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On the basis of the percolation picture from the hadronic phase with hyperons to the quark phase
with strangeness, we construct a new equation of state (EOS) with the pressure interpolated as
a function of the baryon density. The maximum mass of neutron stars can exceed 2M⊙ if the
following two conditions are satisfied: (i) the crossover from hadronic matter to quark matter
takes place at around three times the normal nuclear matter density, and (ii) the quark matter is
strongly interacting in the crossover region and has a stiff equation of state. This is in contrast
to the conventional approach, assuming the first-order phase transition in which the EOS always
becomes soft due to the presence of the quark matter at high density. Although the choice of
the hadronic EOS does not affect the above conclusion for the maximum mass, the three-body
force among nucleons and hyperons plays an essential role in the onset of hyperon mixing and
the cooling of neutron stars.
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1. Introduction

A neutron star (NS) is a cosmic laboratory that provides us with a testing ground for the rich phase

structure of quantum chromodynamics (QCD) [1] through observables such as the mass (M), the

radius (R), the surface temperature (Ts), the surface magnetic field (Bs), and so on [2]. Among

others, M and R are particularly important probes for constraining the equation of state (EOS) and

the composition of high-density matter.

From the theoretical point of view, the onset of the strangeness degrees of freedom inside NSs has

attracted much attention in recent years: The general consensus is that hyperons (Y ) such as � and �−

would participate in NS cores at densities of several times nuclear matter density (ρ0 = 0.17 fm−3)

[3–9]. The precise value of the threshold density ρth depends on hyperon–nucleon interactions, which

still show uncertainties at the moment but will be improved by future hypernuclear data [10–12] and

by lattice QCD simulations [13]. From the observational point of view, a massive NS, PSR J1614-

2230, with Mobs = (1.97 ± 0.04)M⊙ was recently discovered [14]. Conflict between the 2M⊙ NS,

which requires a stiff EOS, and Y -mixing, which gives a soft EOS, leads to the challenging problem

of whether massive neutron stars are in contradiction with the existence of exotic components such

as hyperons and deconfined quarks [15–23].

The purpose of the present paper is to investigate whether “hybrid stars”, which have quark matter

in the core, are compatible with a 2M⊙ NS. Historically, the transition from hadronic matter to quark
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© The Author(s) 2013. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at V
irg

in
ia T

ech
 o

n
 F

eb
ru

ary
 2

0
, 2

0
1
4

h
ttp

://p
tep

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/


PTEP 2013, 073D01 K. Masuda et al.

matter has been assumed to be a first-order phase transition and Gibbs phase equilibrium conditions

are imposed. However, treating the point-like hadron as an independent degree of freedom is not fully

justified in the transition region because all hadrons are extended objects composed of quarks and

gluons. Furthermore, the system must be strongly interacting in the transition region, so that it can

be described neither by an extrapolation of the hadronic EOS from the low-density side nor by an

extrapolation of the quark EOS from the high-density side [24]. This is analogous to the BEC–BCS

crossover realized in the many-body system of ultra-cold fermionic atoms [25].

Figure 1 illustrates the above situation in terms of the pressure as a function of baryon density

(ρ). One may expect a gradual onset of quark degrees of freedom in dense matter associated with

the percolation of finite-size hadrons, i.e., a smooth crossover from hadronic matter to quark matter.

Such a percolation picture of hadrons has been discussed in seminal works such as Refs. [26,27].

Also, the hadron–quark continuity [28,29] and hadron–quark crossover [30,31] have been discussed

in relation to the existence of color superconductivity at high density. In this paper, we show that the

crossover picture can lead to a stiffening of the EOS, unlike the case of the first-order transition, if

the following conditions are met: (i) the crossover takes place at relatively low density (around three

times the normal nuclear matter density), and (ii) the strongly interacting quark matter has a stiff

EOS. This implies that the hadron–quark crossover provides us with a novel mechanism to support

massive neutron stars with quark cores. A preliminary account of our results has been reported in Ref.

[33]. We note that an interpolation between hadronic matter and stiff quark matter was previously

considered phenomenologically in Ref. [32].

This paper is organized as follows. In Sect. 2, the characteristic features of the hadronic EOSs

(H-EOSs) to be used at low densities are summarized. In Sect. 3, we treat the strongly interacting

quark matter by using a Nambu–Jona-Lasinio (NJL)-type model and derive the quark EOS (Q-EOS)

to be used at high densities. In Sect. 4, we describe our interpolation procedure to obtain the EOS in

the hadron–quark crossover region. In Sect. 5 and 6, numerical results and discussions are given for

the bulk properties of hybrid stars, such as the M–R relationship, the maximum mass Mmax, and the

M–ρc (central density) relationship. We discuss how these results depend on the different choice of

H-EOS and Q-EOS. A comment on the cooling of NSs with respect to the hyperon mixture inside

the core is also given. Section 7 is devoted to concluding remarks.
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Fig. 1. Schematic picture of the QCD pressure (P) as a function of the baron density (ρ) under the assumption
of the hadron–quark crossover. The crossover region where finite-size hadrons start to overlap and percolate
is shown by the shaded area. The pressure calculated on the basis of point-like hadrons (shown by the dashed
line at low density) and that calculated on the basis of weakly interacting quarks (shown by the dashed line
at high density) lose their validity in the crossover region, so that the naive use of the Gibbs conditions by
extrapolating the dashed lines is not justified in general.
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Fig. 2. Pressure (P) for Y -mixed neutron star matter with β-equilibrium and charge neutrality as a function
of the total baryon density ρ for different types of EOS. Solid red lines: TNI2u (G-matrix approach, uni-
versal three-body force, κ = 250 MeV) and TNI2 (G-matrix approach, three-nucleon force, κ = 250 MeV).
Solid blue lines: TNI3u (G-matrix approach, universal three-body force, κ = 300 MeV) and TNI3 (G-matrix
approach, three-nucleon force, κ = 300 MeV) [34,35]. Solid green lines: AV18+TBF (G-matrix approach,
three-nucleon force, κ = 192 MeV) [37] and SCL3�� (relativistic mean field model with chiral SU(3) sym-
metry, κ = 211 MeV) [40]. Paris+TBF is not plotted here because it is almost the same as AV18+TBF. For
comparison, P for the neutron star matter without hyperons obtained from APR EOS [41] is also shown by the
dotted lines.

2. Hadronic EOS (H-EOS)

We consider several different EOSs with Y -mixing:

◦ TNI2, TNI3, TNI2u, and TNI3u [34,35]: TNI2 and TNI3 are obtained by the G-matrix calcula-

tion with a Reid soft-core potential for N N and a Nijmegen type-D hard-core potential for Y N

and Y Y . Also, a phenomenological three-body force [36] is introduced in the form of an effective

N N force to reproduce the saturation point of symmetric nuclear matter with the incompress-

ibility κ = 250 MeV (TNI2) and κ = 300 MeV (TNI3). For TNI2u and TNI3u, the three-body

interaction is introduced universally in the form of effective N N , NY , and Y Y forces.

◦ AV18+TBF and Paris+TBF [37]: These are obtained by the G-matrix calculation but with a dif-

ferent choice of potentials; AV18 and Paris potentials for N N and a Nijmegen soft-core potential

for Y N and Y Y . Also, a three-body force of Urbana type is introduced in the form of an effective

N N force to meet the saturation condition.

◦ SCL3�� [40]: This is based on a relativistic mean field (RMF) model with chiral SU(3) sym-

metry and logarithmic potential motivated by the strong coupling lattice QCD approach. The

phenomenological parameters of the model are determined to reproduce the saturation condition,

bulk properties of normal nuclei, and separation energies of single- and double-� hypernuclei.

In Fig. 2, we plot the pressure P for Y -mixed neutron star matter with β-equilibrium and charge

neutrality as a function of baryon density ρ obtained from the EOSs listed above (Paris+TBF is not

shown since it is almost the same as AV18+TBF). For comparison, P for neutron star matter without
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Fig. 3. M–ρc relationship corresponding to the EOSs in Fig. 2 (details of the EOSs are given in Table A1 of
Appendix A). The colors on each line are the same as those in Fig. 2. The cross symbols denote the points
where the NS mass becomes maximum, Mmax. The solid black line denotes M = 1.44M⊙ for PSR 1913+16.

Table 1. Properties of various hadronic EOSs with hyperons: TNI2, TNI3, TNI2u, TNI3u [34,35],
Paris+TBF, AV18+TBF [37–39], and SCL3�� [40]. κ is the nuclear incompressibility and ρth is the
threshold density of hyperon-mixing with ρ0 (= 0.17/fm3) being the normal nuclear density. R and
ρc denote the radius and central density for the maximum mass (Mmax) NS, respectively. The numbers
in parentheses are those without hyperons. ∗indicates that the numbers are taken from the figures in
Ref. [37].

EOS TNI2 TNI3 TNI2u TNI3u Paris+TBF AV18+TBF SCL3��

κ (MeV) 250 300 250 300 281 192 211
ρth(�)/ρ0 2.95 2.45 4.01 4.01 2.9∗ 2.8∗ 2.24
ρth(�

−)/ρ0 2.83 2.23 4.06 4.01 1.9∗ 1.8∗ 2.24
Mmax/M⊙ 1.08 1.10 1.52 1.83 1.26 1.22 1.36

(1.62) (1.88) (2.06) (2.00) (1.65)
R (km) 7.70 8.28 8.43 9.55 10.46 10.46 11.42

(8.64) (9.46) (10.50) (10.54) (10.79)
ρc/ρ0 16.10 13.90 11.06 8.26 7.35 7.35 6.09

(9.97) (8.29) (6.47) (6.53) (6.85)

hyperons obtained from the APR EOS ([41]) is also plotted in Fig. 2 with dotted lines. In Fig. 3, the

M–ρc relationships for the corresponding NS models are shown. The filled circle on each curve

denotes the threshold density of the Y -mixture. There are some features to be noted in the figure: (i)

Different H-EOSs do not show a significant difference in P up to 2.5 ρ0, and (ii) the Y -mixture is

delayed from (2–3)ρ0 to 4ρ0 if a repulsive three-body force exists universally for baryons, as in the

case of TNI2u and TNI3u. Even light-mass NSs (M < M⊙ for TNI2, TNI3, and AV18+TBF and

M < 1.2M⊙ for SCL3��) already have Y -mixed cores.

In Table 1, we show κ and the threshold densities of hyperon-mixing, ρth(�) and ρth(�
−), for each

H-EOS. In the same table, we show the maximum-mass Mmax, the radius R, and the central density ρc

of the NS obtained from each H-EOS. The values obtained by switching off the Y -mixing are given

in parentheses for comparison. For the H-EOSs without universal three-body repulsion, significant
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softening due to Y -mixing reduces Mmax, i.e., Mmax (without Y ) = (1.62–2.00)M⊙, (1.08–1.26) →
(1.08–1.26)M⊙. This clearly contradicts the observed mass Mobs = 1.44M⊙ for PSR1913+16. On

the other hand, for H-EOSs with universal three-body repulsion (TNI2u, TNI3u), Mmax has almost

recovered to that without Y .

The use of the several kinds of EOS mentioned above, from different theoretical methods

(G-matrix, RMF), with various stiffness values ranging from κ ∼ 190 MeV to 300 MeV and with

the variation of ρth(Y ) ≃ (2 − 4)ρ0, is expected to cover the present uncertainties of the H-EOSs.

For completeness, numerical values of the pressure P and the energy density ε as a function of the

baryon density are tabulated in Table A1 in Appendix A.

3. Quark EOS (Q-EOS)

The baryon density at the central core of the NSs would be at most 10ρ0. Although hadrons do not

keep their identities in such a high density, the chemical potentials of the quarks are about (400–

500) MeV, which is not high enough for the asymptotic freedom at work. Namely, the deconfined

quarks inside the NSs, even if they exist, would be strongly interacting. An analogous situation at

finite temperature is expected theoretically and has recently been confirmed by the relativistic heavy-

ion collisions at RHIC and LHC; it is now called the strongly interacting quark–gluon plasma (sQGP).

Since lattice QCD to treat the strongly interacting quark matter (sQM) at finite baryon density

is unfortunately not possible due to the notorious sign problem, we adopt an effective theory of

QCD, the (2 + 1)-flavor Nambu–Jona-Lasinio (NJL) model. This model is particularly useful for

taking into account important phenomena such as the partial restoration of chiral symmetry at high

density [42–45].

The model Lagrangian we consider is

LNJL = q(i �∂ − m)q +
1

2
GS

8
∑

a=0

[(qλaq)2 + (qiγ5λ
aq)2] − G D[detq(1 + γ5)q + h.c.]

−

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

gV (qγ µq)2

1
2

GV

8
∑

a=0

[

(qγ µλaq)2 + (qiγ µγ5λ
aq)2

] (1)

where the quark field qi (i = u, d, s) has three colors and three flavors with the current quark mass mi .

The term proportional to GS is a U (3)L × U (3)R symmetric four-fermi interaction where λa are the

Gell-Mann matrices with λ0 =
√

2/3 I. The term proportional to G D is the Kobayashi–Maskawa–

’t Hooft (KMT) six-fermi interaction, which breaks U (1)A symmetry. We consider two types of

vector interaction (the second line of Eq. (1)): The term proportional to gV (> 0) gives a universal

repulsion among different flavors, while the one proportional to GV (> 0) gives flavor-dependent

repulsion.

In the mean-field approximation, the constituent quark masses Mi (i = u, d, s) are generated

dynamically through the NJL interactions (GS,D):

Mi = mi − 2GSσi + 2G Dσ jσk, (2)

where σi = 〈q̄i qi 〉 is the quark condensate in each flavor, and (i , j , k) corresponds to the cyclic

permutation of u, d, and s. The thermodynamic potential � is related to the pressure as � = −T log

5/26
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Table 2. Parameter sets of the (2 + 1)-flavor NJL model [42–45].

� (MeV) GS�
2 G D�5 mu,d (MeV) ms (MeV)

HK 631.4 3.67 9.29 5.5 135.7
RKH 602.3 3.67 12.36 5.5 140.7
LKW 750 3.64 8.9 3.6 87

Z = −PV , so that we have

P(T, µu,d,s) = T
∑

i

∑

ℓ

∫

d3 p

(2π)3
Trln

(

S−1
i (iωℓ, p)

T

)

− GS

∑

i

σ 2
i − 4G Dσuσdσs +

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
2

gV

(

∑

i

ni

)2

1
2

GV

∑

i

n2
i

(3)

where ni = 〈q†
i qi 〉 is the quark number density in each flavor, and Si is the quark propagator, which

can be written as

S−1
i = ✓p − Mi − γ 0µeff

i , µeff
i ≡

⎧

⎪

⎨

⎪

⎩

µi − gV

∑

j

n j

µi − GV ni

(4)

where iωℓ = (2ℓ + 1)πT and µeff
i is an effective chemical potential [46].

There are six independent parameters in the (2+1)-flavor NJL model: the UV cutoff, �, the cou-

pling constants, GS, G D , and gV (GV ), and the quark masses, mu,d and ms . Five parameters except

for gV (GV ) have been determined from hadron phenomenology. We consider three parameter sets,

summarized in Table 2: HK (Hatsuda and Kunihiro), RKH (Rehberg, Klevansky, and Hufner) and

LKW (Lutz, Klimt, and Weise) [42–45].

The magnitude of gV (GV ) has not been determined well: Recent studies of the Polyakov-Nambu-

Jona-Lasinio model applied to the QCD phase diagram suggest that gV may be comparable to or

larger than GS [47,48], so that we change its magnitude in the following range:

0 ≤
gV

GS

≤ 1.5. (5)

In Sects 5 and 6, we will show our results mainly for the HK parameter set with the vector inter-

action of the gV type. At the end of Sect. 5, we discuss how the results change in other cases. The

Q-EOS with strangeness is obtained from the above model under two conditions: (i) charge neutrality

among quarks and leptons, i.e. 2
3
nu − 1

3
nd − 1

3
ns − ne − nµ = 0, and (ii) the β-equilibrium among

quarks and leptons, i.e. µd = µs = µu + µe and µe = µµ.

In Fig. 4, the number fractions (nu,d,s,e/ntot with ntot = nu + nd + ns = 3ρ) as a function of the

baryon density ρ are plotted. Also, in Fig. 5, the constituent quark masses (Mi ) as a function of ρ

are plotted. The HK parameter set with the gV -type interaction is used in both figures. The flavor-

independent gV -type interaction leads to a pressure in Eq. (3) depending only on µeff
i . Then, the

number fractions and the quark masses as a function of ρ do not depend on gV .

At low baryon densities below a threshold density ρth ≃ 4ρ0, the system is composed of only u,

d, and e with nd ∼ 2nu due to charge neutrality and β-equilibrium (Fig. 4). In this region, the strong

interaction among quarks (mainly the GS term in the NJL model) drives the partial restoration of

6/26
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Fig. 4. The number fractions (nu,d,s,e/ntot with ntot = nu + nd + ns = 3ρ) as a function of the baryon density
ρ. Solid red line: The fraction of u quarks. Solid blue line: The fraction of d quarks. Solid green line: The
fraction of s quarks. Solid black line: The fraction of the electron × 100. The muon does not appear due to the
emergence of s quarks.

Fig. 5. The constituent quark masses (Mi ) as a function of ρ. The colors of each line are the same as those
in Fig. 4.

chiral symmetry and hence a rapid decrease of the constituent masses Mu,d (Fig. 5). Due to the

coupling between different flavors through the G D term, the strange quark mass Ms in the Dirac sea

is also affected slightly.

When the baryon density exceeds ρth, the chemical potential of the strange quark µs becomes larger

than the strange quark mass (µs > Ms), so that the system starts to have the strangeness degree of

freedom. Since the strange quark is negatively charged, electrons start to disappear from the system

7/26
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Fig. 6. Pressure (P) as a function of baryon density ρ in a pure quark matter for the HK parameter set with
gV /GS = 0, 1.0, 1.5. The filled circles denote the onset of strangeness.

and the d quark fraction decreases at the same time (Fig. 4). We note that the system does not have

the muon, because the electron chemical potential is smaller than mµ = 106 MeV at all densities.

In the high-density limit, the system approaches the flavor-symmetric u, d, s matter without leptons.

Once the s-quark appears in the system, Ms is also suppressed, mainly due to the GS term (Fig. 5).

The strangeness threshold ρth does not depend on gV as already mentioned, but it does depend on

the NJL parameter sets in Table 2: ρth/ρ0 = 4.0, 3.9, and 3.0 for HK, RKH, and LKW, respectively.

In Fig. 6, we plot the pressure (P(ρ) with a normalization P(0) = 0) of the strongly interact-

ing quark matter for the HK parameter set with different values of the vector coupling (gV /GS =
0, 1.0, 1.5 according to Eq. (5)). Due to the universal repulsion of the gV -type vector interaction, the

Q-EOS becomes stiffer as gV increases. As already mentioned, the onset density of the strangeness

(shown by the filled circles) does not depend on gV . We note here that the present Q-EOS has a first-

order phase transition below 2ρ0 for gV < 0.3GS . However, it does not affect the final results of the

present paper, since such a low-density region is dominated by the hadronic EOS in our hadron–quark

crossover approach, to be discussed in Sect. 4.

4. Hadron–quark crossover

As discussed in Sect. 1, treating the point-like hadron as an independent degree of freedom loses

its validity as the baryon density approaches the percolation region. In other words, the system can

be described neither by an extrapolation of the hadronic EOS from the low-density side nor by an

extrapolation of the quark EOS from the high-density side. Under such a situation, it does not make

much sense to apply the Gibbs criterion of two phases I and II, PI(Tc, µc) = PII(Tc, µc), since PI

and PII are not reliable in the transition region.

Since a first-principles QCD calculation at high baryon density is not available and effective models

at finite baryon density with proper treatment of the confinement phenomena do not exist at present,

we will consider a phenomenological “interpolation” between the H-EOS and Q-EOS as a first

8/26
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step. Such an interpolation is certainly not unique: Here we consider the two simplest possibilities,

P-interpolation and ε-interpolation, as described below.

◦ P-interpolation as a function of baryon density:

P(ρ) = PH (ρ) f−(ρ) + PQ(ρ) f+(ρ), (6)

f±(ρ) =
1

2

(

1 ± tanh

(

ρ − ρ̄

Ŵ

))

, (7)

where PH and PQ are the pressure in the hadronic matter and that in the quark matter, respec-

tively. An interpolating function f± similar to ours has been previously considered at finite

temperature in Refs. [49–51]. The window ρ̄ − Ŵ � ρ � ρ̄ + Ŵ characterizes the crossover

region in which both hadrons and quarks are strongly interacting, so that neither the pure

hadronic EOS nor the pure quark EOS are reliable. The percolation picture illustrated in Fig. 1

is best implemented by the interpolation in terms of the baryon density ρ instead of the baryon

chemical potential. One should not confuse Eq. (7) with the pressure in the mixed phase associ-

ated with the first-order phase transition in which f± is considered to the volume fraction of each

phase. In our crossover picture, the system is always uniform and f− ( f+) should be interpreted

as the degree of reliability of H-EOS (Q-EOS) at a given baryon density.

To calculate the energy density ε as a function of ρ in a thermodynamically consistent way,

we integrate the thermodynamical relation P = ρ2∂(ε/ρ)/∂ρ and obtain

ε(ρ) = εH (ρ) f−(ρ) + εQ(ρ) f+(ρ) + �ε (8)

�ε = ρ

∫ ρ

ρ̄

(εH (ρ′) − εQ(ρ′))
g(ρ′)

ρ′ dρ′ (9)

with g(ρ) = 2
Ŵ
(eX + e−X )−2 and X = (ρ − ρ̄)/Ŵ. Here εH (εQ) is the energy density obtained

from H-EOS (Q-EOS). �ε is an extra term that guarantees thermodynamic consistency. Note

that the energy per baryon from the extra term �ε/ρ, which receives its main contribution from

the crossover region, is finite even in the high-density limit.

◦ ε-interpolation as a function of baryon density:

ε(ρ) = εH (ρ) f−(ρ) + εQ(ρ) f+(ρ). (10)

Other thermodynamic quantities are obtained through the thermodynamic relation

P(ρ) = PH (ρ) f−(ρ) + PQ(ρ) f+(ρ) + �P (11)

�P = ρ(εQ(ρ) − εH (ρ))g(ρ), (12)

and µ = (ε + P)/ρ. Here �P is an extra term that guarantees thermodynamic consistency; it

is a localized function in the crossover region and obeys the property �P(0) = �P(∞) = 0.

5. Neutron star properties with P-interpolation

5.1. Interpolated EOS

In the present section we consider the case of P-interpolation. The case of ε-interpolation will be

discussed in Sect. 6. We note that the crossover window in both interpolations should satisfy the

following physical conditions: (i) The system is always thermodynamically stable, d P/dρ > 0, and

(ii) the normal nuclear matter is well described by the H-EOS so that ρ̄ − 2Ŵ > ρ0 is satisfied.
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Fig. 7. The interpolated pressure between TNI2u H-EOS and NJL Q-EOS with gV = GS for
(ρ̄, Ŵ) = (3ρ0, ρ0). Pressure is illustrated by a blue line. The filled circle denotes the threshold density of
strangeness.

Fig. 8. The energy density obtained from the interpolated pressure in Fig. 7. Energy density is illustrated by a
blue line. The filled circle denotes the threshold density of strangeness.

Shown in Figs. 7–9 are examples of the P-interpolation between TNI2u for H-EOS and NJL with

gV = Gs for Q-EOS according to Eq. (7). The crossover window is chosen to be (ρ̄, Ŵ) = (3ρ0, ρ0)

and is shown by the shaded area on the horizontal axis. An important lesson that one can learn

from Fig. 7 is that the H-EOS (Q-EOS) is nothing more than the asymptotic form of the “true”
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Fig. 9. The relation between interpolated pressure and energy density. The parameters are the same as in Fig.
7. The filled circle denotes the threshold density of strangeness.

Fig. 10. Interpolated pressure (P) as a function of baryon density ρ for the case (ρ̄, Ŵ) = (3ρ0, ρ0) with
gV /GS = 0, 1.0, 1.5.

P(ρ) around ρ = 0 (ρ = ∞). Therefore, naive extrapolation of H-EOS and Q-EOS beyond their

applicability would miss essential physics.

In Fig. 10, we plot the interpolated EOS using TNI2u and NJL for different values of gV in a wide

range of baryon density. The filled circles denote the onset of strangeness degrees of freedom, either

hyperons or strange quarks.
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Table 3. Mmax/M⊙ (ρc/ρ0) for different choices of H-EOS
and different stiffness values for Q-EOS.

H-EOS gV = GS gV = 1.5GS

TNI2u 2.05 (6.1) 2.17 (5.5)
TNI2 2.04 (6.1) 2.16 (5.9)
TNI3u 2.07 (5.9) 2.18 (5.4)
TNI3 2.04 (6.1) 2.16 (5.5)
Paris+TBF 2.06 (6.1) 2.17 (5.6)
AV18+TBF 2.06 (6.1) 2.17 (5.5)
SCL3�� 2.06 (5.9) 2.17 (5.5)

5.2. Mass–radius relation

We now solve the following Tolman–Oppenheimer–Volkov (TOV) equation to obtain the M–R

relationship by using EOSs with and without the hadron–quark crossover:

d P

dr
= −

G

r2

(

M(r) + 4π Pr3
)

(ε + P) (1 − 2G M(r)/r)−1 ,

M(r) =
∫ r

0

4πr ′2ε(r ′)dr ′, (13)

where we have assumed spherical symmetry, with r being the radial distance from the center of the

star.

In Fig. 11(a), we show the M–R relationship for various H-EOSs with hyperons whose onset is

denoted by the filled circles. The crosses denote the points where maximum masses are realized: In

all cases, Mmax does not reach 2M⊙ due to the softening of EOS by the hyperon mixture.

In Fig. 11(b), we show the M–R relationship with the EOS interpolated between H-EOS and Q-

EOS: For the H-EOS, we consider the same EOSs as shown in Fig. 11(a), while, for the Q-EOS,

we adopt the HK parameter set with gV = GS as a typical example. The crossover window is fixed

to be (ρ̄, Ŵ) = (3ρ0, ρ0). Cases for different parameters in Q-EOS as well as for different window

parameters are discussed in the next subsection.

The red lines in Fig. 11(b) correspond to the cases with TNI2u and TNI2, the blue lines corre-

spond to TNI3u and TNI3, and the green lines correspond to SCL3�� and AV18+TBF. The onset

of strangeness and the maximum mass are denoted by filled circles and the crosses, respectively. Irre-

spective of the H-EOSs, the interpolated EOS can sustain a hybrid star with Mmax > 2M⊙: A smooth

crossover around ρ ∼ 3ρ0 and a stiff Q-EOS due to repulsive vector interaction are two fundamental

reasons for this fact. Also, we note that the radius of the hybrid star with the interpolated EOS is in

the range R = (11 ± 1) km for 0.5 < M/M⊙ < 2.0, except for the SCL3�� case.1 Such a narrow

window of R independent of the values of M is consistent with the phenomenological constraints on

R based on recent observations of both transiently accreting and bursting sources [52,53].

In Table 3, we show the maximum mass and the associated central density of a hybrid star with

the interpolated EOS with gV = GS and gV = 1.5GS . In all combinations of H-EOS and Q-EOS,

Mmax exceeds 2M⊙ with the central density, ρc = (5.4–6.1)ρ0.

Let us now turn to the internal structure of the hybrid star, in particular its strangeness content.

From the location of the filled circles in Fig. 11(b), one finds that the flavor-independent universal

1 The reason that the SCL3�� case is different from others can easily be seen from Fig. 2: The pressure P

of SCL3�� is nearly twice as large as that of the other EOSs at ρ = (1 − 2)ρ0. This leads to a larger R for
light NSs.
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Fig. 11. M–R relationships. (a) M–R relationships with various H-EOSs including hyperons. Solid red lines:
TNI2u (universal three-body force with κ = 250 MeV) and TNI2 (three-nucleon force with κ = 250 MeV).
Solid blue lines: TNI3u (universal three-body force with κ = 300 MeV) and TNI3 (three-nucleon force with
κ = 300 MeV) [34,35]. Solid green lines: AV18+TBF (G-matrix approach with hyperons) [37] and SCL3��

(relativistic mean field model with chiral SU(3) symmetry) [40]. The gray band denotes M = (1.97 ± 0.04)M⊙
for PSR J1614-2230. The solid black line denotes M = 1.44M⊙ for PSR 1913+16. (b) M–R relationship with
the EOS interpolated between H-EOS in (a) and Q-EOS with the HK parameter set and gV = GS , with the
window parameters (ρ̄, Ŵ) = (3ρ0, ρ0). The colors of each line are the same as those in (a).

three-baryon repulsion in TNI2u and TNI3u increases the onset density of the strangeness inside the

hybrid star. This can be seen more explicitly by plotting the radial profile of the hybrid star: The

upper panels of Fig. 12 show the ρ–r relationships for 2M⊙ and 1.44M⊙ hybrid stars with TNI2

(left) and TNI2u (right). The threshold densities of the strangeness given in Table 1 are indicated by
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Fig. 12. Density profiles ρ(r), with r being the distance from the center for a 2.0M⊙ star (red line) and a
1.44M⊙ star (blue line). In the upper left panel, the TNI2 H-EOS and Q-EOS with gV = GS and the HK
parameter set are used in the interpolation with the window parameters (ρ̄, Ŵ) = (3ρ0, ρ0), while, in the upper
right panel, the TNI2u H-EOS and the Q-EOS above are used. The double line shows the density above which
the strangeness appears. The lower illustrations show the internal structure. Only the shaded regions contain
strangeness degrees of freedom.

double lines. In our interpolated EOSs, the above stars turn out to have almost the same radius. The

lower illustrations of Fig. 12 show the cross sections of the corresponding hybrid stars.

These figures imply that, even if the mass and the radius are the same, the strangeness content of

the hybrid stars can be quite different. This point is of particular interest for the cooling problem of

NSs. As is well known, NSs with a Y -mixed core undergo extremely rapid cooling due to the efficient

ν-emission processes called “hyperon direct URCA” (Y -Durca, e.g., � → p + e− + ν̄e, p + e− →
� + νe) and are cooled very rapidly below the thermal X-ray detection limit. Therefore, for NSs

consisting of pure hadronic components with Y , only the very light-mass NSs (M < (1.0 − 1.2)M⊙,

as in Fig. 3) can escape from Y -Durca rapid cooling. This indicates the unlikely situation that all the

NSs whose Ts are observed should be light-mass stars, in spite of the fact that the observed mass

distribution is centered around (1.4 − 1.5)M⊙ [2]. In contrast, in the case of the hybrid star with gV =
GS(1.5GS) under consideration, NSs as heavy as up to 1.9(2.0)M⊙ can avoid this rapid cooling,

allowing the Ts-observed NSs to be from the light-mass to heavy-mass stars (M ≤ (1.9 − 2.0)M⊙,

as in Fig. 13).2

It is in order here to comment on the relationship between the maximum mass and the nuclear

incompressibility κ . From the properties of finite nuclei, the nuclear incompressibility κ is estimated

2 However, in the case of the hybrid star with smooth crossover, “quark direct URCA” (Q-Durca) instead of
Y -Durca may take place in the crossover region. The effect of spin-singlet and spin-triplet color superconduc-
tivity on this Q-Durca is an interesting open question to be studied.
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(b)

(a)

Fig. 13. (a) M–ρc relationships with the interpolated EOSs. We adopt the HK parameter set for the Q-EOS with
various gV /GS = 0, 1.0, 1.5. The crossover windows are fixed to be (ρ̄, Ŵ) = (3ρ0, ρ0). The cross symbols
denote the points of Mmax, while the filled circles denote the points beyond which the strangeness appears. The
gray band denotes M = (1.97 ± 0.04)M⊙ for PSR J1614-2230. The solid black line denotes M = 1.44M⊙ for
PSR 1913+16. (b) M–R relationships with the interpolated EOSs.

to be (240 ± 20) MeV [54]. The interpolated EOSs with TNI2 and TNI2u are consistent with this

empirical κ , and yet they can reach Mmax > 2M⊙. In other words, what is important to sustain

massive hybrid stars is not the value of the incompressibility, but the stiffness of the EOS at and

above ∼ 3ρ0.

5.3. Dependence on Q-EOS

To see how the hybrid star structure changes with the stiffness of Q-EOS, we plot the M–ρc relation-

ship for gV /GS = 0, 1.0, 1.5 with the HK parameter set in Fig. 13(a). We take TNI2u for H-EOS
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Table 4. The values of Mmax/M⊙ (ρc/ρ0) for gV /GS = 1.0, 1.5, 2.0 with
(ρ̄, Ŵ) = (3ρ0, ρ0) and TNI2u. The parameter sets of the NJL model, HK,
RKH, and LKW, are given in Table 2.

Q-EOS gV = GS gV = 1.5GS gV = 2GS

HK 2.05 (6.1) 2.17 (5.5) 2.24 (5.4)
RKH 1.99 (6.2) 2.12 (5.8) 2.20 (5.4)
LKW 1.72 (7.5) 1.87 (6.7) 1.97 (6.3)

Table 5. Mmax/M⊙ (ρc/ρ0) for the HK parameter set with
the flavor-dependent repulsion GS . The crossover window
is (ρ̄, Ŵ) = (3ρ0, ρ0) and the hadronic EOS is TNI2u.

GV = 1.5GS GV = 2.25GS GV = 3.0GS

1.87 (6.6) 1.99 (6.2) 2.07 (5.8)

Table 6. Mmax/M⊙ (ρc/ρ0) under variation of the parameters ρ̄ and Ŵ, which char-
acterize the crossover window. H-EOS and Q-EOS are obtained from TNI2u and the
HK parameter set, respectively. Columns without numbers are the excluded cases
corresponding to ρ̄ − 2Ŵ < ρ0 in Sect. 4.

Ŵ/ρ0 = 1 Ŵ/ρ0 = 2

ρ̄ gV = GS gV = 1.5GS gV = GS gV = 1.5GS

3ρ0 2.05 (6.1) 2.17 (5.5) − −
4ρ0 1.89 (7.2) 1.97 (6.8) − −
5ρ0 1.73 (8.2) 1.79 (8.0) 1.74 (8.0) 1.80 (7.7)
6ρ0 1.60 (9.6) 1.64 (9.3) 1.62 (9.2) 1.66 (9.0)

and the same crossover window as in Fig. 11. For comparison, the M–ρc relationship with TNI2u

only is plotted by the dashed line. Figure 13(b) shows the corresponding M–R relations. As antici-

pated, Mmax increases as gV increases. In Table 4, we show how Mmax and ρc depend on the choice

of gV and the choice of the NJL parameter set. Although the parameter dependence is not entirely

negligible, a massive hybrid star is possible for sufficiently large values of gV .

Finally, we consider the flavor-dependent vector interaction proportional to GV given in Eq. (1).

In the high-density limit where u, d, s quarks have equal population, 〈u†u〉 = 〈d†d〉 = 〈s†s〉, the

gV interaction and the GV interaction make the same contribution to the pressure in the mean-field

approximation if we make the following identification: GV = 3
2

gV . Motivated by this relation, we

show Mmax and ρc for GV /GS = 1.5, 2.25, 3.0 in Table 5. For the density relevant to the cores of

hybrid stars, the flavor SU(3) limit is not yet achieved due to the s-quark mass (see Fig. 4). Therefore,

the EOS for the flavor-dependent repulsion with GV = 3
2

gV is softer than the flavor-independent

repulsion with gV . This can be seen by comparing the corresponding values in Table 5 and those in

Table 4. In any case, a massive hybrid star is possible for sufficiently large values of GV .

5.4. Dependence on crossover window

In Table 6, we show Mmax and ρc for different choices of the crossover window parameterized by

ρ̄ and Ŵ. TNI2u and the HK parameter set are adopted for H-EOS and Q-EOS, respectively. As

the crossover window becomes lower and/or wider in baryon density, the interpolated EOS becomes

stiffer and Mmax becomes larger. To be compatible with the observed massive NS with M = (1.97 ±
0.04)M⊙, the crossover needs to occur in (2 − 4)ρ0.
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Fig. 14. Sound velocity vS as a function of baryon density ρ. Solid lines: vS–ρ obtained from the interpolated
EOS between the H-EOS with TNI2u and the Q-EOS with gV /GS = 0, 1.0, 1.5. The crossover window is
(2 − 4)ρ0. Dotted line: as above for the pure H-EOS with TNI2u. The filled circles denote the points beyond
which strangeness starts to appear.

5.5. Sound velocity of interpolated EOS

One of the measures to quantify the stiffness of the EOS is the sound velocity vS =
√

d P/dε. In

Fig. 14, we plot vS for our interpolated EOS with gV /GS = 0, 1.0, 1.5 as a function of ρ. The kinks

of vS at ρ ≃ 4ρ0 are caused by the softening of the EOS by the appearance of strangeness. The

enhancement of vS of the interpolated EOS relative to the pure hadronic EOS takes place just at and

above the crossover window.

5.6. Stability of the hybrid star

The neutron star is gravitationally stable if the average adiabatic index Ŵ̄ satisfies the inequality [55]

Ŵ̄ =
∫ R

0 ŴPd3r
∫ R

0 Pd3r
>

4

3
+ λ

G M

R
. (14)

Here Ŵ = d ln P/d ln ε is the adiabatic index. Also, λG M/R, with λ being a numerical constant

of order unity, is a general relativistic correction whose magnitude is much less than 1. Since Ŵ of

our H-EOS is about 2 at all densities and Ŵ of our Q-EOS is larger than 4/3 due to the constituent

quark mass and the repulsive vector interaction, Eq. (14) is always satisfied and our hybrid star is

gravitationally stable.

6. Neutron star properties with ε-interpolation

In this section we consider an alternative interpolation procedure using the energy density ε as a

function of ρ given in Eq. (10).

Shown in Fig. 15 is the energy density interpolated between TNI2u for H-EOS and NJL with

gV = 0.5GS for Q-EOS. The crossover window is chosen to be (ρ̄, Ŵ) = (3ρ0, ρ0) and is shown by

the shaded area on the horizontal axis. The pressure obtained from the interpolated energy density
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Fig. 15. The interpolated energy density between TNI2u H-EOS and NJL Q-EOS with gV = 0.5GS for
(ρ̄, Ŵ) = (3ρ0, ρ0). Energy density is illustrated by a blue line. The filled circle denotes the threshold density
of strangeness.

Fig. 16. The pressure obtained from the interpolated energy density in Fig. 15. The pressure is illustrated by
a blue line. The filled circle denotes the threshold density of strangeness.

using the thermodynamic relation is shown in Fig. 16. Due to the extra positive term �P in Eq. (12),

the full pressure is larger than PH and PQ in the crossover region with the ε-interpolation procedure.

Although �P is necessary for thermodynamic consistency, its physical interpretation is not clear at

the moment and is left for future studies. In Figs. 17 and 18, we show P as a function of ε and the

sound velocity vS as a function of ρ, respectively. Because of the effect of �P , the EOS becomes
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Fig. 17. The relation between the interpolated energy density and the resultant pressure. The parameters are
same as in Fig. 16. The filled circle denotes the threshold density of strangeness.

Fig. 18. Sound velocity vS as a function of baryon density ρ. Solid lines: vS–ρ obtained from the interpo-
lated EOS between the H-EOS with TNI2u and the Q-EOS with gV /GS = 0, 0.5. The crossover window is
(2 − 4)ρ0. Dotted line: as above for the pure H-EOS with TNI2u. The filled circles denote the points beyond
which strangeness starts to appear.

stiff and vS is enhanced, particularly in the crossover region. Thus, the maximum mass of the neutron

star would become large even for a moderate value of gV .

In Fig. 19(a), we plot the M–ρc relationship between TNI2u for H-EOS and NJL Q-EOS for

gV /GS = 0, 0.5 with the HK parameter set. We choose the crossover window as (ρ̄, Ŵ) = (3ρ0, ρ0).
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(b)

(a)

Fig. 19. (a) M–ρc relationships with the interpolated EOSs. We adopt the HK parameter set for the Q-EOS
with various gV /GS = 0, 0.5. The crossover windows are fixed to be (ρ̄, Ŵ) = (3ρ0, ρ0). The cross symbols
denote the points of Mmax, while the filled circles denote the points beyond which the strangeness appears. The
gray band denotes M = (1.97 ± 0.04)M⊙ for PSR J1614-2230. The solid black line denotes M = 1.44M⊙ for
PSR 1913+16. (b) M–R relationships with the interpolated EOSs.

For comparison, the M–ρc relationship with TNI2u only is shown by the dashed line. Figure 13(b)

shows the corresponding M–R relationships. As anticipated from Fig. 18, the maximum mass is

larger than the P-interpolation case for a given gV .

In Table 7, we show Mmax and ρc for different H-EOSs, vector-type interactions gV , and choices of

crossover window parameterized by ρ̄ and Ŵ. The ε-interpolation makes the EOS stiffen more drasti-

cally than the P-interpolation. Even for (gV , ρ̄) = (0, 3ρ0) and (gV , ρ̄) = (0.5, 5ρ0), the maximum

mass Mmax can exceed 1.97M⊙.

20/26

 at V
irg

in
ia T

ech
 o

n
 F

eb
ru

ary
 2

0
, 2

0
1
4

h
ttp

://p
tep

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://ptep.oxfordjournals.org/
http://ptep.oxfordjournals.org/


PTEP 2013, 073D01 K. Masuda et al.

Table 7. Mmax/M⊙ (ρc/ρ0) for different choices of H-EOS, stiffness of Q-EOS, and
crossover window.

gV = 0 gV = 0.5GS

H-EOS (ρ̄, Ŵ) = (3ρ0, ρ0) (5ρ0, 2ρ0) (3ρ0, ρ0) (5ρ0, 2ρ0)

TNI2u 2.02 (4.5) 1.86 (8.7) 2.59 (4.4) 2.25 (6.1)
TNI2 2.02 (5.8) 1.84 (9.1) 2.59 (4.3) 2.23 (6.8)
TNI3u 1.99 (4.8) 1.89 (8.5) 2.57 (4.7) 2.26 (6.0)
TNI3 1.97 (5.8) 1.80 (6.3) 2.55 (4.5) 2.21 (7.3)
Paris+TBF 1.92 (4.8) 1.75 (6.5) 2.52 (4.7) 2.17 (6.5)
AV18+TBF 1.94 (4.7) 1.75 (7.2) 2.53 (4.7) 2.19 (6.1)
SCL3�� 1.85 (4.8) 1.73 (7.7) 2.46 (4.7) 2.15 (6.8)

7. Summary and concluding remarks

Recent observation of a two-solar mass NS presents a challenging problem of how to reconcile the

stiff EOS suggested from the observational side with the soft EOS due to hyperon-mixing from the

theoretical side. In this paper we have studied this problem on the basis of the percolation picture

from hadronic matter with hyperons to quark matter with strange quarks. We have constructed an

EOS by interpolation between the H-EOS at lower densities and the Q-EOS at higher densities, and

found that hybrid stars could have Mmax ∼ 2M⊙, compatible with observation. This conclusion is in

contrast to the conventional EOS for hybrid stars derived through the Gibbs construction, in which

the resultant EOS always becomes softer than the hadronic EOS and thereby leads to a smaller Mmax.

Our qualitative conclusion is insensitive to the choice of different types of H-EOS and different

types of vector interaction in Q-EOS as long as (i) the crossover between the hadronic matter and

the quark matter proceeds in a relatively low-density region, (ρ = (2 − 4)ρ0), and (ii) the quark

matter is strongly interacting and stiff (gV /GS ∼ 1). These conditions applied to the P-interpolation

procedure can be relaxed further if ε-interpolation is adopted. We found that the the sound velocity

vS , which increases rapidly in the crossover window for gV /GS ≥ 1, can nicely characterize the

stiffening of the interpolated EOS and associated enhancement of Mmax.

The idea of rapid stiffening of the EOS starting from 2ρ0 opens a possibility that the experimental

nuclear incompressibility κ = (240 ± 20) MeV at ρ ∼ ρ0 is compatible with the existence of mas-

sive neutron stars. Also, the idea may well be checked by independent laboratory experiments with

medium-energy heavy-ion collisions.

Although the M–R relationship and Mmax are insensitive to the existence of universal three-body

repulsion, the onset density of strangeness is rather sensitive to such repulsion. If we have three-body

repulsion acting universally among baryons, most of the hybrid stars with M ≤ (1.9 − 2.0)M⊙ are

free from the extremely efficient hyperon direct-Urca cooling process and can avoid contradicting

observations.

Finally, we remark that the crossover region may contain richer non-perturbative phases such as

color superconductivity, inhomogeneous structures, and so on [1]. How these structures, as well as

the associated cooling processes, affect the results of the present paper would be an interesting future

problem to be examined.
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Appendix. EOS tables

In this Appendix, we show the concrete values of pressure P and energy density ε as a function of

baryon density x ≡ ρ/ρ0 for H-EOSs, Q-EOSs, and interpolated EOSs.

In Table A1, we show H-EOSs with hyperons: TNI2, TNI2u, TNI3, TNI3u [34,35], AV18+TBF

[37], and SCL3�� [40].

In Table A2, NJL Q-EOSs with the HK parameter set for various vector interactions gV /GS =
0, 1.0, 1.5 are listed in each row [44].

Table A1. Pressure P (MeV/fm3) and energy density ε (MeV/fm3) as a function of baryon density x ≡ ρ/ρ0

for various hadronic EOSs with hyperons [34,35,37,40].

TNI2 TNI3 TNI2u TNI3u

x P ε P ε P ε P ε

1.0 2 162 3 162 2 162 3 162
1.5 7 245 9 246 7 245 9 246
2.0 15 330 20 332 15 330 20 332
2.5 26 418 32 422 26 418 38 422
3.0 40 508 40 513 42 508 61 516
3.5 48 600 48 606 62 601 92 615
4.0 57 693 58 700 87 697 131 718
4.5 67 787 69 795 112 797 174 827
5.0 80 882 82 892 140 899 224 941
5.5 93 979 96 990 173 1005 283 1060
6.0 109 1078 113 1090 211 1113 353 1185
6.5 127 1177 131 1191 255 1226 433 1316
7.0 147 1278 152 1293 304 1341 525 1454
7.5 169 1381 175 1397 360 1461 629 1599
8.0 193 1485 200 1503 422 1584 746 1751
8.5 219 1590 227 1610 492 1712 876 1911
9.0 248 1698 256 1719 568 1843 1020 2079
9.5 278 1807 287 1829 651 1979 1178 2256
10.0 311 1917 321 1942 743 2120 1352 2441

Paris+TBF AV18+TBF SCL3��

x P ε P ε x P ε

0.471 0.370 71.2 0.432 71.2 1.02 5.85 167
0.941 2.41 148 2.59 148 1.51 14.6 251
1.18 4.63 187 4.94 187 2.04 28.9 346
1.76 15.5 287 15.5 288 2.51 41.5 434
2.35 31.2 404 29.0 399 3.02 53.5 531
2.94 45.7 503 44.2 505 3.54 67.8 635
3.53 62.3 617 59.9 623 4.07 84.0 740
4.12 79.0 735 75.3 729 4.57 101 841
4.71 99.9 853 94.4 858 5.01 118 933
5.29 117 965 112 970 5.62 144 1063
5.88 145 1128 139 1122 6.02 162 1150
6.47 168 1240 159 1223 6.60 191 1278
7.06 188 1369 181 1341 7.07 216 1384
7.65 213 1470 205 1459 7.58 244 1499
8.24 242 1599 239 1616 8.12 276 1625
8.82 279 1745 270 1745 8.50 300 1715
9.41 307 1874 302 1879 9.11 339 1860
10.0 347 2031 328 1986 9.54 368 1965
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In Table A3, EOSs obtained by the interpolation of pressure between the TNI2u H-EOS and the

NJL Q EOS with the HK parameter set with gV /GS = 0, 1.0, 1.5 for (ρ̄, Ŵ) = (3ρ0, ρ0) are listed.

In Table A4, EOSs obtained by the interpolation of energy density between the TNI2u H-EOS

and the NJL Q EOS with the HK parameter set with gV /GS = 0, 1.0, 1.5 for (ρ̄, Ŵ) = (3ρ0, ρ0) are

listed.

Table A2. Pressure P (MeV/fm3) and energy density ε (MeV/fm3) as a function of baryon
density x ≡ ρ/ρ0 for NJL Q-EOSs with the HK parameter set for gV = GS [44].

gV /GS = 0 gV /GS = 1 gV /GS = 1.5

x P ε P ε P ε

1.0 −0.7633 179.2 8.390 188.3 12.97 192.9
1.5 −1.397 268.1 19.20 288.7 29.49 299.0
2.0 6.721 357.8 43.33 394.5 61.64 412.8
2.5 28.71 451.3 85.91 508.5 114.5 537.1
3.0 58.56 550.0 140.9 632.4 182.1 673.6
3.5 91.96 654.0 204.1 766.2 260.1 822.2
4.0 127.5 762.8 274.0 909.3 347.2 982.5
4.5 158.2 876.1 343.6 1061 436.2 1154
5.0 182.8 992.3 411.6 1221 526.0 1335
5.5 203.0 1111 479.9 1388 618.3 1526
6.0 221.0 1231 550.5 1561 715.2 1725
6.5 238.9 1353 625.6 1740 819.0 1933
7.0 258.3 1476 706.8 1925 931.0 2149
7.5 279.8 1601 794.7 2115 1052 2373
8.0 303.7 1727 889.5 2313 1182 2605
8.5 330.0 1854 991.3 2516 1322 2846
9.0 358.4 1984 1100 2725 1471 3096
9.5 389.9 2114 1215 2941 1628 3354
10 421.3 2247 1337 3163 1794 3620
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Table A4. Pressure P (MeV/fm3) and energy density ε (MeV/fm3) as a function of baryon density
x ≡ ρ/ρ0 for EOSs obtained by the interpolation of energy density between the TNI2u H-EOS and
the NJL Q EOS with the HK parameter set with gV /GS = 0, 0.5 for the (ρ̄, Ŵ) = (3ρ0, ρ0) case.

TNI2 TNI2u

gV /Gs = 0 gV /Gs = 0.5 gV /Gs = 0 gV /Gs = 0.5

x P ε P ε P ε P ε

1.0 2.844 162.3 3.088 162.4 2.844 162.3 3.088 162.4
1.5 9.940 245.1 11.82 245.6 9.941 245.1 11.83 245.6
2.0 25.71 333.3 35.59 335.5 25.72 333.3 35.59 335.5
2.5 60.74 426.2 96.55 433.9 60.74 426.2 96.55 433.9
3.0 113.6 528.5 196.0 549.1 113.2 529.0 195.6 549.6
3.5 155.8 639.2 274.0 680.2 156.9 639.8 275.0 680.8
4.0 178.6 754.4 304.6 818.9 177.2 755.1 303.2 819.6
4.5 190.5 871.8 316.5 960.1 188.2 872.3 314.1 960.6
5.0 200.5 990.4 333.0 1103 198.4 990.7 330.9 1103
5.5 211.9 1109 359.6 1248 210.5 1110 358.1 1248
6.0 225.3 1231 394.5 1395 224.4 1231 393.6 1395
6.5 240.9 1353 436.4 1546 240.4 1353 435.9 1546
7.0 259.2 1476 484.4 1700 258.9 1476 484.1 1700
7.5 280.2 1601 538.1 1858 280.1 1601 538.0 1858
8.0 303.9 1727 597.0 2020 303.8 1727 596.9 2020
8.5 330.1 1854 660.8 2185 330.0 1854 660.8 2185
9.0 358.5 1984 729.2 2354 358.5 1984 729.2 2354
9.5 389.0 2115 802.0 2528 389.0 2115 802.0 2528
10.0 421.3 2247 879.0 2705 421.3 2247 878.9 2705
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