
EURASIP Journal on
Information Security

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11

https://doi.org/10.1186/s13635-018-0081-z

RESEARCH Open Access

HADEC: Hadoop-based live DDoS
detection framework
Sufian Hameed* and Usman Ali

Abstract

Distributed denial of service (DDoS) flooding attacks are one of the main methods to destroy the availability of critical

online services today. These DDoS attacks cannot be prevented ahead of time, and once in place, they overwhelm

the victim with huge volume of traffic and render it incapable of performing normal communication or crashes it

completely. Any delays in detecting the flooding attacks completely halts the network services. With the rapid

increase of DDoS volume and frequency, the new generation of DDoS detection mechanisms are needed to deal with

huge attack volume in reasonable and affordable response time.

In this paper, we propose HADEC, a Hadoop-based live DDoS detection framework to tackle efficient analysis of

flooding attacks by harnessing MapReduce and HDFS. We implemented a counter-based DDoS detection algorithm

for four major flooding attacks (TCP-SYN, HTTP GET, UDP, and ICMP) in MapReduce, consisting of map and reduce

functions. We deployed a testbed to evaluate the performance of HADEC framework for live DDoS detection on

low-end commodity hardware. Based on the experiment, we showed that HADEC is capable of processing and

detecting DDoS attacks in near to real time.

Keywords: DDoS, Flooding attacks, DDoS detection, Hadoop

1 Introduction
DDoS flooding attacks are one of the biggest threats

faced by the critical IT infrastructure, from the simplest

enterprise network to complex corporate networks. DDoS

attacks are here since the very advent of computer net-

works, and they are not going anywhere anytime soon.

The first DDoS attack incident [17] was reported in 1999

by the Computer Incident Advisory Capability (CIAC).

Since then, most of the DoS attacks are distributed in

nature and they continue to grow in frequency, sophisti-

cation, and bandwidth. The main aim of these attacks is

to overload the victim’s machine and make his services

unavailable, leading to revenue losses.

Over the years, DDoS has hit major companies and

Internet infrastructures, incurring significant loss in rev-

enues. Yahoo! experienced one of the first major DDoS

flooding attacks that made their services offline for about

2 h [14]. In October 2002, 9 of the 13 domain name system

(DNS) root servers were shut down for an hour because

of a DDoS flooding attack [10]. During the fourth quarter

*Correspondence: sufian.hameed@nu.edu.pk

IT Security Labs, National University of Computer and Emerging Sciences

(NUCES), Karachi, Pakistan

of 2010, a hacktivist group calledAnonymous orchestrated

major DDoS flooding attacks and brought down the Mas-

tercard, PostFinance, and Visa websites [9]. Most recently,

online banking sites of nine major US banks (i.e., Bank

of America, Citigroup, Wells Fargo, U.S. Bancorp, PNC,

Capital One, Fifth Third Bank, BB&T, and HSBC) have

been continuously the targets of powerful DDoS flooding

attack series [17]. The legacy of DDoS continue to grow

in sophistication and volume with recent attacks breaking

the barrier of hundreds of Gbps [41].

On 21 October 2016, IoT devices (such as printers,

cameras, home routers, and baby monitors) were used to

generate DDoS attack involving malicious DNS lookup

requests from tens of millions of IP addresses [1]. This

attack, at that time, was considered largest of its kind

in the history with an unprecedented rate of 1.2 Tbps.

The main target of the attack was the servers of DYN

Inc., a company that controls much of the Internet’s DNS

infrastructure [25]. This attack was carried out multiple

times which rendered major Internet platforms and ser-

vices unavailable to large swaths of users in Europe and

North America for several hours throughout the day.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-018-0081-z&domain=pdf
http://orcid.org/0000-0003-4683-1988
mailto: sufian.hameed@nu.edu.pk
http://creativecommons.org/licenses/by/4.0/

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 2 of 19

Study of recent attacks reveals that with little effort,

next generation attack tools would be able to enact DDoS

attacks that are thousand times stronger than the ones we

see today [33]. One of the major concerns is that perform-

ing DDoS attack is extremely simple with websites known

as Booters or Stressers that offer DDoS as a service. These

booters provide cheap services, and the costs to perform

a series of attacks is typically just a few dollars [36].

Recently, GitHub was hit by 1.35 Tbps of traffic all at once

[2]. It was themost powerful attack in the history of DDoS,

and the alarming fact is that no botnet was required to

achieve such high traffic volume. The attackers spoofed

GitHub’s IP addresses and took control of its memcached

(a distributed memory system known for high perfor-

mance and demand) instances. The memcached systems

then return 50 times the data of the requests back to the

victim. GitHub called Akamai Prolexic for DDoS miti-

gation service, and the assault dropped off after 8 min.

GitHub was lucky enough to afford robust DDoS miti-

gation services, but for small to medium enterprises and

financial institutions, there is a need for new low cost

DDoS defense mechanisms and architectures that can be

easily deployed on commodity hardware.

The explosive increase in the volume of Internet traf-

fic and sophistication of DDoS attacks have posed serious

challenges on how to analyze the DDoS attacks in a scal-

able and accurate manner. For example, two of the most

popular open-source intrusion detection systems (IDS),

Snort [35] and Bro [32], maintain per-flow state to detect

anomalies. The Internet traffic doubles every year, and

due to thatmonitoring, large amount of traffic in real-time

anomaly detection with conventional IDS has become a

bottleneck. Existing solutions require a lot of resource and

do not add any value to limited resource environment.

Therefore, we need new solutions that can detect DDoS

attack efficiently in near to real time.

In [27], Lee et al. have proposed a DDoS detection

method based on Hadoop [3]. They have used a Hadoop-

based packet processor [26] and devised aMapReduce [7]-

based detection algorithm against the HTTP GET flood-

ing attack. They employ a counter-based DDoS detection

algorithm in MapReduce that counts the total traffic vol-

ume or the number of web page requests for picking out

attackers from the clients. For experiments, they used

multiple Hadoop nodes (max. 10) in parallel to show

the performance gains for DDoS detection. Unfortunately,

their proposed framework, in its current form, can only be

used for offline batch processing of huge volume of traces.

The problem to develop a real time defense system for live

analysis still needs to be tackled.

In this paper, we propose HADEC, a Hadoop-based

live DDoS detection framework. HADEC is a novel

destination-based DDoS defense mechanism that lever-

ages Hadoop to detect live DDoS flooding attacks in wired

networked systems. The real motivation behind this study

is to check the efficacy of scalable defenses against DDoS

flooding attacks using new distributed architectures that

can run on low cost commodity hardware. This will help

small and medium organizations and financial institutes

to protect their infrastructure with in-house low-cost

solutions. HADEC comprises of two main components, a

capturing server and a detection server. Live DDoS starts

with the capturing of live network traffic handled by the

capturing server. The capturing server then processes the

captured traffic to generate log file and transfer them to

the detection server for further processing. The detec-

tion server manages a Hadoop cluster, and on the receipt

of the log file(s), it starts MapReduce-based DDoS detec-

tion jobs on the cluster nodes. The proposed framework

implements a counter-based algorithm to detect four

major DDoS flooding attacks1 (TCP-SYN, UDP, ICMP,

and HTTP GET). These algorithms execute as a reducer

job on the Hadoop detection cluster.

An early version of this work appeared as a short paper

[21] and also as a technical report at arXiv [23]. In this

paper, we provide a more detailed illustration of differ-

ent HADEC components. We have added significant new

results (approx. 50% new) with different attack volumes,

i.e., 80–20 (80% attack traffic and 20% legitimate traffic)

and 60–40 (60% attack traffic and 40% legitimate traf-

fic). 80–20 traffic volume is used to emulate flooding

behavior where attack traffic surpasses the legitimate one,

whereas 60–40 traffic volume is used to emulate low vol-

ume attacks where legitimate and attack traffic volume is

relatively close. We also performed system benchmarks to

show the overall CPU and memory utilized by HADEC

during different phases of data capturing, transfer, and

attack detection. These system benchmarks are impor-

tant to evaluate how well the proposed solution works

on low-end commodity hardware under different stress

conditions.

We deploy a testbed for HADEC on commodity hard-

ware (low-end desktop machine comprising of core i5

CPU), which consists of a capturing server, detection

server, and a cluster of ten physical machines, each con-

nected via a Gigabit LAN. We evaluate HADEC frame-

work for live DDoS detection by varying the attack volume

and cluster nodes. HADEC is capable of analyzing 20 GB

of log file, generated from 300 GBs of attack traffic, in

approx. 8.35 mins on a cluster of 10 nodes. For small log

files representing 1.8 Gbps, the overall detection time is

approximately 21 s. Our system benchmark evaluations

show that during the packet capture phase, the CPU usage

is 50% on average, whereas the CPU usage remained low

with an average of 15% during the log transfer phase. The

capturing phase remains low on memory usage with a

constant at around 1000 MBs (12–13%), while the trans-

fer phase consumes on average 7600 MBs (94%). The

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 3 of 19

benchmarks on Hadoop’s NameNode show reduction in

CPU usage with the increase in cluster size and paral-

lelism.

The rest of the paper is organized as follows. Section 2

describes the state of the art. Section 3 describes the

HADEC framework design. In Section 4, we discuss

the testbed deployment. Section 5 demonstrates the

performance of the proposed framework. Comparison

with existing work and optimization recommendation for

HADEC deployment is discussed in Section 6. Finally, we

conclude the paper in Section 7.

2 Related work
Since the inception of DDoS flooding attacks, several

defense mechanisms have been proposed to date in the

literature [41]. This section highlights the DDoS flood-

ing attacks, followed by a discussion on the application

of Hadoop to combat network anomalies, Botnet- and

DDoS-related attacks.

The DDoS flooding attacks can be categorized into

two types based on the protocol level that is targeted:

network/transport-level attacks (UDP flood, ICMP

flood, DNS flood, TCP SYN flood, etc.) and application-

level attacks (HTTP GET/POST request). The defense

mechanisms against network or transport-level DDoS

flooding attacks roughly falls into four categories:

source-based, destination-based, network-based, and

hybrid (distributed), and the defense mechanisms against

application-level DDoS flooding attacks have two main

categories: destination-based and hybrid (distributed).

Since the application traffic is not accessible at the layer

2 and layer 3, there is no network-based defense mech-

anism for the application-level DDoS. Following is the

summary of features and limitations for the DDoS defense

categories.

– Source-based : In source-based defense mechanism,

the detection and response are deployed at the source

hosts in an attempt to mitigate the attack before it

wastes lots of resources [28, 29]. Accuracy is a major

concern in this approach as it is difficult to

differentiate legitimate and DDoS attack traffic at the

sources with low volume of the traffic. Further, there

is low motivation for deployment at the source ISP

due to added cost for community service.

– Destination-based : In this case the detection and

response mechanisms are deployed at the destination

hosts. Access to the aggregate traffic near the

destination hosts makes the detection of DDoS attack

easier and cheaper, with high accuracy, than other

mechanisms [34, 37, 38]. On the downside,

destination-based mechanisms cannot preempt a

response to the attack before it reaches the victim

and wastes resources on the paths to the victim.

– Network-based : With network-based approach, the

detection and response are deployed at the

intermediate networks (i.e., routers). The rationale

behind this approach is to filter the attack traffic at

the intermediate networks and as close to source as

possible [30, 31]. Network-based DDoS defenses

incur high storage and processing overhead at the

routers, and accurate attack detection is also difficult

due to lack of sufficient aggregated traffic destined for

the victims.

– Hybrid (Distributed): In hybrid approach, there is

coordination among different network components

along the attack path and detection and response

mechanisms are deployed at various locations.

Destination hosts and intermediate networks usually

deploy detection mechanisms, and response usually

occurs at the sources and the upstream routers near

the sources [39, 40]. Hybrid approach is more robust

against DDoS attacks, but due to distributed nature,

it requires more resources at various levels (e.g.,

destination, source, and network) to tackle DDoS

attacks. The complexity and overhead because of the

coordination and communication among distributed

components is also a limiting factor in smooth

deployment of hybrid-based DDoS defenses. Recent

advents in software defined networking (SDN) bring

us new approaches to deal with DDoS attacks in a

collaborative manner. SDN controllers lying in

different autonomous systems (AS) can securely

communicate and transfer attack information with

each other. This enables efficient notification along

the path of an ongoing attack and effective filtering of

trafic near the source of attack, thus saving valuable

time and network resources [22, 24].

Analysis of logs and network flows for anomaly detec-

tion has been a problem in the information security for

decades. New big data technologies, such as Hadoop,

has attracted the interest of the security community for

its promised ability to analyze and correlate security-

related heterogeneous data efficiently and at unprece-

dented scale and speeds [15]. In the rest of the section,

we review some recent techniques (other than [27] , dis-

cussed in Section 1) where Hadoop-based frameworks

are used to build affordable infrastructures for security

applications.

BotCloud [19] propose a scalable P2P detection mech-

anism based on MapReduce and combination of host

and network approaches [20]. First, they generate large

dataset of Netflow data [16] on an individual operator.

Next, they applied a PageRank algorithm on the Netflow

traces to differentiate the dependency of hosts connected

in P2P fashion for the detection of botnets. They moved

the PageRank algorithm toMapReduce, and the PageRank

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 4 of 19

algorithm executes on data nodes of Hadoop cluster for

efficient execution.

Temporal and spatial traffic structures are essential for

anomaly detectors to accurately drive the statistics from

network traffic. Hadoop divides the data into multiple

same size blocks and distributes them in a cluster of

data nodes to be processed independently. This could

introduce a difficulty in analysis of network traffic where

related packets may be spread across different block, thus

dislocating traffic structures. Hashdoop [18] resolves this

potential weakness by using hash function to divide traffic

into blocks that preserve the spatial and temporal traffic

structures. In this way, Hashdoop conserves all the advan-

tages of the MapReduce model for accurate and efficient

anomaly detection of network traffic.

3 Hadoop DDoS detection framework
This section gives insights about the working of our pro-

posed framework. The framework is fully automated,

which captures the log, transfers them to the Hadoop

detection cluster, and starts the detection automati-

cally. The Hadoop-based live DDoS detection framework

(HADEC) comprise of four major phases (see Fig. 1). By

using this approach, we are able to detect DDoS flooding

attack in close to real time.

1. Network traffic capturing and log generation.

2. Log transfer.

3. DDoS detection.

4. Result notification.

Each of the abovementioned phases is implemented as

separate components that communicate with each other

to perform their assigned task. Traffic capturing and log

generation are handled at the capturing server, whereas

DDoS detection and result notification are performed by

Fig. 1 Different phases of HADEC

the detection server. Log transfer is handled through web

services. In the following subsections, we have explained

the functionalities for each of the phase/component in

detail.

3.1 Traffic capturing and log generation

Live DDoS detection starts with the capturing of network

traffic. HADEC provides a web interface through which

the admin can tune the capturing server with desired

parameters. These parameters are file size, number of files

to be captured before initializing the detection phase, and

the path to save the captured file. Once the admin is done

with the configurations, the Traffic Handler sends the

property file to the Echo Class (a java utility to generate

logs) and starts the capturing of live network traffic (see

Fig. 2).

HADEC use the Tshark library [13] to capture live net-

work traffic. Tshark is an open source library capable of

capturing huge amount of traffic. Under default settings,

Tshark library runs through command line and outputs

the result on console. To log the traffic for later use,

we developed a java-based utility (Echo Class) to create

a pipeline with Tshark and read all the output packets

from Tshark. We have also tuned Tshark to output only

the relevant information required during detection phase.

This includes information of timestamps, source IP, dst IP,

packet protocol, and brief packet header information. The

Fig. 2 Network traffic capturing and log generation component

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 5 of 19

following are the snippets for TCP (SYN), HTTP, UDP,

and ICMP packets that are logged in the file.

TCP (SYN)

17956 45.406170 10.12.32.1 -> 10.12.32.101

TCP 119 [TCP Retransmission] 0 > 480 [SYN]

Seq=0 Win=10000 Len=43 MSS=1452 SACK_PERM=1

TSval=422940867 TSecr=0 WS=32

HTTP

46737 2641.808087 10.12.32.1 -> 10.12.32.101

HTTP 653 GET /posts/17076163/ivc/dddc?

_=1432840178190 HTTP/1.1

UDP

139875 138.04015 10.12.32.1 -> 10.12.32.101

UDP 50 Src port: 55348 Dst port: http

ICMP

229883 2658.8827 10.12.32.1 -> 10.12.32.1O1

ICMP 42 Echo (ping) request id=0x0001,

seq=11157/38187, ttl=63 (reply in 229884)

As discussed above, the Traffic Handler sends the prop-

erty file to the Echo Class with the desired set of param-

eters (file size, file count for detection, and storage path

on the capturing server) set by the admin. Echo Class uses

these parameters to generate a log file, at the specified

location, when it reads the required amount of data from

Tshark. Once the log file is generated, the Echo Class also

notifies the Traffic Handler (see Fig. 2).

3.2 Log transfer phase

After the log file is generated, the Traffic Handler will

notify the detection server and also share the file infor-

mation (file name, file path, server name, etc.) with it via

a webservice. The detection server will initiate a Secure

Copy or SCP protocol [12] (with pre-configured cre-

dentials) with the capturing server and transfer the log

file from the capturing server (using the already shared

name/path information) into its local file system (see

Fig. 3). The capturing server has two network interfaces,

one for incoming traffic and one to communicate with the

detection server.

Since the detection server mainly works as a NameN-

ode, i.e., the centerpiece of the Hadoop cluster and HDFS

(Hadoop distributed file system), it has to transfer the log

file(s) from local storage to HDFS. On successful trans-

fer of log file into HDFS, the detection server sends a

positive acknowledgement to the capturing server and

both the servers delete that specific file from their local

storage to maintain healthy storage capacity. Before start-

ing the DDoS detection process, the detection server

will wait for the final acknowledgment from the cap-

turing server. This acknowledgement validates that the

desired number of files of a particular size (set via param-

eters by admin) has been transferred to HDFS before

the execution of MapReduce-based DDoS detection algo-

rithm. There is no particular restriction on the mini-

mum file count before the detection starts; it could be

set to one.

3.3 Detection phase

The Apache Hadoop consists of two core components,

i.e., HDFS (storage part) and MapReduce (processing

part). Hadoop’s central management node also known as

NameNode splits the data into same size large blocks and

distributes them among the cluster nodes (data nodes).

Hadoop MapReduce transfers packaged code for nodes to

process in parallel, the data each node is responsible to

process.

In HADEC, the detection server mainly serves as

the Hadoop’s NameNode, which is the centerpiece

of the Hadoop DDoS detection cluster. On success-

ful transfer of log file(s), the detection server splits

the file into same size blocks and starts MapReduce

DDoS detection jobs on cluster nodes (see Fig. 4). We

have discussed MapReduce job analyzer and counter-

based DDoS detection algorithm in Section 3.5. Once

the detection task is finished, the results are saved

into HDFS.

Fig. 3 Log transfer phase

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 6 of 19

Fig. 4 DDoS detection on Hadoop cluster

3.4 Result notification

Once the execution of all theMapReduce tasks is finished,

Hadoop will save the results in HDFS. The detection

server will then parse the result file from HDFS and send

the information about the attackers back to the admin-

istrator via the capturing server. Once the results are

notified, both the input and output folders from HDFS

will be deleted for better memory management by the

detection server. Figure 5 presents a holistic illustration of

HADEC framework.

3.5 MapReduce job and DDoS detection

A MapReduce program is composed of a map task that

performs filtering and sorting and a reduce task that per-

forms a summary operation. Here, we have explained how

HADEC has implemented detection of DDoS flooding

Fig. 5 HADEC: Hadoop-based DDoS setection framework

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 7 of 19

attacks (UDP, HTTP GET, ICMP, and TCP-SYN) as a

MapReduce task on Hadoop cluster using counter-based

algorithm.

3.5.1 HADECmapper job

After starting MapReduce task, the first task is a map-

per task which takes input from HDFS as a block. In

our case, the block will represent a file in text for-

mat and the input for each iteration of mapper func-

tion will be a single line from the file. Any single line

in the file contains only brief information of a network

packet captured through Tshark (see Section 3.1). The

term network packet used in the rest of this section

represents a single line content of the file read as a

mapper input.

Mapper job takes pair of data as input and returns a list

of pairs (key, value). Mapper output type may differ from

mapper’s input type; in our case, the input of mapper is

pair of any number i and the network packet. The output

is a list of pair (key, value) with key as the source IP address

and value as a network packet. Mapper job also use hash-

ing for combining all the logs of data on the basis of source

IP address, so that it becomes easier for reducer to analyze

the attack traffic.

After all the mapper have finished their jobs, the data or

worker nodes perform a shuffle step. During shuffling, the

nodes redistribute the data based on the output keys, such

that all data belonging to one key are located on the same

worker node (see Fig. 6).

In HADEC, for analysis and detection of UDP flooding

attack, the mapper task filters out the packets having UDP

information. In particular, themapper function will search

packets having QUIC / UDP information. QUIC stands

for Quick UDP Internet connection. For the packet that

contains the desired information, the mapper function

generates an output in the form of pairs (key, value). The

pseudocode for mapper function is as follows.

%UDP detection mapper function

function Map is

input: integer i, a network packet

begin function

filter packet with QUIC/UDP type

if packet does not contain information

then

ignore that packet

else

produce one output record(sourceIP,packet)

end if

end function

For ICMP-, TCP-SYN-, and HTTP-GET-based flooding

attacks, the mapper function will search for SYN, ICMP,

and HTTP-GET packet type information respectively.

3.5.2 HADEC reducer job and counter-based algorithm

Once the mapper tasks are completed, the reducer will

start operating on the list of key/value pairs (i.e., IP/packet

pairs) produced by the mapper functions. The reducers

are assigned a group with unique key; it means that all the

packets with unique key (unique source IP in our case)

will be assigned to one reducer. We can configure Hadoop

to run reducer jobs on varying number of data nodes. For

efficiency and performance, it is very important to iden-

tify the correct number of reducers required for finalizing

the analysis job. HADEC runs counter-based algorithm

to detect DDoS flooding attacks on reducer nodes. The

reducer function takes input in key/value pair (source IP,

packet of type X) and produces a single key/value pair

(source IP, no. of packets of type X) output after counting

the number instance (see Fig. 6).

Fig. 6Mapper and reducer operations

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 8 of 19

Counter-based algorithm is the simplest, yet very effec-

tive algorithm to analyze the DDoS flooding attacks by

monitoring the traffic volumes for source IP addresses.

The algorithm counts all the incoming packets, of a par-

ticular type (UDP, ICMP, HTTP ...etc.), associated with

a unique IP address in a unit time. If the traffic volume

or count for source IP exceeds the pre-defined thresh-

old, that particular IP will be declared as an attacker.

The pseudocode for reducer function using counter-based

algorithm for UDP attack is as follows.

/*%Reducer function for UDP attack

detection*/

function Reduce is

input: <source IP, UDP Packets>

begin function

count :=count # of packets for source IP

if(count is greater than THRESHOLD)

begin if

/*This IP declares to be the Attacker IP*/

produce one output <source IP, #of Packets>

end if

else

Ignore (do nothing)

end function

4 HADEC testbed
In this section, we have discussed the testbed deployment

of HADEC and how we have evaluated the performance

of the proposed framework with different experiments.

HADEC performs two main tasks, (a) capturing and

transfer of network traffic and (b) detection of DDoS

flooding attacks. For capturing the traffic, we use a sin-

gle node capturing server to capture, process, and send

the network traffic to detection server. For DDoS detec-

tion, we deploy a single node detection server (also acts

as NameNode of Hadoop cluster) and a Hadoop detec-

tion cluster consisting of ten nodes. Each node in our

testbed (one capturing server, one detection server, and

ten Hadoop data nodes) consists of 2.60 GHz Intel core

i5 CPU, 8 GB RAM, 500 GB HDD, and 1 Gbps Ethernet

card. All the nodes in HADEC used Ubuntu 14.04 and are

connected over a Gigabit LAN.We have usedHadoop ver-

sion 2.6.0 for our cluster and YARN [4] to handle all the

JobTracker and TaskTracker functionality.

There are several attack generation tools that are avail-

able online, such as LOIC [6], Scapy [11], Mausezahn

[8], Iperf [5], etc. For our testbed evaluations, we have

mainly used Mausezahn, because of its ability to generate

huge amount of traffic with random IPs to emulate dif-

ferent number of attackers. We deployed three dedicated

attacker nodes along with couple of legitimate users to

flood the victim machine (capturing server) with a traffic

volume of up till 913Mbps (practically highest possible for

a Gigabit LAN). HADEC testbed is shown in Fig. 7. For

evaluations, we have only focused on UDP flooding attack

due to its tendency to reach high volume from limited

number of hosts. Any given measurement or datapoint in

the result graphs is an average of five readings. We would

also like to add that for all the evaluations, we have used

only a single reducer, different variations were tried but

there was no performance gains.

5 Performance evaluation
We have considered different factors for the performance

evaluation of our proposed framework. The overall per-

formance of HADEC depends on:

– The time taken for capturing and transferring the log

files.

– The number of attackers and attack volume.

– The execution time of DDoS detection algorithm on

the Hadoop cluster.

– The system benchmarks (CPU and memory usage).

For our evaluations, we varied different parameters like

log file size, Hadoop cluster size, attack volume, Hadoop

splits or block size, and threshold for counter-based algo-

rithm, and measured their impact on the performance of

HADEC. The admin can change these parameters on the

fly in the configuration settings to adjust any errors or

bias present in the results. These parameters are briefly

described as follows.

– File size : We evaluate the performance of our

framework with different sizes of log files. We

consider log file size of 10 MB, 50 MB, 100 MB,

200 MB, 400 MB, 600 MB, 800 MB, and 1 GB and

evaluate how well the framework performs with

varying log size.
– Cluster size : Hadoop distributes the processing

among the available cluster nodes (datanodes). This

means that increase in the cluster size will effect

detection phase performance. We used varying

cluster size between 2, 4, 6, 8, and 10 datanodes to

observe the performance enhancement.
– Attack volume : For our evaluations, we used two

with different attack volumes, i.e., 80–20 (80% attack

traffic and 20% legitimate traffic) and 60–40 (60%

attack traffic and 40% legitimate traffic). 80–20 traffic

volume is used to emulate flooding behavior where

attack traffic surpasses the legitimate one, whereas

60–40 traffic volume is used to emulate low volume

attacks where legitimate and attack traffic volume is

relatively close.
– Block size : Hadoop’s NameNode splits the log file

data into same size large blocks and distributes them

among the cluster nodes (data nodes). We evaluated

HADEC with different block sizes since they directly

influence the degree of parallelism.

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 9 of 19

Fig. 7 HADEC testbed

– Threshold : This marks the cutoff frequency after

which any particular IP is marked as attacker. We

have used two threshold values of 500 and 1000

packets per second for our evaluations.

5.1 Traffic capturing and file transfer

The capturing server works on two major tasks simulta-

neously. First, it captures huge amount of network traffic

(913 Mbps in our testbed) and transforms it into log

file(s). Second, it transfers the log file(s) to the detection

server for further processing. This simultaneous execu-

tion of capture and transfer operations are important for

live analysis of DDoS flooding attack, but on the other

hand, both the operations compete for resources.

Figure 8 shows the capturing and transfer time taken by

the capturing server for log files of different sizes. The cap-

turing time is almost linear to the increase in file size. It

takes approximately 2 s to log a file of 10 MB and extends

to 142 s for 1 GB file. File transfer takes 14 s to transfer

10MB file and approx. 35 s for 1GB file. This shows a clear

improvement in throughput with the increase in file size.

Here, it is also interesting to note that the transfer opera-

tion has to compete for bandwidth, and during peak time,

more than 90% of the bandwidth is being consumed by the

Fig. 8 Capture and transfer time of a log file (file size is in MBs and time is in seconds)

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 10 of 19

attack traffic. We already discussed above that all the eval-

uation results are an average of five readings. However, we

rounded the average to whole number in Fig. 8. This is

because the unit of evaluation is in seconds and we had

clear difference in results for different parameters. For all

the remaining results, we kept the value till two decimal

places because at time it is hard to observe any difference

between different experimental settings.

5.2 Number of attackers and attack volume

HADEC use counter-based algorithm to detect attackers.

This means that during the DDoS flooding attack, any

particular attacker has to cross certain volume thresh-

old to be detected. It is imperative to study the number

of attackers one file can capture in it. Table 1 presents

the relationship between the size of log file with the total

number of attackers and the aggregate traffic volume.

According to Table 1, the capturing server has to analyze

approx. 0.24 GBs of network traffic to generate a log file of

10 MB and it could represent 100 plus attackers that cross

the flooding frequency threshold of 500–1000 packet. By

increasing the log file size, the capability to capture accu-

rate information related to attackers also increases. There

is a trade-off between the log file size and overall detec-

tion rate; therefore, the admin will have to adjust the

framework parameters that will best fit in different attack

scenarios.

5.3 DDoS detection on Hadoop cluster

In this section, we evaluate the performance of DDoS

detection on the Hadoop cluster. For our evaluations,

we used different sizes of the log files (10, 50, 100, 200,

400, 600, 800, and 1000 MBs), different threshold values

(500 and 1000) for counter-based detection algorithm, and

attack volume of 80–20 and 60–40. For all the evaluations

in this section, we used fix Hadoop data block of 128 MB.

Figure 9 shows the detection time on Hadoop clus-

ter with 500 threshold. With the increase in file size, the

number of attack traffic also increases, which affects the

Table 1 Relationship of log file size with no. of attackers and

traffic volume

File size (MB) No. of attackers Traffic vol.

10 100 0.24 GB

50 500 0.67 GB

100 1500 1.67 GB

200 2000 3.23 GB

400 4000 5.91 GB

600 6000 9.14 GB

800 8000 12.37 GB

1000 10,000 15.83 GB

mapper and reducer operation frequency and time. In

short, with the increase in file size, the detection time

increases and it will also increase the detection rate or the

number of attackers IPs, which is a plus point.

Increase in cluster size hardly affects the detection time

for files less than 400 MB in size; on the contrary, in some

cases, it might increase a little due to added management

cost. Hadoop enables parallelism by splitting the files into

different blocks of specified size. Files smaller than the

Hadoop block size are not split over multiple nodes for

execution. Therefore, the overall detection time remains

the same over different cluster node.

Starting from the file size of 400 MB, the detection time

improves with the increase of cluster size. For bigger files

like 800MB and 1000MB, Hadoop works more efficiently.

We can see that the detection time reduces around 27 to

37 s for 800 and 1000MB files respectively, when the clus-

ter size is increased from 2 to 10 nodes. This is because

with 1000 MB file, there are nine blocks, and with the

increase in cluster size, Hadoop will assign the task to

different nodes in parallel.

We have evaluated our detection phase on the basis of

two different attack volumes: (1) 60–40 attack volume and

(2) 80–20 attack volume. The main difference between

these two volumes is that in 80% attack volume, the total

time for detection slightly increases due to increase in

the number of reducer operations. In 80% attack volume,

the number of unique IPs is more than 60% attack vol-

ume which slightly increases (couple of seconds only) the

reducer time for 80% attack volume file size. Again, this

difference is only visible for larger log files.

Figure 10 shows the detection time on Hadoop clus-

ter with a threshold value of 1000. In this experiment,

we only change the threshold value and all the remain-

ing settings are similar to the Fig. 9. With the increase in

threshold value, the total number of inputs for reducers

also increases and this will increase the reducer time. This

is the reason why majority of the results shown in Fig. 10

has couple of second higher detection time as compared

to the results in Fig. 9.

5.4 Effect of different block sizes

Figure 11 show the effect of varying block sizes on the

detection time for 1 GB file. In this experiment, we use fix

threshold of 500, 80–20 attack volume, and three different

blocks of size 32, 64, and 128 MB. For 1 GB file the block

size of 128 MB gives the maximum performance gains in

terms of detection time with the increase in cluster nodes.

With smaller block size, there are more splits, resulting

in multiple tasks being schedule on a mapper and adds

management overhead.

The effect of cluster size is prominent on large files. This

is because with large files, Hadoop can effectively split

the files in multiple blocks and distribute on the available

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 11 of 19

Fig. 9 Detection time at Hadoop cluster with 500 threshold (detection time is measured in seconds and cluster size varies from 2 to 10 nodes). a

80–20 attack volume .b 60–40 attack volume

cluster nodes. Figure 12a and 12b show the effect of dif-

ferent block size and cluster node on the detection time

for 10 GB and 20 GB respectively, with a fix threshold

of 500 and 80–20 attack volume. One hundred twenty-

eight megabyte block size gives the most efficient results;

this is because when the number of blocks increases, the

resource manager in Hadoop needs to manage each of

the blocks and its result. Thus, it will take more time to

manage each task. For larger block size, there is only one

map task to process the whole large block. On a 10 GB

file with a block size of 128 MB, Hadoop finished the

detection task in approx. 7.5 min with a cluster size of 2

nodes. The detection time goes down to approx 4.5 mins

when the cluster size is increased to 10 nodes. For 20 GB

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 12 of 19

Fig. 10 Detection time at Hadoop cluster with 1000 threshold (detection time is measured in seconds and cluster size varies from 2 to 10 nodes). a

80–20 attack volume .b 60–40 attack volume

file with a block size of 128 MB, the time to finish the

detection task is 14.6 min and 8.3 mins on a cluster of 2

and 10 nodes respectively. If we approximate the numbers

in Table 1, HADEC can effectively resolve 100K attack-

ers for an aggregate traffic volume of 159 GBs with 10 GB

of log file in just 4.5 min. These numbers are doubled for

20 GB.

5.5 Overall framework performance

Figures 13 and 14 show the overall performance of our

proposed framework to detect the DDoS attacks. These

numbers present the total time required for capturing,

processing, transferring, and detection with different file

sizes. For the experiments in Fig. 13a, we have used 80–

20 attack volume, 128 MB block size, and 500 threshold.

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 13 of 19

Fig. 11 Detection time with different block sizes on 1 GB file (detection time is measured in seconds and cluster size varies from 2 to 10 nodes)

For the experiments in Fig. 14a, we have only changed

the threshold to 1000. The experiments in Fig. 13b and

Fig. 14b used 60–40 attack volume with 500 and 1000

threshold respectively.

In Fig. 13a, we can observe that with the increase in

the file size, the overall overhead of capturing and trans-

ferring phase increases. A 10 MB file takes approx. 16 s

(42%) in capturing/transferring phase and 21 s in detec-

tion phase. The best case of 1 GB file (10 node cluster)

takes 178 s (77%) in capturing/transferring phase and just

50 s in detection phase. On the whole, it takes some-

where between 4.3 and 3.82 min to analyze 1 GB of log

file that can resolve 10K attackers and generated from

an aggregate attack volume of 15.83 GBs. The variation

of threshold and attack volume in Fig. 14a, Fig. 13b, and

Fig. 14b slightly effects the overall detection time with

couple of seconds.

5.6 System benchmarks

In this section, we evaluated the system benchmarks (CPU

and memory usage) for the capturing, transferring, and

detection phases in HADEC and log the readings every

second. For the experiments, we used fix Hadoop block

of 128 MB, threshold of 500, and varied file sizes (10,

50, 100, 200, 400, 600, 800, and 1000 MB) with different

number of cluster nodes. For the benchmark evaluations,

we ran all the phases (capturing, transfer, and detection)

in isolation to capture the performance of each phase

without any external influence. Each phase shows a dif-

ferent CPU and memory usage pattern (see Table 2 for

average usage). However, we observed that varying the

experimental parameters like file size made no clear dif-

ference on CPU and memory usage within each phase

(capturing, transfer, and detection). Thus, plotting CPU

and memory usage for all the different file sizes results

in overlapping plots that are illegible, confusing, and hard

to analyze. The following sections discuss average system

benchmarks during each phase of the proposed frame-

work.

5.6.1 Capture phase benchmarks

The CPU measurement results show that there is no clear

difference of varying file size on the CPU usage. The CPU

usage largely remains between the range of 20 to 80% with

an average of 50%.

The memory usage remained constant at around

1000 MB mark which is approximately 12–13% of the

available memory.

The length of the experiments depends on the size of the

file being captured. Once the required size is achieved, the

capturing process stops and the CPU and memory usage

smooths out within couple of seconds.

5.6.2 Transfer phase benchmarks

During the file transfer, the CPU usage is much lower

than the capturing phase. The CPU usage mainly remains

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 14 of 19

Fig. 12 Effect of block size on huge files (detection time is measured in minutes and cluster size varies from 2 to 10 nodes). a 10 GB file. b 20 GB file

between the range of 10 to 25% with an average of 15%.

When it comes to memory usage, the transfer phase con-

sumes an average of 7600 MBs which is approximately

94% of the available memory.

The length of the experiments depends on the size of

the file being transferred to the detection server. Once the

file is completely transferred, the CPU and memory usage

smooths out within couple of seconds.

5.6.3 Detection phase benchmarks at the Hadoop

NameNode

For the benchmarks at the detection phase, we varied

the number of Hadoop cluster nodes for different file

sizes and observed the CPU and memory usage at the

NameNode.

The memory usage remained the same in overall detec-

tion phase, and on average, the memory usage remained

between 85 and 95%. The CPU usage on average remained

below 40%. In NameNode, we observed that with the

increase in cluster size, the CPU usage decreases. Further,

we also observed that when parallelism occurs in Hadoop

due to bigger file size, the NameNode CPU usage become

lower.

6 Comparison with existing work and

optimization recommendations
This papers uses destination-based approach due to easy

and cheaper DDoS detection with high accuracy. We

leverage Hadoop to solve the scalability issue to detect

multiple attacks from a huge volume of traffic by parallel

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 15 of 19

Fig. 13 Total time to detect DDoS attack in HADEC with 500 threshold (detection time is measured in seconds and cluster size varies from 2 to 10

nodes). a 80–20 attack volume and 500 threshold. b 60–40 attack volume and 500 threshold

data processing. Traditional computational architectures

mainly deploy single host-based approaches and enhance

memory efficiency or customize process complexity.

Initially, Lee and Lee [27] proposed to use Hadoop for

DDoS detection in a position paper. However, they only

performed offline analysis on the traffic logs and their

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 16 of 19

Fig. 14 Total time to detect DDoS attack in HADEC with 1000 threshold (detection time is measured in seconds and cluster size varies from 2 to 10

nodes). a 80–20 attack volume and 1000 threshold. b 60–40 attack volume and 1000 threshold

framework was also discussed like a blackbox. We cov-

ered all the design and implementation aspects and thor-

oughly evaluated live network to measure the efficacy

of using Hadoop against DDoS. This is the first effort

that prototyped a complete framework against flood-

ing DDoS using Hadoop, and we extensively evaluated

it as well.

The primary motivation behind this work was to

present a framework based on distributed architecture

that can handle high volume flooding attacks using low-

end commodity hardware. This will ease the burden

on small/medium enterprises and financial institute to

deploy in-house cheap defenses and essentially save huge

costs incurred from the third party DDoS mitigation

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 17 of 19

Table 2 System benchmarks (average CPU and memory usage)

during capture, transfer, and detection phases

Phase CPU usage % Memory usage (%)

Capture phase 50 13

Transfer phase 15 94

Detection phase at NameNode 40 90

service providers. The testbed of our framework is divided

into capturing and detection (Hadoop) server. This is a

design choice to deploy HADEC on low-end machines

(just core i5 with 8 GB ram) for real efficacy. For eval-

uations, we used desktop machines (core i5) with low

computational power. Unlike [27], we extensively evalu-

ated our frame by varying different parameters like log file

size, attack volume, Hadoop cluster size, Hadoop splits or

block size, and threshold for counter-based algorithm, and

measured their impact on the performance of HADEC

(like execution time and system benchmarks). These eval-

uation gave us insights on the strength and bottlenecks of

the proposed framework and using this information sys-

tem admin can customize their deployment strategy for

optimal results.

Based on the results presented in this paper, we can

conclude that HADEC is capable of analyzing high vol-

ume of DDoS flooding attacks in scalable manner. Several

gigabytes of attack traffic can be analyzed in couple of

minutes (from capturing to detecting). This also involves

the bootstrapping time, i.e., initially when traffic was being

captured the detection was idle. For an ongoing attack,

both phases (capturing and detection) will be executing

simultaneously and detection would be more effective. By

using small size for log file, the overall detection time can

be reduced to couple of seconds (30–40 s). But small log

files also have an inherent limitation to the number of

attacker’s they can track. There is no single recommended

setting; the admin will have to tweak the framework con-

figuration that best match their requirement. We also

noticed that with smaller files, Hadoop does not pro-

vide parallelism. This means that if any admin configures

HADEC to work on small files of under 400MB, there will

be no point in setting up multiple node cluster. A single

or two node clusters of Hadoop will do the job within few

minutes (2–3) with the hardware settings we used in our

testbed.

In our evaluations of HADEC, capturing and transfer-

ring phase showed the performance overhead and major-

ity of the framework time was spent in these phases. This

problem could be easily resolved by using reasonable to

high-end server optimized for traffic operations, instead

of mid-level core i5 desktop that are used in our testbed.

A better approach, for banks and financial institutions,

would be to deploy a network tap (custommonitoring and

recording devices to capture and mirror network traffic)

instead of a desktop system to capture and transfer the

logs to detection server. A network tap with traffic mir-

roring capacity of 40–60 Gbps would range between 3000

and 4000 $ (from different vendors like Gigamon, Data-

Com, Dualcom, etc.), and it would help transfer the log

files representing 60 Gbps (60 Gb or 7.5 GBs will generate

a log of approx. 550 MBs) of attack to the detection server

in just matter of seconds and the attack logs can be fur-

ther analyzed at the detection server within aminute. This

cost effective (under 4K–6K $) solution would serve the

defense needs of medium enterprises and financial insti-

tutions and help them save subscription cost to third party

DDoS Mitigation services like Akamai Prolexic. Thus, a

more effective and cost efficient deployment would be to

use only couple of cluster nodes and configure a Network

Tap as per traffic requirement for packet capturing and

processing.

7 Conclusions
In this paper, we present HADEC, a scalable Hadoop-

based live DDoS detection framework that is capable of

analyzing DDoS attacks in affordable time. HADEC cap-

tures live network traffic, processess it to log relevant

information in brief form, and usesMapReduce andHDFS

to run detection algorithm for DDoS flooding attacks.

HADEC solves the scalability, memory inefficiency, and

process complexity issues of conventional solution by uti-

lizing parallel data processing promised by Hadoop. The

evaluation results showed that HADEC would need less

than 5 min to process (from capturing to detecting) 1 GB

of log file, generated from approx. 15.83 GBs of live net-

work traffic. With small log file, the overall detection time

can be further reduced to couple of seconds.

Based on the system benchmarks, we conclude that

packet capturing is more CPU intensive as compared to

log transfer phase. On the other hand, data log transfer

consumes way more memory than the data capture phase.

Further, the increase in cluster size and parallelism ease

out the CPU usage at the Hadoop NameNode. We have

observed that capturing of live network traffic incurs the

real performance overhead for HADEC in terms of time.

In worse case, the capturing phase consumes 77% of the

overall detection time. As a future work, HADEC frame-

work may allow potential optimizations to improve the

capturing efficiency.

Endnote
1There is no silver bullet when it comes to DDoS

defense. There are other forms of sophisticated DDoS

attacks in the wild like reflected attacks, drive by attacks,

resource attacks, flash-crowds, etc. However, this paper

focus on designing and developing a Hadoop-based live

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 18 of 19

DDoS detection framework with flooding attacks as a

proof of concept example. This framework will help to

build similar systems for other attack types.

Acknowledgements

We would like to thank the CS department of NUCES for providing us the

testbed infrastructure. Special thanks to Mr. Talha Shamim Jafri (network

manager) for his continuous help and support to keep the lab up and running.

Authors’ contributions

Both authors have made substantial intellectual contribution from design,

architecture, testbed deployment, evaluations, and writeup of this manuscript.

Both authors read and approved the final manuscript.

Authors’ information

Sufian Hameed received MSc in Media Information from RWTH-Aachen,

Germany, in 2008 and received PHD in Information Security from George

August University Goettingen, Germany in 2012. He currently hold a position

of Assistant Professor in Department of Computer Science, National University

of Computer and Emerging Sciences, Pakistan. His research interests revolve

around all aspects of applied Computer Security, with an emphasis on

network security, web security, mobile security, and secure architectures and

protocols for Cloud and IoTs.

Usman Ali started his education in Computer Science from COMSATS

University, Pakistan, from where he received his BS(CS) in the 2012. He did his

MS-CS from National University of Computer and Emerging Sciences in 2015.

His area of research interest is Machine Learning and Big Data Analysis. He is

currently working as Software Engineer in Journey Xp.

Competing interests

There are no non-financial competing interests (political, personal, religious,

ideological, academic, intellectual, commercial or any other) to declare in

relation to this manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Received: 27 September 2017 Accepted: 12 July 2018

References

1. Dyn cyberattack. www.theguardian.com/technology/2016/oct/26/ddos-

attack-dyn-mirai-botnet. Accessed 09 July 2018

2. Github ddos attack. www.wired.com/story/github-ddos-memcached/.

Accessed 09 July 2018

3. Hadoop. https://hadoop.apache.org/. Accessed 09 July 2018

4. Hadoop yarn. http://hortonworks.com/hadoop/yarn/. Accessed 09 July

2018

5. Iperf: network performance measurement tool. https://iperf.fr/. Accessed

09 July 2018

6. Loic: a network stress testing application. http://sourceforge.net/projects/

loic/. Accessed 09 July 2018

7. Mapreduce. http://wiki.apache.org/hadoop/MapReduce. Accessed 09

July 2018

8. Mausezahn. https://github.com/uweber/mausezahn. Accessed 09 July

2018

9. Operation Payback cripples MasterCard site in revenge for WikiLeaks ban,

dec. 8, 2010. http://www.guardian.co.uk. Accessed 09 July 2018

10. Powerful attack cripples internet, oct. 23, 2002. http://www.greenspun.

com/. Accessed 09 July 2018

11. Scapy. http://www.secdev.org/projects/scapy/. Accessed 09 July 2018

12. Secure copy. http://linux.die.net/man/1/scp. Accessed 09 July 2018

13. Tshark: network analyzer. www.wireshark.org/docs/man-pages/tshark.

html. Accessed 09 July 2018

14. Yahoo on trail of site hackers, wired.com, Feb. 8, 2000. http://www.wired.

com/. Accessed 09 July 2018

15. AA Cárdenas, PK Manadhata, SP Rajan, Big Data Analytics for Security. IEEE

Security & Privacy. 11(6), 74–76 (2013). https://doi.org/10.1109/MSP.2013.

138

16. B Claise, Cisco systems netflow services export version 9, rfc 3954

(informational) (2004)

17. PJ Criscuolo, Distributed denial of service: Trin00, tribe flood network,

tribe flood network 2000, and stacheldraht ciac-2319 (2000). Technical

report, DTIC Document

18. R Fontugne, J Mazel, K Fukuda, in 2014 IEEE Conference on Computer

CommunicationsWorkshops (INFOCOMWKSHPS). Hashdoop: A

MapReduce framework for network anomaly detection, (Toronto, 2014),

pp. 494–499. https://doi.org/10.1109/INFCOMW.2014.6849281

19. J Francois, S Wang, W Bronzi, R State, T Engel, in 2011 IEEE International

Workshop on Information Forensics and Security. BotCloud: Detecting

botnets using MapReduce, (Iguacu Falls, 2011), pp. 1–6. https://doi.org/

10.1109/WIFS.2011.6123125

20. J Francois, S Wang, R State, T Engel, ed. by J Domingo-Pascual, P Manzoni,

S Palazzo, A Pont, and C Scoglio. NETWORKING 2011, volume 6640 of

Lecture Notes in Computer Science (Springer, Berlin Heidelberg, 2011),

pp. 1–14

21. S Hameed, U Ali, in IEEE/IFIP Network Operations andManagement

Symposium (NOMS). Efficacy of Live DDoS Detection with Hadoop,

(Istanbul, 2016), pp. 488–494. https://doi.org/10.1109/NOMS.2016.

7502848

22. S Hameed, HA Khan, in International Conference on Networked Systems

(NetSys). Leveraging SDN for collaborative DDoS mitigation, (Gottingen,

2017), pp. 1–6. https://doi.org/10.1109/NetSys.2017.7903962

23. S Hameed, UM Ali, On the efficacy of live ddos detection with hadoop.

CoRR (2015). abs/1506.08953, arxiv.org/abs/1506.08953

24. S Hameed, HA Khan, SDN based collaborative scheme for mitigation of

DDoS attacks. Futur. Internet. 23(2018)

25. C Kolias, G Kambourakis, A Stavrou, J Voas, DDoA in the IoT: Mirai and

other botnets. Computer. 50(7), 80–84 (2017)

26. Y Lee, W Kang, Y Lee, in Traffic Monitoring and Analysis, volume 6613 of

Lecture Notes in Computer Science, ed. by J Domingo-Pascual, Y Shavitt,

and S Uhlig. A hadoop-based packet trace processing tool (Springer,

Berlin Heidelberg, 2011), pp. 51–63

27. Y Lee, Y Lee, in In Proceedings of The ACM CoNEXT Student Workshop

(CoNEXT ’11 Student). Detecting DDoS attacks with Hadoop (ACM, New

York, 2011). Article 7 , 2 pages. https://doi.org/10.1145/2079327.2079334

28. J Mirkovic, G Prier, P Reiher, in Proceedings of the 10th IEEE International

Conference on Network Protocols (ICNP). Attacking DDoS at the source,

(2002), pp. 312-321. https://doi.org/10.1109/ICNP.2002.1181418

29. J Mirkovic, G Prier, P Reiher, in Second IEEE International Symposium on

Network Computing and Applications (NCA). Source-end DDoS defense,

(2003), pp. 171–178. https://doi.org/10.1109/NCA.2003.1201153

30. K Park, H Lee, in Proceedings IEEE Conference on Computer Communications

(INFOCOM). On the effectiveness of probabilistic packet marking for IP

traceback under denial of service attack, vol. 1, (Anchorage, 2001),

pp. 338–347. https://doi.org/10.1109/INFCOM.2001.916716

31. K Park, H Lee, On the effectiveness of route-based packet filtering for

distributed DoS attack prevention in power-law internets. ACM SIGCOMM

computer communication review. 31(4) (2001)

32. V Paxson, Bro: A system for detecting network intruders in real-time.

Comput. Netw. 31(23–24), 2435–2463 (1999)

33. A Pras, JJ Santanna, J Steinberger, A Sperotto, in International GI/ITG

Conference onMeasurement, Modelling, and Evaluation of Computing

Systems and Dependability and Fault Tolerance. Ddos 3.0-how terrorists

bring down the internet (Springer, 2016), pp. 1–4

34. S Ranjan, R Swaminathan, M Uysal, A Nucci, E Knightly, DDos-shield:

DDos-resilient scheduling to counter application layer attacks. IEEE/ACM

Trans. Networking (TON). 17(1), 26–39 (2009)

35. M Roesch, in Proceedings of the 13th USENIX Conference on System

Administration, LISA ’99. Snort - lightweight intrusion detection for

networks (USENIX Association, Berkeley, 1999), pp. 229–238

36. JJ Santanna, et al., in IFIP/IEEE International Symposium on Integrated

Network Management (IM). Booters – An analysis of DDoS-as-a-service

attacks, (Ottawa, 2015), pp. 243–251. https://doi.org/10.1109/INM.2015.

7140298

37. H Wang, C Jin, KG Shin.Defense against spoofed IP traffic using hop-count

filtering. IEEE/ACM Trans. Networking (ToN). 15(1), 40–53 (2007)

38. A Yaar, A Perrig, D Song, in Proceedings of IEEE Symposium on Security and

Privacy (IEEE S&P). Pi: a path identification mechanism to defend against

www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
www.wired.com/story/github-ddos-memcached/
https://hadoop.apache.org/
http://hortonworks.com/hadoop/yarn/
https://iperf.fr/
http://sourceforge.net/projects/loic/
http://sourceforge.net/projects/loic/
http://wiki.apache.org/hadoop/MapReduce
https://github.com/uweber/mausezahn
http://www.guardian.co.uk
http://www.greenspun.com/
http://www.greenspun.com/
http://www.secdev.org/projects/scapy/
http://linux.die.net/man/1/scp
www.wireshark.org/docs/man-pages/tshark.html
www.wireshark.org/docs/man-pages/tshark.html
http://www.wired.com/
http://www.wired.com/
https://doi.org/10.1109/MSP.2013.138
https://doi.org/10.1109/MSP.2013.138
https://doi.org/10.1109/INFCOMW.2014.6849281
https://doi.org/10.1109/WIFS.2011.6123125
https://doi.org/10.1109/WIFS.2011.6123125
https://doi.org/10.1109/NOMS.2016.7502848
https://doi.org/10.1109/NOMS.2016.7502848
https://doi.org/10.1109/NetSys.2017.7903962
https://doi.org/10.1145/2079327.2079334
https://doi.org/10.1109/ICNP.2002.1181418
https://doi.org/10.1109/NCA.2003.1201153
https://doi.org/10.1109/INFCOM.2001.916716
https://doi.org/10.1109/INM.2015.7140298
https://doi.org/10.1109/INM.2015.7140298

Hameed and Ali EURASIP Journal on Information Security (2018) 2018:11 Page 19 of 19

DDoS attacks, (2003), pp. 93–107. https://doi.org/10.1109/SECPRI.2003.

1199330

39. X Yang, D Wetherall, T Anderson, A DoS-limiting network architecture.

SIGCOMM Computer Communication Review. 35(4), 241–252 (2005).

https://doi.org/10.1145/1090191.1080120

40. X Yang, D Wetherall, T Anderson, TVA: a DoS-limiting network

architecture. IEEE/ACM Trans. Networking. 16(6), 1267–1280 (2008)

41. ST Zargar, J Joshi, D Tipper, A survey of defense mechanisms against

distributed denial of service (DDoS) flooding attacks. Commun. Surv.

Tutorials IEEE. 15(4), 2046–2069 (2013)

https://doi.org/10.1109/SECPRI.2003.1199330
https://doi.org/10.1109/SECPRI.2003.1199330
https://doi.org/10.1145/1090191.1080120

	Abstract
	Keywords

	Introduction
	Related work
	Hadoop DDoS detection framework
	Traffic capturing and log generation
	Log transfer phase
	Detection phase
	Result notification
	MapReduce job and DDoS detection
	HADEC mapper job
	HADEC reducer job and counter-based algorithm

	HADEC testbed
	Performance evaluation
	Traffic capturing and file transfer
	Number of attackers and attack volume
	DDoS detection on Hadoop cluster
	Effect of different block sizes
	Overall framework performance
	System benchmarks
	Capture phase benchmarks
	Transfer phase benchmarks
	Detection phase benchmarks at the Hadoop NameNode

	Comparison with existing work and optimization recommendations
	Conclusions
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

