
Hadoop-based Intelligent Care System (HICS): Analytical 

Approach for Big Data in IoT      

 

M. MAZHAR RATHORE, Kyungpook National University 

ANAND PAUL, Kyungpook National University  
AWAIS AHMAD, Yeungnam National University 

MARCO ANISETTI, Università degli Studi di Milano  
GWANGGIL JEON, Incheon National University  
 

The Internet of Things (IoT) is increasingly becoming a worldwide network of interconnected things 

that are uniquely addressable, via standard communication protocols. The use of IoT for continuous 

monitoring of public health is being rapidly adopted by various countries while generating a massive 

volume of heterogeneous, multisource, dynamic, and sparse high-velocity data. To handle such an 

enormous amount of high-speed medical data while integrating, collecting, processing, analyzing, and 

extracting knowledge constitutes a challenging task. On the other hand, most of the existing IoT devices 

do not cooperate with one another by using the same medium of communicationaf. For this reason, it is 

a challenging task to develop healthcare applications for IoT that fulfill all user needs through real-

time monitoring of health parameters.  Therefore, to address such issues, this paper proposed a Hadoop-

based intelligent care system (HICS) that demonstrates IoT-based collaborative contextual Big Data 

sharing among all of the devices in a healthcare system. In particular, the proposed system involves a 

network architecture with enhanced processing features for data collection generated by millions of 

connected devices. In the proposed system, various sensors, such as wearable devices, are attached to 

the human body that measure health parameters and transmit them to a primary mobile device (PMD). 

The collected data are then forwarded to intelligent building (IB) using the Internet where the data are 

thoroughly analyzed to identify abnormal and serious health conditions. Intelligent building comprises: 

1) a Big Data collection unit (used for data collection, filtration, and load balancing); 2) a Hadoop 

processing unit (HPU) (comprised of HDFS and MapReduce); and 3) an analysis and decision unit. The 

HPU, analysis, and decision unit are equipped with a medical expert system, which reads the sensor 

data and performs actions in the case of an emergency situation. To demonstrate the feasibility and 

efficiency of the proposed system, we use publically available medical sensory data sets and real-time 

sensor traffic while identifying the serious health conditions of patients by using thresholds, statistical 

methods, and machine learning techniques. The results show that the proposed system is very efficient 

and able to process high-speed WBAN sensory data in real-time.  
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Architecture and Design 
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 INTRODUCTION 

Since rapid development began in the beginning of the 21st century, healthcare 

systems in the Internet of Things (IoT) have been recognized as constituting a 

revolution in ICT [Ashton 2009, Xu and Wang 2013]. Mainly, IoT connects physical 

devices, such as sensors, actuators, embedded sensors, and radio frequency 

identification (RFID) into a single medium, called the Internet. It is considered to 

be an empowering technology to achieve a global infrastructure of interconnected 

physical components [Welbourne et al. 2009]. Furthermore, IoT extends the usage 

of the Internet into our daily lives by connecting billions of smart devices [Kortuem 

et al. 2010], which introduces momentous changes in the way that we live and 

interact with other devices [Jara et al. 2012; Yang et al. 2014]. 

In healthcare system applications, the wireless body area network (WBAN) 

offers a novel archetype for wireless sensor networks (WSNs) in monitoring bio-

medical sensors, such as biochips. These sensors can be attached to the human 

body or clothes [Xing and Zhu 2009; Cavallari et al. 2014; Alam and Hamida 2014] 

in order to measure parameters associated with the human body. The measured 

values can be collected and relayed to a main server using Internet Protocol Version 

6 (IPv6) over a Low-Power Wireless Personal Area Network (6LoWPAN) 

[Kushalnagar et al. 2007; Montenegro et al. 2007]. This helps in connecting these 

nodes to an IPv6 network, which plays a fundamental role in health diagnostic 

issues. In order to analyze the amount of data collected, a need exists to transmit 

the data to a server via a gateway node and the Internet to generate results. For 

such application, ZigBee technology can be employed, which uses IEEE 802.15.4 

PHY along with MAC standards [Kiran et al. 2014]. Since the health sensors that 

collect data are wireless, maintaining battery power and battery replacement 

present critical challenges.  

In IoT, intelligent components, RFID tags [Lee et al. 2010], sensors, actuators, 

etc., have been rapidly developed. As a result, dramatic growth has been achieved 

in the field of IoT applications [Li et al. 2011; Broll et al. 2009]. These technologies 

have enabled great advancements in healthcare systems [European Commission 

Information Society 2008; Hande and Cem 2008; National Information Council 

2008; Li et al. 2013]. Some approaches aim to integrate wearable devices to attain 

better IoT for e-healthcare systems [Castillejo et al. 2013]. A mobile-based 

telemonitoring system for chronic diseases is proposed in [Morak et al. 2012]. In 

such application, the amount of data collected from the sensor nodes should be 

accessible anytime and anywhere, which requires continuous network connectivity, 

and generates a massive volume of data (referred to as ‘Big Data’). In addition, 

according to the GSMA, the total number of devices connected to each other will 

reach 15 billion in 2015, and increase to 24 billion in 20201 [GSMA 2013]. The 

processing of such high-speed sensory traffic is also an essential obstacle that must 

be  overcome. In such circumstances, healthcare systems will face a critical 

challenge in real-time processing, analysis, and decision-making. Existing 

standard techniques are incapable of handling such high volume and high velocity 

of data with heterogeneous information to generate real-time action in cases of 

emergencies. On the other hand, an increasing number of Big Data solutions exist 

that are, at least theoretically, capable of addressing volume and velocity 

requirements. However, in many cases, these solutions are in preliminary phases 

or not fully suitable for IoT scenarios (e.g., H2020 Toreador2 and H2020 Evotion3). 

Others are not fully capable to fulfill all of the requirements of a generic and 

 
1 http://gigaom.com/2011/10/13/internet-of-things-will-have-24-billiondevices-by-2020/ 

The Mobile Economy, GSMA, 2013. 
2 http://www.toreador-project.eu/ 
3 http://h2020evotion.eu/ 
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complete healthcare system [Fang et al. 2016; Muin et al. 2014]. Therefore, a 

system is required that is capable of taking care of human beings (patients in the 

home, people outside of the home, people who are exercising or driving, etc.), which 

not only addresses required medications but can also perform continuous 

monitoring of patients. The mentioned challenges can only be overcome through 

rapid collection and aggregation, as well as parallel and efficient processing of 

incoming high-speed medical, sensory data. 

For this reason, the Hadoop-based intelligent care system (HICS) using a Big 

Data analytical approach is proposed in this paper, which is based on parallel-

processing and multiple Hadoop HDFS data nodes. In the proposed system, a 

human body uses wearable devices and other physical body sensors that measure 

blood pressure (BP), pulse rate, signs of diabetes, etc., and sends this information 

to an attached coordinator. The measured data are then transmitted to the primary 

medical device (PMD) using Bluetooth or Zigbee IEEE 802.15.4 technology. The 

PMD is connected to the Internet through 3G/LTE/WiFi via gateways. Each 

gateway is responsible for collecting the measured data from various PMDs, which 

are then sent to intelligent building (IB). IB constitutes the backbone of the 

proposed HICS network architecture, which processes massive volumes of 

incoming data streams by using high-speed capture devices, such as RF_RING and 

TNAPI [F. Fusco and L. Deri 2010], and aggregates the results in its collection unit. 

The collected data are then sent to the Hadoop processing unit (HPU) for further 

processing. The HPU performs analysis algorithms, including statistical 

calculations, comparisons and other operations, and generates results. Finally, the 

analysis and decision unit responds to the system (in the case that a patient 

requires a remote physician or an ambulance) based on the results generated by 

the HPU. The proposed IoT-based HICS system has a strong network architecture 

that comprises five networking layers, namely: 1) a data collection layer; 2) a 

communication layer; 3) a processing layer; 4) a management layer; and 5) a service 

layer. The main contribution of this work is summarized as follows. A network 

architecture with a five-layered structure is proposed and implemented using the Hadoop 

ecosystem that performs a collaborative task to process and analyze data. To the 

best of our knowledge, the proposed network architecture is the first architecture 

specifically designed for healthcare systems, in which the processing of real-time, 

as well as offline, data is natively based on Hadoop. Secondly, our system can 

handle the massive volume of data generated by connected healthcare devices by 

dividing them into components and performing analyses using Hadoop. Moreover, 

the intelligent building concept is introduced, which is mainly responsible for 

managing, processing and analyzing incoming sensor data, and finally make 

decisions intelligently. This enables not only efficient handling of the massive 

volume of data, but also provides feedback to users “anytime-anywhere-anyhow.” 

The whole system is implemented in a real environment using Hadoop on 

UBUNTU 14.04. Finally, the medical sensor datasets are replayed to check the 

feasibility, accuracy, and efficiency of the proposed system by identifying serious 

health conditions of patients by using thresholds, statistical methods, and machine 

learning.   

 RELATED WORK 

In the development of an intelligent IoT environment, it is essential to understand 

that the ultimate goal of connected things can be seriously limited in the contexts 

of power, computation, and efficiency. In this section, we focus mainly on IoT 

applications and their drawbacks. 

Various approaches have been developed for the smart environment, such as 

mobile intelligent IoT applications, in which they assume that each of the u-things 

have the capability of decision-making based on environmental conditions [Roderic 

and Hanson 2009; Tangab et al. 2012; Liao et al. 2012]. In such methodologies, 
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performance degradation is at a peak since the majority of the u-things have 

limited capabilities to handle such expensive computations. 

An iHome Health-IoT platform is proposed, which involves an open-platform-

based intelligent medicine box (iMedPack) with heightened connectivity and 

interchangeability for the integration of devices, as well as services [Yang et al. 

2014]. The mentioned platform, however, lacks efficient communication between 

the IoT cloud and the user. A smart kitchen platform is proposed, in which the 

sensors and actuators are controlled by an Intel Galileo board [Wu et al. 2014]. In 

this approach, the sensors deployed at the doors’ entrance do not provide the actual 

reading of an object, and it may be an animal entering the room instead of the 

intended disabled person. In addition, various issues related to IoT architecture, 

implementation, as well as the identification of promising IoT applications and the 

management of data streams from connected things are described [Zhou 2013]. It 

is worth noting that cloud services, as well as Big Data approaches, could be 

utilized to store, analyze, and visualize the data streams being generated by IoT 

devices, which improve various important aspects, such as scalability, availability, 

flexibility, and adaptability [Clayman and Galis 2011]. An Intelligent power 

management system for such M2M/IoT devices are already studies by [Paul 2014]. 

Dramatic improvement in these aspects is critical for the increasing millions of 

interconnected things predicted by the IoT perspective. Many studies are 

conducted using various evolutionary algorithm including particle swarm 

optimization [Paul et al. 2003]. Furthermore, various database tools are available 

that have severe limitations regarding querying, indexing, processing, modeling, 

and transaction handling of various types of sensory data [Cooper 2009]. All of 

these factors are currently absent in existing healthcare systems. 

Overall, the techniques mentioned above either follow any existing IoT 

architecture or design a novel architecture for a particular problem, which only 

covers a limited scope of healthcare. Existing systems rarely integrate new 

manufactured devices, which constitute an essential element in enhancing the 

basic components of a healthcare system in IoT. However, a desirable system 

should be capable of taking care of human beings (patients inside of the home, 

people outside of the home) from the perspective of all aspects, which not only 

addresses required medications, but can also perform continuous monitoring of 

patients and can take appropriate action in real time. The mentioned challenges 

can only be accomplished through rapid collection and aggregation, as well as 

parallel and efficient processing of incoming high-speed medical and sensory data. 

With the above requirements in mind, the proposed approach needs to have a 

communication link with only one of the control modules, such as the PMD, of its 

application environment. In additon, it is necessary that the u-things are not 

required to perform extensive computations, as most of their processing is done on 

the Internet or through intelligent building.  

Concerning data processing, there are some solutions based on Big Data 

analytic engines for healthcare and medical applications [Fang et al. 2016; Muin 

et al. 2014; Hermon et al. 2014]. Toreador [Ardagna et al. 2016; Ardagna et al. 2017] 

is a pioneering H2020 project focusing on Big Data as a service that can be useful 

in the context of streaming processing even in a healthcare scenario. However, it 

is still under development and its customization for our scenario with different 

sources of heterogeneous sensor data, and in the context of user-centric evaluation, 

remains unfeasible. Evotion [Prasinos et al. 2017] is an H2020 project focused on 

Big Data for healthcare, and specifically hearing loss scenarios. More similar to our 

system, it is focused on helping users in understanding diseases according to the 

analytical processing of data coming from sensors, including wearable sensors. It 

includes a decision support system that takes advantage of Big Data analytics. 

However, it is still in a very early stage. [Muin et al. 2014] focused on Big Data for 
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public health that emphasizes initial requirements and advantages from a 

processing perspective. [Hermon et al. 2014] used a systemic review approach to 

create a categorisation of Big Data use in healthcare. More recently, [Fang et al. 

2016] presents a comprehensive survey on the existing challenges, techniques, and 

future directions for computational health informatics in the Big Data age. This 

paper, however, is not focused specifically on processing capabilities, but rather 

networking architecture and functionality. We will address analytics and 

processing more in detail in our future work. 

 HADOOP BASED INTELLIGENT CARE SYSTEM (HICS) 

In this section, we discuss the proposed scheme, including a sensor deployment 

scenario, which describes the functionalities of the medical and activity sensors, 

followed by the communication model for Hadoop-based HICS, as well as the 

network architecture, including intelligent building and its algorithm.  

 Sensor Deployment Scenario  

Healthcare systems comprise dynamic processes, including pre-treatment 

processing, in-treatment processing, and post-treatment processing. 

 
Fig. 1. Deployment scenario for the proposed system model. 

 

In Figure 1, various sensors, such as activity sensors, medical sensors, and 

coordinator sensors are attached to human body parts. The human body parts 

include the wrist, ankle, heart, chest, head/helmet (while cycling), and other body 

parts. These sensors collect heterogeneous data, such as diabetic information, 

heart rate, and blood pressure data. In addtion, various activities are recorded, 

such as physical exercises, including sitting, walking, walking upstairs or 

downstairs, and cycling. During such activities, the sensors read the body 

temperature, heart beat, blood pressure, sweat level, and glucose level. In order to 

collect and aggregate data from various sensors and make the system energy-

efficient, we have utilized a coordinator, which works as a sink node. A coordinator 

node acts as a relay node that collects the data and transmits them to the primary 

medical device (PMD). The PMD could be a cell phone application or a small 

wireless device/access point connected to the Internet. The communication between 

the PMD and the coordinator is achieved through Bluetooth or Zigbee technology.  
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Fig. 2. Various block structures of sensor readings sent by the coordinator. 

The coordinator receives health readings from various sensors attached to the 

body. Each sensor’s frame contains three main information types: 1) GDID 

(globally unique device identifier), which uniquely identifies the sensor; 2) type, 

which identifies the type of sensor, such as glucose, blood pressure, pulse rate, etc.; 

and 3) value, which comprises reading of the sensor. The coordinator aggregates 

and then encapsulates all of the sensors’ readings into a single packet/block in a 

proper format and sequence. It initially adds the packet header, which mainly 

contains the U_ID (user id), which uniquely identifies the sensor and the user. 

Later, it enlarges it by adding various sensor readings in the following sequence, 

depending on the available readings: 1) glucose level reading; 2) blood pressure 

reading; 3) pulse rate; 4) temperature; 5) heart rate; and 6) breath rate. Moreover, 

all of the readings from the various sensors are added for a particular time in a 

single packet. Since every sensor is not required to transmit data directly to the 

PMD, energy is conserved. Moreover, a number of sensors on the patient’s body 

depend on the patient’s requirement. Therefore, it is not mandatory that all of the 

sensors are attached to the user’s body. Figure 2 shows the various block structures 

at the coordinator node, depending on the number of sensors attached to the body. 

In intelligent building, the readings in a single block are classified by the type of 

field. 

 
Fig. 3. Five-layer structure of the proposed healthcare IoT system. 

 

 Layered Structure of HICS 

A smart solution for healthcare systems in IoT is presented in Figure 3. It consists 

of five functional layers:  1) a data collection layer; 2) a communication layer; 3) a 

processing layer; 4) a management layer; and 5) a service layer. 
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In the proposed layered architecture, the data collection layer (layer 1) provides 

data collection functionality, including data-sensing using medical sensors, data 

acquisition, and data buffering. It also provides the filtration service that reduces 

the overall volume of the data to be processed by discarding all of the unnecessary 

metadata and repeated readings. The communication layer (layer 2) offers end-to-

end connectivity to the various devices involved in the healthcare applications. It 

is responsible for the transmission of data from sensors to the coordinator and to 

the PMD using Zigbee and Bluetooth technology, from the PMD to IB using the 

Internet (cellular or wired network), and from the server to the server in IB via an 

Ethernet. Morevoer, this layer tranforms data into a suitable format for Hadoop 

processing. It also translates the BAN data into various sequence files using Pcap 

Input, Text I/O, and Binary I/O.  

The processing layer (layer 3) is a fundamental component of the IB that 

receives sequence files from the collection unit. It processes the data while 

performing necessary statistical calculations based on the nature of the data. For 

Big Data, to accomplish high efficiency, the overall data are disassembled into 

small pieces, and each of the pieces is separately processed in parallel using 

Hadoop HDFS and MapReduce. Afterwards, the results from each piece are 

acquired again and kept in the result storage area for future analysis.  

The management layer (layer 4) is the smart layer of the system, comprising 

various medical expert systems that examine the processing layer’s results and 

recommends corresponding actions. For example, if the patient has either high 

blood pressure or a low sugar level, this layer then directs the emergency division 

for feedback generation to the user. For such emergency actions, in which the user 

does experience any delay, these layers should be sufficiently efficient to rapidly 

generate appropriate action. 

Finally, the service layer (layer 5), delivers connectivity to the end user to access 

various facilities, such as hospitals (e.g., remote physician support, routine medical 

examinations), emergency treatment (e.g., high blood pressure), ambulances (e.g., 

blood pressure under a predefined threshold, which can cause fatal problems), and 

police stations. Furthermore, doctors can also monitor the patient by continuous 

analysis of his or her medical history. These services enable a doctor to connect to 

a facility to obtain a patient’s present health status. 

 Proposed HICS Architecture 

The concept of the proposed healthcare IoT system is shown in Figure 4. Various 

kinds of sensors are attached to the human body that are utilized to measure blood 

pressure, pulse rate, human motion, diabetic status, to name but a few. To achieve 

a better understanding of the proposed system, we assume that all of the users are 

equipped with smart devices. In our example scenario, we consider a patient in a 

home, an elderly user, a user doing physical exercise, and others. In these scenarios, 

if a patient’s blood pressure or other disease crosses a defined threshold, or if an 

elderly man has a heart attack or a user doing physical exercise requires first aid, 

the sensors transmit the measured health parameter readings to the agent (e.g., 

raspberry-pi). Raspberry-pi is a device used to convert sensor data to mobile 

readable data. After the conversion, the mobile readable data are forwarded to the 

primary mobile device (PMD) using ZigBee, Bluetooth, or IEEE 8.2.15.4. The PMD 

can be a smart phone or any ZigBee, Bluetooth, or IEEE 8.2.15.4 device with an 

Internet connection. The PMD is attached to intelligent building via the Internet 

(LTE/3G/WiFi). Intelligent building is a smart block used for storing and 

processing sensor data, and it executes certain actions depending on the context of 

the data. Therefore, for the above cases, intelligent building executes different 

actions for individual patients (to record the history of a patient in a hospital, or a 

change in doctor prescriptions), for elderly users (requiring a remote physician or 

ambulance), for people engaged in physical exercise (to provide first aid from a 
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nearby first aid hospital), for an automobile transporting children and adults (to 

alert a police station), and others. A detailed explanation of intelligent building, 

i.e., the core component of the system, is described in the following section. 

3.3.1 Intelligent Building 

Intelligent building is the central component of the proposed system. The building 

is a complete intelligent system that handles incoming high-speed Big Data from a 

large number of body area sensors. It utilizes the parallel-processing paradigm of 

the Hadoop ecosystem. The system is responsible for collecting, processing, and 

analyzing health sensor data from a large number of people having sensors on their 

bodies by continuously monitoring health parameters. Intelligent building, which 

can be considered as an intelligent healthcare system, is mainly composed of a 

collection unit, a processing unit having a Hadoop system equipped with an 

intelligent medical expert system, a sensor health measurement patient database, 

an aggregation result unit, and application layer services.    

 

 
Fig. 4. Application scenario for the proposed healthcare IoT system. 

 

The collection unit is the entry point for the incoming health data from the body 

area networks. It continuously collects data from each registered person in the 

BAN network. It might have a single server performing all functionalities of the 

collection, filtration and load balancing, or have multiple servers for each 

functionality, depending on the complexity of the system. We considered multiple 

servers for the collection unit, in which the collection servers collect high-speed 

incoming WBAN sensors. They extract the required information from each packet, 
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such as GDID (globally unique device identifier) which uniquely identifies the 

sensors, U_ID (user id), and all sensor measurements contained in a single packet. 

Moreover, it filters all of the necessary data by discarding all unnecessary repeated 

information. It employs Hadoop libraries, such as Hadoop-pcap-lib, Hadoop-pcap-

serde, and Hadoop-pcap-input to process the incoming packet and generate a 

sequence file from sensor readings encapsulated in the packet. For each distinct 

U_ID, one sequence file is generated. All of the readings from that user are added 

to the corresponding sequence file. When the sequence file has reached its size or 

time threshold, it is sent to the Hadoop processing unit to process the sequence file 

by analyzing and calculating statistical parameters. The load balancer, which is 

sometimes the master node in the Hadoop setup, decides which data nodes will 

process the sequence file. Each processing server or data node has a GDID range 

for which it processes the sequence file. The processing server processes and 

analyzes patient data that are within its GDID range. 

The Hadoop processing unit comprises various master nodes and many data 

nodes. It uses the Hadoop distributed file system (HDFS) on various parallel data 

nodes to store the data in blocks. Each data node is equipped with the proposed 

algorithm using the MapReduce implementation to process the sequence files 

either by calculating statistical parameters or by analyzing sensors’ health 

readings in a sequence file to generate intermediate results for decision-making. 

When the data node receives any sequence file from the collection unit, it executes 

the algorithm on the sequence file and generates intermediate results. Various 

mapper and reducer functions work in parallel to achieve high efficiency. The 

mapper function initially decides whether each sensor reading is normal and does 

not need to be analyzed deeply, or has some abnormal values that require analysis 

and emergency action. It compares sensor values with their corresponding normal 

threshold values and, if satisfied, just stores them in the database without further 

time-consuming analysis. When any sensor value from WBAN satisfies its 

corresponding serious threshold value, it generates an alert directly to the 

application layer for a rapid response. The application layer performs a quick 

action depending on the sensor, its value and patient, such as call the police in the 

case of an accident, or call a doctor or an ambulance in the case of a heart attack, 

serious diabetes, BP, or dangerous pulse reading. Apparently, when the sensor’s 

reading is neither normal nor too serious, analysis is required. Such values are 

processed by calculating statistical parameters or performing other calculations, 

depending on the algorithm, to generate intermediate results for a final decision. 

Finally, the aggregation unit of the Hadoop processing system aggregates the 

results using the reducer from various parallel-processing servers (data nodes) and 

send thems to the final decision server.  

Decision servers are equipped with an intelligent medical expert system, 

machine learning (ML) classifiers, and other medical problem- detection 

algorithms for further analysis and decision-making. It analyzes the current 

results received from the processing unit, depending on the previous history of the 

patient using complex medical expert systems, machine ML classifiers, to name 

but a few. The concrete details of the medical expert systems are beyond the scope 

of the current paper due to their vastness, but it is evident that a Big Data system, 

such as the proposed one, constitutes their fundamental basis. For instance, in 

[Anisetti et al. 2017] some examples of complex analytic processing suitable for 

medical evaluations have been proposed in the field of diabetic pathology detection 

and prevention using a Big Data analytic engine. In our scenarios, for the sake of 

completeness, we use simple machine learning classifiers, such as REPTree, in the 

decision server, since they are sufficiently efficient and accurate for normal, 

straightforward, and simple disease detection.   

3.3.1.1 Proposed Algorithm 
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An algorithm is designed for the proposed HICS intelligent building system to 

process high-speed WBAN sensor data. The notations used in the proposed 

algorithm are described in Table 1. SAVE_DB ( ), Analyze_Data ( ), and Emergency 

( ) are functions that represent some actions. SAVE_DB is responsible for storing 

sensor data into the database corresponding to the GDID and U_ID. The 

Analyze_Data function implements expert systems, ML classification algorithms, 

calculations of statistical parameters, as well as other complex medical problem-

detection algorithms. The emergency function alerts the application and service 

layer to perform a rapid action in the case that a serious reading is received from 

patient sensors, or generates alerts based on the analysis results generated by the 

processing servers.  Algorithm 1 shows the pseudo-code of the proposed system.  

Initially, the collection unit receives a packet from the PMD with all sensors’ 

readings encapsulated in a block. The collection unit extracts all medical readings 

corresponding to the GDID, U_ID, and activity performed (if an activity reading 

exists). In the next step, these readings are added to a sequence file as a one record 

corresponding to the GDID and U_ID in the particular sequence file. Therefore, for 

each packet, there is one record that is added to a sequence file. When the sequence 

file reaches its particular time or size threshold, it is sent to the Hadoop processing 

system, i.e., the Hadoop_Processing function. Hadoop_Processing initially checks 

whether the medical readings are within a normal range, such as: 1) BP, not less 

than 70 and not greater than 140; 2) diabetes, not less than 70 and not more than 

200; and 3) pulse rate, from 70-90. The normal range values are saved in the 

database without any further processing. On the other hand, if any one of the 

values from these sensors resides in a serious range, such as: 1) BP, below 40 and 

above 200; 2) diabetes, below 40 and above 400; 3) pulse rate, above 100 for adults 

and above 130 for children, as well as a limit of 0-240 bpm heart rate, 1-120 bpm 

breath rate, and 33-42 °C temperature. In all such serious cases, emergency action 

must be taken. Normal and serious threshold values for each type of sensor vary 

depending on the unit and intensity of their effects, as well as the activity 

performed while the readings are taken. Moreover, if the sensor reading is neither 

too serious nor too normal, then statistical calculations or other medical 

measurements are performed on them to generate intermediate results for final 

analysis and decision-making. These results are then sent to the decision server 

for final decisions or disease classification.  

 
Table 1. Notations used in Algorithm 1. 

Notations Description 

GDID Global unique device identifier 

U_ID User identifier 

Pi Packets ‘i’ containing sensor measurements received from the patient 

N Number of sensors for a single patient  

ʆ_t Time duration of a sequence file  

SKM Reading from a sensor K attached to a human body, where 1≤K≤N 

Ƭ��
�  Normal lower threshold of sensor K  

Ƭ��
�  Normal upper threshold of sensor K 

Ƭ��
�  Serious and emergency lower threshold for sensor K  

Ƭ��
�  Serious and emergency upper threshold for sensor K 

Activity_M Activity sensor measurements 

Seq_File Sequence file generated for Hadoop processing 

SAVE_DB( ) Function to save sensor data into the database 

Analyze_Data(

 ) 

A generic function contains algorithms, such as a medical expert system 

algorithms, disease detection, BP, diabetes reading analyses, etc.  

Emergency( ) Call an emergency system, such as an ambulance, emergency hospital 

department, or the police. 
 

ALGORITHM 1.   



Hadoop based Intelligent Care System (HICS): Analytical Approach for Big Data in IoT
                                                                            

INPUT: BAN medical and activity sensor readings in packets Pi where i represent the packet number.  

OUTPUT: Alerts, emergency action, medication, suggestions, and prescriptions.  

 

STEPS: 

1. ForEach Pi   Do 

2. |  Record := Extract (GDID, U_ID, Activity_M, S1M, S2M, S3M,…., SKM),  where 1≤K≤N, 

3. | Seq_File(GDID, U_ID) := Seq_File(GDID, U_ID) +  Record. 

4. |  IF     time(Seq_File(GDID, U_ID)) ≥ ʆ_t || size(Seq_File(GDID, U_ID)) ≥  HDFS_Block_Size Do 

5. | | Results := Hadoop_Processing(Seq_File(GDID, U_ID)). 

6. |  | Send_Decision_Server(Results). 

7. |  END IF 

8. END ForEach 

9. FUNCTION Hadoop_Processing(Seq_File(GDID, U_ID))  

10. |  START  

11. | ForEach Record in Seq_File(GDID, U_ID) Do 

12. | | Dectect_Activity(Activity_M) && initialize � Ƭ���  , Ƭ��� , Ƭ��� 	, Ƭ��� 	, Ƭ���   

13. |  | ForEach SKM in Record Do 

14. |  | | IF (Ƭ	

� 	� 	 S�M	 � Ƭ�


� 	)  DO // sensor reading is normal then just save data	
|  | | | SAVE_DB(). 

15. |  | | | Return�next record. 

16. |  | | ELSEIF (Ƭ��� 	� 		 ��M	||��M �		Ƭ��� 	) Do // sensor reading is abnormal     

| | | | then call emergency services 

17. |  | | | Emergency ( ). 

18. |  | | ELSE //otherwise analyze data then decide  

19. |  | | | Analyze_Data (��M). 

20. |  | | ENDIF 

21. |  | END ForEach 

22. |  End ForEach 

23. END FUNCTION  

24. END 

 

 IMPLEMENTATION AND EVALUATION 

The proposed algorithm is implemented using the Hadoop single node setup on an 

UBUNTU 14.04 LTS core TMi5 machine with a 3.2 GHz processor and 4 GB RAM. 

This section presents all of the implementation details of the proposed system. This 

section also provides an evaluation of the system regarding system efficiency and 

response time.  

MapReduce is used as front-end programming with Hadoop-pcap-lib, Hadoop-

pcap-serde, and Hadoop-pcap-input libraries for network packet processing and 

generating sequence files at the collection unit. The map function of our 

implementation maps U_ID, type, and corresponding sensor values. It compares 

the values with thresholds and generates action or alerts when required. Moreover, 

it generates intermediate results and sends them to the reduce function as U_ID 

as a key, and results as a value at the aggregation unit. The reducer aggregates 

the results, and then sorts and organizes them. Finally, a decision is made based 

on the results. The Hadoop MapReduce implementation of the whole system on 

various data nodes enables the efficient processing of the algorithm in a parallel 

environment. In addition, the algorithm is also implemented using simple Java 

programming to achieve a comparative analysis of Hadoop implementation. 
 Datasets are collected from the UCI [Online: UCI Machine Learning Repository: 

Diabetes Data Set 2015; UCI Machine Learning Repository: ICU Data Set 2015] 

repository and the WISDM Lab [Online: WISDM Lab: Dataset 2015; Kwapisz et al. 

2010] for evaluating the efficiency of the proposed system. The UCI diabetes 

dataset [Online: UCI Machine Learning Repository: Diabetes Data Set 2015] 

comprises diabetes outdoor patient records at various time slots, such as pre-
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breakfast, post-breakfast, pre-lunch, post-lunch, pre-snack, pre-supper, and post-

supper. The value parameter shows the diabetes value of a patient. The dataset 

contains 13437 records from various patients at different time points. The UCI ICU 

dataset [Online: UCI Machine Learning Repository: ICU Data Set 2015] holds the 

ICU sensed data of an 8.5-month-old, 5 kg female child patient having a biliary 

atresia problem, i.e., liver failure with coagulopathy. The dataset includes various 

types of medical measurements from different devices, such as heart rate (bpm), 

respiration rate (breath/ min), arterial pressure – mean (mm Hg), arterial pressure 

diastolic (mm Hg), arterial pressure systolic (mm Hg), arterial O2 saturation (%), 

tidal volume, PIP (cm H20), etc. It comprises 7931 records with various continuous 

timestamps. The WISDM Lab dataset [ Kwapisz et al. 2010] has two files: 1) 

WISDM_raw, which covers more than 1048576 records from three sensors only (x-

acceleration, y-acceleration, z-acceleration), and 2) WISMDM_Transformed, which 

is the tranformed form of WISDM_raw file with no missing value and contains 5418 

records with 46 parmeters. The WISMDM dataset contains sensors’ readings while 

performing various activities, such as jogging, walking, walking upstairs, and 

walking downstairs. In addition to all of these datasets, we also used other datasets 

containing data from different numbers of sensors to evaluate system efficiency. 

Moreover, health care dataset files are replayed to the system as real-time network 

traffic to check the real-time efficiency of the system.  

 
Fig. 5.  Post-meal diabetes measurements of a patient. 

 

 
Fig. 6. Pre-meal diabetes measurements of a patient. 

 

The aim of the following evaluations is to demonstrate the utility of the proposed 

system in concrete scenarios using literature databases. More specifically, we 

evaluate our system with respect to homogeneous data flows with a quick reaction 

in the case of an emergency, with: 1) contextual, but direct, rules on the data flow; 

2) contextual, but complex, rules on the data flow; and 3) contextual inference from 

different data flows. Decisions on multiple heterogeneous flows are demanded of 
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the decision server and to the complex correlation-based analytics, which constitute 

topics of our future work. 

Considering the diabetes patient, blood glucose measurements are taken for 

analysis. A patient is monitored by considering his or her regular post-breakfast, 

post-lunch, post-supper, pre-breakfast, pre-lunch, pre-supper, and pre-snack 

glucose level in milligrams of glucose per deciliter of blood (mg/dl). The system 

saves data into the database, analyzes data as batch processing, or takes an 

emergency action based on the values received from the user/patient. Figure 5 

presents a graph of the first 30 blood glucose measurements of the patient at post-

breakfast, post-lunch, and post-supper. In this case, the patient is an insulin-

dependent diabetes patient. For this reason, the system adapts to the context and 

only stores the value when it is less than 250 mg/dl by considering it as an average 

threshold. However, when the received measurement crosses the serious threshold, 

i.e., 400 mg/dl as at the 25th and 15th readings, an emergency action is taken either 

by admitting the patient to a hospital or requesting that he or she increase the 

insulin dose. Diabetes values that are in between the normal and serious threshold 

are analyzed, and medicine is prescribed or insulin treatment is suggested 

depending on the analysis results. While analyzing the post-meal patient readings, 

most of the post-supper glucose levels cross the average threshold, but rarely after 

breakfast, as shown in Figure 5. Consequently, the patient is asked to change food 

for dinner and is also recommended to increase insulin dosage.  

The pre-meal diabetes level is also considered, as shown in Figure 6, at the pre-

meal, pre-breakfast, pre-lunch, pre-super, and pre-snack diabetes level. In this case, 

the analysis window is greater to cover the objective of the evaluation. More 

specifically, the glucose test crosses the serious threshold nine times. Thus, a quick 

action is taken, in which the patient is recommended to increase the insulin dose 

immediately. Most of the abnormal actions are observed at pre-lunch and pre-

supper, which shows the rise in glucose level at PM times.  

 

 
Fig. 7. ICU patient measurements. 

 

The system also analyzed heart patient measurements related to heart rate 

(bpm), arterial pressure – mean (AP_mean, mm Hg), arterial pressure diastolic 

(AP_ Diastolic, mm Hg), and arterial pressure systolic (AP_Systolic, mm Hg). The 

analysis report is presented in Figure 7. The considered patient is a small child 

aged 8.5 months. For this reason, the average heart rate threshold is 190. 

Sometimes, the heart rate crosses the average threshold, such as at 0:24:41, 

04:19:04, and 09:00:09. However, at that time, other sub-ordinary measures, such 

as AP_mean, AP_Systolic, and AP_Diastolic are normal. For this reason, 

emergency action is not taken. Moreover, at the time of 11:26:54 and 11:27:54, the 

heart rate is dramatically increased, and AP_mean, AP_Systolic, and AP_Diastolic  

also cross the normal threshold. Therefore, an alert is generated by the system, 

and an emergency call is made.  
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The proposed system considers various medical parameters monitored by 

different medical sensors while performing varied daily activities, including blood 

pressure and heart rate measurements while jogging, walking, sitting, standing, 

walking upstairs, and walking downstairs. In order to identify the user’s activity, 

the proposed system uses decision tree based machine learning classifiers by taking 

user data through cell phone accelerometer as well as sensors on body parts, such 

as the ankle, chest, wrist, etc. More specifically, the accelerations, i.e., x-

acceleration, y-acceleration, and z-acceleration are the gravitation accelerations 

towards the center of the Earth and can be valued as 10=1g=9.8 m/s^2 and 0=no 

acceleration at the x, y, and z directions. The value of x, y, and z-acceleration always 

lies between -20 to 20, and is shown in Figures 8, 9, 10, and 11 for a particular user 

while jogging, walking, walking upstairs, and walking downstairs, respectively. 

Every activity has distinct values for x, y, and z-accelerations. Y values are always 

greater than x and z in any activity. At the time of jogging, mostly x and z values 

overlap. The y value lies between 10 to 20, and z fluctuates from -10 to 15, and is 

rarely less than -10. While walking upstairs and walking downstairs, y acceleration 

is always greater than 0. Moreover, y is always distinct to x and z values in the 

case of walking. Additionally, z values are nearer to 0 but mostly fluctuate from -5 

to 10. While walking upstairs, z is always nearer to 0, but mainly differs from y. In 

addition, x and z are always greater than -5. Although the variation between x and 

z is minuscule while walking downstairs, we found some abnormalities when the 

user is walking downstairs, as shown at the start values of x, y, and z in Figure 11. 

 
Fig. 8. Acceleration chart of a patient while jogging. 

 
Fig. 9. Acceleration chart of a patient while walking. 

 For activity detection corresponding to a medical reading of a patient, we used 

decision-based machine learning classifiers, i.e., REPTree, Random Forest 

[Breiman 2001], J48 graft version [Geoffrey 1999], and simple Classification And 

Regression Tree (CART) [Breiman 1984]. For the training of classifiers, we took 

the WISMDM_Transformed dataset having x, y, and z-accelerations values from 

different users with 2081 samples of walking (38.4%), 1625 samples of jogging 

(30%),  632 samples of walking upstairs (11.7%), 528 samples of walking 

downstairs (9.8%), 306 samples of sitting (5.7%), and 246 samples of standing 
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(4.6%). Later, the x, y, and z-accelerations values are transformed using simple 

statistical measures into forty-three parameters [Kwapisz et al. 2010] to build a 

feature set for all the classifiers. The feature set contains thirty bin parameters, 

i.e., X0, X1, X2,….., X9, Y0, Y1, Y2, …., Y9, Z0, Z1, Z2,…….., Z9, whose values are 

calculated by counting the number of the fraction of accelerometer samples that lie 

within that particular bin. Next nine parameters are calculated by taking the 1) 

mean value (XAVG, YAVG,and ZAVG), 2) standard deviation (XSTANDDEV, 

YSTANDDEV, and ZSTANDDEV),  and 3) average absolute deviation values 

(XABSOLDEV, YABSOLDEV, and ZABSOLDEV) of x, y, and z-accelerations. We 

also performed a peak value measure to obtain three more parameters, i.e., XPEAK, 

YPEAK, and ZPEAK by discovering the maximum value and local maxima with 

10% amplitude in all three accelerations. Later, the mean value of the time elapsed 

between two consecutive peaks are considered. 

 
Fig. 10. Acceleration chart of a patient while walking upstairs. 

 
Fig. 11. Acceleration chart of a patient while going downstairs. 

Finally, the result parameter is measured as: AVG(�∑(xi� +	yi� +	zi�)	). Using 

these forty-three parameters on four decision tree models, i.e., REPTree, Random 

Forest, J48 graft, and CART, we identified six user activities (jogging, walking, 

sitting, standing, walking upstairs, and walking downstairs) corresponding to 

users’ medical readings. Out of 5418 activity records, REPTree correctly identified 

4591 activities with 84.7% true positive (TP), Random Forest correctly identified 

4832 activities with 89.2% true positive (TP), J48 correctly identified 4651 

activities with 85.8% true positive (TP), and CART correctly identified 4661 

activities with 86% true positive (TP). The overall accuracy rate of the activity 

detection with respect to TP is presented in Figure 12 and with respect to false 

positive (FP) in Figure 13. All the decision tree classifiers have very low detection 

rate for upstairs and downstairs and higher false positive rate for walking. Since 

both of the activities i.e. walking downstairs and upstairs have a fewer number of 

samples, so it affects the detection rate of both activities. Also, most of these two 

activities are also detected as walking, which increases the false positive rate of 

walking and decreases the TP rate of walking upstairs and downstairs. Overall, 

the Random Forest decision model performs outstandingly with highest TP and 

lowest FP. However, the Random Forest takes more time, i.e., 3610 milliseconds 
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while building the model. Whereas, REPTree takes very short time, i.e., 140 

seconds to build the model. The performance comparison of all the decision models 

is shown in Figure 14. 

 
Fig. 12. Activity Detection Accuracy in terms of true positive using four decision tree models 

 
Fig. 13. Activity Detection Accuracy in terms of false positive using four decision tree models. 

 

     
Fig. 14. Model building time for the considered Decision Tree classifiers. 

 
Fig. 155. Average processing time of the proposed system on various datasets. 
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Considering performance, the proposed system mainly focuses on the high-speed 

processing of a large amount of WBAN data. Consequently, we considered the 

average processing time taken to process one record for various datasets to 

evaluate the system. Figure 15 shows that the average processing time is less than 

15 ms, even on a single Hadoop node setup. Most of the datasets require less than 

a 3 ms average processing time. This is because the diabetes datasets contain 

records from serious diabetes patients and the size of the record file is too small, as 

compared to other files. Therefore, a large amount of input, output, and switching 

is done because of the MapReduce function. For this reason, the processing time is 

greater, nearly 15 ms per record. Furthermore, we also observed that when we 

increased the number of sensors per record (per person or packet), the processing 

time was also increased, as illustrated in Figure 16. The increase in the average 

processing time is due to the comparative increase in overall thresholds due to the 

expansion of the number of sensors. The increase in average processing time 

corresponding to the number of sensors is presented in Figure 17. 

  

 
Fig. 16. Average processing time of the proposed system depending on the number of sensors per 

record. 

 
We also generated a dataset with various numbers of serious readings for blood 

pressure, diabetes, heart rate, and temperature for several patients at different 

locations in a city. We then tested the corresponding system response time to 

generate alerts and emergency actions. Under our assumptions, we considered 100 

to 1000 readings that cross serious thresholds, with location and time information, 

and then measured the response time of the proposed system. Figure 17 shows the 

number of serious readings in the dataset and the corresponding response time. 

For 100 serious readings within a second, the system only takes approximately 500 

ms to respond and generate alerts. Moreover, with the increase of serious readings 

per second in the hundreds, there is a very slight increase in response time. Finally, 

we evaluated the Hadoop system implementation of the proposed architecture by 

comparing it with a simple programming implementation offering the same 

functionalities, but without the distribution and capabilities of the Java 

programming language with respect to the average processing time to process 1 

MB of data. Initially for small datasets (approximately less than 100 MB), Java 

implementation outperforms the Hadoop MapReduce implementation. The 

MapReduce implementation performs parallel tasking on a single dataset by 

dividing it into blocks of 64 MB. On the other hand, it is not beneficial to use the 

MapReduce implementation for smaller size datasets, as it requires a large number 

of input, output, and switching operations due to the operating nature of the 

MapReduce functions.  However, for large datasets, i.e., Big Data, it is more 

convenient and beneficial to use the Hadoop implementation. Figure 18 shows a 

comparison between both of the implementations, considering average processing 

time per MB. As the size of the dataset is enlarged, the Hadoop implementation 

requires less time to process 1 MB of data. On the other hand, the Java 
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implementation requires more time when the file is larger, i.e., larger than 100 MB. 

Therefore, the average processing time is reduced while increasing the dataset size, 

and the processing time is increased while the dataset grows in the case of the 

simple programming environment. 

 

 
Fig. 17. Number of serious health readings and corresponding response times. 

 

 
Fig. 18. Efficiency comparison between two implementations: Hadoop-based and Java-based. 

 COMPARATIVE ANALYSIS WITH EXISTING SCHEMES 

This section summarizes the challenges presented in the literature review. 

Theoretical comparisons with existing techniques are also provided in the current 

section. In Table 2, a comparison is made based on the parameters that are involved 

in it. IoT has the capability to introduce numerous advantages over various fields. 

However, many other challenges are also presented by IoT in healthcare fields due 

to limitations in energy, reliability, security, aggregation, bandwidth, processing, 

memory capabilities, etc. The rest of the parameters are given in Table 2.  User 

access to the web application and mobile application is represented by O.   

 
Table 2. Summary and comparison of the existing systems vs. the proposed system. 

Mechanisms Issues User Access References 

Web Mob. 

App. 

mHealth Mobility Minimizing network lifetime.   

O 

[Yang et al. 2014] 

Nodes 

interaction 

Semantic 

Knowledge 

Learning Security and intelligent 

mechanisms are required which 

is as same as for human 

communications. 

 

O 

 

 

-- 

 

 

[Miori and Russo 

2012] 

 

Artificial 

intelligence 

m-Health Security Adaptability towards the needs 

and capabilities of the people in 

need of care. 

 

O 

 

 

-- 

 

[Doukas et al. 2012] Authentication 
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VIRTUS IoT Real-time 

communication 

Unable to enhance the efficiency 

of the network due to event-

driven middleware. 

 

O 

 

 

-- 

 

[Bazzani et al. 2012] 

Reliability 

 

iHealth 

Fuzzy assisted 

data gathering 

Power constrained and with 

limited communication 
capability. 

 

O 

 

 

-- 

 

[Bhunia et al. 2014] 

Processing 

Energy efficient 

Personal 

Health 

Environmen

t 

Knowledge-

based systems 

 

 

A critical issue for knowledge 
mining, analysis, and trending. 
 

 

 

 

O 

 

 

 

 

-- 

 

 

 

[Jara et al. 2012] 
Aggregation 

Bandwidth 

Frame size 

Power 

consumption 

 

Emergency 

Medical 

Services 

 

Accessibility It causes the heterogeneity 

problem of the data format in 
the IoT platform. 

 

 

O 

 

 

 

-- 

 

 

[Xu and Da Xu 

2012] 

Collect 

Integrate 

flexibly 

Urban 

planning 

and building 

smart cities 

Data Collection It causes delay in the processing 

since real-time data is queued in 

the processor and wait to get 

into the processor. 

O 

 

-- [Rathore et al. 

2016] Data 

aggregation 

Real-time 

analysis 

Real-time 

Medical 

Emergency 

Response 

System 

Medical sensors It causes fragmentation in the 

data packet since heterogeneous 

data is generated by various 

sensors. 

O 

 

O 

 

[Rathore et al. 

2016] Intelligent 

building 

Hadoop 

processing unit 

Smartbuddy Social Internet 

of Things 

A critical issue in the design of 

smartbuddy is to distinguish 

heterogeneous data, i.e., social 

data and network data. 

O 

 

O 

 

[Paul et al. 2016] 

Human behavior 

Real-time data 

analysis 

Graph-based 

M2M 

Graph based 

decision 

It causes additional delay in 

recognizing heterogeneous 

devices 

O 

 

O 

 

[Paul, 2013] 

Energy 

efficiency 

Heterogeneous 

devices 

Smart Cyber 

Society  

Social Internet 

of things 

Major issue in the design of 

smart society is the delay, i.e., 

heterogeneous devices failed to 

react on real-time scenario. 

O 

 

O 

 

[Ahmad et al. 2016] 

Heterogeneous 

devices 

Real-time 

big data 

analysis 

Feature 

detection 

It fails to extract hidden features 

in the data when it comes to 

real-time data analysis 

O 

 

 [Rathore et al. 

2016] 

Using statistical 

methods 

Divide-and-

conquer 

based data 

analysis 

Divide-and –

conquer 

mechanism 

This scheme also inefficient to 

detect hidden features in the 

continuous real-time data 

analysis 

O 

 

` [Ahmad et al. 

2016]` 

Hidden features 

detection 

River and land 

detection 

 Energy efficient    
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HICS: 

Hadoop-

based 

Health Care 

System 

Delay tolerant Complete solution that will 

benefit advanced analytic 

capabilities provided in future 

evolutions. 

 

 

 

O 

 

 

 

 

O 

 

 

 

 

Proposed system 

Data processing 

Data actuator  

Data collection 

Data storage 

Big Data 

processing 

Result 

aggregation 

 

 Most of the recent research in healthcare systems in IoT has aimed at improving 

efficiency in resource usage. Consequently, additional investigations are necessary 

that focus on semantic knowledge of IoT that will help to improve learning 

techniques, performance, energy consumption, and minimize bandwidth usage. 

Secondly, special techniques are required to aggregate, process, and store (if 

needed) data for the devices, which will not only improve network efficiency, but 

also increase data processing at intermediate devices. This technique is not yet 

employed in healthcare systems, since it depends on various characteristics of IoT 

communication, such as data traffic. In addition, IoT-based mobile applications 

also have the problem substantial overhead due to inefficient capacity regarding 

mobility management, and these obstacles must be overcome. Whenever a device 

needs to be connected to any one of various networks, such as WiFi or 3G, the device 

exploits the whole scenario for its advantages with respect to multiple paths and/or 

economic networks in terms of the usage of resources. Such technique can be 

employed in m-Health [Doukas et al. 2012], VIRTUS IoT [Bazzani et al. 2012], 

iHealth [Bhunia et al. 2014], and personal health environments [Jara et al. 2012]. 

In order to address the above mentioned issues, there is a need to focus on 

different data aggregating and exploration techniques for overall performance of 

optimization and efficiency. The aggregation methods should be combined with the 

transmission scheduling techniques because the exploration techniques focus on 

the reduction of size and amount of data necessary to be transmitted, such as data 

compression and data concatenation schemes. Furthermore, a need exists to 

develop a system architecture for healthcare systems in IoT that is amenable to 

increase or decrease the number of devices (scalability) and handle network 

topology (self-reconfiguration) [Xu and Da Xu 2012]. In addition, the architecture 

should be able to comfortably handle the enormous amount of data generated by 

devices used in healthcare systems since all of the devices are interconnected. 

Moreover, there is a need to be able to generate quick responses in the case of 

emergencies. Secondly, such a massive volume of data requires efficient processing, 

as well as enough storage devices to could hold the continuous stream of data. 

Similarly, smart city concept is also used to assist human beings [Rathore et al. 

2016]. However, quick response to the user is not considered by the proposed 

scheme. Also, emergency response system based on big data is used to help elderly 

age people [Rathore et al. 2016]. In the proposed scheme, wireless body area 

network is considered, which failed to integrate various data generated by each 

sensor. Smartbuddy and smart city concept are based on Social Internet of Things, 

which is also one of the important commodity to facilitate users in the city [Paul et 

al. 2016, Ahmad et al. 2016]. In a similar fashion, group based M2M, real-time big 

data analysis, and divide-and-conquer based big data analysis is used to extract 

features in massive data sets [Paul 2013, Rathore et al. 2016, Ahmad et al. 2016]. 

However, processing efficiency is still to take on priority.To the best of our 

knowledge, none of the schemes presented in Table 2 provides such types of 

features. Therefore, we have proposed a system that can aggregate the data, 

efficiently process the aggregated data, and store them for future use. The proposed 
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system also efficiently handles the delay caused by the millions of devices involved 

in the communication. Such delay has been overcome by using 3GPP or Wi-Fi 

technology, mobile applications, and timing control mechanisms. 

 CONCLUSIONS 

In this paper, we proposed an intelligent healthcare IoT system using WBAN 

applications on Hadoop-based processing servers. The proposed system involves 

the different aspects of hospitals, emergency services, first aid, and police stations.  

The proposed network architecture comprises five network layers: 1) the data 

collection layer; 2) the communication layer; 3) a processing layer; 4) the 

management layer; and 5) the service layer. The network layers constitute the 

backbone of the healthcare IoT systems, and provide end-to-end connectivity to all 

of the connected smart devices. The applications of the proposed network 

architecture leverage sensors, coordinators, PMD, and intelligent building, which 

offers a promising solution by automatically reminding users of their prescriptions, 

as well as helping them in various circumstances (e.g., first aid, remote physicians, 

police stations, etc.). With the aim to develop continuous follow-up and monitor 

users’ vital signs (“anytime-anywhere-anyhow”), a flexible system has been 

developed, which is based on intelligent building. Intelligent building receives data 

from various users and processes, and analyzes them using Hadoop and generates 

output for decision-making. Based on the output, the machine executes individual 

actions (e.g., first aid, remote physicians, reminding the patient about prescriptions, 

etc.). The performance of the system is tested and compared with the performance 

of a simple Java-based implementation. The final evaluations demonstrate that the 

performance of the proposed network architecture fulfills the needs of the users 

connected to it, whether the input data are real-time or offline. In the future, we 

are planning to provide: 1) security features for the system, such as confidentiality 

and user authentication; 2) privacy features for patients’ data; and 3) improved 

analytic capabilities to support complex medical diagnoses using complex medical 

classifiers.  
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