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Hadron Physics and the Dyson–Schwinger
Equations of QCD
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Abstract. We use the Bethe–Salpeter equation in rainbow-ladder truncation to calculate the ground
state mesons from the chiral limit to bottomonium, with an effective interaction that was previously
fitted to the chiral condensate and pion decay constant. Our results are in reasonable agreement
with the data, as are the vector and pseudoscalar decay constants. The meson mass differences tend
to become constant in the heavy-quark limit. We also presentcalculations for the pion and rho
electromagnetic form factors, and for the single-quark form factors of theηc andJ/ψ .
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INTRODUCTION

Hadrons are color-singlet bound states of quarks, antiquarks, and gluons. Bound states
appear as poles in then-point functions of a quantum field theory. Thus a study of the
poles in then-point functions of QCD will tell us something about hadrons.

In the ultraviolet region, thesen-point functions can be calculated using perturbation
theory. For hadronic observables however, we need to understand the nonperturbative,
infrared behavior of then-point functions of QCD. The Dyson–Schwinger equations
[DSEs], which are the equations of motion of a quantum field theory, provide us with a
tool to study then-point functions nonperturbatively. For reviews on the DSEs and their
use in hadron physics, see [1, 2, 3, 4, 5].

MESON PHYSICS

Mesons can be described by solutions of the homogeneous Bethe–Salpeter equation

Γ(pout, pin;P) =

∫

d4k
(2π)4 K(pout, pin;kout,kin)χ(kout,kin;P) , (1)

with pin, pout the 4-momenta of the quark and antiquark, subject to momentum con-
servation:pin − pout = P, Γ the Bethe–Salpeter amplitude [BSA], andχ(kout,kin;P) =
S(kout)Γ(kout,kin;P)S(kin); the kernelK is theqq̄ scattering kernel. This integral equa-
tion has solutionsΓ at discrete values ofP2 = −M2 (in Euclidean metric) of the to-
tal meson 4-momentumP. Different types of mesons, such as pseudoscalar or vector
mesons, are characterized by different Dirac structures. The properly normalized BSA
Γ(pout, pin;P) completely describes the meson as aqq̄ bound state.
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Since Eq. (1) has solutions at discrete values ofP2 = −M2
i , one does not obtain the

“complete” spectrum, including the excited states, by solving a matrix equation once;
instead, one has to repeatedly solve Eq. (1) at different values ofP2 in order to find the
mass spectrum. The ground state in any particular spin-flavor channel corresponds to the
solution with the lowest mass,M0. Excited states can be found by looking for solutions
of Eq. (1) with a larger massMi > M0, and this can indeed be done [6, 7].

Rainbow-ladder truncation

A viable truncation of the infinite set of DSEs has to respect relevant (global) sym-
metries of QCD such as chiral symmetry, Lorentz invariance,and renormalization group
invariance. Here we use the so-called rainbow-ladder truncation, in which theqq̄ scat-
tering kernel is replaced by an effective one-gluon exchange

K(pout, pin;kout,kin) → −4π α(q2)Dfree
µν (q)λ i

2 γµ ⊗ λ i

2 γν , (2)

where q = pout − kout = pin − kin, and α(q2) is an effective running coupling. The
corresponding truncation of the quark DSE is

S(p)−1 = i 6 pZ2+mq(µ)Z4+
4
3

∫

d4k
(2π)4 4πα(q2)Dfree

µν (q) γµ S(k)γν , (3)

whereS(p) = Z(p2)/[i 6p+M(p2)] andq = k − p. This truncation is the first term in
a systematic expansion [8] of the quark-antiquark scattering kernelK; asymptotically,
it reduces to leading-order perturbation theory. Furthermore, these two truncations are
mutually consistent in the sense that the combination produces vector and axial-vector
vertices satisfying their respective Ward identities.

For the effective interaction we use the 2-parameter model of Ref. [10]

4πα(q2)

k2 =
4π2Dk2

ω6 e−k2/ω2
+

4π2γm F (k2)

1
2 ln

[

e2−1+
(

1+ k2/Λ2
QCD

)2
] , (4)

with F (s) = (1−e−s)/s, γm = 12/(33−2N f ), and fixed parametersN f = 4 and
ΛQCD = 0.234GeV. The remaining parameters,ω = 0.4 GeV andD = 0.93 GeV2,
were fitted in [10] to reproduce a chiral condensate of(240 MeV)3 and fπ = 131 MeV.
The first term in Eq. (4) models the infrared enhancement of the effectiveqq̄ scattering
kernel necessary to generate the experimentally observed amount of dynamical chiral
symmetry breaking [11] . It was introduced in [10] as a finite-width representation of a
δ -function [12], which can be interpreted as a regularized 1/p4 singularity inK [13, 14].
The second term ensures the correct perturbative behavior in the ultraviolet region.



Meson spectroscopy

In Table 1 we give our results for the equal-mass ground states in each spin channel.
The masses of the light quarks where fitted in [10] to the pion mass (using equalu and
d quark masses) and to the kaon mass. The light vector and pseudoscalar mesons are
described very well by this model: not only their masses, butalso a wide range of other
observables agree with experiments, without adjusting anyof the parameters, see [4] and
references therein. Here we apply this model to heavy quarksas well, and use the vector
mesonsJ/ψ andϒ to fix thec andb masses.

The mass splitting between the pseudoscalar and vector mesons is too large for the
heavy quarkonium states, but the decay constants are in reasonable agreement with avail-
able data. On the other hand, the mass splitting between the vector and the scalar mesons
is too small; and the scalar-pseudoscalar mass difference is reasonable. Also the axi-
alvector masses are too small, but the mass difference between the scalar and the 1++

states is in agreement with data, both for the light and for the c andb quarks. Similar
results for the light quark sector and for the charmonium states were found in Ref. [17]
with a slightly different model interaction. Presumably corrections beyond ladder trun-
cation are necessary for the scalar and axialvector masses:there are significant cancel-
lations between these corrections in the pseudoscalar and vector channels [8], but not
necessarily in the scalar and axialvector channels.

Over the entire mass range from the chiral limit up to the bottomonium states, the
pseudoscalar, vector, and scalar masses can be fitted by

M2
meson = C0+C1 mq +C2 m2

q , (5)

wheremq is the current quark mass at our renormalization pointµ = 19 GeV. The fit
parameters areC0 = 0 andC1 = 6.94 for the pseudoscalars,C0 = 0.51 andC1 = 7.27
for the vectors, andC0 = 0.38 andC1 = 8.65 for the scalar mesons, with a common
parameterC2 ≈ 4.6. The fact that the trajectories can all be fitted with (approximately)
the same value forC2 means that for large masses, the meson mass differences become
constant: in the limitmq → ∞ the above fit suggests∆M → 1

2∆C1/
√

C2. Thus this global
fit indicates that the mass differenceMV−MPSapproaches 0.07 GeV, whereasMS−MPS
approaches 0.4 GeV for heavy quarks; our numerical results however do not exclude that

TABLE 1. Masses and leptonic decay constants for equal-mass ground stateJPC mesons. Exper-
imental data are from Ref. [15], with the exception offηc [16].

quark flavor MPS fPS MV fV M(0++) M(1+−) M(1++)

up/down 0.1385 0.131 0.743 0.207 0.672 0.83 0.91
expt. 0.135,0.140 0.131 0.775 0.221 0.985 1.23 1.23

strange 0.697 0.183 1.076 0.260 1.081 1.17 1.25
expt. — — 1.020 0.229 — — —

charm 2.908 0.381 3.098 0.421 3.250 3.26 3.33
expt. 2.980 0.335±0.075 3.097 0.416 3.415 3.51

bottom 9.38 0.66 9.46 0.62 9.72 9.73 9.75
expt. 9.30 9.46 0.715 9.86 9.89
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FIGURE 1. Meson masses (left) and mass differences (right) as function of current quark mass,
normalized to the up and down quark masses. The vertical dashed lines indicate physical quark masses.

the coefficientsC1 are identical for the pseudoscalar and vector mesons, in which case
this mass difference vanishes in the heavy quark limit.

This is indeed consistent if we look at the actual mass differences we find, see the
right panel of Fig. 1: the mass differenceMV −MPS decreases with increasing quark
mass, it is about∆M ≈ 0.06 GeV for at 2mb, and still decreasing. Similarly, the mass
differenceMAV − MS appears to vanish in the heavy quark limit, but the differences
MS−MPS and MAV −MPS clearly remain nonzero and appear to go to a constant of
about∆M ≈ 0.35 GeV. However, one should keep in mind that the model was fitted to
the pion decay constant and the chiral condensate; implicitly we may have incorporated
corrections beyond the ladder kernel in our model for the effectiveqq̄ scattering kernel.
Higher-order corrections affect light quarks differentlythan heavy quarks [9].

The corresponding quark mass functions are shown in Fig. 2, and summarized in
Table 2. Our current quark masses are in good agreement with conventional values [15]
of both the light and the heavy quark masses. For the light quarks, the nonperturbative
mass functionMq(p2) is significantly larger than the perturbative quark massmq(µ)
at p = 2 = µ, indicating that chiral symmetry breaking sets in well above this scale.
The momentum dependence ofMc,b(p2) is much less dramatic. Nevertheless, there is a

TABLE 2. Current quark massesmq(µ) at µ = 19 GeV, scaled down toµ = 2 GeV and toµ = mq

using one-loop pQCD, together with the dynamical mass function M(p2) at several values ofp2.

mq(19) mq(2) mq(mq) Mq
(

p2 = Mq(p2)2
)

Mq(p2 = 4) Mq(p2 = 0) Mq
(

p2 =− 1
4M2

V

)

chiral limit 0.392 0.010 0.477 0.594
0.0037 0.005 0.401 0.017 0.499 0.610
0.0838 0.118 0.556 0.168 0.689 0.845
0.827 1.17 1.30 1.42 1.31 1.61 2.00
3.68 5.65 4.46 4.30 4.46 4.52 5.33
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FIGURE 2. Dynamical quark mass functionMq(p2) for u = d, s, c, b and chiral quarks.

significant difference between the dynamical mass in the region relevant forqq̄ bound
states, namelyp2 ∼ −1

4M2
meson in the timelike region, andMc,b(p2) in the spacelike

region, even forb quarks. For 0< p2<−1
4M2

meson, the mass function of the heavy quarks
is in fact quite close to the typical pole masses used in non-relativistic calculations of
charmonium,mpole

c ≈ 1.47 to 1.83 GeV and bottomonium,mpole
b ≈ 4.7 to 5.0 GeV [15].

Electromagnetic form factors

The qq̄γ vertex is the solution of the renormalized inhomogeneous Bethe–Salpeter
equation with the same kernelK as Eq. (1). Thus for photon momentumQ, we have

Γµ(pout, pin) = Z2 γµ +

∫

d4k
(2π)4K(pout, pin;kout,kin) S(kout)Γµ(kout,kin)S(kin) , (6)

with pout andpin the outgoing and incoming quark momenta, respectively, andsimilarly
for kout and kin, with pout− pin = kout− kin = Q. The ladder truncation for Eq. (6),
in combination with the rainbow truncation for the quark propagators and impulse
approximation for electromagnetic form factors, satisfiesthe vector Ward–Takahashi
identity and electromagnetic current conservation is guaranteed.

Also note that solutions of thehomogeneous version of Eq. (6) define vector meson
bound states with massesM2

V =−Q2 at discrete timelike momentaQ2. It follows that
Γµ has poles at those locations. Thus the effects of intermediate vector meson states
on electromagnetic processes can be unambiguously incorporated by using the properly
dressedqq̄γ vertex rather than the bare vertexγµ [18].

Consider for example the 3-point function describing the coupling of a photon with
momentumQ to the quarka of a mesonab̄, with initial and final momentaP± 1

2Q

Λa
µ(P,Q) = iNc

∫

d4k
(2π)4Tr

[

Γa
µ(q−,q+)χab̄(q+,q) Sb(q)−1 χ̄ b̄a(q,q−)

]

, (7)



TABLE 3. Static electromagnetic properties of pseudoscalar and
vectorud̄ mesons (π andρ) andcc̄ mesons (fictitious).

r2
PS r2

V,E µ r2
V,M Q

up/down 0.44 0.54 2.01 0.49 −0.41

charm 0.048 0.052 2.13 0.047 −0.28
lattice [23] 0.063(1) 0.066(2) 2.10(3) -0.23(2)
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FIGURE 3. Single-quark form factors:π andρ (left) andcc̄ pseudoscalar and vector mesons (right).

with q = k− 1
2P and q± = k+ 1

2P± 1
2Q. The corresponding single-quark elastic form

factorFa of a pseudoscalar meson is defined by

2 Pµ Fa(Q2) = Λa
µ(P,Q) . (8)

Vector mesons have three elastic form factors, commonly referred to as the electric,
magnetic, and quadrupole form factorsGE(Q2), GM(Q2), and GQ(Q2). The electric
monopole moment (i.e. the electric charge), magnetic dipole moment and the electric
quadrupole moment follow from the values of these form factors in the limit Q2 → 0:
GE(0) = 1 (constrained by current conservation),GM(0) = µ, andGQ(0) = Q.

Our results for the pion form factor [18, 19] are in good agreement with the data,
both in the spacelike region [20] and in the timelike region;the charge radius agrees
very well with the experimental value〈r2

π〉 = 0.44± 0.01 fm2 [21], see Table 3. The
vector charge radius [22] is slightly larger than the pseudoscalar radius, both for light
quarks and for charm quarks. This suggests that the vector states are broader than the
corresponding pseudoscalar states, assuming that the charge distribution is indicative of
the physical size of the bound state. This agrees with the naive intuition that a more
tightly bound state is more compact than a heavier state withthe same constituents.
For charm quarks this difference is significantly smaller than for up and down quarks,
in agreement with recent lattice calculations [23]. The magnetic moment appears to
be surprisingly independent of the quark mass; the quadrupole moment decreases with



increasing quark mass [22]. Recent lattice simulations [23] agree quite well with our
results for the moments of the single-quark form factors of theJ/ψ.

In Fig. 3 we see that both the pseudoscalarFπ and all three vector form factorsGρ
i

diverge in the timelike region asQ2 →−0.55 GeV2, corresponding to the vector-meson
poles in the dressed quark photon vertex. Similarly, the single-quark form factors of the
ηc andJ/ψ diverge asQ2 →−9.5 GeV2. However, it is only the pion form factor that
can be described by a vector meson dominance [VMD] curve,Fπ ≈ M2

ρ/[Q
2+M2

ρ ], over
the entireQ2-region shown. Theρ form factorsGρ

i drop significantly faster [22] than a
VMD curve, as do thecc̄ form factors, both for pseudoscalar and vector states.
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