HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies
for Analytical Workloads

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi,
Avi Silberschatz, A. Rasin

Yale University
VLDB 2009

Presented by:
Anup Kumar Chalamalla

Outline
o Context: Analytical DBMS Systems

* Background: Parallel Databases and Query
Processing

» Key Properties for Very Large Scale Data
Analytics

* Architecture of HadoopDB

* Performance and Scalability Results

Context: Analytical DBMS Systems

- Multi-dimensional structured data

» Star schema: Fact tables and dimension tables

O Types of queries

» TableScan, Joins, multi-dimensional aggregation
(CUBE), Pattern Mining, Top-K and ranking

O Data explosion in terabytes and petabytes

Background: Parallel Databases

e DBMSs deployed on a shared nothing architecture

e Query execution is divided equally among all
machines

* Results are computed on different machines and
transferred over the network

* Important tasks:

° Partitioning the tables on to several machines

o Parallel evaluation of relational query operators

Background: Query Processing

« SELECT *
FROM R CROSS JOIN'S
WHERE R.a > 100 AND
S.b < 1000

 Pipelining: Transfer
intermediate results of
one operator to another
operator on the fly

SELECT (*)

JOIN (using NLIN)

TN

FILTER (a>100)

|

R

FILTER (b<1000)

|

S

Key properties for very large scale data analytics

Performance: Computing the results of a query faster

Fault Tolerance: Rescheduling parts of query execution
in the case of node failures

Adapt to heterogeneous distributed environment:
Getting the same performance from all the machines is

difficult

Flexible Query interface: Should support ODBC/JDBC
and user defined functions

Architecture of HadoopDB

S0L Cuery
MapH Joio
e [SMS Plannar |
MapHsducs
Job
Hadoop core
MMasterrode (oo —=
I MapReduce I - .
I HDFS Framework :
| I r -
I [MamaNods] [JobTracker] | f'ﬁ o E
| & || R
I I
I InputFormat Irnplemeantationa |
| 5 h, 4
| [Cratabasze Connscior
I - T
I .,
L e e e — J
Task with
Input=ommat l
Mode T~ """ T MgdeEr T T T T 0 HE den 1
[TaskTracksr 1 I TazkTracksr] TazkTracksr

e e — — — — — —

—— e e e — — — — — — ——

I I
I I
I I
I I
I I
: Dhiatalbwasa DataModa :
I I
I I

Data Loader

All data initially resides on the HDFS; table data is stored as raw files

Tables are partitioned (on-demand) and partitions are loaded on to
the nodes’ file systems

Data that comes at each node is re-partitioned in to small chunks
From there it is bulk-loaded in to the DBMS and indexed if required

Hash Partitioning :

o Global Hasher: Partition the tables which are stored as raw files on HDFS and
distribute them

> Local Hasher: Partition the single-node data in to file chunks and store them
in to disk blocks for efficient processing

Catalog

e Metadata about tables and their partitions:

> Attribute on which partition of a table exists in the cluster

o Size and location of the blocks of a partition on a particular node

> Replicas, if replicas exist for the partitions

e For each node store the DBMS connection details

o |P Address, Driver class, username and password, database name,
etc.

e MetaStore: Table schema information on the DBMSs in the
nodes. Used by SMS Planner for query plan generation

SMS Planner

Extends Hive, an SQL query processor built on top of
Hadoop

Parses the SQL Query, and transforms it in to an operator
DAG or the logical plan

Generates an optimal query plan after doing any
transformations

It breaks up the plan in to a batch of map and reduce
functions

Checks if a partitioning of a table exists on the join or group-
by attributes and decides on map and reduce functions

SMS Planner on an

o SELECT YEAR(saleDate),
SUM(revenue)

FROM sales GROUP BY
YEAR(saleDate);

SUM

|

GROUP-BY

|

SCAN

|

sales

example query

Mop File Sink Operator
Phasa file=annual_sales_revenus
only F

Table Scan Operator
SELECT YEAR(saleDate], S revenue)
FROM sales GROUP BY YE&R|saleDats)
[oc string, 1: double]

(&)

Filz Sink Cperator
file=annual_sales_revenue
3
select Operator
expr[Cal]d], Col]1]]
3
Group By Operator
ager:[sumil]] keys:[Col]D]] mods:

faduca i
merge partizl
Phass . #pa
Map [Reduce Sink Operator
Phass . Partition Cols: Col[0]

i

Table Scan Operator
SELECT YEAR(saleDate), SUMIrevenue)
FROM sales GROUP BY YEAR(saleDate)
[0 siring, 1: doubls]

SMS Planner and Hadoop Jobs

e SMS Planner generates map or reduce functions that
encapsulate code about database connection and SQL query to
execute

* A DatabaseConnector object is created by a Map function to
connect to the database using JDBC and execute SQL query

e Assuming tables are loaded in the database, an execution of a
map function triggers a database connection, query execution
and transforming the ResultSet in to key value pairs

e Reduce function simply aggregates over the repartitioned
tuples and produces output to the files

Salient Features of HadoopDB

Hadoop is used :
> To store the data using the HDFS file system

> For task scheduling, Hadoop’s JobTracker is used to schedule Map and
Reduce tasks on the nodes

> As network communication layer to transfer the intermediate results of
SQL query computations between nodes

An SQL Query is initially broken down in to a batch of MapReduce
jobs and then scheduled using Hadoop

Ultimately execution of relational query operators happens in a
single node DBMS

Queries are embedded in map and reduce functions and executed

Results are returned as key value pairs after query execution

Performance and Scalability Benchmark

* Architectures compared:
> Hadoop
> HadoopDB

> Vertica
o DBMS-X

* Tasks evaluated in the benchmark:
> Grep
> Selection (Filtering)
> Aggregation
° Join
> UDF Aggregation

Grep Task

Data consists of 5.6 million100-
byte records per node

For Hadoop, a map function
that performs a simple string
match over records stored in a
file, one per line

Vertica, DBMS-X, HadoopDB
execute the query:

o SELECT * FROM Data WHERE field
LIKE ‘% XYZ%’;

HadoopDB performs better

than Hadoop because it saves
on I/O

sacnds

1600

1200

1000

1200

aao

aaa

400

2o

10 modes 50 nodes 100 nodes

WVertica BDB-X MHadoopDE || Hadoop

10 nodes 50 nodes 100 nodes
W Vertica MDB-¥ H HadoopDE [Hadoop

Selection Query

SELECT pageURL, pageRank

FROM Rankings WHERE

pageRank > [0;

Hadoop as usual parses the data
files and filters records

HadoopDB pushes the execution

of selection and projection

10 modes | 50 nodes. | 100 nodes
operators in to the PostgreSQL MVertica MIDB-X [HHadoopDB [1HadoopDB Chunks []Hadoop

Using clustered indices boosts
performance of parallel databases
and HadoopDB over Hadoop

Aggregation Query

L

SELECT sourcelP, SUM(adRevenue) 4500
FROM UserVisits GROUP BY sourcelP; E
000

E -

There is a map and a reduce phase in 2000
these queries 1500
1000

m}_

HadoopDB pushes the SQL operators’ ek

execution in to the PostGreSQL

Using Hive’s query optimizer helps in
choosing either sorting or hashing
method to perform aggregation

Join Queries

* Hadoop SUPPOIts @ SOIt- 2000 jmmmmsm e
merge kind of algorithm " e
but incurs sorting 1400 e o I B S i
overhead g 1200 oo 11 e N e

SRRV E—— R ROUUURRUMUUUUY [SRR [, S
E']"J] BO0 - e e S [ORI () SO
600 -
400 4
e HadoopDB assumes a 207
] D T
collocation of tables 10 nodes 50 nodes 100 nodes

W'/ertica MDB-X [HadoopD3 | Hadoop

partitioned on the join
attributes

UDF Aggregation Task

HTML Documents are processed
for counting number of out-links

In parallel DBMS a user defined
function accesses chunks of HTML
documents and parses them in
memory

Outputs results of chunks on to a
temporary table which are later
aggregated

Hadoop and HadoopDB executes
the same and Map and Reduce
code

saconds

2000
1200
1600
1400
1200
1000

T
600 4---
400 4---
200 4---

10 nodes

&0 nodes

M '/ertica DB-¥ [HadoopDB

100 nodes

Hadoop

Fault Tolerance and Heterogeneity

DT emeeeme e e e s e £ e e g—
n: 68 n: nomial execution
L N & 159 ... tirme
180% f- execubion tirme with
) single node failure
160% -t s execution tme with
—_ a single slow node
S 140% A
'% %o showdown =
= 120% - . {n-1hn =100
= or ,
[{n-skn* 100
R (I[N U SSGG—G———I———- E————————
b
i
SR IR P P—————— W—————————
T
£
Aot 4o N e .
T 60%
\ n: 755
4I:l:"'l:'~' T g Ea T
anog | gz
20% rs: 112
0% .
Fault-tolerance Heterogeneity

MW ertica [HadoopDB + SMS | Hadoop+Hive

Conclusions

HADOOPDB

Fault Tolerance: In the presence of
node failures, Hadoop reschedules the
tasks and completes the query

Hadoop redundantly executes tasks of
straggler nodes thus reducing effect of
slow nodes on query time

PostgreSQL is not a column-store and
hence a drawback for HadoopDB

In the event of data explosion and
using several hundreds of nodes
scalability comes in to picture

PARALLEL DATABASES

In case of node failures
unfinished queries are aborted
and query processing is restarted

There is no way to counter the
slow node’s effect on overall
query time

Parallel databases like Vertica
achieve much better
performance due to column
store and data compression

Parallel databases are not
scalable

