
International Mathematical Forum, 3, 2008, no. 40, 1965 - 1975

Hadamard-Type Inequalities for

s-Convex Functions

Mohammad Alomari 1 and Maslina Darus 2

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor, Malaysia

Abstract
In this paper a Hadamard’s type inequalities for s–convex functions
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1 Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I, with a < b. The following double inequality:

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
(1)

is known in the literature as Hadamard’s inequality for convex mappings.

In [7] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s–convex functions in the first sense.

Theorem 1.1 Suppose that f : [0,∞) → [0,∞) is an s–convex function in
the first sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1],
then the following inequalities hold:

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + sf (b)

s + 1
. (2)
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The above inequalities are sharp.

Also, In [7], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequal-
ity which holds for s–convex functions in the second sense.

Theorem 1.2 Suppose that f : [0,∞) → [0,∞) is an s–convex function in
the second sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1],
then the following inequalities hold:

2s−1f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

s + 1
(3)

the constant k = 1
s+1

is the best possible in the second inequality in (3). The
above inequalities are sharp.

After that, in [8], Dragomir established the following similar inequality of
Hadamard’s type for co–ordinated convex mapping on a rectangle from the
plane R2.

Theorem 1.3 Suppose that f : Δ → R is co-ordinated convex on Δ. Then
one has the inequalities

f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
(4)

The above inequalities are sharp.

In [2], M. Alomari and M. Darus established the following similar inequality
of Hadamard–type for co–ordinated s–convex mapping in the second sense on
a rectangle from the plane R2.

Theorem 1.4 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates on Δ. Then one has the inequalities:

f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (5)

≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)

(s + 1)2 .
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Also, In [5], M. Alomari and M. Darus established the following similar in-
equality of Hadamard–type for co–ordinated s–convex mapping in the first
sense on a rectangle from the plane R2.

Theorem 1.5 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates in the first sense on Δ. Then one has
the inequalities:

f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (6)

≤ f (a, c) + sf (b, c) + sf (a, d) + s2f (b, d)

(s + 1)2 .

The above inequalities are sharp.

In this paper we will point out a Hadamard–type inequalities of s–convex
function on the co–ordinates in the both sense.

For refinements, counterparts, generalizations and new Hadamard’s–type
inequalities see [1–8].

2 Remarks On A Previous Results

In this section we give some remarks on a previous results for the authors.
The following lemma associated with s–convex function (of second sense) was
considered by Alomari and Darus in [3].

Lemma 2.1 Let f : [a, b] → R be a s–convex function (of second sense).
Let a ≤ y1 ≤ x1 ≤ x2 ≤ y2 ≤ b with x1 + x2 = y1 + y2. Then

f (x1) + f (x2) ≤ f (y1) + f (y2) . (7)

Actually, the proof was given in [3] of this property is correct for convex func-
tions but not for s–convex functions. The correction of this proof is given as
follows:

Proof. Firstly, we show that f (x1) + f (x2) ≤ f (y1) + f (y2). If y1 = y2

then we are done. Suppose y1 �= y2 and since f is s–convex function of second
sense, then for α, β ≥ 0 with α + β = 1 and for all 0 < s ≤ 1, we have

x1 =

(
y2 − x1

y2 − y1

) 1
s

y1 +

(
x1 − y1

y2 − y1

) 1
s

y2, x2 =

(
y2 − x2

y2 − y1

) 1
s

y1 +

(
x2 − y1

y2 − y1

) 1
s

y2
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without loss of generality, set

k1 =

(
y2 − x1

y2 − y1

) 1
s

, k2 =

(
x1 − y1

y2 − y1

) 1
s

, k3 =

(
y2 − x2

y2 − y1

) 1
s

, k4 =

(
x2 − y1

y2 − y1

) 1
s

such that, γ = ks
1 + ks

2 + ks
3 + ks

4 > 0 ; α =
ks
1+ks

3

γ
and β =

ks
2+ks

4

γ
. Therefore,

α + β = 1 and by s–convexity, we have

f (x1) + f (x2) = f

⎛
⎝(y2 − x1

y2 − y1

) 1
s

y1 +

(
x1 − y1

y2 − y1

) 1
s

y2

⎞
⎠

+f

⎛
⎝(y2 − x2

y2 − y1

) 1
s

y1 +

(
x2 − y1

y2 − y1

) 1
s

y2

⎞
⎠

≤ y2 − x1

y2 − y1

f (y1) +
x1 − y1

y2 − y1

f (y2) (8)

+
y2 − x2

y2 − y1
f (y1) +

x2 − y1

y2 − y1
f (y2)

=
2y2 − (x1 + x2)

y2 − y1
f (y1) +

(x1 + x2) − 2y1

y2 − y1
f (y2)

= f (y1) + f (y2) .

which completes the proof.

Also, by looking deeply on Theorem 1.4, we find the left side of inequality
(5) is incorrect. The correction of Theorem 1.4. pointed out as follows :

Theorem 2.2 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates on Δ. Then one has the inequalities:

4s−1f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (9)

≤ f (a, c) + f (b, c) + f (a, d) + f (b, d)

(s + 1)2 .

Indeed, the difference between (5) and (9) is the left hand side, therefore we
will give the proof of the left hand side only, to see the proof of the right hand
side see [2].

Proof. Since f : Δ → R is co–ordinated s–convex on Δ it follows that the
mapping gx : [c, d] → [0,∞), gx (y) = f (x, y) is s–convex on [c, d] for all
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x ∈ [a, b]. Then, by (3) one has:

2s−1gx

(
c + d

2

)
≤ 1

d − c

d∫
c

gx (y) dy ≤ gx (c) + gx (d)

s + 1
, ∀x ∈ [a, b] .

That is,

2s−1f

(
x,

c + d

2

)
≤ 1

d − c

d∫
c

f (x, y) dy ≤ f (x, c) + f (x, d)

s + 1
, ∀x ∈ [a, b] .

Integrating this inequality on [a, b], we have

2s−1

b − a

b∫
a

f

(
x,

c + d

2

)
dx ≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (10)

≤ 1

s + 1

⎡
⎣ 1

b − a

b∫
a

f (x, c) dx +
1

b − a

b∫
a

f (x, d) dx

⎤
⎦ .

A similar arguments applied for the mapping gy : [a, b] → [0,∞), gy (x) =
f (x, y), we get

2s−1

d − c

d∫
c

f

(
a + b

2
, y

)
dy ≤ 1

(d − c) (b − a)

d∫
c

b∫
a

f (x, y) dxdy (11)

≤ 1

s + 1

⎡
⎣ 1

d − c

d∫
c

f (a, y) dy +
1

d − c

d∫
c

f (b, y) dy

⎤
⎦ .

Summing the inequalities (10) and (11), we get the second and the third in-
equalities in (9).

Therefore, by (3), we have

4s−1f

(
a + b

2
,
c + d

2

)
≤ 2s−1

d − c

d∫
c

f

(
a + b

2
, y

)
dy (12)

and

4s−1f

(
a + b

2
,
c + d

2

)
≤ 2s−1

b − a

b∫
a

f

(
x,

c + d

2

)
dx (13)

which give, by addition the first inequality in (9).

The definition of s–convex function (in both sense ) in a rectangle from
the plane, was defined by Alomari and Darus in [4]. In the next section some
Hadamard–type inequalities are considered.
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3 Some Hadamard–Type Inequalities

Consider the bidimensional interval Δ := [a, b] × [c, d] in [0,∞)2 with a < b
and c < d. A mapping f : Δ → R is called s–convex of first sense on Δ if
there exists s1, s2 ∈ (0, 1] with s = s1+s2

2
, such that

f (αx + βz, αy + βw) ≤ αs1f (x, y) + βs2f (z, w) (14)

holds for all (x, y), (z, w) ∈ Δ, α, β ≥ 0 with αs1 + βs2 = 1 and for all fixed
s1, s2 ∈ (0, 1]. We denote this class of functions by MWO1

s1,s2
.

Let f : Δ → R be s–convex on Δ, then f is called co–ordinated s–convex
of first sense on Δ if the partial mappings fy : [a, b] → R, fy (u) = f (u, y)
and fx : [c, d] → R, fx (v) = f (x, v), are s1–, s2–convex functions in the
first sense for all s1, s2 ∈ (0, 1], y ∈ [c, d] and x ∈ [a, b]; respectively, with
s = s1+s2

2
∈ (0, 1].

Also, a mapping f : Δ → R is called s–convex of second sense on Δ if there
exists s1, s2 ∈ (0, 1] with s = s1+s2

2
, such that (14) holds for all (x, y), (z, w)

∈ Δ, α, β ≥ 0 with α + β = 1 and for all fixed s1, s2 ∈ (0, 1]. We denote this
class of functions by MWO2

s1,s2
.

Similarly, we define the s–convex function of second sense on the co–
ordinates, i.e., a function f is called co–ordinated s–convex of second sense on
Δ if the partial mappings fy : [a, b] → R, fy (u) = f (u, y) and fx : [c, d] → R,
fx (v) = f (x, v), are s1–, s2–convex functions in the second sense for all
s1, s2 ∈ (0, 1], y ∈ [c, d] and x ∈ [a, b]; respectively, with s = s1+s2

2
∈ (0, 1].

The following inequalities is considered as a Hadamard–type inequalities
connected with inequality (14) for s–convex function in the second sense on
the co–ordinates.

Theorem 3.1 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function of second sense on the co–ordinates on Δ. Then one has
the inequalities:

(4s1−1 + 4s2−1)

2
f

(
a + b

2
,
c + d

2

)

≤ 2s1−2

b − a

b∫
a

f

(
x,

c + d

2

)
dx +

2s2−2

d − c

d∫
c

f

(
a + b

2
, y

)
dy

≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (15)
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≤ 1

2 (s1 + 1) (b − a)

b∫
a

[f (x, c) + f (x, d)] dx

+
1

2 (s2 + 1) (d − c)

d∫
c

[f (a, y) + f (b, y)] dy

≤ 1

2

(
1

(s1 + 1)2 +
1

(s2 + 1)2

)
[f (a, c) + f (a, d) + f (b, c) + f (b, d)]

The above inequalities are sharp.

Proof. Since f : Δ → R is co–ordinated s–convex on Δ it follows that the
mapping gx : [c, d] → [0,∞), gx (y) = f (x, y) is s1–convex on [c, d] for all
x ∈ [a, b] with s1 ∈ (0, 1]. Then by s–Hadamard’s inequality (3) one has:

2s1−1gx

(
c + d

2

)
≤ 1

d − c

d∫
c

gx (y)dy ≤ gx (c) + gx (d)

s1 + 1
, ∀x ∈ [a, b] .

That is,

2s1−1f

(
x,

c + d

2

)
≤ 1

d − c

d∫
c

f (x, y) dy ≤ f (x, c) + f (x, d)

s1 + 1
, ∀x ∈ [a, b] .

Integrating this inequality on [a, b], we have

2s1−1

b − a

b∫
a

f

(
x,

c + d

2

)
dx ≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (16)

≤ 1

s1 + 1

⎡
⎣ 1

b − a

b∫
a

f (x, c) dx +
1

b − a

b∫
a

f (x, d) dx

⎤
⎦ .

A similar arguments applied for the mapping gy : [a, b] → [0,∞), gy (x) =
f (x, y), where, gy is s2–convex on [a, b] for all y ∈ [c, d] with s2 ∈ (0, 1]

2s2−1

d − c

d∫
c

f

(
a + b

2
, y

)
dy ≤ 1

(d − c) (b − a)

d∫
c

b∫
a

f (x, y) dxdy (17)

≤ 1

s2 + 1

⎡
⎣ 1

d − c

d∫
c

f (a, y) dy +
1

d − c

d∫
c

f (b, y) dy

⎤
⎦ .

Summing the inequalities (16) and (17), we get the second and the third in-
equalities in (15).
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Therefore, by (3), we have

4s2−1

2
f

(
a + b

2
,
c + d

2

)
≤ 2s2−2

d − c

d∫
c

f

(
a + b

2
, y

)
dy (18)

and

4s1−1

2
f

(
a + b

2
,
c + d

2

)
≤ 2s1−2

b − a

b∫
a

f

(
x,

c + d

2

)
dx (19)

which give, by addition the first inequality in (15).

Finally, by the same inequality we can also state:

1

b − a

b∫
a

f (x, c) dx ≤ f (a, c) + f (b, c)

s1 + 1

1

b − a

b∫
a

f (x, d) dx ≤ f (a, d) + f (b, d)

s1 + 1

1

d − c

d∫
c

f (a, y) dy ≤ f (a, c) + f (a, d)

s2 + 1

and

1

d − c

d∫
c

f (b, y) dy ≤ f (b, c) + f (b, d)

s2 + 1

which give, by addition the last inequality in (15).

Remark 3.2 In (15), if s1 = s2 = 1, then (15) reduced to inequality (4).
Also, in (15), if s1 = s2, then (15) reduced to inequality (9).

The following inequalities is considered as a Hadamard–type inequalities con-
nected with inequality (14) for s–convex function in the first sense on the
co–ordinates.

Theorem 3.3 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates in the first sense on Δ. Then one has
the inequalities:

f

(
a + b

2
,
c + d

2

)
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≤ 1

2

⎡
⎣ 1

b − a

b∫
a

f

(
x,

c + d

2

)
dx +

1

d − c

d∫
c

f

(
a + b

2
, y

)
dy

⎤
⎦

≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (20)

≤ 1

2 (s1 + 1) (b − a)

b∫
a

[f (x, c) + s1f (x, d)] dx

+
1

2 (s2 + 1) (d − c)

d∫
c

[f (a, y) + s2f (b, y)] dy

≤ f (a, c) + s1f (a, d) + s1f (b, c) + s2
1f (b, d)

2 (s1 + 1)2

+
f (a, c) + s2f (a, d) + s2f (b, c) + s2

2f (b, d)

2 (s2 + 1)2

The above inequalities are sharp.

Proof. Since f : Δ → R is co–ordinated s–convex in first sense on Δ it
follows that the mapping gx : [c, d] → [0,∞), gx (y) = f (x, y) is s1–convex on
[c, d] for all x ∈ [a, b]. Then by s–Hadamard’s inequality (2) one has:

gx

(
c + d

2

)
≤ 1

d − c

d∫
c

gx (y) dy ≤ gx (c) + s1gx (d)

s1 + 1
, ∀x ∈ [a, b] .

That is,

f

(
x,

c + d

2

)
≤ 1

d − c

d∫
c

f (x, y) dy ≤ f (x, c) + s1f (x, d)

s1 + 1
, ∀x ∈ [a, b] .

Integrating this inequality on [a, b], we have

1

b − a

b∫
a

f

(
x,

c + d

2

)
dx ≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (21)

≤ 1

s1 + 1

⎡
⎣ 1

b − a

b∫
a

f (x, c) dx +
s1

b − a

b∫
a

f (x, d) dx

⎤
⎦ .

A similar arguments applied for the mapping gy : [a, b] → [0,∞), gy (x) =
f (x, y), we get

1

d − c

d∫
c

f

(
a + b

2
, y

)
dy ≤ 1

(d − c) (b − a)

d∫
c

b∫
a

f (x, y) dxdy (22)
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≤ 1

s2 + 1

⎡
⎣ 1

d − c

d∫
c

f (a, y) dy +
s2

d − c

d∫
c

f (b, y) dy

⎤
⎦ .

Summing the inequalities (21) and (22), we get the second and the third in-
equalities in (20).

Therefore, by Hadamard’s inequality (2), we also have:

f

(
a + b

2
,
c + d

2

)
≤ 1

d − c

d∫
c

f

(
a + b

2
, y

)
dy (23)

and

f

(
a + b

2
,
c + d

2

)
≤ 1

b − a

b∫
a

f

(
x,

c + d

2

)
dx (24)

which give, by addition the first inequality in (20).

Finally, by the same inequality we can also state:

1

b − a

b∫
a

f (x, c) dx ≤ f (a, c) + s1f (b, c)

s1 + 1

1

b − a

b∫
a

f (x, d) dx ≤ f (a, d) + s1f (b, d)

s1 + 1

1

d − c

d∫
c

f (a, y) dy ≤ f (a, c) + s2f (a, d)

s2 + 1

and

1

d − c

d∫
c

f (b, y) dy ≤ f (b, c) + s2f (b, d)

s2 + 1

which give, by addition the last inequality in (20).

Remark 3.4 In (20), if s1 = s2 = 1, then (20) reduced to inequality (4).
Also, in (20), if s1 = s2, then (20) reduced to inequality (6).
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