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Abstract

We study the problem of estimating k-
ary distributions under Á-local differential
privacy. n samples are distributed across
users who send privatized versions of their
sample to a central server. All previously
known sample optimal algorithms require
linear (in k) communication from each user
in the high privacy regime (Á = O(1)), and
run in time that grows as n · k, which is
prohibitive for a large domain size k.

We propose Hadamard Response (HR), a
local privatization scheme that requires no
shared randomness and is symmetric with
respect to the users. HR has order optimal
sample complexity for all Á, a communica-
tion of at most log k + 2 bits per user, and
nearly linear running time of Õ(n + k).

HR is based on Hadamard matrices, and
is simple to implement. The statistical
performance relies on the coding theo-
retic aspects of Hadamard matrices, ie, the
large Hamming distance between the rows.
Computational efficiency is achieved by us-
ing the Fast Walsh-Hadamard transform.

We compare our approach with Ran-
domized Response (RR), RAPPOR, and
subset-selection mechanisms (SS), both
theoretically, and experimentally. For k =
10000, our algorithm runs about 100x
faster than SS, and RAPPOR.

1 Introduction

Estimating the underlying probability distribution
from data samples is a quintessential statistical
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problem. Given samples from an unknown distri-
bution p, the goal is to obtain an estimate p̂ of p.
The problem has a rich, and vast literature (see
e.g. [6, 39, 17, 18], and many others), with the pri-
mary goal of statistical efficiency, namely minimizing
the sample complexity for estimation, which is the
first resource we consider.

1. Utility. What is the sample complexity of
estimation?

In many applications, data contains sensitive infor-
mation, and preserving the privacy of individuals
is paramount. Without proper precautions, sen-
sitive information can be inferred as evidenced by
well publicized data leaks over the past decade, in-
cluding de-anonymization of public health records
in Massachusetts [41], de-anonymization of Netflix
users [37] and de-anonymization of individuals par-
ticipating in the genome wide association study [29].

Private data release and computation on data has
been studied in several fields, including statistics,
machine learning, database theory, algorithm de-
sign, and cryptography (See e.g., [45, 14, 22, 46,
23, 42, 13]). Differential Privacy (DP) [24] has
emerged as one of the most popular notions of pri-
vacy (see [24, 46, 26, 9, 36, 32], references therein,
and the recent book [25]). DP has been adopted
by several companies including Google, and Ap-
ple [21, 27].

A popular privacy definition is local differential pri-
vacy (LDP) [45, 23], where users do not trust the
data collector, and privatize their data before releas-
ing. We study distribution estimation under LDP.
Distribution estimation with privacy is an impor-
tant problem. For example, understanding the drug
usage habits of the entire population (the distribu-
tion) is crucial for policy design. Understanding
the internet traffic distribution is important for ad-
placement. In both these applications, preserving
individual privacy is essential.
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2. Privacy. How much information about a user is
leaked by the scheme?

There are inherent trade-offs between utility and pri-
vacy. Sample privacy trade-offs have been recently
studied for various problems, including distribution
estimation [23, 31, 47, 43, 20, 35].

However, two crucial resources have not been con-
sidered in private distribution estimation, computa-
tion, and communication. In applications where the
underlying dimensionality is high, or the number of
samples is large, it is imperative to have computa-
tionally efficient algorithms. Internet companies col-
lect information about user’s browsing history over
a large number of users and websites, and large de-
partmental stores collect purchase statistics over a
large number of users and products. In these prob-
lems, algorithms with high computational overhead
are prohibitive, even if they have optimal sample
complexity. There has been recent interest in com-
putationally efficient distribution estimation in the
non-private setting (see e.g., [15, 1, 33, 12, 16, 40, 3]).

3. Computational Complexity. What is the
running time of the algorithm?

In distributed applications, communication (both
with and without privacy) is critical. For example,
a large fraction of internet traffic is on hand-held de-
vices with limited uplink capacity due to limited bat-
tery power, limited uplink bandwidth, or expensive
data rates. Similarly, in large scale distributed ma-
chine learning problems, communication from pro-
cessors to the server is the bottleneck since local
computations are fast. Communication limited dis-
tributed distribution estimation has been studied in
the non-private setting(e.g., [48, 4, 19, 2, 28]).

In the context of private estimation tasks, the prob-
lem of finding the heavy hitters, and learning prop-
erties under local differential privacy under the as-
sumption of public randomness, where the server can
send communication to the clients to reduce commu-
nication from user end has received much attention
recently [8, 7, 5, 30, 44, 11]. However, these algo-
rithms require shared randomness, as well as asym-
metric schemes, where each user can use a different
privatization mechanism. [7] uses a Hadamard trans-
form, but they use it to form orthogonal basis and
reduce storage, which is different from us.

4. Communication Complexity. How many bits
are communicated?

In this work, we consider discrete distribution es-
timation under the aforementioned four resources.

We provide the first algorithm that is simultaneously
sample order optimal for any privacy value, has loga-
rithmic communication per symbol, and runs in lin-
ear time in the input and output size.

1.1 Organization.

In Section 2 we describe the problem set-up. In Sec-
tion 2.1, 2.2 and 2.3, we describe prior privatization
schemes, and our results. In Section 3, we provide
a family of Á-LDP privatization schemes. Based on
these, in Section 4, we specialize and design schemes
that are optimal in the most interesting regime of
high privacy. Finally in Section 5, we will briefly
describe how to extend these schemes to general Á.
The full detail will be provided in Section A in the
supplementary file.

2 Preliminaries

Local Differential Privacy (LDP). Suppose x is
a private information that takes values in a set X
with k elements (wlog let X = [k]:={0, 1, . . . , k≠1}).
A privatization mechanism is a randomized mapping
Q from [k] to an output set Z (which can be arbi-
trary), that maps x œ X to z œ Z with probability
Q(z|x). The output z of this mapping, called the
privatized sample, is then released. Q is Á-locally
differentially private (Á-LDP) [23] if for all x, xÕ œ X ,

sup
zœZ

Q(z|x)

Q(z|xÕ)
Æ eε. (1)

Small values of Á(Á = O(1)) are more stringent and
are the high privacy regime, and large values of Á

are the low privacy regime. When X and Z are
both discrete, the mechanism Q is described by a
stochastic matrix of size |X | ◊ |Z| whose (x, z)th
entry is Q(z|x). Q is Á-LDP if the ratio of any two
entries in a column of this matrix is at most eε.

Randomness and Symmetry. A scheme that re-
quires shared/public randomness requires the gen-
eration of shared randomness at the server, which
needs to be communicated to the users. Symmet-
ric schemes are those where each user uses the same
privatization scheme [38]. In this paper, we consider
schemes that are symmetric and require no shared
randomness. Other such schemes include RAPPOR,
Randomized Response, and subset selection meth-
ods, described later. We note that the literature
on heavy hitter estimation has mostly considered
schemes with shared randomness [8, 7, 11], and it
will be interesting to see if our methods can provide
improved algorithms for the heavy hitter problem.

We note that [7] also uses Hadamard matrix dur-
ing the encoding phase. We emphasize that we use



Jayadev Acharya, Ziteng Sun, Huanyu Zhang

completely different encoding methods based on dif-
ferent properties of Hadamard matrices. They use
Hadamard matrix to sample one bit in the frequency
domain while we sample an entire column index
(represented by log k bits) from a row vector of the
Hadamard matrix. They use rows of Hadamard ma-
trix to provide orthogonal channels for the users.
While any orthogonal channels will work for their
problem, they use Hadamard matrix to reduce stor-
age at the users since it is easy to compute without
storing it. However, we use Hadamard matrix to de-
fine subsets of columns with large symmetric differ-
ence, which provides better statistical performance,
and use Fast Hadamard Transform in the decoding
for improving computational performance. This will
become clearer after we describe our scheme fully.

Another advantage of this work is that our method
can be generalized to general regimes of Á while
schemes for heavy hitter detection [8, 7] only work
for Á < 1.

LDP distribution estimation. Let ∆k =
Ó

p(0), . . . , p(k ≠ 1) : p(x) Ø 0,
qk≠1

x=0 p(x) = 1
Ô

be

the set of all distributions over [k]. Let X1, . . . , Xn

be independent samples drawn from an unknown
p œ ∆k, where Xi is the private (sensitive) data
with the ith user. Each user maps Xi through an
Á-LDP Q, to obtain Zi. The task at the server,
upon observing the privatized samples Z1, . . . , Zn,
is to output p̂ : Zn æ ∆k, an estimate of p. Let
d : ∆k ◊ ∆k æ R+ be a distance measure between
distributions in ∆k. Private distribution estimation
task is the following:

Given – > 0, Á > 0, d : ∆k ◊ ∆k æ R, design
an Á-LDP Q, and a corresponding estimation p̂,
such that ’p œ ∆k, with probability at least 0.9,
d(p̂, p) < –.

The sample complexity is the least n for which such
an Á-LDP scheme Q, and a corresponding p̂ ex-
ists. The communication complexity is the num-
ber of bits to send Zi to the server. The compu-
tational complexity is the total time to estimate p̂
from Z1, . . . , Zn at the server and to privatize Xi

using Q at each user.

We will use ¸1, and ¸2 distance in this paper.
For r Ø 0, the ¸r distance between p, q œ ∆k is
¸r(p, q):=(

q

x |p(x) ≠ q(x)|
r
)1/r. In non-private set-

ting, the sample complexity of distribution estima-
tion under these distances is known even including
precise constants [10, 34].

Á k-RR RAPPOR k -SS Á-HR

(0, 1) k3

ε
2
α

2

k2

ε
2
α

2

k2

ε
2
α

2

k2

ε
2
α

2

(1, log k) k3

e2ε
α

2

k2

eε/2
α

2

k2

eε
α

2

k2

eε
α

2

(log k, 2 log k) k
α

2

k2

eε/2
α

2

k
α

2

k
α

2

(2 log k, +Œ) k
α

2

k
α

2

k
α

2

k
α

2

Table 1: Sample complexity, up to constant factors,
under ¸1 distance for the different methods. The
sample complexity under ¸2 distance is exactly a fac-
tor k smaller in each cell above.

2.1 The privatization mechanisms

We will now briefly describe RR, RAPPOR, the
most popular Á-LDP schemes using no interaction
and public randomness. We will also mention SS,
and our proposed HR. For a detailed description of
RAPPOR and SS, please refer to Section D in the
supplementary file.

k-Randomized Response (RR). The k-RR
mechanism [45, 31] is an Á-LDP QRR with Z = X =
[k], such that

QRR(z|x) :=

I

eε

eε+k≠1 if z = x,
1

eε+k≠1 otherwise.
(2)

k-RAPPOR. The randomized aggregatable
privacy-preserving ordinal response (RAPPOR) is
an Á-LDP mechanism which was proposed in [23, 27].
Its simplest implementation k-RAPPOR [31] maps
X = [k] to Z = {0, 1}k. It first does a one hot
encoding to the input x œ [k] to obtain y œ {0, 1}k,
such that yj = 1 for j = x, and yj = 0 for j ”= x.
The privatized output of k-RAPPOR is a k-bit
vector obtained by independently flipping each bit
of y with probability 1

eε/2+1
.

Subset Selection techniques. [43, 47] propose an
Á-LDP scheme that maps x œ [k] to subsets of [k] of
size Ák/(eε + 1)Ë. The scheme is described in detail
in Section D.

Hadamard Response. We propose Hadamard Re-
sponse (HR), an Á-LDP scheme with Z = [K], for
some k Æ K Æ 4k. The algorithm is described in
Section 4 for high privacy, and in Section 5 and A
for general privacy.

2.2 Previous Results

To estimate distributions in ∆k to ¸1 distance – un-
der Á-LDP, the sample, communication and time re-
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Á k-RR RAPPOR k -SS Á-HR

(0, 1) log k k k log k

(1, log k) log k k
eε/2

k
eε

log k

(log k, 2 log k) log k k
eε/2

log k log k

(2 log k, +Œ) log k log k log k log k

Table 2: Communication requirements for distribu-
tion estimation techniques.

quirements of the various schemes are given in Ta-
ble 1, 2 and 3 respectively..

The sample complexity is given in Table 1. The
entries in green boxes are sample-order optimal,
namely there is a matching lower bound [47]. Note
that RR is sample-optimal in the low privacy regime
(last two rows), and is highly sub-optimal in the high
privacy regime (Á = O(1)). RAPPOR is optimal for
high-privacy, but sub-optimal for medium privacy.
SS, and our proposed HR are sample-order-optimal
for all Á. The sample complexity arguments for RR,
RAPPOR, and SS can be found in [31, 47].

Table 2 describes the communication requirements
of various schemes. However, it is not clear how to
measure the communication requirements, since for
a given privatization scheme, there might be com-
munication protocols requiring fewer bits than oth-
ers. For example, RAPPOR is described as giving k
bits as its output, but perhaps these k bits can be
compressed further requiring much smaller commu-
nication. We get around such concerns by observing
that, once the input distribution p and the privati-
zation mechanism Q is fixed, the output distribution
of the privatized sample Z is fixed. By Shannon’s
source coding theorem, to faithfully send Z to the
server requires at least H(Z) bits of communication.
The entries in the table are derived by considering
the input distribution to be near uniform, and eval-
uating the entropy of the output of the mechanisms.
For RR, log k bits of communication follows from
Z = [k]. Note that in this paper all logarithms are in
base 2. The communication requirements for RAP-
POR, and SS are derived in Section D (Theorems 9,
and Theorem 10 respectively).

Table 3 describes the total running time lower
bounds for faithfully implementing the known
schemes. The argument is that at the server, the
computation complexity is at least the number of
bits that need to be read, which is the amount of

k-RR k-RAPPOR Subset selection Á-HR

n + k n + k + nk
eε/2

n + k + nk
eε

n + k

Table 3: Time bounds for distribution estimation.
The running times are described in Section D. These
are upper bounds up to logarithmic factors.

communication from the users. If there are n users,
then n · H(Z) serves as our time complexity bound,
and these form the entries in the table.

2.3 Motivation and Our Results

Our work is motivated by the first three columns
of the tables, which captures the apparent sample-
communication-computation trade-offs present in
the existing schemes. We elaborate this point in the
most interesting regime of high privacy. For sim-
plicity, fix Á = 1, and – = 0.1 (chosen arbitrarily!),
and treat them as fixed constants in this paragraph.
In this setting, from Table 1, note that the optimal
sample complexity is Θ(k2), achieved by RAPPOR,
and SS, while RR has a sub-optimal sample com-
plexity of Θ(k3). Now consider the communication
requirements. Z = [k] for RR, requiring only log k
bits. A straight-forward computation shows that
any input distribution to the RAPPOR mechanism
induces an output distribution over {0, 1}k with en-
tropy at least Ω(k), thus requiring Ω(k) bits to faith-
fully send the privatized samples to the server. SS
also requires Ω(k) bits in this regime. These are for-
mally shown in Theorem 9 and Theorem 10 in Sec-
tion D. As for the running time at the server end, a
bound of Ω(k3) for all these three methods follows
from the total communication to the server (#sam-
ples ◊ #bits per sample), which is a factor k larger
than the Θ(k2) optimal sample complexity bound.

Our main result is the following, which is formally
stated in Theorem 2, and Theorem 5.

Theorem 1. We propose a simple algorithm for Á-
LDP distribution estimation that for all parameter
regimes, is sample optimal, runs in near-linear time
in the number of samples, and has only a logarithmic
communication complexity in the domain size, for
both the ¸1, and ¸2 distance.

Going back to the high privacy regime, considered
before, this shows that our scheme has a running
time of Õ(k2), which is nearly linear in the optimal
sample complexity under ¸1 distance.
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3 A family of ε-LDP schemes

We first propose a general family of LDP schemes,
and then carefully choose schemes from this family
that are sample-optimal, communication and com-
putationally efficient for distribution estimation.

The scheme involves the following steps:

1. Choose an integer K, and let the output alpha-
bet be Z = [K].

2. Choose a positive integer s Æ K.
3. For each x œ X = [k], pick Cx ™ [K] with

|Cx| = s.
4. The privatization scheme from [k] to [K] is then

given by:

Q(z|x) :=

I

eε

seε+K≠s if z œ Cx,
1

seε+K≠s if z œ Z \ Cx.
(3)

This scheme satisfies (1), and is Á-LDP. This pri-
vatization scheme chooses a set Cx for each x and
assigns the elements in Cx a higher probability than
those not in Cx. We also note that RR is a spe-
cial case of this construction when K = k, s = 1,
and Cx = {x}. We know from the last section that
RR is sub-optimal in the high privacy regime. Our
general inspiration comes from coding theory, and
we select s, and Cx carefully in order to send more
information across Q than RR.

In Section 4 we give an optimal scheme in the high
privacy regime, and extend it to the general case in
Section 5 and A.

4 Optimal scheme for high privacy

Privatization scheme. If for x ”= xÕ, Cx = CxÕ ,
then we cannot tell them apart. Therefore, the hope
is that the farther apart Cx and CxÕ are, the easier
it is to tell them apart. With this in mind, we spec-
ify a particular choice of parameters for our scheme,
which turns out to be sample-optimal in the high pri-
vacy regime. In particular, our privatization scheme
will satisfy the following:

An optimal privatization for high privacy

Choose K, and Cx’s such that (We will show in
Section 4.1 how to satisfy these conditions.):
C1. K is between k and 2k, and s = K/2, namely

for all x œ [k], |Cx| = K
2 .

C2. For any x, xÕ œ [k], and x ”= xÕ, |∆(Cx, CxÕ)| =
|(Cx \ CxÕ) fi (CxÕ \ Cx)| = K

2 .
Use (3) for privatization.

Performance. We will show that for Á = O(1), this

privatization is sample-order-optimal, namely there
is a corresponding estimator p̂ : [K]n æ ∆k that
is sample-optimal. Before describing the estimation
procedure, we provide the statistical guarantees.

Theorem 2. For any privatization scheme satis-
fying C1, C2, there is a corresponding estimation
scheme p̂ : [K]n æ ∆k, such that

E
#

¸
2
2(p̂, p)

$

Æ
4k(eε + 1)2

n(eε ≠ 1)2
, and (4)

E [¸1(p̂, p)] Æ

Û

4k2(eε + 1)2

n(eε ≠ 1)2
. (5)

The sample optimality, and small communication for
high privacy is an immediate corollary.

Corollary 3. When Á = O(1), the sample com-
plexity of this scheme for estimation to ¸1 distance
– is O(k2/Á2–2) samples, and for ¸2

2 distance is
O(k/Á2–2). Further, the communication from each
user is at most log(k) + 1 bits. This is sample-
optimal for both ¸1 (Table 1) and ¸2

2 (see [47]).

Proof. Applying Markov’s inequality in Theorem 2,
and substituting eε + 1 = Θ(1), and eε ≠ 1 =
Θ(Á) when Á = O(1) gives the sample complex-
ity bounds. The communication bounds are from
log K Æ log(k) + 1.

Estimation. Suppose QK,ε is an Á-LDP scheme
satisfying C1, and C2. For an input distribution p
over [k], let p(Cx) be the probability that the priva-
tized sample Z œ Cx. Using |Cx| = K/2, and C2, it
follows that |Cx \CxÕ | = K/4, and |Cx flCxÕ | = K/4.
Therefore,

p(Cx) = p(x)

A

ÿ

zœCx

QK,ε(z|x)

B

+
ÿ

xÕ ”=x

p(xÕ)·

Q

a

ÿ

zœCx\CxÕ

QK,ε(z|xÕ) +
ÿ

zœCxflCxÕ

QK,ε(z|xÕ)

R

b

= p(x) · |Cx| ·
eε

(seε + K ≠ s)
+

ÿ

xÕ ”=x

p(xÕ)

3

|Cx \ CxÕ | · 1

seε + K ≠ s
+

|Cx fl CxÕ | · eε

seε + K ≠ s

4

(6)

=
1

2
+

eε ≠ 1

2(eε + 1)
p(x), (7)

where (6) follows from (3), and (7) by plugging s =
K/2, and from C2. We can rewrite this as

p(x) =
2(eε + 1)

eε ≠ 1

3

p(Cx) ≠
1

2

4

. (8)
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This forms the basis of our estimation. From the pri-
vatized samples, we estimate p(Cx), and from that
we estimate p. The entire scheme is given below.

An optimal distribution estimation scheme
for high privacy

Input: k, Á, privatized samples Z1, . . . , Zn

1. For each x œ [k], estimate p(Cx) with its em-
pirical probability:

\p(Cx) :=

n
ÿ

j=1

I {Zj œ Cx}

n
. (9)

2. Estimate p̂ as:

p̂(x) :=
2(eε + 1)

eε ≠ 1

3

\p(Cx) ≠
1

2

4

. (10)

Next we will prove Theorem 2 by showing the per-
formance of this estimation scheme.

Proof of Theorem 2.1 Let p(C), [p(C), be the vec-

tor of probabilities of p(Cx)’s and \p(Cx)’s respec-
tively. From (8) and (10),

E
#

¸
2
2(p̂, p)

$

=
4(eε + 1)2

(eε ≠ 1)2
E

Ë

¸
2
2([p(C), p(C))

È

.

From (9), E

Ë

\p(Cx)
È

= E [I {Zj œ Cx}] = p(Cx).

Therefore,

E

Ë

¸
2
2([p(C), p(C))

È

= E

S

U

ÿ

xœ[k]

(\p(Cx) ≠ p(Cx))2

T

V

=
ÿ

xœ[k]

E

Ë

(\p(Cx) ≠ p(Cx))2
È

=
ÿ

xœ[k]

Var(\p(Cx)).

By the independence of Zi’s, \p(Cx) is the average of
n independent Bernoulli random variables each with
expectation p(Cx). Hence,

ÿ

xœ[k]

Var(\p(Cx)) =
ÿ

xœ[k]

1

n
· p(Cx)(1 ≠ p(Cx))

Æ
1

n

ÿ

xœ[k]

p(Cx) Æ
k

n
.

Plugging this bound in the previous expression gives
the bound on ¸2

2 distance of the theorem.

E
#

¸
2
2(p̂, p)

$

Æ
4k(eε + 1)2

n(eε ≠ 1)2
. (11)

1A technicality here is that p̂(x)’s can be negative, but
we can project p̂ onto the simplex with the same order
performance. We therefore only analyze the performance
of p̂ described in (10).

Using k · ¸2
2(p̂, p) Ø ¸1(p̂, p)2 with (11) gives the de-

sired bound on E [¸1(p̂, p)].

4.1 Computational complexity and
Hadamard matrices.

We showed the sample, and communication com-
plexity guarantees. However, two questions are still
unanswered:

• How to choose K, and design Cx’s that satisfy
C1, C2?

• What is the time complexity of privatization
and estimation?

We now address these questions. We start with the
computational requirements of the proposed scheme,
assuming C1,C2.

Computation at users. Given Cx’s, each user
needs to implement (3). This requires uniform sam-
pling from Cx’s, as well as from [K] \ Cx. We will
design schemes to do this in time O(log K).

Computation at the server. The server needs
to implement (9) and (10). Note that (10) can be
implemented in time O(k) after implementing (9).
However, a straightforward implementation of (9)
requires n · k time, since for each x we iterate over
all the samples, giving running time of O(n · k). In
particular, in the high privacy regime (say with Á =
1, and – = 0.1) the sample complexity is O(k2) and
the time requirement will be O(k3). We now show
how to design a privatization to satisfy C1, C2,
and for which we can implement (9) in time only
Õ(n + k).

Hadamard Response (HR) for high privacy.
Suppose K is a power of two, and HK œ {±1}K◊K

is the Hadamard matrix of size K ◊ K designed by
Sylvester’s construction as follows. Let H1 = [1],
and for m = 2j , for j Ø 1,

Hm :=

S

W

U

Hm/2 Hm/2

Hm/2 ≠Hm/2

T

X

V
.

Some standard properties of Hadamard matrices
that we use are the following:

(i) The number of +1’s in each row except the first
is K/2,

(ii) Any two rows agree (and disagree) on exactly
K/2 locations,

(iii) Vector multiplication with HK is possible in
time O(K log K) with Fast Walsh Hadamard
transform,
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(iv) We can uniformly sample from the +1’s (and
the ≠1’s) in any row in time O(log K).

We now describe the parameters for the privacy
mechanism:

1. Choice of K: Let K = 2Álog
2
(k+1)Ë Ø k + 1, the

smallest power of 2 larger than k. To satisfy
C1, we will choose s = K/2.

2. Choice of Cx’s: Map the symbols [k] =
{0, . . . , k ≠ 1} to rows of HK as follows: map
0 to the second row, 1 to the third row, and so
on. In other words, x is mapped to row x + 1.
Given any x, we choose Cx µ [K] to be the col-
umn indices with a ‘+1’ in the (x + 1)th row of
HK .

By Property (i) and (ii) of HK , both C1, and C2 are
satisfied. This implies a privatization scheme with
optimal sample and communication complexity in
the high privacy regime.

Fast computation with HR. By Property (iv), we
can efficiently implement the privatization scheme
at the users. We will now provide an efficient im-
plementation of (9). Let q = (q(0), . . . , q(K ≠ 1)) be
the vector of the empirical distribution of Z1, . . . , Zn

over [K] = {0, . . . , K ≠ 1}, namely

q(z) =
n

ÿ

i=1

I {Zi = z}

n
.

We can compute q in linear time with a single pass
over Z1, . . . , Zn. Consider the matrix vector product
c = HK · q. For x œ [k], the (x + 1)th entry of

HK · q is
qK≠1

z=0 HK(x + 1, z) · q(z). Now note that
the +1’s in the (x + 1)th column correspond to Cx

by construction, therefore

K≠1
ÿ

z=0

HK(x + 1, z) · q(z) =
ÿ

zœCx

q(z) ≠
ÿ

zœ[K]\Cx

q(z)

=2\p(Cx) ≠ 1 =

3

eε ≠ 1

eε + 1

4

p̂(x),

where the last line follows from observing that
q

zœCx
q(z) = \p(Cx) from (9), and from (10). There-

fore the estimator p̂ is simply entries of a Hadamard
vector product, appropriately normalized. By prop-
erty (iii), this can be done in time O(K log K) =
O(k log k). This computational advantage is cap-
tured in the following theorem:

Theorem 4. HR is an Á-LDP mechanism satisfying
Theorem 2 that has a running time Õ(n + k).

5 General privacy regimes.

For general values of Á, we will still use the general
structure of schemes given by (3). However, we will
choose the values of s to be dependent on Á (which
will be close to k/eε for general Á). After fixing this
s, we design the sets Cx’s with size s by forming
block-structured matrices with Hadamard matrices
at the diagonals. The general construction, along
with the encoding, estimation, and analysis is pro-
vided in Section A in the supplementary file. We
simply state the main result for general Á here.

The two parameters we need to describe the the-
orem are B, and b, where b can be thought of as
a proxy for s in our scheme. Their precise val-
ues are given in Section A, but we only need that
B = Θ(min{eε, 2k}), and b = Θ(k/B + 1) to state
the result below.

Theorem 5. There is an Á-LDP estimate p̂ such
that

E
#

¸
2
2(p̂, p)

$

= O

3

(k + (eε ≠ 1)b)(B + eε)

n(eε ≠ 1)2

4

,

E [¸1(p̂, p)] = O

A
Û

k

n

(k + (eε ≠ 1)b)(B + eε)

2(eε ≠ 1)2

B

.

The running time of the algorithm is Õ(n + k), and
communication is at most 2 + log k bits.

Plugging the values of b, and B, and apply Markov’s
inequality, we can obtain all the sample complexity
bounds for HR, namely the last column of the sample
complexity in Table 1.

6 Experiments.

We experimentally compare our algorithm with
RR, RAPPOR and SS. Our code is available
at https://github.com/zitengsun/hadamard_

response. We set k œ {100, 1000, 5000, 10000},
n œ {50000, 100000, 150000, ..., 1000000}, and
Á œ {0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We con-
sider geometric distributions Geo(⁄), where
p(i) Ã (1 ≠ ⁄)i⁄, Zipf distributions Zipf(k, t) where
p(i) Ã (i + 1)≠t, two-step distributions, and uniform
distributions. For every setting of (k, p, n, Á), and
for each scheme, we simulate 30 runs, and compute
the averaged ¸1 error, and averaged decoding time
at the server.

In a nutshell, we observe that in each regime, the
statistical performance of HR is comparable to the
best possible. Moreover, the decoding time of HR is
similar to that of RR. In comparison to RAPPOR
and SS, our running times can be orders of magni-
tude smaller, particularly for large k, and small Á.

https://github.com/zitengsun/hadamard_response
https://github.com/zitengsun/hadamard_response
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(a) Á = 0.5, p ∼ Geo(0.8) (b) Á = 2, p ∼ Geo(0.8) (c) Á = 5, p ∼ Geo(0.8) (d) Á = 7, p ∼ Geo(0.8)

(e) Á = 0.5, p ∼ U [k] (f) Á = 2, p ∼ U [k] (g) Á = 5, p ∼ U [k] (h) Á = 7, p ∼ U [k]

Figure 1: ¸1-error comparison between four algorithms k = 1000, p ∼ Geo(0.8) and p ∼ U [k]

(a) Á = 1 (b) Á = 2 (c) Á = 5 (d) Á = 10

Figure 2: ¸1-error comparison between four algorithms k = 10000 and p ∼ Geo(0.8)

(a) k = 100 (b) k = 1000 (c) k = 5000 (d) k = 10000

Figure 3: Decoding time comparison between four algorithms for Á = 1 and p ∼ Geo(0.8). Note that the decoding
times are in logarithmic scale.

We remark that we implement RAPPOR, and SS
such that their running time is almost linear in the
time needed to read the already compressed commu-
nication from the users.

We describe some of our experimental results here.
Figure 1 plots the ¸1 error for distribution estimation
under geometric distribution and uniform distribu-
tion for k = 1000. Note that for Á = 0.5, and Á = 7,
our performance matches with the best schemes. In
all the plots SS has the best statistical performance,
however that can come at the cost of higher com-
munication, and computation. For larger k such as
k = 10000, the performance is shown in figure 2. In
Figure 1 (d), (h) and Figure 2 (d), you can only see
two curves because when Á is high, HR, RAPPOR

and SS perform almost the same.

The running time of our algorithm is theoretically
a factor k/ log k smaller than RAPPOR and subset
selection. This is evident from figure 3, which shows
that for large k the running times of RAPPOR and
SS are orders of magnitude more than HR, and RR.
For example, for k = 10000, our algorithm runs 100x
faster than SS, and RAPPOR.
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