Then hkannot ontain a full 2k design if k > log2(n):Proof. A full 2k experimental design has 2k rows. A Hadamard matrix of order n has n rows.So if 2k > n there annot be a full 2k design in a k olumn projetion of this Hadamard matrix.We have that 2k > n =) k � log2(2) > log2(n) =) k > log2(n):Now if k is not an integer we take the next integer number. Thus, if k is not an integer we havethat k � [log2(n)℄ + 1: 2Corollary 5 For a Hadamard matrix of order n we have that if 2m < n � 2m+1 then k � m+1:Proof. We know that log funtion is ontinuous and inreasing funtion. Sine log2(2m) = m;we have that if 2m < n � 2m+1 then m < log2(n) � m+ 1 and so k � m+ 1: 2Theorem 17 Let H1;H2 be two inequivalent Hadamard matries of order n: The �rst Hadamardmatrix H1 will give at least one projetion di�erent (inequivalent) from all the projetions of H2for some k > log2(n):Proof. The result follows from lemma 9. 2Example 8 We give some orders of Hadamard matries and the bound for k:� For n = 2m we obtain k � m:� For n = 12 we obtain k � 4:� For n = 20 we obtain k � 5:� For n = 24 we obtain k � 5:� For n = 28 we obtain k � 5:Theorem 18 If two Hadamard are equivalent then their projetions for all k = 2; 3; : : : ; n � 1are equivalent as well.Proof. Suppose that H1 and H2 are two equivalent Hadamard matries of order n: Then,for a given k; both of them have �n � 1k � projetions in total. The equivalene of the Hadamardmatries indiates that eah projetion of the �rst Hadamard matrix is equivalent with oneprojetion of the seond Hadamard matrix and vie versa. 2We will now disuss the omplexity of the �rst new algorithm. First, we observe that thetotal number of all possible projetions of a Hadamard matrix of order n in k fators is �n� 1k �.We note that the �nding the inequivalent projetions by applying the de�nition of inequivalentprojetions is omputationally-intensive. This is an NP hard problem when n and k inrease.The sign hanges in the olumns (multiply one or more olumns by �1) required 2k possiblemultipliations. The permutations of the olumns and rearrangements of the rows need k!27



possible permutations. That is in total we have 2k � k! � �n � 1k � ases to hek and that's a largeomplexity when k inreases. So, if we are not interested in �nding all inequivalent projetionsof Hadamard matries we an apply the following algorithm whih uses all projetions and theHamming distane distribution. The Hamming distane distribution is de�ned to beW (x) = a0 + a1x1 + : : :+ akxkwhere am is the number desribing how many pairs of runs of the projetion have distane m:Example 9 Consider the projetions for k = 3 and n = 8: We �rst normalize the Hadamardmatrix of order 8 so it's �rst olumn is all 1s. We then remove the �rst olumn so we have the8� 7 matrix 1 1 1 1 1 1 11 1 �1 1 �1 �1 �11 �1 �1 �1 1 1 �11 �1 1 �1 �1 �1 1�1 1 1 �1 1 �1 �1�1 1 �1 �1 �1 1 1�1 �1 1 1 �1 1 �1�1 �1 �1 1 1 �1 1Sine k = 3 the projetions are all possible 3-sets of olumns. We will just illustrate withthe sets of olumns (fators) 1, 2, 3 and 1, 2, 4.1 1 1 and 1 1 11 1 �1 1 1 11 �1 �1 1 �1 �11 �1 1 1 �1 �1�1 1 1 �1 1 �1�1 1 �1 �1 1 �1�1 �1 1 �1 �1 1�1 �1 �1 �1 �1 1We now onsider the distane between all pairs of rows (runs) of these 8�3 matries. The �rstset has distane 3 (4 times), 2 (12 times) and 1 (12 times) so its Hamming distane distributionis W (x) = 0 + 12x + 12x2 + 4x3;while the seond sets has 0 (4 times) and 2 (24 times) so its Hamming distane distribution isW (x) = 4 + 24x2: 2Lemma 10 Two equivalent projetions have the same Hamming distane distribution.Proof. Let Pa = fa1; a2; : : : ; akg; Pb = fb1; b2; : : : ; bkg be two runs in a given projetion in kfators. The result follows from the fat that the Hamming distane of these two runs is nota�eted if we apply some sign hanges to fators or exhange the runs or fators. 228



The modi�ed algorithm (Hamming distane distribution algorithm) is muh faster than theprevious algorithm as it only gives us an answer to the question \are the two Hadamard matriesare equivalent or not". It does not not give us all inequivalent projetions of the Hadamardmatries.The Hamming distane distribution algorithm:(i) Set k = 2:(ii) Normalize the Hadamard matries given by multiplying, whenever this is neessary, anyrows or olumns by �1: Then remove the �rst olumn (with all 1's);(iii) Find all projetions for eah Hadamard matrix of a given order n and k fators by takingall possible k olumns of the remaining n� (n� 1) matrix. There are �n � 1k � projetionsin total.(iv) In the projetions found in step (iii) alulate the Hamming distane distributions for anytwo runs (rows) of the projetion. There are �n � 12 � Hamming distane distributions. Savethe di�erent Hamming distane distributions and how many times eah of them appears.(v) Chek if the set of all di�erent Hamming distane distributions of the �rst Hadamardmatrix is the same with the set of all di�erent Hamming distane distributions of theseond Hadamard matrix.(vi) If the answer in step (v) is false, then stop and say that these two Hadamard matries areinequivalent, otherwise inrease k by 1.(vii) If now k � n � 1 then go to step (iii) and ontinue, otherwise stop and say that theseHadamard matries are equivalent.Let us disuss the omplexity of the Hamming distane distribution algorithm. First, weobserve again that all possible projetions in k fators of a Hadamard matrix of order n is �n� 1k �.We note that �nding the Hamming distane distribution of all projetions is not omputationally-intensive. It needs only n(n�1) alulations. A alulation of the Hamming distane of two runsin a projetion takes k omparisons and thus we have in total �n� 1k � n(n� 1)k multipliations,summations and omparisons. This is not an NP hard problem when n and k inrease butpolynomial in nk+2. It is muh faster than the inequivalent projetions algorithm.2.4 Appliation of the new riterion to Hadamard matries of small ordersIn this setion we apply our new algorithm to the ases of Hadamard matries of small orders.As we an see from the next tables when the Hadamard matries are equivalent we have tohek the Hamming distane distributions for all projetions into k = 2; : : : ; n� 1 fators. If theHadamard matries are inequivalent there exist k 2 f2; 3; : : : ; n � 1g suh that the Hammingdistane distributions for the projetions in k fators are di�erent for eah Hadamard matrix.To save spae, we give here the table with Hamming distane distribution only for orders4; 8; 12: For larger orders the reader should onsider [23℄.29



2.4.1 Hadamard matries of order n = 4; 8; 12We know that there exists only one Hadamard matrix of these orders up to equivalene, see [9℄for example. The results of the appliation of the Hamming distane distribution algorithm forthese orders are given in Table 1. Sine there is only one Hadamard matrix in eah ase theriterion needs to test Hamming distane distributions for all projetions into k = 2; : : : ; n� 1fators. In Table 1 the word \times" is used to show the number of times that the given Hammingdistane distribution ours in the projetions. For example there are � 73 � = 35 projetions ina Hadamard matrix of order n = 8 in k = 3 fators and � 82 � = 28 Hamming weights in eahHamming distane distribution of eah projetion.When we say that the Hamming distane distribution is 0; 12; 12; 4 and times 28 that meansthat there are 0 pairs of runs in the projetion with Hamming distane 0, 12 pairs of runs in theprojetion with Hamming distane 1, 12 pairs of runs in the projetion with Hamming distane2 and 4 pairs of runs in the projetion with Hamming distane 3. This distribution ours for28 of the 35 projetions.When we say that the Hamming distane distribution is 4; 0; 24; 0 and times 7 that meansthat there are 4 pairs of runs in the projetion with Hamming distane 0, 0 pairs of runs inthe projetion with Hamming distane 1 and 24 pairs of runs in the projetion with Hammingdistane 2, 0 pairs of runs in the projetion with Hamming distane 2. This distribution oursfor 7 of the 35 projetions.As you an see the total number of Hamming distane (the sum of all Hamming distanes inthe Hamming distane distribution) is � 82 � = 28 and the total number of times eah distributionours (the sum of all di�erent Hamming distane distributions) is � 73 � = 35:2.4.2 Hadamard matries of order n = 16We know that there are exatly �ve inequivalent Hadamard matries of this order, see [46℄. Theresults of the appliation of the Hamming distane distribution algorithm for this order are givenin [23℄. Observe that for k = 2 the Hamming distane distributions of all projetions of all �vematries are exatly the same. For k = 3 we have four di�erent Hamming distane distributions(thus four inequivalent Hadamard matries) and we have to go up to k = 6 to obtain all �ve ofthem.2.4.3 Hadamard matries of order n = 20We know that there are exatly three inequivalent Hadamard matries of this order, see [47℄.The results of the appliation of the Hamming distane distribution algorithm for this order aregiven in [23℄. Observe that for k = 2; 3; 4 the Hamming distane distributions of all projetionsof all three matries are exatly the same. For k = 5 we have all three di�erent Hammingdistane distributions and thus we obtain all three of the inequivalent Hadamard matries.2.5 Inequivalent Hadamard matries2.5.1 Hadamard matries of order n = 24We know that there are exatly 60 inequivalent Hadamard matries of this order, see [54, 59℄.For Hadamard matries of order 24 it is not onvenient to give all di�erent Hamming distane30



Hname n k Hamming distane timesH4 4 2 0,4,2 3H4 4 3 0,0,6 1H8 8 2 4,16,8 21H8 8 3 0,12,12,4 28H8 8 3 4,0,24,0 7H8 8 4 0,0,24,0,4 7H8 8 4 0,4,12,12,0 28H8 8 5 0,0,8,16,4,0 21H8 8 6 0,0,0,16,12,0,0 7H8 8 7 0,0,0,0,28,0,0,0 1H12 12 2 12,36,18 55H12 12 3 4,24,30,8 165H12 12 4 1,12,30,20,3 330H12 12 5 0,5,20,30,10,1 396H12 12 5 1,0,30,20,15,0 66H12 12 6 0,0,15,20,30,0,1 66H12 12 6 0,1,10,30,20,5,0 396H12 12 7 0,0,3,20,30,12,1,0 330H12 12 8 0,0,0,8,30,24,4,0,0 165H12 12 9 0,0,0,0,18,36,12,0,0,0 55H12 12 10 0,0,0,0,0,36,30,0,0,0,0 11H12 12 11 0,0,0,0,0,0,66,0,0,0,0,0 1Table 1: Appliation of Hamming distane distribution algorithm for n = 4; 8; 12distributions for all k: We shall only disuss the results our algorithm gives. The algorithmmoves to k = 3 and �nds 31 di�erent Hamming distane distributions and thus 31 of the sixtyinequivalent Hadamard matries. Then for k = 4 we obtain 42 di�erent Hamming distanedistributions and thus 42 of the sixty inequivalent Hadamard matries. Finally for k = 5 weobtain 60 di�erent Hamming distane distributions and thus all 60 of the inequivalent Hadamardmatries. For more details in this order the reader should onsider [23℄.2.5.2 Hadamard matries of order n = 28In the ase n = 28 there are 487 inequivalent Hadamard matries, see [60, 61℄. If we applyour algorithm to this ase we obtain the following results. The algorithm moves to k = 3 and�nds 17 di�erent Hamming distane distributions and thus 17 of the 487 inequivalent Hadamardmatries. Then for k = 4 we obtain 216 di�erent Hamming distane distributions and thus 216of the 487 inequivalent Hadamard matries. Finally for k = 5 we obtain 487 di�erent Hammingdistane distributions and thus all 487 of the inequivalent Hadamard matries. For more detailsin this order the reader should onsider [23℄. 31



2.5.3 Hadamard matries of order 32The lassi�ation of Hadamard matries of orders n � 32 is still remains an open and diÆultproblem sine an algorithmi approah using an exhaustive searh is an NP hard problem. Inpartiular, in this ase, Lin, Wallis and Zhu [79℄ found 66104 inequivalent Hadamard matriesof order 32: Extensive results appear in [82℄ and [83℄. Thus the lower bound for inequivalentHadamard matries of order 32 is 66104.2.5.4 Hadamard matries of order 36There are at least 762 inequivalent Hadamard matries of order 36: In fat this number is ob-tained as follows: Seberry's home page http://www.uow. edu.au/�jennie gives 192 inequivalentHadamard matries of order 36: These are supplied by E. Spene (180 matries) see [91℄, Z.Janko, (1 matrix of Bush-type) see [55℄ and V. D. Tonhev (11 matries) see [95℄. Using aneÆient algorithm Georgiou and Koukouvinos [24℄ found that 190 of their transposes, are in-equivalent to these. This was also on�rmed in [16℄. Georgiou and Koukouvinos in [24℄ improvedfurther this bound to 762 by onstruting 380 new Hadamard matries of order 36.2.5.5 Hadamard matries of order 40Lam, Lam and Tonhev [76℄ showed that the lower bound for inequivalent Hadamard matriesof order 40 is 3:66 � 1011:2.5.6 Hadamard matries of order 44Reently Topalova [96℄ lassi�ed the Hadamard matries of order 44 with an automorphism oforder 7, and found 384 inequivalent Hadamard matries of this order. Georgiou and Koukouvinosin [25℄ further improved this lower bound to 2507 by onstruting 2123 new Hadamard matries.3 Algorithms for onstruting orthogonal designs3.1 Basi de�nitions and preliminariesAn orthogonal design of order n and type (s1; s2; : : : ; su) (si > 0), denoted OD(n; s1; s2; : : : ; su),on the ommuting variables x1; x2; : : : ; xu is an n�nmatrix A with entries from f0;�x1;�x2; : : : ;�xug suh that AAT = ( uXi=1 six2i )In:Alternatively, the rows of A are formally orthogonal and eah row has preisely si entries of thetype �xi. In [33℄, where this was �rst de�ned, it was mentioned thatATA = ( uXi=1 six2i )Inand so our alternative desription of A applies equally well to the olumns of A. It was alsoshown in [33℄ that u � �(n), where �(n) (Radon's funtion) is de�ned by �(n) = 8 + 2d, whenn = 2ab, b odd, a = 4+ d, 0 � d < 4.Some small orthogonal designs are given in the following example, see [88℄.32



Example 10 Some small orthogonal designs."x yy �x# ; 26664a �b � �db a �d  d a �bd � b a37775 ; 26664 a b b d�b a d �b�b �d a b�d b �b a37775 ; 26664a 0 � 00 a 0  0 a 00 � 0 a37775OD(2; 1; 1) OD(4; 1; 1; 1; 1) OD(4; 1; 1; 2) OD(4; 1; 1)OD(4; 1; 1; 1; 1) is the Williamson array. 2A weighing matrix W = W (n; k) is a square matrix with entries 0;�1 having k non-zeroentries per row and olumn and inner produt of distint rows zero. Hene W satis�es WW T =kIn, and W is equivalent to an orthogonal design OD(n; k). The number k is alled the weightof W .We make extensive use of the book of Geramita and Seberry [37℄. We quote the followingtheorems, giving their referene from the aforementioned book, that we use:Lemma 11 [37, Lemma 4.11, The Doubling Lemma℄ If there exists an orthogonal designOD(n; s1; s2; : : : ; su) then there exists an orthogonal design OD(2n; s1; s1; es2; : : : ; esu) wheree = 1 or 2. 2Lemma 12 [37, Lemma 4.4, The Equating and Killing Lemma℄ If A is an orthogonaldesign OD(n; s1; s2; : : : ; su) on the ommuting variables f0;�x1;�x2; : : : ;�xug then there is anorthogonal design OD(n; s1; s2; : : : ; si + sj; : : : ; su) and OD(n; s1; s2; : : : ; sj�1; sj+1; : : : ; su) onthe u� 1 ommuting variables f0;�x1;�x2; : : : ;�xj�1;�xj+1; : : : ;�xug. 2Theorem 19 [37, Theorems 2.19 and 2.20℄ Suppose n � 0(mod 4). Then the existeneof a W (n; n � 1) implies the existene of a skew-symmetri W (n; n � 1). The existene of askew-symmetri W (n; k) is equivalent to the existene of an OD(n; 1; k). 2Theorem 20 [37, Proposition 3.54 and Theorem 2.20℄ An orthogonal design OD(n; 1; k)an only exist in order n � 4(mod 8) if k is the sum of three squares. An orthogonal designOD(n; 1; n� 2) an only exist in order n � 4(mod 8) if n� 2 is the sum of two squares. 2Theorem 21 [37, Theorem 4.49℄ Suppose there exist four irulant matries A, B, C, D oforder n satisfying AAT +BBT + CCT +DDT = fInLet R be the bak diagonal matrix. ThenGS = 0BBB� A BR CR DR�BR A DTR �CTR�CR �DTR A BTR�DR CTR �BTR A 1CCCAis a W (4n; f) when A, B, C, D are (0; 1;�1) matries, and an orthogonal design OD(4n; s1; s2;: : : ; su) on x1; x2; : : : ; xu when A, B, C, D have entries from f0;�x1; : : : ;�xug and f =Puj=1(sjx2j). 233



Corollary 6 If there are four sequenes A, B, C, D of length n with entries from f0;�x1;�x2;�x3;�x4g with zero periodi or non-periodi autoorrelation funtion, then these sequenes anbe used as the �rst rows of irulant matries whih an be used in the Goethals-Seidel arrayto form an OD(4n; s1; s2; s3; s4). We note that if there are sequenes of length n with zeronon-periodi autoorrelation funtion, then there are sequenes of length n+m for all m � 0. 23.2 Constrution algorithmsIn this setion we are interested in the onstrution of orthogonal designs using four irulantmatries in the Goethals-Seidel array. Spei�ally, for positive integers s1; s2; : : : ; su and oddn, the method searhes for four irulant matries A1; A2; A3; A4 or order n with entries fromf0;�x1;�x2; : : : ;�xug, u � 4, suh thatA1AT1 +A2AT2 +A3AT3 +A4AT4 =  uXi=1six2i! In: (29)In the remainder of this setion, when four irulant (or group irulant) matries of ordern, with entries from the set f0;�x1;�x2; : : : ;�xug, satisfy equation (29) will be said that thesematries satisfy the additive property.3.2.1 The matrix based algorithmSuppose the row and olumn sum of Ai isri = p1ix1 + p2ix2 + p3ix3 + p4ix4; i = 1; 2; 3; 4Let eT be the 1� n vetor of 1's, then eTAi = rieT . Multiplying on the left of (29) by eT andthe right of (29) by e we have 4Xi=1(eTAi)(eTAi)T = n 4Xi=1 six2ior 4Xi=1(rieT )(rieT )T = n 4Xi=1 r2i = n 4Xi=1 six2i
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Thus we have s1x21 + s2x22 + s3x23 + s4x24 = x21 4Xi=1 p21i + x22 4Xi=1 p22i + x23 4Xi=1 p23i+x24 4Xi=1 p24i + 2x1x2 4Xi=1 p1ip2i+2x1x3 4Xi=1 p1ip3i + 2x1x4 4Xi=1 p1ip4i+2x2x3 4Xi=1 p2ip3i + 2x2x4 4Xi=1 p2ip4i+2x3x4 4Xi=1 p3ip4iHene we have four integer vetors pT1 = (p11; p12; p13; p14), pT2 = (p21; p22; p23; p24), pT3 =(p31; p32; p33; p34), pT4 = (p41; p42; p43; p44), whih are pairwise orthogonal. Also jpT1 j2 = s1,jpT2 j2 = s2, jpT3 j2 = s3, jpT4 j2 = s4.Form these vetors into an orthogonal integer matrix P with P T = (p1; p2; p3; p4). ThenPP T = diag (s1; s2; s3; s4) and det P = ps1s2s3s4. But P is integer so s1s2s3s4 is a square.Thus we haveLemma 13 The Goethals-Seidel onstrution for an orthogonal design OD (4n; s1; s2; s3; s4)an only be used if(i) there is an integer matrix P satisfying PP T = diag (s1; s2; s3; s4) and hene(ii) s1s2s3s4 is a square. 2Sine the row sum of Aj is 4Xi=1 pijxi for 1 � j � 4, the 4 � 4 matrix P = (pij) is alled thesum matrix of A1, A2, A3, A4.In this setion we are interested in the onstrution of orthogonal designs using four irulantmatries in the Gorthals-Seidel array. Spei�ally, for positive integers s1; s2; : : : ; su and oddn, the method searhes for four irulant matries A1; A2; A3; A4 or order n with entries fromf0;�x1;�x2; : : : ;�xug that satisfy equation (29).De�nition 3 IfA1; A2; A3; A4 are n�n irulant matries with entries from f0;�x1;�x2; : : : ;�xugand the �rst row of Aj has mij entries of the kind �xi, then the u � 4 matrix M = (mij) isalled the entry matrix of (A1; A2; A3; A4): 2
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The elements of the entry matries satisfy the following onditions.4Xj=1mij = si for 1 � i � uuXi=1mij � n for 1 � j � 4 (30)Thus the rows of the entry matries refer to the variables xi and the olumns to the irulantmatries A1; A2; A3; A4 whih are onstruted from four sequenes of length n as desribed inCorollary 6.De�nition 4 Suppose that the row sum of Aj is uXi=1pijxi for 1 � j � 4: Then the u� 4 integralmatrix P = (pij) is alled the sum matrix of (A1; A2; A3; A4): The �ll matrix of (A1; A2; A3; A4)is M � abs(P ); where abs(P ) denotes the matrix having as elements the absolute values ofelements of P . The ontent of Ai is determined by the i-th olumns of the sum and �ll matries.2 The following theorem may be used to �nd the sum matrix of a solution of (29).Theorem 22 (Eades Sum Matrix Theorem) The sum matrix P of a solution of (29) satis-�es PP T = diag(s1; s2; : : : ; su): 2The algorithmStep 1. Find all sum matries P of the desirable orthogonal design using theorem 22.Step 2. Selet the �rst sum matrix.Step 3. For the seleted sum matrix P �nd all entry matries M and the orresponding �llmatries (Q=M-abs(P)) using equations given by (30).Step 4. Selet the �rst entry matrix M and the orresponding �ll matrix Q.Step 5. Using P, M and Q write down the elements of sequenes Aj ; j = 1; 2; 3; 4:Step 6. Construt all possible sequenes Aj with entries we found in Step 5 and their orre-sponding PAF.Step 7a. Combine the lists �nd in Step 6 and hek if a ombination gives zero PAF and if sosave these sequenes into PAF solution �le.Step 7b. If a zero PAF solution exist then searh if some permutation of these sequenes havezero NPAF and if so save these sequenes into NPAF solution �le.Step 8. If there are more entry matries then selet the next entry matrix M and the orre-sponding �ll matrix Q and go to Step 5.Step 9. If there are more sum matries then selet the next sum matrix P and go to Step 3.For more details about the onstrution of orthogonal designs whih uses entry matries, see[37℄. 36



3.2.2 The extension algorithmThis algorithm extents already known orthogonal designs on t variables into new orthogonaldesigns on t+ 1 variables. The algorithm is given briey in the next steps.Step 1. Input the sequenes of the known orthogonal design OD(4n; s1; : : : ; st) on t variables(a1; a2; : : : ; at), you wish to extent.Step 2. In these sequenes replae all zeros with variables xi (a deferent variable on eah zero).Step 3. Using the new sequenes and the equationPA1(s) + PA2(s) + PA3(s) + PA4(s) = 0; s = 1; 2; : : : ; (n� 1)2reate a system of equations.Step 4. Solve this system ofequations and �nd all possible values xi, where xi 2 f�1; 0; 1g,that satisfy equations given in Step 3.Step 5. For all solutions, diferent from the zero solution, (of weight k 6= 0) replae �1 by �at+1respetively and obtain the OD(4n; s1; : : : ; st; k) on t+ 1 variables (a1; a2; : : : ; at; at+1).Then next example illustrates how this algorithm works.Example 11 Start with the four sequenes of length 9 and type (5; 9) withNPAF = 0 (Step 1).b 0 �b 0 0 0 0 0 0b a �b 0 0 0 0 0 0b a 0 a �b 0 0 0 0b a b �a b 0 0 0 0Now �ll eah zero position with one of the 22 variables x1; x2; : : : ; x22 (Step 2). Thus we obtainb x1 �b x2 x3 x4 x5 x6 x7b a �b x8 x9 x10 x11 x12 x13b a x14 a �b x15 x16 x17 x18b a b �a b x19 x20 x21 x22Using relationsPA1(s) + PA2(s) + PA3(s) + PA4(s) = 0; s = 1; 2; : : : ; (n� 1)2we onstrut the following twelve equations (Step 3):
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2x14 = 0x7 � x2 + x13 � x8 + x18 � x15 + x22 + x19 = 0x3x2 + x4x3 + x5x4 + x6x5 + x7x6 + x9x8 + x10x9 + x11x10 + x12x11 + x13x12 + x16x15+ x17x16 + x18x17 + x20x19 + x21x20 + x22x21 = 0x13 + x8 + x18 + x15 + x22 � x19 = 0x6 � x3 + x12 � x9 + x17 � x16 + x21 + x20 = 0x1x7 + x2x1 + x4x2 + x5x3 + x6x4 + x7x5 + x10x8 + x11x9 + x12x10 + x13x11 + x17x15+ x18x16 + x21x19 + x22x20 = 0x12 + x9 + x17 + x16 + x21 � x20 = 0x5 � x7 + x2 � x4 + x11 � x13 + x8 � x10 + x16 � x17 + x20 + x22 + x19 + x21 = 0x1x6 + x3x1 + x5x2 + x6x3 + x7x4 + x11x8 + x12x9 + x13x10 + x14x18 + x15x14 + x18x15+ x22x19 = 0x11 + x10 + x16 + x18 + x15 + x17 + x20 � x22 + x19 � x21 = 0x4 � x6 + x3 � x5 + x10 � x12 + x9 � x11 + x15 � x18 + x19 + x21 + x20 + x22 = 0x1x5 + x2x7 + x4x1 + x6x2 + x7x3 + x8x13 + x12x8 + x13x9 + x14x17 + x16x14 = 0By solving this system of equations (Step 4) we �nd, among others, the following solutionsof weight 9; 14; 16:x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x130 �1 0 0 0 0 �1 �1 �1 0 �1 1 00 �1 �1 �1 0 �1 1 0 �1 0 1 �1 �10 �1 �1 �1 �1 �1 1 1 �1 0 0 1 �1x14 x15 x16 x17 x18 x19 x20 x21 x220 1 1 �1 0 0 0 0 00 1 0 1 �1 0 �1 0 10 1 0 0 �1 1 �1 �1 1The �rst one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 9) (Step5, by replaing �1 by � respetively). (5; 9; 9)b 0 �b � 0 0 0 0 �b a �b � � 0 �  0b a 0 a �b   � 0b a b �a b 0 0 0 0The seond one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 14)(Step 5, by replaing �1 by � respetively).(5; 9; 14)b 0 �b � � � 0 � b a �b 0 � 0  � �b a 0 a �b  0  �b a b �a b 0 � 0 38



The third one gives the orthogonal design of order 36 on three variables, OD(36; 5; 9; 16)(Step 5, by replaing �1 by � respetively).(5; 9; 16)b 0 �b � � � � � b a �b  � 0 0  �b a 0 a �b  0 0 �b a b �a b  � � 3.2.3 The merge algorithmThis algorithm relies on the two previously mentioned algorithms (the matrix based algorithmand the extension algorithm) given in [14, 37, 67℄ and in [27, 66℄ respetively.The merge algorithm ombines features of both algorithms with a new result given here toobtain a new, muh faster, algorithm. It is an exhaustive searh algorithm (i.e. if the orthogonaldesign exists it will be found otherwise it does not exist onstruted from four sequenes).Notation 1 For the remainder of this setion we use the following notations.1. N denotes the set of non negative integers.2. N k denotes the spae N k = N �N � � � � � N| {z }k times with elementsv 2 N k; vT = [v1; v2; : : : ; vk℄; vi 2 N ; i = 1; 2; : : : ; k:3. N k�` will be the matrix spae with dimension k � ` and elements from N . That is ifM 2 N k�` then M = 266664 m11 m12 : : : m1`m21 m22 : : : m2`... ... ...mk1 mk2 : : : mk` 377775 = 266664 mT1mT2...mTk 377775with mij 2 N , mi 2 N `, i = 1; 2; : : : ; k, j = 1; 2; : : : ; `. 2Let D be an OD(4n;u1; u2; : : : ; ut) with entries from the set f0;�x1;�x2; : : : ;�xtg wherex1; x2; : : : ; xt are ommuting variables. Using the terminology of [37℄, the symbols Mi representthe non-isomorphi entry matries of the orthogonal design.>From the above onstrution of the sequenes, we observe that we an permute rows and/orolumns of the sum matrix P and the entry matrixM without obtaining an essentially di�erentsum or entry matrix. It would be as though we interhanged the variables and/or the sequenesof the orthogonal design. When we form the ontent of the sequenes, we should take intoaount that the row and olumn order of the sum and the entry matries must agree. That isto say that the same permutations of rows and/or olumns should be operated to both thesematries. In the same way, we an multiply by �1 any rows and/or olumns of the sum matrixP without obtaining an essentially di�erent sum matrix.Herein (beause we use many non-isomorphi entry matries from di�erent orthogonal de-signs) we will use the type of the orthogonal design in the symbol of the entry matries, so that39



seeing the entry matrix we an tell from whih orthogonal design it omes. For D we will writeM(u1;u2;:::;ut);i for its non-isomorphi entry matries. Then we an write the entry matries usingtheir rows as followsM(u1;u2;:::;ut);i = 266664 vT1vT2...vTt 377775 2 N t�4; vj 2 N 4; j = 1; 2; : : : ; t:Let D(u1;u2;:::;ut) be the set of all non isomorphi entry matries of the orthogonal designOD(4n;u1; u2; : : : ; ut). We will write M(u1;u2;:::;ut);ijDuk;uj for the entry matrix M(u1;u2;:::;ut);iafter we eliminate all rows exept from rows k and j. That isM(u1;u2;:::;ut);ijDuk;uj = 264 vTkvTj 375 2 N 2�4:In order to illustrate the above notations and de�nitions we give the following example.Example 12 Suppose we are searhing for the OD(4n;u1; u2; u3; u4) = OD(20; 2; 3; 6; 9). Thereis up to isomorphism only one sum matrixP = 26664 1 1 0 01 �1 1 0�1 1 2 00 0 0 3 37775satisfying PP T = diag(2; 3; 6; 9) as desribed in Theorem 22. >From this matrix P we obtainthe following three non-isomorphi entry matries.M1 = 26664 1 1 0 01 1 1 03 1 2 00 2 2 5 37775 ; M2 = 26664 1 1 0 01 1 1 01 1 4 02 2 0 5 37775 ; M3 = 26664 1 1 0 01 1 1 01 1 2 22 2 2 3 37775 :Using our terminology these are:M(u1;u2;u3;u4);1=26664 1 1 0 01 1 1 03 1 2 00 2 2 5 37775 ; M(u1;u2;u3;u4);2=26664 1 1 0 01 1 1 01 1 4 02 2 0 5 37775 ;M(u1;u2;u3;u4);3=26664 1 1 0 01 1 1 01 1 2 22 2 2 3 37775 :With this terminology we an easily see that by setting the �rst variable equal to zero (i.e.eliminating the �rst row vT1 ) in the above entry matries, we obtain the following entry matries40



of an orthogonal design OD(20; 3; 6; 9):M(u2;u3;u4);1=264 1 1 1 03 1 2 00 2 2 5 375 ;M(u2;u3;u4);2=264 1 1 1 01 1 4 02 2 0 5 375 ;M(u2;u3;u4);3=264 1 1 1 01 1 2 22 2 2 3 375 :Similarly the entry matries of an orthogonal design OD(20; 5; 6; 9) obtained by setting �rst andseond variable be the same symbol (i.e. replaing rows vT1 ;vT2 by row vT1 + vT2 ) areM(u1+u2;u3;u4);1=264 2 2 1 03 1 2 00 2 2 5 375 ;M(u1+u2;u3;u4);2= " 1 1 4 02 2 0 5 # ;M(u1+u2;u3;u4);3=264 2 2 1 01 1 2 22 2 2 3 375 : 2Now from [37℄ we have that from an orthogonal design over t variables we an obtain anorthogonal design over t � 1 variables by \killing" one variable (i.e. setting one variable equalto zero) or \equating" two variables (i.e. setting two variables be the same symbol). If we dothese many times we obtain the following lemma:Lemma 14 If an orthogonal design OD(4n;u1; u2; : : : ; ut) exist then the following orthogonaldesigns exist:i) All orthogonal designs OD(4n;ui1 ; ui2 ; : : : ; uik) for all k = 1; 2; : : : ; t, over k variables andfor all fi1; i2; : : : ; ikg � f1; 2; : : : ; tg.ii) All orthogonal designsOD0�4n; k1Xj=k0=1uij ; k2Xj=k1+1uij ; : : : ; kmXj=km�1+1uij1Aover m variables where 1 � m � t, 1 � ki � t, 8 i = 1; 2; : : : m, k1 � k2 � : : : � km,uij 6= ui`, 8 j; ` = 1; 2; : : : ; km and i 6= `, km[j=1uij � fu1; u2; : : : ; utg.Proof. By equating and killing variables we obtain the desirable result. 2>From the above lemma it is obvious thatCorollary 7 If there exist k : 1 � k � t and fi1; i2; : : : ; ikg � f1; 2; : : : ; tg suh that an orthogo-nal design OD(4n;ui1 ; ui2 ; : : : ; uik) does not exist then an orthogonal design OD(4n;u1; u2; : : : ; ut)an not exist. 41



Our method relies on searhing for OD(4n;uk; uj), 1 � k; j � t, in two variables, whih ismuh faster, rather than using the matrix based algorithm, desribed in [37℄ for OD(4n;u1; u2; : : : ; ut),in t variables, whih is muh slower. Then we use the extension algorithm to onstrut the or-thogonal design we want.Moreover we do not have to hek all non-isomorphi entry matries M(uk;uj);i but only afew of them. We also an selet the k; j in suh way that we minimize the set of M(uk;uj);i wehave to searh.Let D be the orthogonal design OD(4n;u1; u2; : : : ; ut). The steps of our algorithm are:Step 0: Find all non-isomorphi entry matries M(s1;s2;:::;su);i for D as it is desribed in[37℄.Step 1: For k; j 2 f1; 2; : : : ; ug; k < j �nd all non-isomorphi entry matries M(sk;sj);i forthe orthogonal design OD(4n; sk; sj):Step 2: For all the above �u2� ombinations hek ifM(s1;s2;:::;su);ijD(sk;sj ) is equal with anyM(sk;sj);` 2 D(sk;sj). Ignore similar matries M(s1;s2;:::;su);ijD(sk;sj ) produed afterusing the two rows of M(s1;s2;:::;su);i and eliminate all others rows. These are thematries that an be extended to M(s1;s2;:::;su);i and thus these might produe theorthogonal design D.Step 3: Selet the k; j whih give the smallest number of entry matriesM(s1;s2;:::;su);ijD(sk;sj) :Step 4: Apply �rst algorithm (matrix based algorithm) to the seleted entry matriesspei�ed in Step 3, and �nd all OD(4n; sk; sj):Step 5: For eah OD(4n; sk; sj) found in Step 4, apply the seond algorithm (extensionalgorithm), by replaing eah zero by a unique variable xp, p = 1; 2; : : : ; 4n �(sk + sj):Step 6: Exhaustively searh all possibilities then if the solution exists, it will be found,otherwise an OD(4n; s1; s2; : : : ; su) does not exist onstruted by four sequenes.Example 13 We will apply our algorithm to searh for an orthogonal designD = OD(36;u1; u2; u3) =OD(36; 6; 7; 21).Step 0: The following ten matries are all the non-isomorphi entry matries M(u1;u2;u3);ifor D as it is desribed in [37℄:1)264 3 1 2 03 1 1 22 6 6 7 375 ; 2)264 3 1 2 01 3 1 24 4 6 7 375 ; 3)264 3 1 2 01 1 1 44 6 6 5 375 ;
42



4)264 3 1 2 01 1 3 24 6 4 7 375 ; 5)264 1 1 4 03 1 1 24 6 4 7 375 ; 6)264 1 1 4 01 1 3 26 6 2 7 375 ;7)264 1 1 4 01 1 1 46 6 4 5 375 ; 8)264 1 1 2 23 1 1 24 6 6 5 375 ; 9)264 1 1 2 21 1 3 26 6 4 5 375 ;10)264 1 1 2 21 1 1 46 6 6 3 375 2Step 1: We have that jD(u1;u2)j = 10; jD(u1;u3)j = 53; jD(u2;u3)j = 21Step 2: By setting the �rst variable equal to zero (i.e. eliminating the �rst row vT1 ) we get only5 non-isomorphi entry matriesM(u1;u2;u3);ijD(u2;u3) from the 21 entry matries of the orthogonaldesign OD(36; 7; 21). Those ome from the matries M(u1;u2;u3);i numbered i=1,2,3,8, and 10above by deleting the �rst row.By setting the seond variable equal to zero we get 10 non-isomorphi entry matriesM(u1;u2;u3);ijD(u1;u3) from the 53 entry matries of the orthogonal design OD(36; 6; 21). Thoseome from the matriesM(u1;u2;u3);i numbered i = 1; 2; : : : ; 10 above by deleting the seond row.By setting the third variable equal to zero we get only 10 non-isomorphi entry matriesM(u1;u2;u3);ijD(u1;u2) from the 10 entry matries of the orthogonal design OD(36; 6; 7). Thoseome from the matries M(u1;u2;u3);i numbered i = 1; 2; : : : ; 10 above by deleting the third row.Step 3: Clearly in the ase k = 2 and j = 3 we have fewer entry matries to hek than in anyof the other ases, i.e �ve.Step 4: Now we get all the quadruples of sequenes with PAF=0 or NPAF=0, whih an beused for the onstrution of OD(36; 7; 21), via the Goethals-Seidel Array. This is applied to all�ve entry matries desribed in steps 2 and 3.Step 5: For eah OD(4n;uk; uj) = OD(36; 7; 21) found in Step 4, apply the seond algorithm(extension algorithm), by replaing the zero of the sequenes by the unique variables xp, p =1; 2; : : : ; 8:We want to make lear that if an OD(36; 6; 7; 21) existed it would have been found. Wedid not �nd any solutions by step 5 and thus, sine our searh is exhaustive for the orthogonaldesign OD(36; 6; 7; 21), this design does not exist using four sequenes. 2Example 14 Applying our algorithm we try to �nd the OD(36; 6; 8; 19) and theOD(36; 7; 8; 19):There are 22 non-isomorphi entry matries M(6;8;19);i orresponding to the orthogonal designOD(36;u1; u2; u3)=OD(36; 6; 8; 19) and 22 for the seond orthogonal design OD(36;u4; u2; u3) =OD(36; 7; 8; 19). 43



By setting the �rst variable equal to zero we get only 17 non-isomorphi entry matriesM(6;8;19);ijD(u2;u3) for the OD(36; 8; 19).We observe that the matriesM(6;8;19);ijD(u2;u3) are exatly the same as the matriesM(7;8;19);ijD(u2;u3)for the seond orthogonal design.Thus by searhing those 17 non-isomorphi entry matries we an perform an exhaustivesearh for both orthogonal designs. Using the matrix based algorithm we would have had tohek 44 entry matries using three variables for both designs.Applying our algorithm and following the same proess as in the previous example we �nd,among others, the following solutions, whih have PAF=0:OD(36; 6; 8; 19)b - 0 b b b a  -ab b -b b  -a -b  a b -b -b -a -b b -a 0b -b -b - b -a b -a 0OD(36; 7; 8; 19)a -b -b -b  -a - -b -b -a a b - -b b -b -b -b a a b b -b 0 -a -b -b -b b a b 0  2The interesting reader an �nd more on this algorithm in [28℄.Remark 3 Using the above algorithms, ases where n � 0( mod 4), have been studied. Inpartiular all orthogonal designs of orders 4n; n = 1; 3; 5; 7; 9 had been ompletely studied, (see[26, 28, 62, 63, 67, 70℄).3.3 Amiable sets of matries and onstrutions of orthogonal designs usingthe Kharaghani arrayA pair of matries A;B is said to be amiable (anti-amiable) if ABT �BAT = 0 (ABT +BAT =0). Following [56℄ a set fA1; A2; : : : ; A2ng of square real matries is said to be amiable ifnXi=1 �A�(2i�1)AT�(2i) �A�(2i)AT�(2i�1)� = 0 (31)for some permutation � of the set f1; 2; : : : ; 2ng. For simpliity, we will always take �(i) = iunless otherwise spei�ed. So nXi=1 �A2i�1AT2i �A2iAT2i�1� = 0: (32)44



Clearly a set of mutually amiable matries is amiable, but the onverse is not true in general.Throughout the setion Rk denotes the bak diagonal identity matrix of order k.A set of matries fB1; B2; : : : ; Bng of order m with entries in f0;�x1;�x2; : : : ;�xug is said tosatisfy an additive property of type (s1; s2; : : : ; su) ifnXi=1BiBTi = uXi=1(six2i )Im: (33)Let fAig8i=1 be an amiable set of irulant matries (or type 1) of type (s1; s2; : : : ; su) oforder t. Then the Kharaghani array from [56℄
H = 0BBBBBBBBBB�

A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn�A2 A1 A3Rn �A4Rn A5Rn �A6Rn A7Rn �A8Rn�A4Rn �A3Rn A1 A2 �AT8 Rn AT7 Rn AT6 Rn �AT5 Rn�A3Rn A4Rn �A2 A1 AT7 Rn AT8 Rn �AT5 Rn �AT6 Rn�A6Rn �A5Rn AT8 Rn �AT7 Rn A1 A2 �AT4 Rn AT3 Rn�A5Rn A6Rn �AT7 Rn �AT8 Rn �A2 A1 AT3 Rn AT4 Rn�A8Rn �A7Rn �AT6 Rn AT5 Rn AT4 Rn �AT3 Rn A1 A2�A7Rn A8Rn AT5 Rn AT6 Rn �AT3 Rn �AT4 Rn �A2 A1
1CCCCCCCCCCA (34)

is a Kharaghani type orthogonal design OD(8m; s1; s2; : : : ; su).We present an algorithm whih uses the known sets of four irulant matries to onstrutan amiable set of eight matries suitable for the array given by (34).The algorithmStep 1 Find four irulants matries A, B, C, D of order n with variables a; b; ; d satisfyingAAT +BBT + CCT +DDT = (r1a2 + r2b2 + r32 + r4d2)Infor some integers ri, by using any of the above algorithms.Step 2 Form four new irulant matries E; F; G; H from A; B; C; D just by replainga; b; ; d with e; f; g; h respetively. Obviously the new matries satisfy the previous ondi-tions but on variables e; f; g; h.Step 3 Searh the set fA;B;C;D;E; F;G;Hg for a ombination suitable to form an amiableset of eight matries.Step 4 If we �nd suh a set, we replae the matries in the array given by (34).Notation 2 With the expression ir(a; b; ; : : : ; z) we will denote the irulant matrix with�rst row the sequene in the brakets.Example 15 Let A = ir(a; b; ), B = ir(d;�a; b), C = ir(�; d; a) andD = ir(�b; ; d).Then AAt+BBt+CCt+DDt = 3(a2+ b2+ 2+d2)I3. We form the matries E = ir(e; f; g),F = ir(h � e; f), G = ir(�g; h; e) and H = ir(�f; g; h). Then obviously we have thatEET + FF T +GGT +HHT = 3(e2 + f2 + g2 + h2)I3. A omputer searh �nds thatAHT �HAT +BGT �GBT +CF T � FCT +DET �EDT = 0So, we have found an amiable set of eight irulant matries, the fA,H,B,G,C,F,D,Eg. Ifwe substitute these matries in the array of the orollary, we get an OD(24; 3; 3; 3; 3; 3; 3; 3; 3).45



Example 16 Let A = ir(a; b; b; d;�d), B = ir(�b; a; a; ;�), C = ir(d; ; ;�a; a), D =ir(�; d; d;�b; b). Then AAT + BBT + CCT + DDT = 5(a2 + b2 + 2 + d2)I5. We formthe matries E = ir(e; f; f; h;�h), F = ir(�f; e; e; g;�g), G = ir(h; g; g;�e; e), H =ir(�g; h; h;�f; f) just by substituting the variables a,b,,d for e,f,g,h respetively. Then wehave EET +FF T +GGT +HHT = 5(e2+f2+g2+h2)I5. A omputer searh �nds the amiableset AET �EAT +BHT �HBT +GCT � CGT +DF T � FDT = 0So, we have the fA;E;B;H;G;C;D; Fg amiable set of matries. If we substitute these matriesin Kharaghani array we obtain the OD(40; 5; 5; 5; 5; 5; 5; 5; 5).Remark 4 Using the above algorithm, and the Kharaghani array many new orthogonal designsof orders 8n are onstruted, (see [20, 29, 30, 31, 49, 50, 56, 71, 72℄).4 Short amiable sets and Kharaghani type orthogonal designs4.1 Preliminary results and basi de�nitionsShort amiable set were de�ned in [32℄ as a set of matries fAig4i=1 of order m and type(u1; u2; u3; u4), abbreviated as 4 � SAS(m;u1; u2; u3; u4;G), if (32) and (33) are satis�ed forn = 4 and u � 4. 4� SAS(m;u1; u2; u3; u4;G) an be used in either the Goethals-Seidel arrayor the short Kharaghani array 26664 A B CR DR�B A DR �CR�CR �DR A B�DR CR �B A 37775to form an OD(4m;u1; u2; u3; u4). In all ases, the group G of the matries in the amiable setis suh that the extension by Seberry and Whiteman [89℄ of the group from irulant to type 1allows the same extension to R:In general a set of 2n matries of order m and type (s1; s2; : : : ; su) that satisfy equations(32) and (33) will be denoted as 2n� SAS(m; s1; s2; : : : ; su;G): Moreover if these matries areirulant they will be denoted as 2n� SCAS(m; s1; s2; : : : ; su;Zm):In [32℄ where short amiable sets were �rst de�ned, it was mentioned that:Remark 5 1. If there exists a 2 � SAS(n; s1; s2;G) and a 2 � SAS(n; s3; s4;G) then thereexists a 4� SAS(n; s1; s2; s3; s4;G):2. If there exists a 2 � SAS(n; s1; s2;G); 2 � SAS(n; s3; s4;G); 2 � SAS(n; s5; s6;G) and a2� SAS(n; s7; s8;G) there exists an 8�AS(n; s1; s2; s3; s4; s5; s6; s7; s8;G):3. If there exists a 4� SAS(n; s1; s2; s3; s4;G) and a 4� SAS(n; s5; s6; s7; s8;G) there existsan 8�AS(n; s1; s2; s3; s4; s5; s6; s7; s8;G):Thus we an obtain many lasses of 4�SAS(n; s1; s2; s3; s4;G) ombining together two pairsof the given 2�SAS(n; s1; s2;G) and 2�SAS(n; s3; s4;G): Moreover, in Table 4.2, we give some4� SAS(m;u1; u2; u3; u4;Zm) that an not be onstruted by this method.46



Generally, unless we have other information regarding the struture, we are unable to ensurethat the matrix R with the desired properties for the Kharaghani, Goethals-Seidel or shortKharaghani arrays exists unless the amiable sets have been group generated (irulant or type1) or onstruted from bloks of these kinds. Thus is we have the required matrix Ri for thegroup Gi, i = 1; 2 then RG = R1 �R2 will be the required matrix for G = G1 �G2, (see [89℄).Let A1 and A2 be matries of order m. We de�ne ir(A1; A2) = " A1 A2A2 A1 # : Amiablesets made from 2n suh blok irulant matries will be alled blok amiable sets, short blokamiable sets or 2-short blok amiable sets, 2n�SBAS(2m; s1; s2; : : : ; su;G); n = 1; 2; 4, where,using Rt for the bak-diagonal matrix of order t, G = Z2 � Zm and RG = R2 � Rm. Here, ifA1 and A2 are irulant, then we use the bakdiagonal matrix of the same order for R ensuringAi(AjR)T = AjRATi . The required RG = R2 �R:We denote the produt Zp�Zp�� � ��Zp(r times) by EA(pr) the Elementary Abelian group.Moreover �a is denoted by �a:Throughought this setion we use the symbol 0m to denote the sequene of length m withall elements zero and the symbol Ot to denote the t� t matrix with all entries zero.For the unde�ned terms we refer the reader to the book by Geramita and Seberry [37℄.4.2 ConstrutionsTheorem 23 Write 0s for the sequene of s zeros, and let a, b,  and d be ommuting variables.Use the matries A1, A2, A3 and A4 given byA1 = ir(0sba�b0s); A2 = ir(0s00s);A3 = ir(0s��d0s); A4 = ir(0sb0b0s);an be used in the Goethals-Seidel array to obtain an OD(8s+ 12; 1; 1; 4; 4).Proof. Observe thatA1AT1 +A2AT2 +A3AT3 +A4AT4 = (a2 + d2 + 4b2 + 4d2)Inand A1AT1 �A2AT2 +A3AT3 �A4AT4 = 0:Thus A2; A2; A3; A4 are a short amiable set and satisfy the additive property (33) so they anbe used in the Goethals-Seidel array to obtain an OD(8s+ 12; 1; 1; 4; 4). 2The Melding ConstrutionSuppose the matries A1, A2, A3 and A4 are are short amiable sets, on the set of ommutingvariables f0;�x1;�x2; � � � ;�xug or from f0;�1g, and satisfy the additive property4Xi=1 �AiATi � = uXj=1 pjx2jIn; (35)and the matries A5, A6, A7 and A8 are also short amiable sets, on the set of ommutingvariables f0;�y1;�y2; � � � ;�yvg or from f0;�1g, and satisfy the additive property8Xi=5 �AiATi � = vXj=1 qjy2j In: (36)47



Then the eight matries will form an amiable set so we an use the two together in theKharaghani array to obtain an OD(8n; p1; p2; � � � ; pu; q1; q2; � � � ; qv). 2order type group order type group order type group order type groupn 1; 1 Zn 6n 4; 4 Z6n 10n 4; 4 Z10n 14n 8; 8 Z14n2n 2; 2 Z2n 6n 5; 5 Z6n 10n 9; 9 Z10n 14n 10; 10 Z14n4n 1; 4 Z4n 7n 4; 4 Z7n 12n 8; 8 Z12n 14n 13; 13 Z14n4n 4; 4 Z4n 8n 8; 8 Z8n 13n 9; 9 Z13nTable 2: Order and type for small 2-short amiable sets for all n � 1:Using table 2, remark 5 and the above Melding Constrution we obtain many 4-short ami-able sets and 8-amiable sets. A1 A3Type A2 A4 ZERO(1,1,1,1) a b NPAF d n(1,1,1,4) 0 -d a d 0 b 0 0 NPAF0 d 0 d 0  0 0 4n(1,1,2,2) a 0  d NPAFb 0  -d 2n(1,1,2,8) 0 - a  0 - b - NPAF0  b  0 - d  4n(1,1,4,4) a b -a a 0 a NPAF 0   d - 3n(1,1,5) -a a a a 0 a NPAF 0 0 0 b 0 4n(1,1,5,5) - a  0 -d b d 0 NPAF -d  0 d  d 0 4n(1,1,8,8) 0 - -d a d  0  -d 0 -d  NPAF0  d 0 d  0 - d b -d  6n(1,2,2,4) 0 -d a d  0 b 0 NPAF0 d 0 d  0 -b 0 4n(1,4,4,4) 0 -b a b d  -d  NPAF0 b 0 b - d  d 4n(2,2,2,2) a b a -b NPAF d  -d 2n(2,2,4,4) a 0 b 0 d  -d  NPAFa 0 -b 0 - d  d 4n(2,2,5,5) 0 a 0 0 b 0  -d 0 -d  d NPAF0 a 0 0 -b 0 d  0  d - 6n(2,2,8,8) -d  a  d 0 d - b  d 0 NPAF-d - a - d 0 -d - b  -d 0 6nTable 3: Short amiable sets.48



A1 A3Type A2 A4 ZERO(3,3) a b b-a NPAFa 0 b 0 2n(4,4,4,4) a a b-b b b-a a NPAFd d-    d-d 4n(4,4,8,8) d a -  a -d d b  - b -d NPAF-d -b   b -d d -a   a d 6n(5,5) a a -a a 0 a NPAFb b -b b 0 b 3n(5,5,5,5) -a b a 0 a b - d  0  d NPAFb a -b 0 -b a d  -d 0 -d  6n(6,6) a -b a a a -a NPAFb a b b b -b 3n(6,6,12)  a  b- a  a -a -a NPAF- b--a  b - b -b--b 6n(8,8) a a a-a b b-b b NPAFb b b-b a a-a a 4n(8,8,8,8) a a a-a b b-b b b b b-b a a-a a NPAF  - d d-d d d d d-d  -  8n(10,10,10,10) dijoint from Golay NPAFn � 10(13,13)  0 -  - 0 0     -    0 0 - NPAFg 0 -g g -g 0 0 g g g g -g g g g 0 0 -g 9n(13,13,13,13) from disjoint sequenes NPAFlength 18 weight 13 n � 18(16,16,16,16) disjoint from Golay NPAFn � 16(17,17,17,17) disjoint sequenes NPAFlength 26 weight 17 n � 26(20,20,20,20) dijoint from Golay NPAFn � 20(25,25,25,25) disjoint sequenes NPAFlength 36 weight 25 n � 36(26,26,26,26) disjoint from Golay NPAFn � 26(14,14) a b -b -b b a a -b a -b a -b b b NPAFb -a a a -a b b a b a b a -a -a 7n(17,17) a -a a a a a -a a 0  - -     - - PAF -     -  0 a -a -a a a a a -a -a 9nTable 3: (ontinued).4.3 Some general resultsWe now onsider the use of sequenes with zero non-periodi autoorrelation funtion to makean amiable set of matries. We refer the reader to [88, 90℄ for any unde�ned terms.The next theorem was proved in [73℄.Theorem 24 (General onstrution) Let X; Y be two disjoint (0;�1) sequenes with zeronon-periodi autoorrelation funtion of length n and weight k, Let a; b; ; d be ommuting49



Type ZERO(1,1,1,1) NPAF n � 1(2,2,2,2) NPAF n � 2(4,4,4,4) NPAF n � 4(5,5,5,5) NPAF n � 6(8,8,8,8) NPAF n � 8(10,10,10,10) NPAF n � 10(13,13,13,13) NPAF n � 18(16,16,16,16) NPAF n � 16(17,17,17,17) NPAF n � 26(20,20,20,20) NPAF n � 20(25,25,25,25) NPAF n � 36(26,26,26,26) NPAF n � 26Table 4: Short amiable sets from orollary 8variables and write aV , bW for the irulant (type 1) matries of order n formed by usingthe �rst rows with the elements of X multiplied by a and the elements of Y multiplied by brespetively.Let Ai be the irulant matries of order n given byA1 = aV + bW A2 = V + dW A3 = dV � W A4 = bV � aW (37)then fAig4i=1 is a short amiable set satisfying2Xi=1 �A2i�1AT2i �A2iAT2i�1� = 0; (38)and the additive property 4Xi=1 �AiATi � = k(a2 + b2 + 2 + d2)In: (39)Corollary 8 Let X; Y be a pair of disjoint (0;�1) sequenes with zero non-periodi autoor-relation funtion of length n and weight k. Then there exists a short amiable set whih an beused to form an OD(4n; k; k; k; k).For �; �; ; Æ; �; �;  , �; � non-negative integers, Koukouvinos and Seberry [69, p. 160℄ showthat there exist two disjoint (0;�1) sequenes, with zero non-periodi autoorrelation fun-tion, of length � n; n 2 N = f2 � 2�6�109Æ14�18�26 24�34�g and weight k; k 2 K =f2�5�1013Æ17�25�26 34�50�g: These give the results presented in Table 4.For more details about short amiable sets and their use in the onstrution of Kharaghanitype orthogonal designs the interesting reader is refer to [32, 73℄.50
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