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Abstract

We analyse the hadronization structure of both vector and axial-vector currents leading
to τ → KKπ ντ decays. At leading order in the 1/NC expansion, and considering only
the contribution of the lightest resonances, we work out, within the framework of the res-
onance chiral Lagrangian, the structure of the local vertices involved in those processes.
The couplings in the resonance theory are constrained by imposing the asymptotic be-
haviour of vector and axial-vector spectral functions ruled by QCD. In this way we pre-
dict the hadron spectra and conclude that, contrarily to previous assertions, the vector
contribution dominates by far over the axial-vector one in all KKπ charge channels.

PACS : 11.15.Pg, 12.38.-t, 12.39.Fe
Keywords : Hadron tau decays, chiral Lagrangians, QCD, 1/N expansion.

http://arxiv.org/abs/0911.2640v2


1 Introduction

Hadron decays of the tau lepton provide a prime scenario to study the hadronization
of QCD currents in an energy region settled by many resonances. This task has a twofold
significance. First, the study of branching fractions and spectra of those decays is a major goal
of the asymmetric B factories (BABAR, BELLE). These are supplying an enormous amount of
quality data owing to their large statistics, and the same is planned for the near future at tau-
charm factories such as BES-III. Second, the required hadronization procedures involve QCD
in a non-perturbative energy region (E <

∼ Mτ ∼ 1.8GeV) and, consequently, these processes
are a clean benchmark, not spoiled by an initial hadron state, where we can learn about the
treatment of strong interactions when driven by resonances.

Analyses of tau decay data involve matrix elements that convey the hadronization of the
vector and axial-vector currents. At present there is no determination from first principles
of those matrix elements as they involve strong interaction effects in its non-perturbative
regime. Therefore we have to rely in models that parameterize the form factors that arise
from the hadronization. A relevant one is the so-called Kühn-Santamaŕıa model (KS) [1]
that, essentially, relies on the construction of form factors in terms of Breit-Wigner functions
weighted by unknown parameters that are extracted from phenomenological analyses of data.
This procedure, that has proven to be successful in the description of the πππ final state, has
been employed in the study of many two- and three-hadron tau decays [2–5]. The ambiguity
related with the choice of Breit-Wigner functions [1,6] is currently being exploited to estimate
the errors in the determination of the free parameters. The measurement of theKKπ spectrum
by the CLEO Collaboration [7] has shown that the parameterization described by the KS model
does not recall appropriately the experimental features keeping, at the same time, a consistency
with the underlying strong interaction theory [8]. The solution provided by CLEO based in
the introduction of new parameters spoils the normalization of the Wess-Zumino anomaly,
i.e. a specific prediction of QCD. Indeed, arbitrary parameterizations are of little help in the
procedure of obtaining information about non-perturbative QCD. They may fit the data but
do not provide us hints on the hadronization procedures. The key point in order to uncover
the inner structure of hadronization is to guide the construction of the relevant form factors
with the use of known properties of QCD.

The TAUOLA library [9] is, at present, a key tool that handles analyses of tau decay data.
Though originally it comprehended assorted versions of the KS model only, it has been opened
to the introduction of matrix elements obtained with other models. Hence it has become an
excellent tool where theoretical models confront experimental data. This or analogous libraries
are appropriate benchmarks where to apply the results of our research.

At very low energies (E ≪ Mρ, being Mρ the mass of the ρ(770) resonance) the chiral
symmetry of massless QCD rules the construction of an effective field theory that allows a
perturbative expansion in momenta (p) and light quark masses (m), as (p2,M2

π)/Λ
2
χ, being

Λχ ∼ 4πF ∼ Mρ the scale that breaks the chiral symmetry; here Mπ is the pion mass and F
is the decay constant of the pion. Indeed Chiral Perturbation Theory (χPT ) [10] drives the
hadronization of QCD currents into the lightest multiplet of pseudoscalar mesons, π, K and η.
The application of this framework to the study of pion decays of the tau lepton was carried out
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in Ref. [11] though, obviously, it can only describe a tiny region of the available phase space.
It is clear that, whatever the structure given to the form factors in the region of resonances,
it should match the chiral constraint in its energy domain. In fact the parameterizations with
Breit-Wigner functions that are at the center of the KS model fail to fulfill that condition
already at O(p4) in the chiral expansion [12, 13].

Our knowledge of QCD in the energy region of the resonances is pretty poor. Contrarily
to the very low energy domain, we do not know how to construct a dual effective field theory
of strong interactions for E ∼ Mρ. There is a tool, though, that could shed light on the
appropriate structure of a Lagrangian theory that we could use. This is yielded by the large-
NC limit of SU(NC) QCD [14], which introduces an expansion in inverse powers of the number
of colours NC . The essential idea relevant for our goal that comes out from that setting is
that at leading order in the expansion, i.e. NC → ∞, any amplitude is given by the tree
level diagrams generated by a local Lagrangian with an spectrum of infinite zero-width states.
This frame, as we will see, can be used to establish a starting point in the study of the hadron
resonance region and, consequently, in the hadron decays of the tau lepton. The setting recalls
the role of the resonance chiral theory [15, 16] that can be better understood in the light of
the large-NC limit [17–19].

At high energies (E ≫ Mρ), where the light-flavoured continuum is reached, perturbative
QCD is the appropriate framework to deal with the description of strong interaction of partons.
In particular, a well known feature of form factors of QCD currents is their smooth behaviour
at high transfer of momenta [20], thus it is reasonable to expect that the form factors match
this behaviour above the energy region of the resonances. Another related tool is the study of
the Operator Product Expansion (OPE) of Green functions of QCD currents that are order
parameters of the chiral symmetry breaking. It is possible to evaluate these Green functions
within a resonance theory, and then perform a matching with their leading term of the OPE
expansion at high transfers of momenta [21–27]. In general, the information coming from high
energies is important to settle a resonance Lagrangian. It is reasonable to assume that the
effective couplings collect information coming from the energy region above the resonances,
hence the described procedure should help to determine the corresponding coupling constants.
Indeed, this approach has proven to be capable of that task [27].

In Ref. [13] we considered all mentioned steps in order to analyse the πππ hadron final
state in the decay of the tau lepton. Here we continue that undertaking by considering the
KKπ channels that, as mentioned above, do not fit well within the KS model and the present
TAUOLA setup. Contrarily to the πππ final state, which is dominated by the hadronization
of the axial-vector current, τ → KKπντ decays receive contributions from both vector and
axial-vector currents. Indeed, one of the goals of our work is to find out the relative weight
of those contributions. Fortunately we will be assisted in this task by the recent analysis of
e+e− → KKπ cross-section by BABAR [28] where a separation between isoscalar and isovector
channels has been performed. Hence we will be able to connect both processes through CVC.

In Section 2 we introduce the observables to be considered and the framework settled by
the procedure sketched above. Then the amplitudes for KKπ decay channels are evaluated in
Section 3. An analysis of how we can get information on the resonance couplings appearing
in the hadronization of the currents is performed in Section 4. Finally we explain our results
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in Section 5, and our conclusions are pointed out in Section 6. Four technical appendices
complete our exposition.

2 Theoretical framework

The hadronization of the currents that rule semileptonic tau decays is driven by non-
perturbative QCD. As mentioned in the Introduction, our methodology stands on the con-
struction of an action, with the relevant degrees of freedom, led by the chiral symmetry and
the known asymptotic behaviour of form factors and Green functions driven by large NC QCD.
We will limit ourselves to those pieces of the action that are relevant for the study of decays
of the tau lepton into three pseudoscalar mesons. Hence we will need to include both even-
and odd-intrinsic parity sectors.

The large NC expansion of SU(NC) QCD implies that, in the NC → ∞ limit, the study
of Green functions of QCD currents can be carried out through the tree level diagrams of
a Lagrangian theory that includes an infinite spectrum of non-decaying states [14]. Hence
the study of the resonance energy region can be performed by constructing such a Lagrangian
theory. The problem is that we do not know how to implement an infinite spectrum in a model-
independent way. However, it is well known from the phenomenology that the main role is
always played by the lightest resonances. Accordingly it was suggested in Refs. [15, 16] that
one can construct a suitable effective Lagrangian involving the lightest nonets of resonances
and the octet of Goldstone bosons states (π, K and η). This is indeed an appropriate tool to
handle the hadron decays of the tau lepton. The guiding principle in the construction of such
a Lagrangian is chiral symmetry. When resonances are integrated out from the theory, i.e.
one tries to describe the energy region below such states (E ≪ Mρ), the remaining setting is
that of χPT, to which now we turn.

The very low-energy strong interaction in the light quark sector is known to be ruled by the
SU(3)L ⊗ SU(3)R chiral symmetry of massless QCD implemented in χPT. The leading even-
intrinsic-parity O(p2) Lagrangian, which carries the information of the spontaneous symmetry
breaking of the theory, is :

L(2)
χPT =

F 2

4
〈uµuµ + χ+〉 , (1)

where

uµ = i[u†(∂µ − irµ)u− u(∂µ − iℓµ)u
†] ,

χ± = u†χu† ± uχ†u , χ = 2B0(s+ ip) , (2)

and 〈. . .〉 is short for a trace in the flavour space. The Goldstone octet of pseudoscalar fields

Φ(x) =















1√
2
π0 +

1√
6
η8 π+ K+

π− − 1√
2
π0 +

1√
6
η8 K0

K− K̄0 − 2√
6
η8















, (3)
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is realized non–linearly into the unitary matrix in the flavour space

u(ϕ) = exp

{

i√
2F

Φ(x)

}

, (4)

which under chiral rotations transforms as

u(ϕ) → gR u(ϕ) h(g, ϕ)
† = h(g, ϕ) u(ϕ) g†L , (5)

with g ≡ (gL, gR) ∈ SU(3)L ⊗ SU(3)R and h(g, ϕ) ∈ SU(3)V . External hermitian matrix
fields rµ, ℓµ, s and p promote the global SU(3)L ⊗ SU(3)R symmetry to a local one. Thus,
interactions with electroweak bosons can be accommodated through the vector vµ = (rµ+ℓµ)/2
and axial–vector aµ = (rµ−ℓµ)/2 fields. The scalar field s incorporates explicit chiral symmetry
breaking through the quark masses taking s = M + . . ., with M = diag(mu, md, ms) and,
finally, at lowest order in the chiral expansion F = Fπ = 92.4 MeV is the pion decay constant
and B0F

2 = −〈0|ψ̄ψ|0〉0.
The leading action in the odd-intrinsic-parity sector arises at O(p4). This is given by the

chiral anomaly [29] and explicitly stated by the Wess-Zumino-Witten ZWZ [v, a] functional
that can be read in Ref. [30]. This contains all anomalous contributions to electromagnetic
and semileptonic meson decays.

It is well known [15,19] that higher orders in the chiral expansion, i.e. even-intrinsic-parity

L(n)
χPT with n > 2, bring in the information of heavier degrees of freedom that have been

integrated out, for instance resonance states. As our next step intends to include the latter
explicitly, to avoid double counting issues we will not consider higher orders in χPT. As we
comment below, in order to fulfill this procedure —at least, up to O(p4)— it is convenient
to use the antisymmetric tensor representation for the J = 1 fields. Analogously, additional
odd-intrinsic-parity amplitudes arise at O(p6) in χPT, either from one-loop diagrams using
one vertex from the Wess-Zumino-Witten action or from tree-level operators [31]. However we
will assume that the latter are fully generated by resonance contributions [24] and, therefore,
will not be included in the following.

The formulation of a Lagrangian theory that includes both the octet of Goldstone mesons
and U(3) nonets of resonances is carried out through the construction of a phenomenologi-
cal Lagrangian [32] where chiral symmetry determines the structure of the operators. Given
the vector character of the Standard Model (SM) couplings of the hadron matrix elements
in τ decays, form factors for these processes are ruled by vector and axial-vector resonances.
Notwithstanding those form factors are given, in the τ → PPPντ decays, by a four-point Green
function where other quantum numbers might play a role, namely scalar and pseudoscalar res-
onances [33]. However their contribution should be minor for τ → KKπντ . Indeed the lightest
scalar1, namely f0(980), couples dominantly to two pions, and therefore its role in the KKπ
final state should be negligible. Heavier flavoured or unflavoured scalars and pseudoscalars
are at least suppressed by their masses, being heavier than the axial-vector meson a1(1260)
(like K∗

0 (1430) that couples to Kπ). In addition the couplings of unflavoured states to KK

1As we assume the NC → ∞ limit, the nonet of scalars corresponding to the f0(600) is not considered. This
multiplet is generated by rescattering of the ligthest pseudoscalars and then subleading in the 1/NC expansion.
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(scalars) and KKπ (pseudoscalars) seem to be very small [35]. Thus in our description we
include J = 1 resonances only 2, and this is done by considering a nonet of fields [15] :

R ≡ 1√
2

9
∑

i=1

λi φR,i , (6)

where R = V,A, stands for vector and axial-vector resonance states. Under the SU(3)L ⊗
SU(3)R chiral group, R transforms as :

R → h(g, ϕ)Rh(g, ϕ)† . (7)

The flavour structure of the resonances is analogous to that of the Goldstone bosons in Eq. (3).
We also introduce the covariant derivative

∇µX ≡ ∂µX + [Γµ, X ] , (8)

Γµ =
1

2
[ u†(∂µ − irµ)u+ u(∂µ − iℓµ)u

† ] ,

acting on any object X that transforms as R in Eq. (7), like uµ and χ±. The kinetic terms
for the spin 1 resonances in the Lagrangian read :

LR
kin = −1

2
〈∇λRλµ∇νR

νµ 〉+ M2
R

4
〈RµνR

µν 〉 , R = V,A , (9)

MV , MA being the masses of the nonets of vector and axial–vector resonances in the chiral
and large-NC limits, respectively. Notice that we describe the resonance fields through the
antisymmetric tensor representation. With this description one is able to collect, upon in-
tegration of resonances, the bulk of the low-energy couplings at O(p4) in χPT without the
inclusion of additional local terms [27]. In fact it is necessary to use this representation if

one does not include the L(4)
χPT in the Lagrangian theory. Though analogous studies at higher

chiral orders have not been carried out, we will assume that no L(n)
χPT with n = 4, 6, ... in the

even-intrinsic-parity and n = 6, 8, ... in the odd-intrinsic-parity sectors need to be included in
the theory.

The construction of the interaction terms involving resonance and Goldstone fields is driven
by chiral and discrete symmetries with a generic structure given by :

Oi ∼ 〈R1R2...Rj χ
(n)(ϕ) 〉 , (10)

where χ(n)(ϕ) is a chiral tensor that includes only Goldstone and auxiliary fields. It transforms
like R in Eq. (7) and has chiral counting n in the frame of χPT. This counting is relevant
in the setting of the theory because, though the resonance theory itself has no perturbative
expansion, higher values of n may originate violations of the proper asymptotic behaviour of
form factors or Green functions. As a guide we will include at least those operators that,

2If the study of these processes requires a more accurate description, additional resonances could also be
included in our scheme.
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contributing to our processes, are leading when integrating out the resonances. In addition
we do not include operators with higher-order chiral tensors, χ(n)(ϕ), that would violate the
QCD asymptotic behaviour unless their couplings are severely fine tuned to ensure the needed
cancellations of large momenta. In the odd-intrinsic-parity sector, that gives the vector form
factor, this amounts to include all 〈Rχ(4)〉 and 〈RRχ(2)〉 terms. In the even-intrinsic-parity
couplings, giving the axial-vector form factors, these are the terms 〈Rχ(2)〉. However previous
analyses of the axial-vector contributions [13,23] show the relevant role of the 〈RRχ(2)〉 terms
that, accordingly, are also considered here 3.

We also assume exact SU(3) symmetry in the construction of the interacting terms, i.e.
at level of couplings. Deviations from exact symmetry in hadronic tau decays have been
considered in Ref. [34]. However we do not include SU(3) breaking couplings because we are
neither considering next-to-leading corrections in the 1/NC expansion.

The lowest order interaction operators linear in the resonance fields have the structure
〈Rχ(2)(ϕ)〉. There are no odd-intrinsic-parity terms of this form. The even-intrinsic-parity
Lagrangian includes three coupling constants [15] :

LV

2 =
FV

2
√
2
〈Vµνfµν

+ 〉+ i
GV√
2
〈Vµνuµuν〉 ,

LA

2 =
FA

2
√
2
〈Aµνf

µν
− 〉 , (11)

where fµν
± = uF µν

L u† ± u†F µν
R u and F µν

R,L are the field strength tensors associated with the
external right- and left-handed auxiliary fields. All coupling parameters FV , GV and FA are
real.

The leading odd-intrinsic-parity operators, linear in the resonance fields, have the form
〈Rχ(4)(ϕ)〉. We will need those pieces that generate : i) the vertex with one vector resonance
and three pseudoscalar fields; ii) the vertex with one vector resonance, a vector current and
one pseudoscalar. The minimal Lagrangian with these features is :

LV

4 =
5
∑

i=1

gi
MV

Oi
VPPP

+
7
∑

i=1

ci
MV

Oi
VJP

, (12)

where gi and ci are real adimensional couplings, and the operators read

1/ VPPP terms

O1
VPPP

= i εµναβ
〈

V µν
(

hαγuγu
β − uβuγh

αγ
)〉

,

O2
VPPP

= i εµναβ
〈

V µν
(

hαγuβuγ − uγu
βhαγ

)〉

,

O3
VPPP

= i εµναβ
〈

V µν
(

uγh
αγuβ − uβhαγuγ

)〉

,

O4
VPPP

= εµναβ
〈{

V µν , uα uβ
}

χ−

〉

,

3Operators 〈Rχ(4)〉 that are non-leading and have a worse high-energy behaviour, are not included in the
even-intrinsic-parity contributions as they have not played any role in previous related analyses.
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O5
VPPP

= εµναβ
〈

uα V µν uβ χ−

〉

, (13)

with hµν = ∇µuν +∇νuµ, and

2/ VJP terms [24]

O1
VJP

= εµνρσ 〈 {V µν , f ρα
+ }∇αu

σ 〉 ,

O2
VJP

= εµνρσ 〈 {V µα, f ρσ
+ }∇αu

ν 〉 ,

O3
VJP

= i εµνρσ 〈 {V µν , f ρσ
+ }χ− 〉 ,

O4
VJP

= i εµνρσ 〈 V µν [ f ρσ
− , χ+] 〉 ,

O5
VJP

= εµνρσ 〈 {∇αV
µν , f ρα

+ }uσ 〉 ,

O6
VJP

= εµνρσ 〈 {∇αV
µα, f ρσ

+ }uν 〉 ,

O7
VJP

= εµνρσ 〈 {∇σV µν , f ρα
+ }uα 〉 . (14)

Notice that we do not include analogous pieces with an axial-vector resonance, that would
contribute to the hadronization of the axial-vector current. This has been thoroughly studied
in Ref. [13] (see also Ref. [37]) in the description of the τ → πππντ process and it is shown that
no 〈Aχ(4)(ϕ)〉 operators are needed to describe its hadronization. Therefore those operators
are not included in our minimal description of the relevant form factors.

In order to study tau decay processes with three pseudoscalar mesons in the final state one
also has to consider non-linear terms in the resonance fields. Indeed the hadron final state in
τ → PPPντ decays can be driven by vertices involving two resonances and a pseudoscalar
meson. The structure of the operators that give those vertices is 〈R1R2χ

(2)(ϕ)〉, and has been
worked out before [13, 24]. They include both even- and odd-intrinsic-parity terms :

LRR

2 =
5
∑

i=1

λi Oi
VAP

+
4
∑

i=1

di Oi
VVP

, (15)

where λi, and di are unknown real adimensional couplings. The operators Oi
RRP

are given by :

1/ VAP terms

O1
VAP

= 〈 [V µν , Aµν ]χ− 〉 ,

O2
VAP

= i 〈 [V µν , Aνα ] h
α
µ 〉 , (16)

O3
VAP

= i 〈 [∇µVµν , A
να ] uα 〉 ,

O4
VAP

= i 〈 [∇αVµν , A
ν
α ] uµ 〉 ,

O5
VAP

= i 〈 [∇αVµν , A
µν ] uα 〉 .
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2/ VVP terms

O1
VVP

= εµνρσ 〈 {V µν , V ρα}∇αu
σ 〉 ,

O2
VVP

= i εµνρσ 〈 {V µν , V ρσ}χ− 〉 ,

O3
VVP

= εµνρσ 〈 {∇αV
µν , V ρα}uσ 〉 ,

O4
VVP

= εµνρσ 〈 {∇σV µν , V ρα}uα 〉 . (17)

We emphasize that LRR

2 is a complete basis for constructing vertices with only one pseudoscalar
meson; for a larger number of pseudoscalars additional operators might be added. As we are
only interested in tree-level diagrams, the equation of motion arising from L(2)

χPT in Eq. (1) has
been used in LV

4 and LRR

2 to eliminate superfluous operators.

Hence our theory is given by the Lagrangian :

LRχT = L(2)
χPT + LR

kin
+ LA

2 + LV

2 + LV

4 + LRR

2 . (18)

It is important to point out that the resonance theory constructed above is not a theory of
QCD for arbitrary values of the couplings in the interaction terms. As we will see later on,
these constants can be constrained by imposing well accepted dynamical properties of the
underlying theory.

3 Vector and axial-vector currents in τ → KKπ ντ decays

The decay amplitude for the τ → KKπντ decays can be written in the Standard Model as

M = − GF√
2
Vud uντ γ

µ (1 − γ5) uτ Tµ , (19)

where Vud is an element of the Cabibbo-Kobayashi-Maskawa matrix and Tµ is the hadron
matrix element of the participating Vµ − Aµ QCD current :

Tµ = 〈K(p1)K(p2) π(p3) | (Vµ − Aµ) e
iLQCD | 0〉 . (20)

The hadron tensor can be written in terms of four form factors F1, F2, F3 and F4 as [36] :

T µ = V µ
1 F1 + V µ

2 F2 + V µ
3 F3 + Qµ F4 , (21)

where Qµ = pµ1 + pµ2 + pµ3 and

V1µ =

(

gµν −
QµQν

Q2

)

(p2 − p1)
ν , V2µ =

(

gµν −
QµQν

Q2

)

(p3 − p1)
ν ,

V3µ = i εµν̺σ p
ν
1 p

̺
2 p

σ
3 . (22)

8



There are three different charge channels for the KKπ decays of the τ− lepton, namely

K+(p+)K
−(p−) π

−(pπ), K
0(p0)K

0
(p0) π

−(pπ) and K−(p−)K
0(p0) π

0(pπ). The definitions of
Eq. (22) correspond to the choice p3 = pπ in all cases, and : (p1, p2) = (p+, p−) for the K

+K−

case, (p1, p2) = (p0, p0) for K
0K

0
and (p1, p2) = (p−, p0) for K

−K0. In general, form factors
Fi are functions of the kinematical invariants : Q2, s = (p1+p2)

2 and t = (p1+p3)
2. F1 and F2

originate from the axial-vector current, while F3 follows from the vector current. All of them
correspond to spin-1 transitions. The F4 pseudoscalar form factor stems from the axial-vector
current, and corresponds to a spin-0 transition. It is seen that this form factor vanishes in
the chiral limit, therefore its contribution is expected to be heavily suppressed, and both the
spectrum and the branching ratio of tau decays into three pseudoscalar mesons is dominated
by J = 1 transitions, especially in the Cabibbo-allowed modes.

The Q2-spectrum is given by :

dΓ

dQ2
=

G2
F |Vud|2

128 (2π)5Mτ

(

M2
τ

Q2
− 1

)2 ∫

ds dt

[

WSA +
1

3

(

1 + 2
Q2

M2
τ

)

(WA +WB)

]

, (23)

where the hadron structure functions, introduced in Ref. [36], are :

WA = −(V µ
1 F1 + V µ

2 F2)(V1µF1 + V2µF2)
∗ ,

WB =
1

4

[

s t u + (m2
K −m2

π) (Q
2 −m2

K) s + m2
K(2m

2
π −Q2)Q2 − m2

Km
4
π

]

|F3|2 ,

WSA = (Qµ F4)(QµF
∗
4 ) = Q2 |F4|2 , (24)

where u = Q2 − s− t+2m2
K +m2

π. The phase-space integrals extend over the region spanned
by the hadron system with a center-of-mass energy

√

Q2 :

∫

ds dt ≡
∫ (

√
Q2−mπ)2

4m2
K

ds

∫ t+(s)

t−(s)

dt , (25)

with

t±(s) =
1

4 s

{

(

Q2 −m2
π

)2 −
[

λ1/2
(

Q2, s,m2
π

)

∓ λ1/2
(

m2
K , m

2
K , s

)]2
}

, (26)

and λ(a, b, c) = (a + b − c)2 − 4ab. We have neglected here the ντ mass, and exact isospin
symmetry has been assumed.

The general structure of the form factors, within our model, arises from the diagrams
displayed in Fig. 1. This provides the following decomposition :

Fi = F χ
i + F R

i + F RR

i , i = 1, ... , (27)

where F χ
i is given by the χPT Lagrangian [topologies a) and b) in Fig. 1], and the rest are

the contributions of one [Fig. 1c), d) and e)] or two resonances [Fig. 1f)].
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a) c)

f)e)d)

b)

Figure 1: Topologies contributing to the final hadron state in τ → KKπ ντ decays in the
NC → ∞ limit. A crossed circle indicates the QCD vector or axial-vector current insertion. A
single line represents a pseudoscalar meson (K, π) while a double line stands for a resonance
intermediate state. Topologies b) and e) only contribute to the axial-vector driven form factors,
while diagram d) arises only (as explained in the text) from the vector current.

3.1 Form factors in τ− → K+K− π− ντ and τ− → K0K0 π− ντ

In the isospin limit, form factors for the τ− → K+K−π−ντ and τ− → K0K0π−ντ decays
are identical. The explicit expressions for these are :

F χ
1 = −

√
2

3F
,

F R

1 (s, t) = −
√
2

6

FV GV

F 3

[

AR(Q2, s, u,m2
K , m

2
π, m

2
K)

M2
ρ − s

+
BR(s, u,m2

K, m
2
π)

M2
K∗ − t

]

, (28)

F RR

1 (s, t) =
2

3

FAGV

F 3

Q2

M2
a1
−Q2

[

ARR(Q2, s, u,m2
K, m

2
π, m

2
K)

M2
ρ − s

+
BRR(Q2, s, u, t,m2

K, m
2
π, m

2
K)

M2
K∗ − t

]

,

where the functions AR, BR, ARR and BRR are defined in Appendix A. The dependence of the
form factors with t follows from the relation u = Q2 − s− t+2m2

K +m2
π. Moreover resonance

masses correspond to the lowest states, Mρ =Mρ(770), MK∗ =MK∗(892) and Ma1 =Ma1(1260)
4.

Analogously the F2 form factor is given by :

F χ
2 = F χ

1 ,

4 Resonance masses and widths within our approach are discussed in subsect. 3.3.
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F R

2 (s, t) = −
√
2

6

FV GV

F 3

[

BR(t, u,m2
K , m

2
K)

M2
ρ − s

+
AR(Q2, t, u,m2

K , m
2
K , m

2
π)

M2
K∗ − t

]

, (29)

F RR

2 (s, t) =
2

3

FAGV

F 3

Q2

M2
a1
−Q2

[

BRR(Q2, t, u, s,m2
K, m

2
K , m

2
π)

M2
ρ − s

+
ARR(Q2, t, u,m2

K , m
2
K , m

2
π)

M2
K∗ − t

]

.

The F3 form factor arises from the chiral anomaly and the non-anomalous odd-intrinsic-parity
amplitude. We obtain :

F χ
3 = − NC

√
2

12 π2 F 3
,

F R

3 (s, t) = − 4GV

MV F 3

[

CR(Q2, s,m2
K , m

2
K , m

2
π)

(

sin2 θV
1 +

√
2 cot θV

M2
ω − s

+ cos2 θV
1−

√
2 tan θV

M2
φ − s

)

+
CR(Q2, t,m2

K , m
2
π, m

2
K)

M2
K∗ − t

− 2FV

GV

DR(Q2, s, t)

M2
ρ −Q2

]

, (30)

F RR

3 (s, t) = 4
√
2
FV GV

F 3

1

M2
ρ −Q2

[

CRR(Q2, s,m2
π)

(

sin2 θV
1 +

√
2 cot θV

M2
ω − s

+ cos2 θV
1−

√
2 tan θV

M2
φ − s

)

+
CRR(Q2, t,m2

K)

M2
K∗ − t

]

,

where CR, DR and CRR are defined in Appendix A, and θV is the mixing angle between the
octet and singlet vector states ω8 and ω0 that defines the mass eigenstates ω(782) and φ(1020) :

(

φ
ω

)

=

(

cos θV − sin θV
sin θV cos θV

) (

ω8

ω0

)

. (31)

For numerical evaluations we will assume ideal mixing, i.e. θV = tan−1(1/
√
2). In this case

the contribution of the φ(1020) meson to F3 vanishes.

Finally, though we have not dwelled on specific contributions to the F4 form factor, we
quote for completeness the result obtained from our Lagrangian. Its structure is driven by the
pion pole :

F4 = F χ
4 + F R

4 ,

F χ
4 (s, t) =

1√
2F

m2
π

m2
π −Q2

(

1 +
m2

K − u

Q2

)

,

11



F R

4 (s, t) =
G2

V√
2F 3

m2
π

Q2(m2
π −Q2)

[

s(t− u)

M2
ρ − s

+
t(s− u)− (m2

K −m2
π)(Q

2 −m2
K)

M2
K∗ − t

]

. (32)

3.2 Form factors in τ− → K−K0 π0 ντ

The diagrams contributing to the τ− → K−K0 π0 ντ decay amplitude are also those in Fig. 1,
hence once again we can write Fi = F χ

i + F R

i + F RR

i + . . . . However, the structure of the
form factors for this process does not show the symmetry observed in τ → KKπντ . We find :

F χ
1 = − 1

F
,

F R

1 (s, t) = −1

6

FVGV

F 3

[

BR(s, u,m2
K, m

2
π)

M2
K∗ − t

+ 2
AR(Q2, s, u,m2

K, m
2
π, m

2
K)

M2
ρ − s

+
AR(Q2, u, s,m2

π, m
2
K , m

2
K)

M2
K∗ − u

]

,

F RR

1 (s, t) =

√
2

3

FAGV

F 3

Q2

M2
a1
−Q2

[

BRR(Q2, s, u, t,m2
K, m

2
π, m

2
K)

M2
K∗ − t

+2
ARR(Q2, s, u,m2

K, m
2
π, m

2
K)

M2
ρ − s

+
ARR(Q2, u, s,m2

π, m
2
K , m

2
K)

M2
K∗ − u

]

, (33)

F χ
2 = 0 ,

F R

2 (s, t) = −1

6

FVGV

F 3

[

AR(Q2, t, u,m2
K , m

2
K , m

2
π)

M2
K∗ − t

+ 2
BR(t, u,m2

K , m
2
K)

M2
ρ − s

− AR(Q2, u, t,m2
K , m

2
K , m

2
π)

M2
K∗ − u

]

,

F RR

2 (s, t) =

√
2

3

FAGV

F 3

Q2

M2
a1 −Q2

[

ARR(Q2, t, u,m2
K, m

2
K , m

2
π)

M2
K∗ − t

+2
BRR(Q2, t, u, s,m2

K, m
2
K , m

2
π)

M2
ρ − s

− ARR(Q2, u, t,m2
K , m

2
K , m

2
π)

M2
K∗ − u

]

. (34)

The form factor driven by the vector current is given by :

F χ
3 = 0

F R

3 (s, t) =
2
√
2GV

MV F 3

[

CR(Q2, t,m2
K , m

2
π, m

2
K)

M2
K∗ − t

− CR(Q2, u,m2
K, m

2
π, m

2
K)

M2
K∗ − u

− 2FV

GV

ER(t, u)

M2
ρ −Q2

]

,
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F RR

3 (s, t) = −4
FVGV

F 3

1

M2
ρ −Q2

[

CRR(Q2, t,m2
K)

M2
K∗ − t

− CRR(Q2, u,m2
K)

M2
K∗ − u

]

, (35)

with ER defined in Appendix A.

Finally for the pseudoscalar form factor we have :

F χ
4 (s, t) =

1

2F

m2
π (t− u)

Q2(m2
π −Q2)

,

F R

4 (s, t) =
1

2

G2
V

F 3

m2
π

Q2(m2
π −Q2)

[

t(s− u)− (m2
K −m2

π)(Q
2 −m2

K)

M2
K∗ − t

+
2 s(t− u)

M2
ρ − s

−u(s− t)− (m2
K −m2

π)(Q
2 −m2

K)

M2
K∗ − u

]

. (36)

3.3 Features of the form factors

Several remarks are needed in order to understand our previous results for the form factors
related with the vector and axial-vector QCD currents analysed above :

1/ Our evaluation corresponds to the tree level diagrams in Fig. 1 that arise from the
NC → ∞ limit of QCD. Hence the masses of the resonances would be reduced to
MV = Mρ = Mω = MK∗ = Mφ and MA = Ma1 as they appear in the resonance
Lagrangian (9), i.e. the masses of the nonet of vector and axial-vector resonances in the
chiral and large-NC limit. However it is easy to introduce NLO corrections in the 1/NC

and chiral expansions on the masses by including the physical ones : Mρ, MK∗ , Mω, Mφ

and Ma1 for the ρ(770), K∗(892), ω(782), φ(1020) and a1(1260) states, respectively, as
we have done in the expressions of the form factors. In this setting resonances also have
zero width, which represents a drawback if we intend to analyse the phenomenology of
the processes : Due to the high mass of the tau lepton, resonances do indeed resonate
producing divergences if their width is ignored. Hence we will include energy-dependent
widths for the ρ(770), a1(1260) and K∗(892) resonances, that are rather wide, and a
constant width for the ω(782). This issue is discussed in Ref. [37].

In summary, to account for the inclusion of NLO corrections we perform the substitu-
tions :

1

M2
R − q2

−→ 1

M2
phys − q2 − iMphys Γphys(q2)

, (37)

where R = V,A, and the subindex phys on the right hand side stands for the correspond-
ing physical state depending on the relevant Feynman diagram.

2/ If we compare our results with those of Ref. [3], evaluated within the KS model, we
notice that the structure of our form factors is fairly different and much more intricate.
This is due to the fact that the KS model, i.e. a model resulting from combinations of
ad hoc products of Breit-Wigner functions, does not meet higher order chiral constraints
enforced in our approach.
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3/ As commented above the pseudoscalar form factors F4 vanishes in the chiral limit. Indeed
the results of Eqs. (32, 36) show that they are proportional tom2

π, which is tiny compared
with any other scale in the amplitudes. Hence the contribution of F4 to the structure of
the spectra is actually marginal.

4 QCD constraints and determination of resonance cou-

pling constants

Our results for the form factors Fi depend on several combinations of the coupling constants
in our Lagrangian LRχT in Eq. (18), most of which are in principle unknown parameters. Now,
if our theory offers an adequate effective description of QCD at hadron energies, the underlying
theory of the strong interactions should give information on those constants. Unfortunately
the determination of the effective parameters from first principles is still an open problem in
hadron physics.

A fruitful procedure when working with resonance Lagrangians has been to assume that
the resonance region, even when one does not include the full phenomenological spectrum,
provides a bridge between the chiral and perturbative regimes [27]. The chiral constraints
supply information on the structure of the interaction but do not provide any hint on the
coupling constants of the Lagrangian. Indeed, as in any effective theory [39], the couplings
encode information from high energy dynamics. Our procedure amounts to match the high
energy behaviour of Green functions (or related form factors) evaluated within the resonance
theory with the asymptotic results of perturbative QCD. This strategy has proven to be
phenomenologically sound [21–27,40], and it will be applied here in order to obtain information
on the unknown couplings.

Two-point Green functions of vector and axial-vector currents ΠV,A(q
2) were studied within

perturbative QCD in Ref. [41], where it was shown that both spectral functions go to a constant
value at infinite transfer of momenta :

ℑmΠV,A(q
2)−−−−→

q2→∞

NC

12 π
. (38)

By local duality interpretation the imaginary part of the quark loop can be understood as the
sum of infinite positive contributions of intermediate hadron states. Now, if the infinite sum
is going to behave like a constant at q2 → ∞, it is heuristically sound to expect that each one
of the infinite contributions vanishes in that limit. This deduction stems from the fact that
vector and axial-vector form factors should behave smoothly at high q2, a result previously
put forward from parton dynamics in Ref. [20]. Accordingly in the NC → ∞ limit this result
applies to our form factors evaluated at tree level in our framework.

Other hints involving short-distance dynamics may also be considered. The analyses of
three-point Green functions of QCD currents have become a useful procedure to determine
coupling constants of the intermediate energy (resonance) framework [21–25]. The idea is to
use those functions (order parameters of the chiral symmetry breaking), evaluate them within
the resonance framework and match this result with the leading term in the Operator Product
Expansion (OPE) of the Green function.
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In the following we collect the information provided by these hints on our coupling con-
stants, attaching always to the NC → ∞ case [18] (approximated with only one nonet of vector
and axial-vector resonances) :

i) By demanding that the two-pion vector form factor vanishes at high q2 one obtains the
condition FV GV = F 2 involving the couplings in Eq. (11) [27].

ii) The first Weinberg sum rule [43] leads to F 2
V − F 2

A = F 2, and the second Weinberg sum
rule gives F 2

V M
2
V = F 2

AM
2
A [15].

iii) The analysis of the VAP Green function [23] gives for the combinations of couplings
defined in Eq. (A.2) the following results :

λ′ =
F 2

2
√
2FAGV

=
MA

2
√
2MV

,

λ′′ =
2GV − FV

2
√
2FA

=
M2

A − 2M2
V

2
√
2MV MA

,

4 λ0 = λ′ + λ′′ , (39)

where, in the two first relations, the second equalities come from using relations i) and
ii) above. Here MV and MA are the masses appearing in the resonance Lagrangian
(9). Contrarily to what happens in the vector case where MV is well approximated
by the ρ(770) mass, in Ref. [26] it was obtained MA = 998(49)MeV, hence MA differs
appreciably from the presently accepted value of Ma1 . It is worth to notice that the two
first relations in Eq. (39) can also be obtained from the requirement that the J = 1 axial
spectral function in τ → 3πντ vanishes for large momentum transfer [13].

iv) Both vector form factors contributing to the final states KKπ− and K−K0π0 in tau
decays, when integrated over the available phase space, should also vanish at high Q2.
Let us consider H3

µν(s, t, Q
2) ≡ T 3

µT
3 ∗
ν , where T 3

µ can be inferred from Eq. (21). Then
we define ΠV (Q

2) by :

∫

dΠ3H
3
µν(s, t, Q

2) =
(

Q2gµν − QµQν

)

ΠV (Q
2) , (40)

where
∫

dΠ3 =

∫

d3p1
2E1

d3p2
2E2

d3p3
2E3

δ4 (Q− p1 − p2 − p3) δ
(

s− (Q− p3)
2
)

δ
(

t− (Q− p2)
2
)

=
π2

4Q2

∫

ds dt . (41)

Hence we find that

ΠV (Q
2) =

π2

12Q4

∫

ds dt gµν H3
µν(s, t, Q

2) , (42)
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where the limits of integration are those of Eq. (25, 26), should vanish at Q2 → ∞.
This constraint determines several relations on the couplings that appear in the F3 form
factor, namely :

c1 − c2 + c5 = 0 , (43)

c1 − c2 − c5 + 2c6 = − NC

96 π2

FV MV√
2F 2

, (44)

d3 = − NC

192 π2

M2
V

F 2
, (45)

g1 + 2g2 − g3 = 0 , (46)

g2 =
NC

192
√
2π2

MV

FV
. (47)

If these conditions are satisfied, ΠV (Q
2) vanishes at high transfer of momenta for both

KKπ− and K−K0π0 final states. We notice that the result in Eq. (43) is in agreement
with the corresponding relation in Ref. [24], while Eqs. (44) and (45) do not agree with
the results in that work. In this regard we point out that the relations in Ref. [24],
though they satisfy the leading matching to the OPE expansion of the 〈V V P 〉 Green
function with the inclusion of one multiplet of vector mesons, do not reproduce the right
asymptotic behaviour of related form factors. Indeed it has been shown [22,26] that two
multiplets of vector resonances are needed to satisfy both constraints. Hence we will
attach to our results above, which we consider more reliable 5.

v) An analogous exercise to the one in iv) can be carried out for the axial-vector form
factors F1 and F2. We have performed such an analysis and, using the relations in i)
and ii) above, it gives us back the results provided in Eq. (39) for λ′ and λ′′. Hence both
procedures give a consistent set of relations.

After imposing the above constraints, let us analyse which coupling combinations appearing in
our expressions for the form factors are still unknown. We intend to write all the information
on the couplings in terms of F , MV and MA. From the relations involving FV , FA and GV we
obtain :

F 2
V

F 2
=

M2
A

M2
A −M2

V

,

F 2
A

F 2
=

M2
V

M2
A −M2

V

,

G2
V

F 2
= 1 − M2

V

M2
A

. (48)

Moreover we know that FV and GV have the same sign, and we will assume that it is also the
sign of FA. Together with the relations in Eq. (39) this determines completely the axial-vector

5One of the form factors derived from the 〈V V P 〉 Green function is Fπγ∗γ(q
2), that does not vanish at

high q2 with the set of relations in Ref. [24]. With our conditions in Eqs. (44,45) the asymptotic constraint
on the form factor can be satisfied if the large-NC masses, MA and MV , fulfill the relation 2M2

A = 3M2
V . It is

interesting to notice the significant agreement with the numerical values for these masses mentioned above.
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form factors F1,2. Now from Eqs. (43-47) one can fix all the dominant pieces in the vector form
factor F3, i.e. those pieces that involve factors of the kinematical variables s, t or Q2. The
unknown terms, that carry factors of m2

π or m2
K , are expected to be less relevant. They are

given by the combinations of couplings : c1 + c2 + 8 c3 − c5, d1 + 8 d2, c4 , g4 and g5. However
small they may be, we will not neglect these contributions, and we will proceed as follows.
Results in Ref. [24] determine the first and the second coupling combinations. As commented
above the constraints in that reference do not agree with those we have obtained by requiring
that the vector form factor vanishes at high Q2. However, they provide us an estimate to
evaluate terms that, we recall, are suppressed by pseudoscalar masses. In this way, from a
phenomenological analysis of ω → π+π−π0 (see Appendix B) it is possible to determine the
combination 2 g4+g5. Finally in order to evaluate c4 and g4 we will combine the recent analysis
of σ (e+e− → KKπ) by BABAR [28] with the information from the τ → KKπντ width.

4.1 Determination of c4 and g4

The separation of isoscalar and isovector components of the e+e− → KKπ amplitudes, carried
out by BABAR [28], provides us with an additional tool for the estimation of the coupling
constant c4 that appears in the hadronization of the vector current. Indeed, using SU(2)I
symmetry alone one can relate the isovector contribution to σ (e+e− → K−K0π+) with the
vector contribution to Γ (τ− → K0K−π0ντ ) through the relation :

d

dQ2
Γ
(

τ− → K0K−π0ντ
)

∣

∣

∣

∣

∣

F3

= f(Q2) σI=1

(

e+e− → K−K0π+
)

, (49)

where f(Q2) is given in Appendix C. In this Appendix we also discuss other relations similar
to Eq. (49) that have been used in the literature and we point out the assumptions on which
they rely.

Hence we could use the isovector contribution to the cross-section for the process e+e− →
KSK

±π∓ determined by BABAR and Eq. (49) to fit the c4 coupling that is the only still unde-
termined constant in that process. However we have to take into account that our description
for the hadronization of the vector current in the tau decay channel does not, necessarily,
provide an adequate description of the cross-section. Indeed the complete different kinematics
of both observables suppresses the high-energy behaviour of the bounded tau decay spectrum,
while this suppression does not occur in the cross-section. Accordingly, our description of the
latter away from the energy threshold can be much poorer. As can be seen in Fig. 2 there is
a clear structure in the experimental points of the cross-section that is not provided by our
description.

Taking into account the input parameters quoted in Eq. (D.1) we obtain : c4 = −0.047±
0.002. The fit has been carried out for the first 6 bins (up to Ecm ∼ 1.52GeV). This result
corresponds to χ2/dof = 0.3 and the displayed error comes only from the fit.

We take into consideration now the measured branching ratios for the KKπ channels of
Table 1 in order to extract information both from c4 and g4. We notice that it is not possible
to reconcile a prediction of the branching ratios of τ → KKπντ and τ → K−K0π0ντ in spite
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Figure 2: Comparison of the experimental data [28] with the theoretical prediction for the cross-
section of the isovector component of e+e− → K∗(892)K → KSK

±π∓ process, for different values
of the c4 coupling. The χ2 values are associated to the first 6 data points only.

of the noticeable size of the errors shown in the Table 1. Considering that the second process
was measured long ago and that the τ− → K+K−π−ντ decay has been focused by both CLEO
III and BABAR we intend to fit the branching ratio of the latter. For the parameter values :

c4 = −0.07± 0.01 ,

g4 = −0.72± 0.20 , (50)

we find a good agreement with the measured widths Γ(τ− → K+K−π−ντ ) and Γ(τ →
K−K0π0ντ ) within errors (see Table 1). Notice that the value of |c4| is larger than that ob-
tained from the fit to the e+e− → KSK

±π∓ data explained above. In Fig. 2 we show the first
8 bins in the isovector component of e+e− → KSK

±π∓ and the theoretical curves for different
values of the c4 coupling. As our preferred result we choose the larger value of c4 in Eq. (50),
since it provides a better agreement with the present measurement of Γ(τ− → K−K0π0ντ ).
Actually, one can expect a large incertitude in the splitting of isospin amplitudes in the
e+e− → KSK

±π∓ cross-section (see Appendix C). Taking into account this systematic error,
it could be likely that the theoretical curve with c4 = −0.07 falls within the error bars for the
first data points.
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Source Γ(τ− → K+K−π−ντ ) Γ(τ− → K0K
0
π−ντ ) Γ(τ− → K−K0π0ντ )

PDG [35] 3.103 (136) 3.465 (770) 3.262 (521)

BABAR [44] 3.049 (85)

CLEO III [7] 3.511 (245)

Belle [45] 3.465 (136)

Our prediction 3.4+0.5
−0.2 3.4+0.5

−0.2 2.5+0.3
−0.2

Table 1: Comparison of the measurements of partial widths (in units of 10−15 GeV) with our pre-
dictions for the set of values in Eq. (50). For earlier references see [35].

5 Phenomenology of τ → KKπντ : Results and their

analysis

Asymmetric B-factories span an ambitious τ programme that includes the determination of
the hadron structure of semileptonic τ decays such as the KKπ channel. As commented in the
Introduction the latest study of τ− → K+K−π−ντ by the CLEO III Collaboration [7] showed
a disagreement between the KS model, included in TAUOLA, and the data. Experiments with
higher statistics such as BABAR and Belle should clarify the theoretical settings.

For the numerics in this Section we use the values in Appendix D. At present no spectra
for these channels is available and the determinations of the widths are collected in Table 1.
We also notice that there is a discrepancy between the BABAR measurement of Γ(τ− →
K+K−π−ντ ) and the results by CLEO and Belle. Within SU(2) isospin symmetry it is found

that Γ(τ− → K+K−π−ντ ) = Γ(τ− → K0K
0
π−ντ ), which is well reflected by the values

in Table 1 within errors. Moreover, as commented above, the PDG data [35] indicate that
Γ(τ− → K−K0π0ντ ) should be similar to Γ(τ− → KKπντ ). It would be important to obtain
a more accurate determination of the τ− → K−K0π0ντ width (the measurements quoted by
the PDG are rather old) in the near future.

In our analyses we include the lightest resonances in both the vector and axial-vector
channels, namely ρ(775), K∗(892) and a1(1260). It is clear that, as it happens in the τ →
πππντ channel (see Ref. [37]), a much lesser role, though noticeable, can be played by higher
excitations on the vector channel. As experimentally only the branching ratios are available
for the KKπ channel we think that the refinement of including higher mass resonances should
be taken into account in a later stage, when the experimental situation improves.

In Figs. 3 and 4 we show our predictions for the normalized M2
KKπ−spectrum of the

τ− → K+K−π−ντ and τ− → K−K0π0ντ decays, respectively. As discussed above we have
taken c4 = −0.07±0.01 and g4 = −0.72±0.20 (notice that the second process does not depend
on g4). We conclude that the vector contribution (ΓV ) dominates over the axial-vector one
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Figure 3: Normalized M2
KKπ-spectra for τ− → K+K−π−ντ . Notice the dominance of the axial-

vector current at very low values of Q2.

(ΓA) in both channels :

ΓA

ΓV

∣

∣

∣

KKπ
= 0.16± 0.05 ,

ΓA

ΓV

∣

∣

∣

K−K0π
= 0.18± 0.04 ,

Γ(τ− → K+K−π−ντ )

Γ(τ− → K−K0π0ντ )
= 1.4± 0.3 ,

(51)
where the errors estimate the slight variation due to the range in c4 and g4. These ratios
translate into a ratio of the vector current to all contributions of fv = 0.86 ± 0.04 for the
KKπ channel and fv = 0.85 ± 0.03 for the K−K0π one, to be compared with the result in
Ref. [42], namely fv(KKπ) = 0.20± 0.03. Our results for the relative contributions of vector
and axial-vector currents deviate strongly from most of the previous estimates, as one can
see in Table 2. Only Ref. [5] pointed already to vector current dominance in these channels,
although enforcing just the leading chiral constraints and using experimental data at higher
energies. We conclude that for all τ → KKπντ channels the vector component dominates by
far over the axial-vector one, though, as can be seen in the spectra in Figs. 3,4, the axial-vector
current is the dominant one in the very-low Q2 regime.

Next we contrast our spectrum for τ− → K+K−π−ντ with that one arising from the KS
model worked out in Refs. [3, 46]. This comparison is by no means straight because in these
references a second and even a third multiplet of resonances are included in the analysis. As
we consider that the spectrum is dominated by the first multiplet, in principle we could start
by switching off heavier resonances. However we notice that, in the KS model, the ρ(1450)
resonance plays a crucial role in the vector contribution to the spectrum. This feature depends
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Source ΓV /ΓA

Our result 6± 2

KS model [3] 0.6− 0.7

KS model [46] 0.4− 0.6

Breit-Wigner approach [5] ∼ 9

CVC [42] 0.20± 0.03

Data analysis [7] 1.26± 0.35

Table 2: Comparison of the ratio of vector and axial-vector contribution for τ → KKπντ partial
widths. The last two lines correspond to the τ− → K+K−π−ντ process only. Results in Ref. [46]
are an update of Ref. [3]. The result of Ref. [42] is obtained by connecting the tau decay width with
the CVC related e+e− → KSK

±π∓ (see Appendix C). The analysis in [7] was performed with a
parameterization that spoiled the chiral normalization of the form factors.
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Figure 4: Normalized M2
KKπ-spectra for τ

− → K−K0π0ντ . Notice the dominance of the axial-vector
current at very low values of Q2.

strongly on the value of the ρ(1450) width, which has been changed from Ref. [3] to Ref. [46] 6.
In Fig. 5 we compare our results for the vector and axial-vector contributions with those of

6Moreover within Ref. [3] the authors use two different set of values for the ρ(1450) mass and width, one
of them in the axial-vector current and the other in the vector one. This appears to be somewhat misleading.
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the KS model as specified in Ref. [46] (here we have switched off the seemingly unimportant
K∗(1410)). As it can be seen there are large differences in the structure of both approaches.
Noticeably there is a large shift in the peak of the vector spectrum owing to the inclusion
of the ρ(1450) and ρ(1700) states in the KS model together with its strong interference with
the ρ(770) resonance. In our scheme, including the lightest resonances only, the ρ(1450) and
ρ(1700) information has to be encoded in the values of c4 and g4 couplings (that we have
extracted in Subsection 4.1) and such an interference is not feasible. It will be a task for the
experimental data to settle this issue.
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Figure 5: Comparison between the normalized M2
KKπ-spectra for the vector and axial-vector con-

tributions to the τ− → K+K−π−ντ channel in the KS model [46] and in our approach.

In Fig. 6 we compare the normalized full M2
KKπ spectrum for the τ → KKπντ channels

in the KS model [46] and in our scheme. The most important feature is the large effect of the
vector contribution in our case compared with the leading role of the axial-vector part in the
KS model, as can be seen in Fig. 5. This is the main reason for the differences between the
shapes of M2

KKπ spectra observed in Fig. 6.

6 Conclusions

Hadron decays of the tau lepton are an all-important tool in the study of the hadronization
process of QCD currents, in a setting where resonances play the leading role. In particular
the final states of three mesons are the simplest ones where one can test the interplay between
different resonance states. At present there are three parameterizations implemented in the
TAUOLA library to describe the hadronization process in tau decays. Two are based on
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experimental data. The other alternative, namely the KS model, though successfull in the
account of the πππ final state, has proven to be unsuitable [7] when applied to the decays
into KKπ hadron states. Our procedure, guided by large NC , chiral symmetry and the
asymptotic behaviour of the form factors driven by QCD, was already employed in the analysis
of τ → πππντ in Refs. [13] and [37], which only concern the axial-vector current. Here we
have applied our methodology to the analysis of the τ → KKπντ channels where the vector
current may also play a significant role.

We have constructed the relevant Lagrangian involving the lightest multiplets of vector and
axial-vector resonances. Then we have proceeded to the evaluation of the vector and axial-
vector currents in the large-NC limit of QCD, i.e. at tree level within our model. Though
the widths of resonances are a next-to-leading effect in the 1/NC counting, they have to be
included into the scheme since the resonances do indeed resonate due to the high mass of the
decaying tau lepton. We have been able to estimate the values of the relevant new parameters
appearing in the Lagrangian with the exception of two, namely the couplings c4 and g4, which
happen to be important in the description of τ → KKπντ decays. The range of values for
these couplings has been determined from the measured widths Γ(τ− → K+K−π−ντ ) and
Γ(τ− → K−K0π0ντ ).

In this way we provide a prediction for the —still unmeasured— spectra of both processes.
We conclude that the vector current contribution dominates over the axial-vector current, in
fair disagreement with the corresponding conclusions from the KS model [46] with which we
have also compared our full spectra. On the other hand, our result is also at variance with
the analysis in Ref. [42]. There are two all-important differences that come out from the
comparison. First, while in the KS model the axial-vector contribution dominates the partial
width and spectra, in our results the vector current is the one that rules both spectrum
and width. Second, the KS model points out a strong interference between the ρ(770), the
ρ(1450) and the ρ(1700) resonances that modifies strongly the peak and shape of the MKKπ

distribution depending crucially on the included spectra. Not having a second multiplet of
vector resonances in our approach, we cannot provide this feature. It seems strange to us
the overwhelming role of the ρ(1450) and ρ(1700) states but it is up to the experimental
measurements to settle this issue.

Even if our model provides a good deal of tools for the phenomenological analyses of ob-
servables in tau lepton decays, it may seem that our approach is not able to carry the large
amount of input present in the KS model, as the later includes easily many multiplets of
resonances. In fact, this is not the case, since the Lagrangian can be systematically extended
to include whatever spectra of particles are needed. If such an extension is carried out the
determination of couplings could be cumbersome or just not feasible, but, on the same footing
as the KS model, our approach would provide a parameterization to be fitted by the experi-
mental data. The present stage, however, has its advantages. By including only one multiplet
of resonances we have a setting where the procedure of hadronization is controlled from the
theory. This is very satisfactory if our intention is to use these processes to learn about QCD
and not only to fit the data to parameters whose relation with the underlying theory is unclear
when not directly missing.

We intend to follow our approach to analyse further relevant three pseudoscalar channels
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along the lines explained in this article.
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A Definitions in the expressions of form factors

The results for the F1, F2 and F3 form factors in τ → KKπντ decays given in Eqs. (28), (29),
(30), (33), (34) and (35) are expressed in terms of the following functions :

AR(Q2, x, y,m2
1, m

2
2, m

2
3) = 3 x +m2

1 −m2
3 +

(

1− 2GV

FV

)

[

2Q2 − 2 x− y +m2
3 −m2

2

]

,

BR(x, y,m2
1, m

2
2) = 2

(

m2
2 −m2

1

)

+

(

1− 2GV

FV

)

[

y − x+m2
1 −m2

2

]

,

ARR(Q2, x, y,m2
1, m

2
2, m

2
3) = (λ′ + λ′′) (−3 x+m2

3 −m2
1)

+
(

2Q2 + x− y +m2
1 −m2

2

)

F

(

x

Q2
,
m2

2

Q2

)

,

BRR(Q2, x, y, z,m2
1, m

2
2, m

2
3) = 2 (λ′ + λ′′)

(

m2
1 −m2

2

)

+
(

y − x+m2
2 −m2

1

)

F

(

z

Q2
,
m2

3

Q2

)

,

CR(Q2, x,m2
1, m

2
2, m

2
3) = (c1 − c2 + c5)Q

2 − (c1 − c2 − c5 + 2c6) x

+(c1 + c2 + 8c3 − c5)m
2
3 + 8 c4 (m

2
1 −m2

2) ,

CRR(Q2, x,m2) = d3 (Q
2 + x) + (d1 + 8 d2 − d3)m

2 ,

DR(Q2, x, y) = (g1 + 2 g2 − g3) (x+ y)− 2 g2 (Q
2 +m2

K)

−(g1 − g3) (3m
2
K +m2

π) + 2 g4 (m
2
K +m2

π) + 2 g5m
2
K ,

ER(x, y) = (g1 + 2 g2 − g3) (x− y) . (A.1)

25



Here u = Q2 − s− t +m2
1 +m2

2 +m2
3 and F (x, y) = λ′′ + λ′ x− λ0 y, where λ0, λ

′ and λ′′ are
combinations of the λi couplings defined in Eq. (15) :

−
√
2 λ0 = 4 λ1 + λ2 +

λ4
2

+ λ5 ,

√
2 λ′ = λ2 − λ3 +

λ4
2

+ λ5 , (A.2)

√
2 λ′′ = λ2 −

λ4
2

− λ5 .

B 2 g4 + g5 from ω → π+π−π0

The process ω → π+(k1) π
−(k2) π

0(k3) provides us with an estimate for the combination of
couplings 2 g4+g5. We will denote the polarization vector of the ω as εσω and use the kinematic
invariants sij = (ki + kj)

2.

The amplitude for this process has two contributions. The first one, mediated by the ρ(770)
resonance was already studied in Ref. [24], where it was concluded that the contribution of a
pure local amplitude was necessary to fulfill the phenomenological determinations. This piece
can be obtained from our Lagrangian in Eq. (13). The full result is given by :

iMω→π+π−π0 = i εαβρσk
α
1 k

β
2k

ρ
3ε

σ
ω

8GV

MωF 3
×

×
{

m2
π(d1 + 8 d2 − d3) + (M2

ω + s12)d3
M2

ρ − s12
+ {s12 → s13}+ {s12 → s23}

+

√
2

GV MV

[

(g1 − g2 − g3)(M
2
ω − 3m2

π) + 3m2
π(2 g4 + g5)

]

}

,(B.1)

where we have assumed ideal mixing between the states |ω8〉 and |ω1〉 :

|ω〉 =

√

2

3
|ω1〉+

√

1

3
|ω8〉 . (B.2)

Using the experimental figure for BR(ω → π+π−π0) = 0.892 ± 0.007 [35], introducing the
already known combinations of couplings as discussed in Sect. 4 and taking GV = FV /F

2 with
FV given by Eq. (D.1) we find :

2 g4 + g5 = −0.60± 0.02 . (B.3)

We will use this result to eliminate g5 in terms of g4, that remains unknown.

C Relation between σ (e+e− → KKπ) and Γ (τ → KKπντ )

Using SU(2)I symmetry, one can derive several relations between exclusive isovector hadron
modes produced in e+e− collisions and those related with the vector current (F3 form factor)
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in τ decays. In particular we find :

d

dQ2
Γ
(

τ− → K0K−π0ντ
)

∣

∣

∣

∣

∣

F3

= f(Q2) σI=1

(

e+e− → K−K0π+
)

, (C.1)

where

f(Q2) =
G2

F |Vud|2
128(2π)5Mτ

(

M2
τ

Q2
− 1

)2
1

3

(

1 +
2Q2

M2
τ

) (

96π

α2

)

Q6 . (C.2)

Analogously, one can also derive:

2
d

dQ2
Γ
(

τ → K+K−π−ντ
)

∣

∣

∣

∣

∣

F3

= f(Q2)
[

σI=1

(

e+e− → K+K
0
π−
)

(C.3)

+ 2 σI=1

(

e+e− → K+K−π0
)

]

.

Summing these equations one obtains :

3
∑

i=1

d

dQ2
Γ (τ → (KKπ)iντ )

∣

∣

∣

∣

∣

F3

= f(Q2)
4
∑

i=1

σI=1

(

e+e− → (KKπ)i
)

, (C.4)

where the sums run over all possible charge channels in each case. If isovector and isoscalar
components were splitted for all channels Eq. (C.4) would allow us to fit the data using our
vector form factors for τ → (KKπ)iντ .

BABAR has managed to split the isoscalar and isovector components in the cross sections
σ (e+e− → KSK

±π∓) [28]. The I = 1 component of σ (e+e− → KK π) needs to be used, under
the hypothesis of CVC, to obtain the spectral function of the processes τ → KKπντ , and thus
to help the extraction of αS(Mτ ) [42]. However, it is not straightforward to obtain the inclusive
I = 1 component of σ (e+e− → KKπ) from the measured value of σ (e+e− → K0

SK
±π∓). In

fact, using only SU(2)I symmetry this is not possible. There are two further assumptions that
need to be done in order to obtain the expression usually employed :

σ
(

e+e− → KKπ
)

= 3 σ
(

e+e− → KSK
±π∓

)

. (C.5)

The first one is to assume that the processes e+e− → KKπ are dominated by K∗-exchange.
According to recent Dalitz plot analyses, [28] this is indeed a good approximation. How-
ever, SU(2)I symmetry and K∗ dominance do not allow to relate σ (e+e− → KSK

−π+) and
σ (e+e− → K+K−π0) as given by Eq. (C.5). Under K∗ dominance there are two intermediate
chains that account for each final state :

A
(

K+K−π0
)

= A
(

e+e− → (K∗−)K+ → K−π0K+
)

+A
(

e+e− → (K∗+)K− → K+π0K−
)

≡ B + C ,

A
(

K−K0π+
)

= A
(

e+e− → (K∗+)K− → K0π+K−
)

+A
(

e+e− → (K
∗0
)K0 → π+K−K0

)

≡
√
2 (B − C) . (C.6)
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Accordingly we conclude that the relation σ (e+e− → K0K−π+) = 2 σ (e+e− → K+K−π0),
which is necessary to derive Eq. (C.5), can only be obtained by neglecting the interference
terms arising from Eqs. (C.6).

We have checked the accuracy of this assumption using two different parameterizations
for the involved hadronization amplitudes. First, we have employed a parameterization fol-
lowing the KS-like model used for tau decays into KKπ modes, using the values in Ref. [46].
Furthermore, we have used our expressions obtained within RχT in Sect. 3. In both cases,
we have not set the contributions of other resonances than the K∗ to zero, although we have
checked that they are of very little importance. With both kinds of parameterizations either
at Γ (τ → KKπντ ) or at σ (e

+e− → KKπ) the error of assuming that interference effects are
negligible is at least of order 30 % in e+e−, being even larger in τ decays. In the same way,

Parameterization σ (e+e− → K0K−π+) /2 σ (e+e− → K+K−π0)

[46] 0.74

RχT 0.36

Table C.1: Check of the validity of relation (C.5) -and thus of neglecting interference effects- for
different hadronization parameterizations. The Q2-endpoint in the cross-sections has been taken
at ∼ 2 GeV2. We estimate the error of the RχT prediction to be around 30%.

taking for granted the rightness of the very accurate assumptions of SU(2)I and K
∗ dominance

in τ → KKπντ , it is still not possible to relate the widths to K+K−π− and K−K0π0 in a
model independent way. Under the hypothesis of negligible interference one would obtain

2 Γ
(

τ → K+K−π−ντ
)

= Γ
(

τ → K−K0π0ντ
)

. (C.7)

As can be observed in Table C.2, within the above considered models this relation does not
hold.

Parameterization Γ (τ → K−K0π0) /2 Γ (τ → K+K−π−)

[46] 0.62

RχT 0.36

Table C.2: Check of the validity of relation (C.7) -and thus of neglecting interference effects- for
different hadronization parameterizations. We estimate the error of the RχT prediction to be around
30%.

D Numerical input

For the numerics we use, if nothing is specified, the masses given in Ref. [35]. From the
analyses of Refs. [37, 47] we use, as input, the following numerical values of the parameters
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that appear in our study :

F = 0.0924GeV , FV = 0.180GeV , FA = 0.149GeV ,

MV = 0.775GeV , MK∗ = 0.8953GeV , Ma1 = 1.120GeV . (D.1)

Then we get λ′, λ′′ and λ0 from the first equalities in Eq. (39). Incidentally we can also
determine the value of MA ≃ 0.91GeV. Notice that this value for MA is slightly lower than
the result obtained in Ref. [26]. Our preferred set of values in Eq. (D.1) satisfies reasonably
well all the short-distance constraints pointed out in Sect. 4, with a deviation from Weinberg
sum rules of at most 10%, perfectly compatible with deviations due to the single resonance
approximation.
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